ISSN 1364-0380 (on line) 1465-3060 (printed)

Geometry & Topology Volume 7 (2003) 789{797 Published: 28 November 2003

Hyperbolic cone{manifolds with large cone{angles

Juan Souto

Mathematisches Institut Universität Bonn Beringstr. 1, 53115 Bonn, Germany

Email: souto@math.uni -bonn.de

URL: http://www.math.uni-bonn.de/people/souto

Abstract

We prove that every closed oriented $3\{\text{manifold admits a hyperbolic cone}\}\$ manifold structure with cone $\{\text{angle arbitrarily close to } 2$.

AMS Classi cation numbers Primary: 57M50

Secondary: 30F40, 57M60

Keywords: Hyperbolic cone{manifold, Kleinian groups

Proposed: Jean-Pierre Otal Seconded: David Gabai, Benson Farb Received: 3 June 2003 Accepted: 13 November 2003

c Geometry & Topology Publications

1 Introduction

Consider the hyperbolic 3{space in the upper half{space model $\mathbb{H}^3 \land \mathbb{C} = \mathbb{R}_+$ and for 2(0,2) set $S = f(e^{r+i};t) j = 2[0;]; r = 2[0; 1]; t = 2\mathbb{R}_+g$. The boundary of S is a union of two hyperbolic half{planes. Denote by $\mathbb{H}^3()$ the space obtained from S by identifying both half{planes by a rotation around the vertical line $f0g = \mathbb{R}_+$.

A distance on a 3{manifold *M* determines a hyperbolic cone{manifold structure with singular locus a link *L M* and cone{angle 2 (0/2), if every point $x \ 2 \ M$ has a neighborhood which can be isometrically embedded either in \mathbb{H}^3 or in \mathbb{H}^3 () depending on $x \ 2 \ M \ n \ L$ or $x \ 2 \ L$.

Jean{Pierre Otal showed that the connected sum $\#^{k}(\mathbb{S}^{2} \mathbb{S}^{1})$ of k copies of $\mathbb{S}^{2} \mathbb{S}^{1}$ admits a hyperbolic cone{manifold structure with cone{angle 2 – for all > 0 as follows: The manifold $\#^{k}(\mathbb{S}^{2} \mathbb{S}^{1})$ is the double of the genus k handlebody H. There is a convex{cocompact hyperbolic metric on the interior of H such that the boundary of the convex{core is bent along a simple closed curve with dihedral angle $-\frac{1}{2}$ [2]; the convex{core is homeomorphic to H and hence the double of the convex{core is homeomorphic to $\#^{k}(\mathbb{S}^{2} \mathbb{S}^{1})$. The induced distance determines a hyperbolic cone{manifold structure on $\#^{k}(\mathbb{S}^{1} \mathbb{S}^{2})$ with singular locus and cone{angle 2 – . The same argument applies for every manifold which is the double of a compact manifold whose interior admits a convex{cocompact hyperbolic metric. Michel Boileau asked whether every 3{manifold has this property. Our goal is to give a positive answer to this question. We prove:

Theorem 1 Let M be a closed and orientable 3 {manifold. For every there is a distance d which determines a hyperbolic cone{manifold structure on M with cone{angle 2 - .

Before going further, we remark that we do not claim that the singular locus is independent of $\ .$

We now sketch the proof of Theorem 1. First, we construct a compact manifold \mathcal{M}^0 , whose boundary consists of tori, and such that there is a sequence (\mathcal{M}^0_n) of 3{manifolds obtained from \mathcal{M}^0 by Dehn lling such that \mathcal{M}^0_n is homeomorphic to \mathcal{M} for all n. The especial structure of \mathcal{M}^0 permits us to show that the interior Int \mathcal{M}^0 of the manifold \mathcal{M}^0 admits, for every > 0, a complete hyperbolic cone{manifold structure with cone{angle 2 - . Thus, it follows from the work of Hodgson and Kerckho [5] that for n su ciently large there

is a distance $d_n = d$ on the manifold $M_n^0 = M$ which determines a hyperbolic cone{manifold structure with cone{angle 2 - .

Let (i) be a non-increasing sequence of positive numbers tending to 0. If the corresponding sequence (n_i) grows fast enough, then the pointed Gromov{ Hausdor limit of the sequence $(M; d_i)$ of metric spaces is a complete, smooth, hyperbolic manifold X with nite volume. Moreover, the volume of the $(M; d_i)$ converges to the volume of X when *i* tends to **1**; in particular the volume of $(M; d_i)$ is uniformly bounded.

I would like to thank Michel Boileau for many useful suggestions and remarks which have clearly improved the paper.

The author has been supported by the Sonderforschungsbereich 611.

2 Preliminaries

2.1 Dehn lling

Let *N* be a compact manifold whose boundary consists of tori T_1 , \dots ; T_k and let U_1 , \dots ; U_k be solid tori. For any collection $f_i g_{i=1,\dots,k}$ of homeomorphisms $i: @U_i ! T_i$ let $N_{1,\dots,k}$ be the manifolds obtained from *N* by attaching the solid torus U_i via i to T_i for $i = 1,\dots,k$.

Suppose that for all *i* we have a basis $(m_i; l_i)$ of $H_1(T_i; \mathbb{Z})$ and let *i* be the meridian of the solid torus U_i . There are coprime integers $a_i; b_i$ with $i(i) = a_i m_i + b_i l_i$ in $H_1(T_i; \mathbb{Z})$ for all i = 1; ...; k. It is well known that the manifold $N_{1}, ..., k$ depends only on the set $fa_1 m_1 + b_1 l_1; ...; a_k m_k + b_k l_k g$ of homology classes. We denote this manifold by $N_{(a_1m_1+b_1l_1),...,(a_km_k+b_kl_k)}$ and say that it has been obtained from N lling the curves $a_i m_i + b_i l_i$.

The following theorem, due to Hodgson and Kerckho [5] (see also [3]), generalizes Thurston's Dehn lling theorem:

Generalized Dehn lling theorem Let N be a compact manifold whose boundary consists of tori T_1 ; ...; T_k and let $(m_i; I_i)$ be a basis of $H_1(T_i; \mathbb{Z})$ for i = 1; ...; k. Assume that the interior Int N of N admits a complete nite volume hyperbolic cone{manifold structure with cone{angle 2 . Then there exists C > 0 with the following property:

The manifold $N_{(a_1m_1+b_1l_1);...;(a_km_k+b_kl_k)}$ admits a hyperbolic cone{manifold structure with cone{angle if $ja_ij + jb_ij$ *C* for all i = 1, ..., k.

2.2 Geometrically nite manifolds

The *convex{core* of a complete hyperbolic manifold N with nitely generated fundamental group is the smallest closed convex set CC(N) such that the inclusion CC(N) / N is a homotopy equivalence. The convex{core CC(N) has empty interior if an only if N is Fuchsian; since we will not be interested in this case we assume from now on that the interior of the convex{core is not empty. We will only work with geometrically nite manifolds, i.e. the convex{core has nite volume. If N is geometrically nite then it is homeomorphic to the interior of a compact manifold N and the convex{core CC(N) is homeomorphic to N n P where P = @N is the union of all toroidal components of @N and of a collection of disjoint, non{parallel, essential simple closed curves. The pair (N; P) is said to be the pared manifold associated to N and P is its parabolic locus ([6]).

A theorem of Thurston [13] states that the induced distance on the boundary @CC(N) of the convex{core CC(N) is a complete smooth hyperbolic metric with nite volume. The boundary components are in general not smoothly embedded, they are pleated surfaces bent along the so{called bending lamination. We will only consider geometrically nite manifolds for which the bending lamination is a weighted curve . Here is the simple closed geodesic of N along which @CC(N) is bent and - is the dihedral angle.

The following theorem, due to Bonahon and Otal, is an especial case of [2, Theoreme 1].

Realization theorem Let N be a compact 3{manifold with incompressible boundary whose interior Int N admits a complete hyperbolic metric with parabolic locus P. If @N n P is an essential simple closed curve such that @N n ([P) is acylindrical then for every > 0 there is a unique geometrically nite hyperbolic metric on Int N with parabolic locus P and bending lamination .

We refer to [4] and to [6] for more about the geometry of the convex{core of geometrically nite manifolds.

3 Proof of Theorem 1

Let *S M* be a closed embedded surface which determines a Heegaard splitting $M = H_1 [H_2 \text{ of } M.$ Here H_1 and H_2 are handlebodies and $: @H_1 ! @H_2$

is the attaching homeomorphism. Without loss of generality we may assume that S has genus g=2.

Lemma 2 There is a pant decomposition P of $@H_1$ such that both pared manifolds $(H_1; P)$ and $(H_2; (P))$ have incompressible and acylindrical boundary.

Proof The Masur domain $O(H_i)$ of the handlebody H_i is an open subset of $PML(@H_i)$, the space of projective measured laminations on $@H_i$. If

is a weighted multicurve in the Masur domain then the pared manifold $(H_i; \text{supp}())$ has incompressible and acylindrical boundary, where supp() is the support of (see [9, 10] for the properties of the Masur domain). Kerckho [7] proved that the Masur domain has full measure with respect to the measure class induced by the PL{structure of $PML(@H_i)$. The map $: @H_1 ! @H_2$ induces a homeomorphism $: PML(@H_1) ! PML(@H_2)$ which preserves the canonical measure class. In particular, the intersection of $O(H_1)$ and $^{-1}(O(H_2))$ is not empty and open in $PML(@H_1)$. Since weighted multic-

 $(O(H_2))$ is not empty and open in $PNL(@H_1)$. Since weighted multiurves are dense in $PML(@H_1)$ the result follows.

Now, choose a pant decomposition $P = f p_1 : \dots : p_{3g-3}g$ of $@H_1$ as in Lemma 2 and identify it with a pant decomposition P of S. Let S = [-2,2] be a regular neighborhood of S in M and U a regular neighborhood of P = f-1/1g in S = [-2,2]; U is a union of disjoint open solid tori $U_1^+ : \dots : U_{3g-3}^+ : U_1^- : \dots : U_{3g-3}^$ with $p_j = p_j = f = 1g = U_j$ for all j. The boundary of the manifold $M^0 = MnU$ is a collection of tori

$$@M^{0} = T_{1}^{+} [[T_{3q-3}^{+} [T_{1}^{-} [[T_{3q-3}^{-}]]$$

where T_j bounds U_j . We choose a basis $(l_j; m_j)$ of $H_1(T_j; \mathbb{Z})$ for j = 1; j : j : 3g - 3 as follows:

 I_j : For all *j* there is a properly embedded annulus

$$A_j: (\mathbb{S}^1 \ [-1,1]; \mathbb{S}^1 \ f \ 1g) ! (M^0 \setminus S \ [-2,2]; T_j);$$

set $I_j = A_j j_{\mathbb{S}^1 f 1g}$.

 m_j : The curve m_j is the meridian of the solid torus U_j with the orientation chosen such that the algebraic intersection number of m_j and l_j is equal to 1.

For $n \ 2 \ \mathbb{Z}$ let M_n^0 be the manifold

$$\mathcal{M}_{n}^{0} \stackrel{\text{def}}{=} \mathcal{M}_{(nl_{1}^{+} + m_{1}^{+}); \dots; (nl_{3g-3}^{+} + m_{3g-3}^{+}); (-nl_{1}^{-} + m_{1}^{-}); \dots; (-nl_{3g-3}^{-} + m_{3g-3}^{-}); ($$

obtained by lling the curve $nI_j + m_j$ for all *j*.

Let V_j be a regular neighborhood of the image of A_j in \mathcal{M}^0 ; we may assume that $V_i \setminus V_j = j$ for all $i \notin j$. The interior of the manifold $\mathcal{M}^0 n [_j V_j$ is homeomorphic to $\mathcal{M} n \mathcal{P}$ and its boundary is a collection $T_1 : \ldots : T_{3g-3}$ of tori. The complement of $\mathcal{M}^0 n [_j V_j$ in \mathcal{M}^0_n is a union of 3g - 3 solid tori whose meridians do not depend on n. In particular, \mathcal{M}^0_n is homeomorphic to \mathcal{M}^0_0 for all n. Since \mathcal{M}^0_0 is, by construction, homeomorphic to \mathcal{M} , we obtain

Lemma 3 The manifold M_n^0 is homeomorphic to M for all $n \ge \mathbb{Z}$.

In order to complete the proof of Theorem 1 we make use of the following result which we will show later on.

Proposition 4 There is a link L Int M^0 such that for all > 0 the manifold Int M^0 admits a complete, nite volume hyperbolic cone{manifold structure with singular locus L and cone{angle 2 - .

We continue with the proof of Theorem 1. Since the manifold Int M^0 admits a complete nite volume hyperbolic cone{manifold structure with cone{angle 2 – it follows from the Generalized Dehn lling theorem that there is some *n* such that M_n^0 admits a hyperbolic cone{manifold structure with cone{angle 2 – , too. This concludes the proof of Theorem 1 since *M* and M_n^0 are homeomorphic by Lemma 3.

We now prove Proposition 4. The surface *S* separates M^0 in two manifolds M^0_- and M^0_+ . The boundary $@M^0$ is the union of a copy of *S* and the collection $P = [j_{j=1},..., 3g_{-3}T_j^{-1}$ of tori. It follows from the choice of *P* that the manifold M^0 is irreducible, atoroidal and has incompressible boundary. In particular, Thurston's Hyperbolization theorem [11] implies that the interior of M^0 admits a complete hyperbolic metric with parabolic locus P.

If *L S* is a simple closed curve such that *P* [*L* lls *S*, then the pared manifold $(M^0; L)$ is acylindrical. Bonahon and Otal's Realization theorem implies that for all > 0 there is a geometrically nite hyperbolic metric *g* on the interior of M^0 with parabolic locus *P* and with bending lamination =2 *L*. The convex{core $CC(M^0; g)$ can be identi ed with $M^0 n P$ and

Geometry & Topology, Volume 7 (2003)

794

hence the boundary of the convex{core consists of a copy S of the surface S; the identi cation of S with S induces a map $: S_{-} ! S_{+}$ with

Int
$$M^0 = CC(M^0_-; g_-) [CC(M^0_+; g_+):$$

The hyperbolic surface *S* is bent along *L* with dihedral angle $\frac{1}{2}$. The following lemma concludes the proof of Proposition 4.

Lemma 5 The map $: S_- ! S_+$ is isotopic to an isometry.

Proof The cover $(N \ ; h)$ of $(\operatorname{Int} M^0; g)$ corresponding to the surface *S* is geometrically nite. Since *S* is incompressible we obtain that *N* is homeomorphic to the interior of *S* [-1,1] and the parabolic locus of $(N \ ; h)$ is the collection $P \ f \ 1g$. The convex surface *S* $\operatorname{Int} M^0$ lifts to one of the components of the boundary of the convex{core of $(N \ ; h)$; the other components are spheres with three punctures, and hence totally geodesic. The map can be extended to the map $\sim : N_- = S_- \ (-1,1) \ ! \ N_+ = S_+ \ (-1,1)$ given by $(x;t) \ \not V \ (\ (x); -t)$. The map \sim maps, up to isotopy, P_- to P_+ and *L* to *L*. Hence, the uniqueness part of Bonahon and Otal's Realization theorem implies that \sim is isotopic to an isometry and this gives the desired result. \Box

Concluding remarks

Recall that in Theorem 1 we do not claim that the singular locus of *d* is independent of . If *M* is the double of a compact manifold with incompressible boundary whose interior admits a convex{cocompact hyperbolic metric, then, using Otal's trick, it is possible to construct a link *L* such that *M* admits a hyperbolic cone{manifold structure with singular locus *L* and cone{angle 2 – for all . Proposition 4 suggests that this may be a more general phenomenon but the author does not think that it is always possible to choose the singular locus independently of .

Question 1 Let L be a link in $\mathbb{S}^2 = \mathbb{S}^1$ which intersects an essential sphere n times. Is there a hyperbolic cone{manifold structure on $\mathbb{S}^2 = \mathbb{S}^1$ with singular locus L and with cone{angle greater than $\frac{n-2}{n}2$?

Question 2 Is there a link $L = \mathbb{S}^3$ such that for every > 0 there is a hyperbolic cone{manifold structure on \mathbb{S}^3 with singular locus L and with cone{ angle 2 - ?

We suspect that both questions have a negative answer.

We de ne, as suggested by Michel Boileau, the *hyperbolic volume* Hypvol(M) of a closed 3{manifold M as the in mum of the volumes of all possible hyperbolic cone{manifold structures on M with cone{angle less or equal to 2 . It follows from [5] and from the Schläfli formula that the hyperbolic volume of a manifold M is achieved if and only if M is hyperbolic. A sequence of hyperbolic cone{manifold structures realizes the hyperbolic volume if the associated volumes converge to Hypvol(M). From the arguments used in the proof of the Orbifold theorem [1] it is easy to deduce that the hyperbolic volume is realized by a sequence of hyperbolic cone{manifold structures whose cone{angles are all greater or equal to .

Question 3 Is there a sequence of metrics realizing the hyperbolic volume and such that the associated cone{angles tend to 2 ?

As remarked in the introduction, it follows from our construction that there are sequences of hyperbolic cone{manifold structures whose cone{angles tend to 2 and which have uniformly bounded volume.

Let M now be a closed orientable and irreducible 3{manifold M. We say that M is *geometrizable* if Thurston's Geometrization Conjecture holds for it. If M is geometrizable then let M_{hyp} be the associated complete nite volume hyperbolic manifold. In [12] we proved:

Theorem Let M be a closed, orientable, geometrizable and prime 3{manifold. Then the minimal volume Minvol(M) of M is equal to vol(M_{hyp}) and moreover, the manifolds ($M; g_i$) converge in geometrically to M_{hyp} for every sequence (g_i) of metrics realizing Minvol(M). In particular, the minimal volume is achieved if and only if M is hyperbolic.

Recall that the minimal volume Minvol(M) of M is the in mum of the volumes vol(M; g) of all Riemannian metrics g on M with sectional curvature bounded in absolute value by one. A sequence of metrics (g_i) realizes the minimal volume if their sectional curvatures are bounded in absolute value by one and if vol($M; g_i$) converges to Minvol(M).

Under the assumption that the manifold M is geometrizable and prime, it follows with the same arguments as in [12] that the hyperbolic volume can be bounded from below by the minimal volume.

Question 4 If *M* is geometrizable and prime, do the hyperbolic and the minimal volume coincide?

Geometry & Topology, Volume 7 (2003)

796

This question has a positive answer if the manifold M is the double of a manifold which admits a convex{cocompact metric and the answer should be also positive without this restriction. If this is the case, then it should also be possible to show that the Gromov{Hausdor limit of every sequence of hyperbolic cone{ manifold structures which realizes the hyperbolic volume is isometric to M_{hyp} . We do not dare to ask if the assumption on M to be geometrizable can be dropped.

References

- M Boileau, J Porti, Geometrization of 3-orbifolds of cyclic type, Asterisque No. 272 (2001)
- [2] F Bonahon, J{P Otal, Laminations mesurees de plissage des varietes hyperboliques de dimension 3, preprint (2001) http://math.usc.edu/~fbonahon/Research/Preprints/Preprints.html
- [3] **K Bromberg**, *Rigidity of geometrically nite hyperbolic cone{manifolds*, preprint (2002) arXiv: math. GT/0009149
- [4] D Canary, D Epstein, P Green Notes on notes of Thurston in Analytical and geometric aspects of hyperbolic space, London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press, Cambridge (1987) 3{92
- [5] C Hodgson, S Kerckho, Rigidity of hyperbolic cone{manifolds and hyperbolic Dehn surgery, J. Di . Geom. 48 (1998) 1{59
- [6] K Matsuzaki, M Taniguchi, Hyperbolic Manifolds and Kleinian Groups, Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, (1998)
- [7] **S Kerckho**, *The measure of the limit set of the handlebody group*, Topology 29 (1990) 27{40
- [8] S Kojima, Deformations of hyperbolic3{cone{manifolds, J. Di . Geom. 49 (1998) 469{516
- [9] H. Masur, Measured foliations and handlebodies, Ergodic Theory Dyn. Syst.
 6, (1986) 99{116
- [10] J{P Otal, Courants geodesiques et produits libres, These d'Etat, Universite Paris{Sud, Orsay (1988)
- [11] J{P Otal, Thurston's hyperbolization of Haken manifolds, Surveys in di erential geometry, Vol. III (1998) 77{194
- [12] J Souto, Geometric structures on 3{manifolds and their deformations, Ph.D.{ thesis Universität Bonn. Bonner Mathematischen Schriften nr. 342 (2001)
- [13] **WP Thurston**, *The Geometry and Topology of 3 {manifolds*, Lecture notes (1979)