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Abstract

As a corollary of work of Ozsv�ath and Szab�o [8], it is shown that the classical concor-
dance group of algebraically slice knots has an in�nite cyclic summand and in particular
is not a divisible group.
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642 Charles Livingston

Let A denote the concordance group of algebraically slice knots, the kernel of
Levine’s homomorphism �: C ! G , where C is the classical knot concordance
group and G is Levine’s algebraic concordance group [6]. Little is known about
the algebraic structure of A: it is countable and abelian, Casson and Gordon [2]
proved that A is nontrivial, Jiang [5] showed it contains a subgroup isomorphic
to Z1 , and the author [7] proved that it contains a subgroup isomorphic to
Z12 . We add the following theorem, a quick corollary of recent work of Ozsv�ath
and Szab�o [8].

Theorem 1 The group A contains a summand isomorphic to Z and in par-
ticular A is not divisible.

Proof In [8] a homomorphism � : C ! Z is constructed. We prove that � is
nontrivial on A. The theorem follows since, because Im(�) is free, there is the
induced splitting, A �= Im(�)�Ker(�). No element representing a generator of
Im(�) is divisible.

According to [8], j�(K)j � g4(K), where g4 is the 4{ball genus of a knot, and
there is the example of the (4; 5){torus knot T for which �(T ) = 6. We will
show that there is a knot T � algebraically concordant to T with g4(T �) < 6.
Hence, T#− T � is an algebraically slice knot with nontrivial � , as desired.

Recall that T is a �bered knot with �ber F of genus (4−1)(5−1)=2 = 6. Let V
be the 12� 12 Seifert matrix for T with respect to some basis for H1(F ). The
quadratic form q(x) = xV xt on Z12 is equal to the form given by (V + V t)=2.
Using [3] the signature of this symmetric bilinear form can be computed to
be 8, so q is inde�nite, and thus by Meyer’s theorem [4] there is a nontrivial
primitive element z with q(z) = 0. Since z is primitive, it is a member of a
symplectic basis for H1(F ). Let V � be the Seifert matrix for T with respect to
that basis. The canonical construction of a Seifert surface with Seifert matrix
V � ([9], or see [1]) yields a surface F � such that z is represented by a simple
closed curve on F � that is unknotted in S3 . Hence, F � can be surgered in the
4{ball to show that its boundary T � satis�es g4(T �) < 6. Since T � and T have
the same Seifert form, they are algebraically concordant.

Addendum An alternative proof of Theorem 1 follows from the construction
of knots with trivial Alexander polynomial for which � is nontrivial, to appear
in a forthcoming paper.
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