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Abstract

We prove that every closed oriented 3{manifold admits a hyperbolic cone{
manifold structure with cone{angle arbitrarily close to 2� .
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1 Introduction

Consider the hyperbolic 3{space in the upper half{space model H3 ’ C � R+

and for � 2 (0; 2�) set S� = f(er+i�; t) j � 2 [0; �]; r 2 [0;1); t 2 R+g. The
boundary of S� is a union of two hyperbolic half{planes. Denote by H3(�) the
space obtained from S� by identifying both half{planes by a rotation around
the vertical line f0g � R+ .

A distance on a 3{manifold M determines a hyperbolic cone{manifold structure
with singular locus a link L � M and cone{angle � 2 (0; 2�), if every point
x 2 M has a neighborhood which can be isometrically embedded either in H3

or in H3(�) depending on x 2M n L or x 2 L.

Jean{Pierre Otal showed that the connected sum #k(S2 � S1) of k copies of
S2 � S1 admits a hyperbolic cone{manifold structure with cone{angle 2� − �
for all � > 0 as follows: The manifold #k(S2� S1) is the double of the genus k
handlebody H . There is a convex{cocompact hyperbolic metric on the interior
of H such that the boundary of the convex{core is bent along a simple closed
curve γ with dihedral angle �− 1

2� [2]; the convex{core is homeomorphic to H
and hence the double of the convex{core is homeomorphic to #k(S2�S1). The
induced distance determines a hyperbolic cone{manifold structure on #k(S1 �
S2) with singular locus γ and cone{angle 2� − �. The same argument applies
for every manifold which is the double of a compact manifold whose interior
admits a convex{cocompact hyperbolic metric. Michel Boileau asked whether
every 3{manifold has this property. Our goal is to give a positive answer to
this question. We prove:

Theorem 1 Let M be a closed and orientable 3{manifold. For every � there
is a distance d� which determines a hyperbolic cone{manifold structure on M
with cone{angle 2� − �.

Before going further, we remark that we do not claim that the singular locus is
independent of �.

We now sketch the proof of Theorem 1. First, we construct a compact manifold
M0 , whose boundary consists of tori, and such that there is a sequence (M0

n)
of 3{manifolds obtained from M0 by Dehn �lling such that M0

n is homeomor-
phic to M for all n. The especial structure of M0 permits us to show that
the interior IntM0 of the manifold M0 admits, for every � > 0, a complete
hyperbolic cone{manifold structure with cone{angle 2� − �. Thus, it follows
from the work of Hodgson and Kerckho� [5] that for n� su�ciently large there
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is a distance dn� = d� on the manifold M0
n� = M which determines a hyperbolic

cone{manifold structure with cone{angle 2� − �.
Let (�i) be a non-increasing sequence of positive numbers tending to 0. If the
corresponding sequence (n�i) grows fast enough, then the pointed Gromov{
Hausdor� limit of the sequence (M;d�i) of metric spaces is a complete, smooth,
hyperbolic manifold X with �nite volume. Moreover, the volume of the (M;d�i)
converges to the volume of X when i tends to 1; in particular the volume of
(M;d�i) is uniformly bounded.

I would like to thank Michel Boileau for many useful suggestions and remarks
which have clearly improved the paper.

The author has been supported by the Sonderforschungsbereich 611.

2 Preliminaries

2.1 Dehn �lling

Let N be a compact manifold whose boundary consists of tori T1; : : : ; Tk and
let U1; : : : ; Uk be solid tori. For any collection f�igi=1;:::;k of homeomorphisms
�i : @Ui ! Ti let N�1;:::;�k be the manifolds obtained from N by attaching the
solid torus Ui via �i to Ti for i = 1; : : : ; k .

Suppose that for all i we have a basis (mi; li) of H1(Ti;Z) and let �i be
the meridian of the solid torus Ui . There are coprime integers ai; bi with
�i(�i) = aimi + bili in H1(Ti;Z) for all i = 1; : : : ; k . It is well known that the
manifold N�1;:::;�k depends only on the set fa1m1 + b1l1; : : : ; akmk + bklkg of
homology classes. We denote this manifold by N(a1m1+b1l1);:::;(akmk+bklk) and
say that it has been obtained from N �lling the curves aimi + bili .

The following theorem, due to Hodgson and Kerckho� [5] (see also [3]), gener-
alizes Thurston’s Dehn �lling theorem:

Generalized Dehn �lling theorem Let N be a compact manifold whose
boundary consists of tori T1; : : : ; Tk and let (mi; li) be a basis of H1(Ti;Z) for
i = 1; : : : ; k . Assume that the interior IntN of N admits a complete �nite
volume hyperbolic cone{manifold structure with cone{angle � � 2� . Then
there exists C > 0 with the following property:

The manifold N(a1m1+b1l1);:::;(akmk+bklk) admits a hyperbolic cone{manifold
structure with cone{angle � if jaij+ jbij � C for all i = 1; : : : ; k .
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2.2 Geometrically �nite manifolds

The convex{core of a complete hyperbolic manifold N with �nitely generated
fundamental group is the smallest closed convex set CC(N) such that the in-
clusion CC(N) ,! N is a homotopy equivalence. The convex{core CC(N) has
empty interior if an only if N is Fuchsian; since we will not be interested in this
case we assume from now on that the interior of the convex{core is not empty.
We will only work with geometrically �nite manifolds, i.e. the convex{core has
�nite volume. If N is geometrically �nite then it is homeomorphic to the inte-
rior of a compact manifold N and the convex{core CC(N) is homeomorphic
to N n P where P � @N is the union of all toroidal components of @N and
of a collection of disjoint, non{parallel, essential simple closed curves. The pair
(N ;P) is said to be the pared manifold associated to N and P is its parabolic
locus ([6]).

A theorem of Thurston [13] states that the induced distance on the boundary
@CC(N) of the convex{core CC(N) is a complete smooth hyperbolic metric
with �nite volume. The boundary components are in general not smoothly em-
bedded, they are pleated surfaces bent along the so{called bending lamination.
We will only consider geometrically �nite manifolds for which the bending lam-
ination is a weighted curve � � γ . Here γ is the simple closed geodesic of N
along which @CC(N) is bent and � − � is the dihedral angle.

The following theorem, due to Bonahon and Otal, is an especial case of [2,
Th�eor�eme 1].

Realization theorem Let N be a compact 3{manifold with incompress-
ible boundary whose interior IntN admits a complete hyperbolic metric with
parabolic locus P . If γ � @N n P is an essential simple closed curve such that
@N n (γ [ P) is acylindrical then for every � > 0 there is a unique geomet-
rically �nite hyperbolic metric on IntN with parabolic locus P and bending
lamination � � γ .

We refer to [4] and to [6] for more about the geometry of the convex{core of
geometrically �nite manifolds.

3 Proof of Theorem 1

Let S �M be a closed embedded surface which determines a Heegaard splitting
M = H1 [� H2 of M . Here H1 and H2 are handlebodies and � : @H1 ! @H2
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is the attaching homeomorphism. Without loss of generality we may assume
that S has genus g � 2.

Lemma 2 There is a pant decomposition P of @H1 such that both pared
manifolds (H1; P ) and (H2; �(P )) have incompressible and acylindrical bound-
ary.

Proof The Masur domain O(Hi) of the handlebody Hi is an open subset
of PML(@Hi), the space of projective measured laminations on @Hi . If
γ is a weighted multicurve in the Masur domain then the pared manifold
(Hi; supp(γ)) has incompressible and acylindrical boundary, where supp(γ) is
the support of γ (see [9, 10] for the properties of the Masur domain). Kerckho�
[7] proved that the Masur domain has full measure with respect to the measure
class induced by the PL{structure of PML(@Hi). The map � : @H1 ! @H2

induces a homeomorphism �� : PML(@H1) ! PML(@H2) which preserves
the canonical measure class. In particular, the intersection of O(H1) and
�−1
� (O(H2)) is not empty and open in PML(@H1). Since weighted multic-

urves are dense in PML(@H1) the result follows.

Now, choose a pant decomposition P = fp1; : : : ; p3g−3g of @H1 as in Lemma 2
and identify it with a pant decomposition P of S . Let S � [−2; 2] be a regular
neighborhood of S in M and U a regular neighborhood of P � f−1; 1g in
S�[−2; 2]; U is a union of disjoint open solid tori U+

1 ; : : : ; U
+
3g−3; U

−
1 ; : : : ; U

−
3g−3

with p�j = pj�f�1g � U�j for all j . The boundary of the manifold M0 = MnU
is a collection of tori

@M0 = T+
1 [ � � � [ T+

3g−3 [ T−1 [ � � � [ T−3g−3

where T�j bounds U�j . We choose a basis (l�j ;m
�
j ) of H1(T�j ;Z) for j =

1; : : : ; 3g − 3 as follows:

l�j : For all j there is a properly embedded annulus

Aj : (S1 � [−1; 1];S1 � f�1g)! (M0 \ S � [−2; 2]; T�j );

set l�j = AjjS1�f�1g .

m�j : The curve m�j is the meridian of the solid torus U�j with the orientation
chosen such that the algebraic intersection number of m�j and l�j is equal
to 1.
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For n 2 Z let M0
n be the manifold

M0
n

def= M0
(nl+1 +m+

1 );:::;(nl+3g−3+m+
3g−3);(−nl−1 +m−1 );:::;(−nl−3g−3+m−3g−3)

obtained by �lling the curve �nl�j +m�j for all j .

Let Vj be a regular neighborhood of the image of Aj inM0 ; we may assume
that Vi \ Vj = ; for all i 6= j . The interior of the manifold M0 n [jVj is
homeomorphic to M n P and its boundary is a collection T1; : : : ; T3g−3 of tori.
The complement of M0 n [jVj in M0

n is a union of 3g − 3 solid tori whose
meridians do not depend on n. In particular, M0

n is homeomorphic to M0
0 for

all n. Since M0
0 is, by construction, homeomorphic to M , we obtain

Lemma 3 The manifold M0
n is homeomorphic to M for all n 2 Z.

In order to complete the proof of Theorem 1 we make use of the following result
which we will show later on.

Proposition 4 There is a link L � IntM0 such that for all � > 0 the manifold
IntM0 admits a complete, �nite volume hyperbolic cone{manifold structure
with singular locus L and cone{angle 2� − �.

We continue with the proof of Theorem 1. Since the manifold IntM0 admits
a complete �nite volume hyperbolic cone{manifold structure with cone{angle
2� − � it follows from the Generalized Dehn �lling theorem that there is some
n such that M0

n admits a hyperbolic cone{manifold structure with cone{angle
2� − �, too. This concludes the proof of Theorem 1 since M and M0

n are
homeomorphic by Lemma 3.

We now prove Proposition 4. The surface S separates M0 in two manifolds M0
−

and M0
+ . The boundary @M0

� is the union of a copy of S and the collection
P� = [j=1;:::;3g−3T

�1
j of tori. It follows from the choice of P that the manifold

M0
� is irreducible, atoroidal and has incompressible boundary. In particular,

Thurston’s Hyperbolization theorem [11] implies that the interior of M0
� admits

a complete hyperbolic metric with parabolic locus P� .

If L � S is a simple closed curve such that P [ L �lls S , then the pared
manifold (M0

�; L) is acylindrical. Bonahon and Otal’s Realization theorem
implies that for all � > 0 there is a geometrically �nite hyperbolic metric g�
on the interior of M0

� with parabolic locus P� and with bending lamination
�=2 � L. The convex{core CC(M0

�; g�) can be identi�ed with M0
� n P� and
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hence the boundary of the convex{core consists of a copy S� of the surface S ;
the identi�cation of S� with S induces a map  : S− ! S+ with

IntM0 = CC(M0
−; g−) [ CC(M0

+; g+):

The hyperbolic surface S� is bent along L with dihedral angle 1
2�. The follow-

ing lemma concludes the proof of Proposition 4.

Lemma 5 The map  : S− ! S+ is isotopic to an isometry.

Proof The cover (N�; h�) of (IntM0
�; g�) corresponding to the surface S� is

geometrically �nite. Since S� is incompressible we obtain that N� is homeo-
morphic to the interior of S� � [−1; 1] and the parabolic locus of (N�; h�) is
the collection P � f�1g. The convex surface S� � IntM0

� lifts to one of the
components of the boundary of the convex{core of(N�; h�); the other compo-
nents are spheres with three punctures, and hence totally geodesic. The map  
can be extended to the map ~ : N− = S−� (−1; 1)! N+ = S+� (−1; 1) given
by (x; t) 7! ( (x);−t). The map ~ maps, up to isotopy, P− to P+ and L
to L. Hence, the uniqueness part of Bonahon and Otal’s Realization theorem
implies that ~ is isotopic to an isometry and this gives the desired result.

Concluding remarks

Recall that in Theorem 1 we do not claim that the singular locus of d� is
independent of �. If M is the double of a compact manifold with incompressible
boundary whose interior admits a convex{cocompact hyperbolic metric, then,
using Otal’s trick, it is possible to construct a link L such that M admits a
hyperbolic cone{manifold structure with singular locus L and cone{angle 2�−�
for all �. Proposition 4 suggests that this may be a more general phenomenon
but the author does not think that it is always possible to choose the singular
locus independently of �.

Question 1 Let L be a link in S2 � S1 which intersects an essential sphere n
times. Is there a hyperbolic cone{manifold structure on S2 � S1 with singular
locus L and with cone{angle greater than n−2

n 2�?

Question 2 Is there a link L � S3 such that for every � > 0 there is a
hyperbolic cone{manifold structure on S3 with singular locus L and with cone{
angle 2� − �?

We suspect that both questions have a negative answer.
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We de�ne, as suggested by Michel Boileau, the hyperbolic volume Hypvol(M)
of a closed 3{manifold M as the in�mum of the volumes of all possible hyper-
bolic cone{manifold structures on M with cone{angle less or equal to 2� . It
follows from [5] and from the Schläfli formula that the hyperbolic volume of a
manifold M is achieved if and only if M is hyperbolic. A sequence of hyper-
bolic cone{manifold structures realizes the hyperbolic volume if the associated
volumes converge to Hypvol(M). From the arguments used in the proof of the
Orbifold theorem [1] it is easy to deduce that the hyperbolic volume is realized
by a sequence of hyperbolic cone{manifold structures whose cone{angles are all
greater or equal to � .

Question 3 Is there a sequence of metrics realizing the hyperbolic volume
and such that the associated cone{angles tend to 2�?

As remarked in the introduction, it follows from our construction that there
are sequences of hyperbolic cone{manifold structures whose cone{angles tend
to 2� and which have uniformly bounded volume.

Let M now be a closed orientable and irreducible 3{manifold M . We say that
M is geometrizable if Thurston’s Geometrization Conjecture holds for it. If
M is geometrizable then let Mhyp be the associated complete �nite volume
hyperbolic manifold. In [12] we proved:

Theorem Let M be a closed, orientable, geometrizable and prime 3{manifold.
Then the minimal volume Minvol(M) of M is equal to vol(Mhyp) and moreover,
the manifolds (M;gi) converge in geometrically to Mhyp for every sequence (gi)
of metrics realizing Minvol(M). In particular, the minimal volume is achieved
if and only if M is hyperbolic.

Recall that the minimal volume Minvol(M) of M is the in�mum of the volumes
vol(M;g) of all Riemannian metrics g on M with sectional curvature bounded
in absolute value by one. A sequence of metrics (gi) realizes the minimal
volume if their sectional curvatures are bounded in absolute value by one and
if vol(M;gi) converges to Minvol(M).

Under the assumption that the manifold M is geometrizable and prime, it
follows with the same arguments as in [12] that the hyperbolic volume can be
bounded from below by the minimal volume.

Question 4 If M is geometrizable and prime, do the hyperbolic and the
minimal volume coincide?
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This question has a positive answer if the manifold M is the double of a manifold
which admits a convex{cocompact metric and the answer should be also positive
without this restriction. If this is the case, then it should also be possible to
show that the Gromov{Hausdor� limit of every sequence of hyperbolic cone{
manifold structures which realizes the hyperbolic volume is isometric to Mhyp .
We do not dare to ask if the assumption on M to be geometrizable can be
dropped.
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