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156 John Rognes

1 Introduction

In this paper we study the smooth Whitehead spectrum Wh(�) of a point at
an odd regular prime p, under the assumption that the Lichtenbaum{Quillen
conjecture for K(Z[1=p]) holds at p. This is a reasonable assumption in view
of recent work by Rost and Voevodsky. The results admit geometric topologi-
cal interpretations in terms of the spaces of concordances (= pseudo-isotopies),
h-cobordisms and di�eomorphisms of high-dimensional compact smooth mani-
folds that are as highly connected as their concordance stable range. Examples
of such manifolds include discs and spheres.

Here is a summary of the paper.

We begin in section 2 by recalling Waldhausen’s algebraic K -theory of spaces
[49], Quillen’s algebraic K -theory of rings [33], the Lichtenbaum{Quillen con-
jecture in the strong formulation of Dwyer and Friedlander [11], and a theorem
of Dundas [9] about the relative properties of the cyclotomic trace map to the
topological cyclic homology of Bökstedt, Hsiang and Madsen [5].

From section 3 and onwards we assume that p is an odd regular prime and that
the Lichtenbaum{Quillen conjecture holds for K(Z[1=p]) at p. In 3.1 and 3.3
we then call on Tate{Poitou duality for �etale cohomology [42] to obtain a co�ber
sequence

(1.1) j _ �−2ko −!Wh(�) etrc−! �CP1−1 −! �j _ �−1ko

of implicitly p-completed spectra. Here CP1−1 = Th(−γ1) is a stunted com-
plex projective spectrum with one cell in each even dimension � −2, j is the
connective image-of-J spectrum at p, and ko is the connective real K -theory
spectrum. In 3.6 we use this to obtain a splitting

(1.2) Wh(�) ’ �c _ (Wh(�)=�c)

of the suspended cokernel-of-J spectrum �c o� from Wh(�), and in 3.8 we
obtain a co�ber sequence

(1.3) �2ko −! Wh(�)=�c �−! P0�CP1−1 −! �3ko ;

where ��(�) identi�es the p-torsion in the homotopy of Wh(�)=�c with that
of �CP1−1 . The latter spectrum equals the homotopy �ber of the restricted
S1 -transfer map

t : �CP1 ! S :

Hence the homotopy of Wh(�) is as complicated as the (stable) homotopy of
in�nite complex projective space CP1 , and the associated transfer map above.
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The smooth Whitehead spectrum 157

In section 4 we make a basic homotopical analysis, following Mosher [31] and
Knapp [19], to compute ���CP

1
−1 and thus ��Wh(�) at p in degrees up to

j�2j − 2 = (2p + 1)q − 4, where q = 2p − 2 as usual. See 4.7 and 4.9. The
�rst p-torsion to appear in �mWh(�) is Z=p for m = 4p− 2 when p � 5, and
Z=3f��1g for m = 11 when p = 3.

In section 5 we make the corresponding mod p cohomological analysis and
determine H�(Wh(�);Fp) as a module over the Steenrod algebra is all degrees,
up to an extension. See 5.4 and 5.5. The extension is trivial for p = 3, and
nontrivial for p � 5. Taken together, this homotopical and cohomological
information gives a detailed picture of the homotopy type Wh(�).

In section 6 we recall the relation between the Whitehead spectrum Wh(�), the
concordance space C(M) and the di�eomorphism group DIFF (M) of suitably
highly connected and high dimensional compact smooth manifolds M . As a
sample application we show in 6.3 that for p � 5 and M a compact smooth
k -connected n-manifold with k � 4p − 2 and n � 12p − 5, the �rst p-torsion
in the homotopy of the smooth concordance space C(M) is �4p−4C(M)(p)

�=
Z=p. Specializing to M = Dn we conclude in 6.4 that �4p−4DIFF (Dn+1) or
�4p−4DIFF (Dn) contains an element of order exactly p. Comparable results
hold for p = 3.

A 2-primary analog of this study was presented in [38]. Related results on the
homotopy �ber of the linearization map L : A(�)! K(Z) were given in [18].

2 Algebraic K -theory and topological cyclic homo-
logy

Algebraic K -theory of spaces

Let A(X) be Waldhausen’s algebraic K -theory spectrum [49, section 2.1] of a
space X . There is a natural co�ber sequence [49, section 3.3], [50]

�1(X+)
�X−−! A(X) �−!Wh(X) ;

where Wh(X) = WhDIFF (X) is the smooth Whitehead spectrum of X , and
a natural trace map [47] trX : A(X)! �1(X+) which splits the above co�ber
sequence up to homotopy. Let � : Wh(X) ! A(X) be the corresponding ho-
motopy section to � . When X = � is a point, �1(�+) = S is the sphere
spectrum, and the splitting simpli�es to A(�) ’ S _Wh(�).
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158 John Rognes

Topological cyclic homology of spaces

Let p be a prime and let TC(X; p) be Bökstedt, Hsiang and Madsen’s topo-
logical cyclic homology [5, 5.12(i)] of the space X . There is a natural co�ber
sequence [5, 5.17]

ho�b(trfS1) �−! TC(X; p)
�X−−! �1(�X+)

after p-adic completion, where �X is the free loop space of X and

trfS1 : �1(�(ES1 �S1 �X)+)! �1(�X+)

is the dimension-shifting S1 -transfer map for the canonical S1 -bundle ES1 �
�X ! ES1 �S1 �X ; see e.g. [23, section 2]. When X = � the S1 -transfer
map simpli�es to trfS1 : �1�CP1+ ! S . Its homotopy �ber is �CP1−1 [23,
section 3], where the stunted complex projective spectrum CP1−1 = Th(−γ1 #
CP1) is de�ned as the Thom spectrum of minus the tautological line bun-
dle over CP1 . The map � identi�es �CP1−1 with the homotopy �ber of
�� : TC(�; p)! S , after p-adic completion.

We can think of CP1−1 as a CW spectrum, with 2k -skeleton CP k−1 = Th(−γ1 #
CP k+1). By James periodicity �2nCP k−1 ’ CPn+k

n−1 = CPn+k=CPn−2 when-
ever n is a multiple of a suitable natural number that depends on k . From this
it follows that integrally H�(CP1−1) �= Zfbk j k � −1g and H�(CP1−1) �= Zfyk j
k � −1g with yk dual to bk , both in degree 2k . In mod p cohomology the
Steenrod operations act by P i(yk) =

(
k
i

�
yk+(p−1)i and �(yk) = 0. In particular

P i(y−1) = (−1)iy−1+(p−1)i 6= 0 for all i � 0.

The cyclotomic trace map for spaces

Let trcX : A(X)! TC(X; p) be the natural cyclotomic trace map of Bökstedt,
Hsiang and Madsen [5, 5.12(ii)]. It lifts the Waldhausen trace map, in the
sense that trX ’ ev ��X � trcX , where ev : �1(�X+) ! �1(X+) evaluates a
free loop at a base point. Hence there is a map of (split) co�ber sequences of
spectra:

Wh(X) � //

etrc
��

A(X)
trX //

trcX

��

�1(X+)

=

��

ho�b(ev ��X) � // TC(X; p)
ev ��X // �1(X+)

after p-adic completion. When X = � the left hand square simpli�es as follows:
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The smooth Whitehead spectrum 159

Theorem 2.1 (Waldhausen, Bökstedt{Hsiang{Madsen) There is a homo-
topy Cartesian square

Wh(�) � //

etrc
��

A(�)

trc�

��

�CP1−1
� // TC(�; p)

after p-adic completion. Hence there is a p-complete equivalence ho�b(ftrc) ’
ho�b(trc�).

Algebraic K -theory of rings

Let K(R) be Quillen’s algebraic K -theory spectrum of a ring R [33, section 2].
When R is commutative, Noetherian and 1=p 2 R the �etale K -theory spectrum
K�et(R) of Dwyer and Friedlander [11, section 4] is de�ned, and comes equipped
with a natural comparison map � : K(R) ! K�et(R). By construction K�et(R)
is a p-adically complete K -local spectrum [8]. Let R be the ring of p-integers
in a local or a global �eld of characteristic 6= p. The Lichtenbaum{Quillen
conjecture [20], [21], [35] for K(R) at p, in the strong form due to Dwyer and
Friedlander, then asserts:

Conjecture 2.2 (Lichtenbaum{Quillen) The comparison map � induces a
homotopy equivalence

P1�
^
p : P1K(R)^p −! P1K

�et(R)

of 0-connected covers after p-adic completion.

Here PnE denotes the (n−1)-connected cover of any spectrum E . In the cases
of concern to us the p-completed map �^p will also induce an isomorphism in
degree 0, so the covers P1 above can be replaced by P0 .

The conjecture above has been proven for p = 2 by Rognes and Weibel [39,
0.6], based on Voevodsky’s proof [44], [45] of the Milnor conjecture. The odd-
primary version of this conjecture would follow [41] from results on the Bloch{
Kato conjecture [4] announced as \in preparation" by Rost and Voevodsky, but
have not yet formally appeared.
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160 John Rognes

Topological cyclic homology of rings

Let TC(R; p) be Bökstedt, Hsiang and Madsen’s topological cyclic homology
of a (general) ring R . There is a natural cyclotomic trace map trcR : K(R)!
TC(R; p). When X is a based connected space with fundamental group � =
�1(X), and R = Z[�] is the group ring, there are natural linearization maps
L : A(X)! K(R) [46, section 2] and L : TC(X; p)! TC(R; p) which commute
with the cyclotomic trace maps. Moreover, by Dundas [9] the square

A(X) L //

trcX

��

K(R)

trcR

��

TC(X; p) L // TC(R; p)

is homotopy Cartesian after p-adic completion. In the special case when X = �
and R = Z this simpli�es to:

Theorem 2.3 (Dundas) There is a homotopy Cartesian square

A(�) L //

trc�

��

K(Z)

trcZ

��

TC(�; p) L // TC(Z; p)

after p-adic completion. Hence there is a p-complete equivalence ho�b(trc�) ’
ho�b(trcZ).

The cyclotomic trace map for rings

When k is a perfect �eld of characteristic p > 0, W (k) its ring of Witt vectors,
and R is an algebra of �nite rank over W (k), then by Hesselholt and Madsen
[15, Thm. D] there is a co�ber sequence of spectra

K(R) trcR−−−! TC(R; p) −! �−1HW (R)F

after p-adic completion. Here W (R)F equals the coinvariants of the Frobenius
action on the Witt ring of R , and �−1HW (R)F is the associated desuspended
Eilenberg{Mac Lane spectrum. The Witt ring of k = Fp is the ring W (Fp) = Zp
of p-adic integers, so the above applies to R = Zp[�] for �nite groups � . In
particular, when X = � and � = 1 there is a co�ber sequence

K(Zp)
trcZp−−−! TC(Zp; p) −! �−1HZp

after p-adic completion. This uses that W (Zp)F �= Zp .
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The completion map

Let � : Z ! Zp and �0 : Z[1=p] ! Qp be the p-completion homomorphisms,
where Qp is the �eld of p-adic numbers. By naturality of trcR with respect to
� there is a commutative square

K(Z) � //

trcZ

��

K(Zp)

trcZp

��

TC(Z; p) ’ // TC(Zp; p) :

The lower map is a p-adic equivalence, since topological cyclic homology is
insensitive to p-adic completion, cf. [15, section 6]. Hence there is a co�ber
sequence of homotopy �bers

ho�b(�) −! ho�b(trcZ) −! �−2HZp :

By the localization sequences in K -theory [33, section 5] there is a homotopy
Cartesian square

K(Z) //

�

��

K(Z[1=p])

�0

��

K(Zp) // K(Qp)

so ho�b(�) ’ ho�b(�0).

Topological K -theory and related spectra

Let ko and ku be the connective real and complex topological K -theory spec-
tra, respectively. There is a complexi�cation map c : ko ! ku, and a co�ber
sequence

�ko
�−! ko

c−! ku
r�−1

−−−! �2ko

related to real Bott periodicity, cf. [26, V.5.15]. Here � is multiplication by
the stable Hopf map � : S1 ! S0 , which is null-homotopic at odd primes,
� : �2ku! ku covers the Bott equivalence, and r : ku! ko is reali�cation.

Suppose p is odd, and let q = 2p − 2. There are splittings ku(p) ’
Wp−2
i=0 �2i‘

and

(2.4) ko(p) ’
(p−3)=2_
i=0

�4i‘ ;
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162 John Rognes

where ‘ is the connective p-local Adams summand of ku [1]. There is a co�ber
sequence �q‘! ‘! HZ(p) that identi�es �q‘ with Pq‘. Let r be a topological
generator of the p-adic units Z�p , and let  r be the Adams operation. The p-
local image-of-J spectrum j is de�ned [26, V.5.16] by the co�ber sequence

j −! ‘
 r−1−−−! �q‘ :

We now briefly write S for the p-local sphere spectrum. There is a unit map
e : S ! j representing (minus) the Adams e-invariant on homotopy [36], and
the p-local cokernel-of-J spectrum c is de�ned by the co�ber sequence

(2.5) c
f−! S

e−! j :

Here e induces a split surjection on homotopy, so ��(f) is split injective. The
map e identi�es j with the connective cover P0LKS of the K -localization of
S , localized at p [8, 4.3].

Lemma 2.6 Suppose that n � 2q . If n 6= q + 1 there are no essential
spectrum maps HZ(p) ! �n‘. If n = q + 1 the group of spectrum maps
HZ(p) ! �q+1‘ is Z(p) , generated by the connecting map @ of the co�ber
sequence �q‘! ‘! HZ(p) .

Lemma 2.7 There are no essential spectrum maps �n‘! j for n � 0 even.
Hence there are no essential spectrum maps �ko(p) ! �j .

The proofs are easy, using [29] for 2.6, and [24, Cor. C] or [30, 2.4] for 2.7.

3 Splittings at odd regular primes

The completion map in �etale K -theory

When R = Z[1=p] and p is an odd regular prime there is a homotopy equivalence
P0K

�et(Z[1=p]) ’ j_�ko after p-adic completion [12, 2.3]. Taking into account
that � is an equivalence in degree 0 and that K(Z[1=p]) has �nite type [34],
the Lichtenbaum{Quillen conjecture for Z[1=p] at p amounts to the assertion
that K(Z[1=p]) ’ j _ �ko after p-localization. By the localization sequence
in K -theory, this is equivalent to the assertion that K(Z) ’ j _ �5ko, after
p-localization.

Hereafter we (often implicitly) complete all spectra at p.
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The smooth Whitehead spectrum 163

When R = Qp and p is an odd prime there is a p-adic equivalence P0K
�et(Qp) ’

j _ �j _ �ku. The Lichtenbaum{Quillen conjecture for Qp at p asserts that
K(Qp) ’ j _ �j _ �ku [13, 13.3], which again is equivalent to the assertion
that K(Zp) ’ j _ �j _ �3ku, after p-adic completion. This is now a theorem,
following from the calculation by Bökstedt and Madsen of TC(Z; p) [6, 9.17],
[7].

Proposition 3.1 Let p be an odd regular prime. There are p-adic equiva-
lences P0K

�et(Z[1=p]) ’ j _ �ko and P0K
�et(Qp) ’ j _ �j _�ku such that

�0 : P0K
�et(Z[1=p]) −! P0K

�et(Qp)

is homotopic to the wedge sum of the identity id : j ! j , the zero map � ! �j ,
and the suspended complexi�cation map �c : �ko ! �ku. Thus ho�b(�0) ’
j _�2ko.

Proof Taking the topological generator r to be a prime power, there is a
reduction map red: P0K

�et(Qp) ! K(Fr) ’ j after p-adic completion [13,
section 13], such that the composite map

S
�−! K(Z[1=p]) �−! P0K

�et(Z[1=p]) �0−! P0K
�et(Qp)

red−−! j

is homotopic to e. Since K�et(Z[1=p]) is K -local, �� also factors through e.
These maps split o� a common copy of j from P0K

�et(Z[1=p]) and P0K
�et(Qp).

There are no essential spectrum maps �ko ! �j by 2.7, so after p-adic com-
pletion �0 is homotopic to a wedge sum of maps id : j ! j , � ! �j and a map
�00 : �ko! �ku. Any such �00 lifts over �c : �ko! �ku, so it su�ces to show
that �2i−1(�00) is a p-adic isomorphism for all odd i � 1.

Equivalently we must show that �0 induces an isomorphism on homotopy mod-
ulo torsion subgroups in degree 2i− 1 for all odd i > 1, or that

K�et
2i−1(�0;Qp=Zp) : K�et

2i−1(Z[1=p];Qp=Zp) −! K�et
2i−1(Qp;Qp=Zp)

is injective. This equals the completion map

�0 : H1
�et(Z[1=p];Qp=Zp(i))! H1

�et(Qp;Qp=Zp(i))

in �etale cohomology, by the collapsing spectral sequence in [, 5.1]. By the 9-term
exact sequence expressing Tate{Poitou duality [42, 3.1], [28, I.4.10], its kernel is
a quotient of A# = H2

�et(Z[1=p];Zp(1−i))# , where A# = Hom(A;Q=Z) denotes
the Pontryagin dual of an abelian group A. But A = H2

�et(Z[1=p];Zp(1 − i))
is an abelian pro-p-group, with A=p �= H2

�et(Z[1=p];Z=p(1 − i)) contained as a
direct summand in B = H2

�et(Z[1=p; �p];Z=p), which is independent of i. Here
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164 John Rognes

R = Z[1=p; �p] is the ring of p-integers in the p-th cyclotomic �eld Q(�p).
Kummer theory gives a short exact sequence

0! Pic(R)=p −! B −! fpgBr(R)! 0

where Pic(R) and Br(R) are the Picard and Brauer groups of R , respectively.
(See [28, section IV] and [16].) Here Pic(R)=p = 0 because p is a regular prime,
and fpgBr(R) = ker(p : Br(R) ! Br(R)) = 0 because p is odd and (p) does
not split in R [27, p. 109], so B = 0. Thus A=p = 0 and it follows that A = 0,
since A is an abelian pro-p-group.

The �ber of the cyclotomic trace map

Hereafter we make the following standing assumption.

Hypothesis 3.2 (a) p is an odd regular prime, and

(b) the Lichtenbaum{Quillen conjecture 2.2 holds for K(Z[1=p]) at p.

Proposition 3.3 There is a homotopy equivalence ho�b(trcZ) ’ j _ �−2ko
after p-adic completion.

Proof By assumption �0 : K(Z[1=p])! K(Qp) agrees with

�0 : P0K
�et(Z[1=p])! P0K

�et(Qp)

after p-adic completion, so we have a co�ber sequence

j _ �2ko −! ho�b(trcZ) −! �−2HZp :

The connecting map �−2HZp ! �j _ �3ko is homotopic to a wedge sum of
maps �−2HZp ! �j and �−2HZp ! �4i−1‘ for 1 � i � (p − 1)=2. All such
maps are null-homotopic by 2.6, with the exception of the map @0 : �−2HZp !
�2p−3‘ corresponding to i = (p − 1)=2.

We claim that multiplication by v1 acts nontrivially from degree −2 to de-
gree 2p−4 in ��(ho�b(trcZ);Z=p), from which it follows that @0 is a p-adic unit
times the connecting map @ in the co�ber sequence �q−2‘! �−2‘! �−2HZp .
This implies that

ho�b(trcZ) ’ j _ �−2‘ _
(p−3)=2_
i=1

�4i−2‘ ’ j _ �−2ko :

To prove the claim, consider the homotopy Cartesian squares in 2.1 and 2.3. In
the Atiyah{Hirzebruch spectral sequence

E2
s;t = Hs(CP1−1;�t(S;Z=p)) =) �s+t(CP1−1;Z=p)
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there is a �rst di�erential d2p−2(bp−2) = �1b−1 , so we �nd �−2(CP1−1;Z=p) �=
Z=pfb−1g and �2p−4(CP1−1;Z=p) �= Z=pfv1b−1g. Hence multiplication by v1

acts nontrivially from

�−1(TC(�; p);Z=p) �= Z=pf�b−1g
to

�2p−3(TC(�; p);Z=p) �= Z=pf�1;�v1b−1g ;

also modulo the image from the unit map � : S ! TC(�; p).

The map L : S ! HZ is (2p − 3)-connected, hence so is L : TC(�; p) !
TC(Z; p) by [6, 10.9] and [9]. Here �2p−3(TC(Z; p);Z=p) �= Z=pf�1g�Z=p since
P0TC(Z; p) ’ K(Zp) ’ j_�j_�3ku. So the surjection �2p−3(L;Z=p) is in fact
a bijection, and multiplication by v1 acts nontrivially from �−1(TC(Z; p);Z=p)
to �2p−3(TC(Z; p);Z=p), also modulo the image from the unit map � : S !
TC(Z; p).

By the assumed p-adic equivalence K(Z) ’ j _ �5ko, this image equals the
image from the cyclotomic trace map trcZ : K(Z) ! TC(Z; p). Hence we can
pass to co�bers, and conclude that multiplication by v1 acts nontrivially from
�−2(ho�b(trcZ);Z=p) to �2p−4(ho�b(trcZ);Z=p), as claimed.

We let d be the homotopy co�ber map of ftrc. Combining 2.1, 2.3 and 3.3 we
have:

Corollary 3.4 There is a diagram of horizontal co�ber sequences:

j _ �−2ko //

=

��

Wh(�) etrc //

�

��

�CP1−1
d //

�

��

�j _ �−1ko

=

��

j _ �−2ko //

=

��

A(�) trc� //

L

��

TC(�; p) //

L

��

�j _ �−1ko

=

��

j _ �−2ko // K(Z)
trcZ // TC(Z; p) // �j _ �−1ko :

The restricted S1 -transfer map

There is a stable splitting in1 _ in2 : S1 _ �CP1 ’ �CP1+ . Let the restricted
S1 -transfer map t = trfS1 � in2 : �CP1 ! S be the restriction of trfS1 to
the second summand [32, section 2]. The restriction to the �rst summand is
the stable Hopf map � = trfS1 � in1 : S1 ! S0 , which is null-homotopic at
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odd primes. Hence the inclusion in1 lifts to a map �b0 : S1 ! ho�b(trfS1) =
�CP1−1 , with Hurewicz image �b0 2 H1(�CP1−1).

Dually the projection pr1 : �CP1+ ! S1 yields a map �y0 : �CP1−1 ! S1 with
dual Hurewicz image �y0 2 H1(�CP1−1). We obtain a diagram of horizontal
and split vertical co�ber sequences:

(3.5) S1

�b0
��

= // S1

in1

��

�CP1−1

��

//

�y0

OO

�CP1+
pr2

��

trfS1
//

pr1

OO

S

=

��
ho�b(t) //

OO

�CP1 t //

in2

OO

S :

Writing CP1−1 for the homotopy co�ber of b0 : S ! CP1−1 , we have ho�b(t) ’
�CP1−1 . Then H�(�CP

1
−1) = Zf�bk j k � −1; k 6= 0g and H�(�CP1−1) �=

Zf�yk j k � −1; k 6= 0g.
It has been shown by Knapp [19] that ��(t) : ��(�CP1)! ��(S) is surjective
for 0 < � < j�p+1j = p(p + 2)q − 2, so the homotopy of �CP1−1 is as well
understood in this range as that of �CP1 .

The suspended cokernel-of-J spectrum

We can split o� the suspension of the co�ber sequence (2.5) de�ning the cokernel-
of-J from the top co�ber sequence in 3.4.

Proposition 3.6 There is a diagram of horizontal and split vertical co�ber
sequences:

j //

in1

��

�c
�f

//

g

��

S1 �e //

�b0

��

�j

in1

��

j _ �−2ko //

pr2

��

pr1

OO

Wh(�) etrc //

��

OO

�CP1−1
d //

��

�y0

OO

�j _ �−1ko

pr2

��

pr1

OO

�−2ko //

in2

OO

Wh(�)=�c //

OO

�CP1−1
//

OO

�−1ko :

in2

OO

In particular there is a splitting

Wh(�) ’ �c _ (Wh(�)=�c)
where Wh(�)=�c is de�ned as the homotopy co�ber of g .
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Proof The composite d � �b0 represents the generator of �1(�j _ �−1ko),
hence factors as in1 ��e : S1 ! �j ! �j _ �−1ko. We de�ne g : �c! Wh(�)
as the induced map of homotopy �bers. It is well-de�ned up to homotopy since
�2(�j _ �−1ko) = 0. This explains the downward co�ber sequences of the
diagram.

To split g we must show that pr1 � d factors as �e � �y0 , or equivalently that
the composite

�CP1−1 ! �CP1−1
d−! �j _ �−1ko

pr1−−! �j

is null-homotopic. But this map lies in a zero group, because in the Atiyah{
Hirzebruch spectral sequence

E2
s;t = H−s(�CP1−1;�t(�j)) =) [�CP1−1;�j]s+t

all the groups E2
s;t with s+ t = 0 are zero.

Remark 3.7 Let G=O be the homotopy �ber of the map of spaces BO !
BG, and let Cok J = Ω1c be the cokernel-of-J space. There is a (Sullivan)
�ber sequence CokJ ! G=O ! BSO [22, section 5C]. Waldhausen [48, 3.4]
constructed a space level map hw : G=O ! ΩΩ1Wh(�), using manifold models
for A(�). Hence there is a geometrically de�ned composite map Cok J !
G=O ! ΩΩ1Wh(�). Presumably this is homotopic to the in�nite loop map
Ω1�−1g .

A co�ber sequence

We can analyze a variant of the lower co�ber sequence in 3.6 by passing to
connective covers. There is a map of homotopy Cartesian squares from

�c
�f

//

�
��

S1

in2 ��e
��

j
in1 // j _ �j

to Wh(�) etrc //

L�

��

P0�CP1−1

L�

��

K(Z)
trcZ // P0TC(Z; p)

induced by g , �b0 , in1 and in1 _ in2 in the upper left, upper right, lower left and
lower right corners, respectively. In the lower rows we are using the splittings
K(Z) ’ j _�5ko and P0TC(Z; p) ’ K(Zp) ’ j _�j _�3ku derived from 3.1.
Let � : Wh(�)=�c ! P0�CP1−1 , ‘ : Wh(�)=�c ! �5ko and ‘ : P0�CP1−1 !
�3ku be the co�ber maps induced by ftrc : Wh(�)! P0�CP1−1 , L� : Wh(�)!
K(Z) and L� : P0�CP1−1 ! P0TC(Z; p), respectively.
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Theorem 3.8 Assume 3.2. There is a diagram of horizontal and vertical
co�ber sequences:

ho�b(‘) = //

��

ho�b(‘)

��

�2ko //

=

��

Wh(�)=�c � //

‘

��

P0�CP1−1
//

‘

��

�3ko

=

��

�2ko
� // �5ko

c // �3ku
r�−1

// �3ko :

The map � : Wh(�)=�c ! P0�CP1−1 induces a split injection on homotopy
groups in all degrees, and each map ‘ is (2p − 3)-connected. Thus

��(�) : tors��(Wh(�)=�c) �= tors ��(�CP
1
−1) :

Here torsA denotes the torsion subgroup of an abelian group A.

Proof It follows from 3.1 and localization in algebraic K -theory that the
map �5ko ! �3ku induced by trcZ : K(Z) ! P0TC(Z; p) ’ K(Zp) is the
lift of �c : �ko ! �ku to the 1-connected covers. This identi�es the central
homotopy Cartesian square in the diagram.

By comparing the vertical homotopy �bers in the last three homotopy Cartesian
squares we obtain a co�ber sequence c _ �c ! ho�b(L) ! ho�b(‘), as in [18,
3.6]. Hence each map ‘ is (2p−3)-connected because L is. There is a (4p−3)-
connected space level map from SU to Ω1�CP1−1 , as in [18, (17)].

B� : SU −! Ω1�CP1−1
Ω1‘−−−! SU :

Its composite with Ω1‘ to Ω1�3ku = SU loops to an H-map � : BU ! BU .
Any such H-map is a series of Adams operations  k , as in [24, 2.3], so ��(�;Z=p)
only depends on � mod q in positive degrees. Since ‘ is (2p − 3)-connected
it follows that � is (2p − 4)-connected, so ��(�;Z=p) is an isomorphism for
0 < � < q , and so ��(�) is an isomorphism for all � 6� 0 mod q . Hence ��(‘) is
(split) surjective whenever � 6� 1 mod q , cf. [18, 6.3(i)].

Finally r�−1 is split surjective as a spectrum map, and ��(�3ko) is zero for � �
1 mod q , so r�−1‘ : P0�CP1−1 ! �3ko induces a split surjection on homotopy
in all degrees.

Remark 3.9 We still do not know the behavior of ‘ : Wh(�)=�c ! �5ko
in degrees � � 1 mod q . It induces the same homomorphism on homotopy as
‘ : P0�CP1−1 ! �3ku, since ��(�) and ��(c) are isomorphisms in these degrees.
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Remark 3.10 By a result of Madsen and Schlichtkrull [23, 1.3] there is
a splitting of implicitly p-completed spaces Ω1(�CP1−1) ’ Y � SU , where
��(Y ) �= tors ��(�CP

1
−1) is �nite in each degree. The map

Y � SU ’ Ω1(�CP1−1)
Ω1(r�−1‘)−−−−−−−! Ω1(�3ko) ’ Sp ’ SO

induces a split surjection on homotopy groups in all degrees, so the composite
map SU in2−−! Y �SU ! SO has homotopy �ber BBO , by real Bott periodicity.
Hence there is a �ber sequence

BBO! Ω1(Wh(�)=�c)! Y

and split short exact sequences

0! ��(BBO)! ��(Wh(�)=�c) ! ��(Y )! 0

in each degree.

The suspended quaternionic projective spectrum

After p-adic completion CP1−1 splits as a wedge sum of (p − 1) eigenspectra
CP1−1[a] for −1 � a � p − 3, much like the p-complete (or p-local) Adams
splitting of ku from [1], and the p-complete splitting of �1(CP1+ ) from [25,
section 4.1]. Here H�(CP1−1[a]) �= Zpfyk j k � −1; k � a mod p − 1g, and
similarly with mod p coe�cients.

Let HP1 be the in�nite quaternionic projective spectrum. The \quaternioni-
�cation" map q : CP1−1 ! HP1+ ’ S _ HP1 admits a (stable p-adic) section
s : HP1+ ! CP1−1 . (It can be obtained by Thomifying the Becker{Gottlieb
transfer map �1(BS3

+) ! �1(BS1
+) associated to the sphere bundle S2 !

BS1 ! BS3 , with respect to minus the tautological quaternionic line bundle
over BS3 = HP1 , and collapsing the bottom (−4)-cell. It is a section because
the Euler characteristic �(S2) = 2 is a unit mod p.) This section s identi�es
S _HP1 with the wedge sum of the even summands CP1−1[a] for a = 2i with
0 � i � (p− 3)=2.

Splitting o� S , suspending once and passing to connected covers, we obtain
maps s0 : �HP1 ! P0�CP1−1 and q0 : P0�CP1−1 ! �HP1 whose composite
is a p-adic equivalence.

Proposition 3.11 The map s0 : �HP1 ! P0�CP1−1 admits a lift

~s : �HP1 !Wh(�)=�c
over � , which is unique up to homotopy, and whose composite with

q0 � � : Wh(�)=�c! �HP1

is a p-adic equivalence.
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Proof The composite map r�−1‘ � s0 : �HP1 ! �3ko lies in a zero group,
by the Atiyah{Hirzebruch spectral sequence

E2
s;t = H−s(�HP1;�t�3ko) =) [�HP1;�3ko]s+t :

Hence s0 admits a lift ~s, as claimed. In fact the lift is unique up to homotopy,
since also [�HP1;�3ko]1 = 0.

A second co�ber sequence

We de�ne Wh(�)=(�c;�HP1) ’ ho�b(q0�) as the homotopy co�ber of ~s, and
write

(3.12)
P0�CP1−1

�HP1
’ P0�CP1−1[−1] _

(p−3)=2_
i=1

�CP1−1[2i− 1]

for the suspended homotopy co�ber of s0 . Then:

Theorem 3.13 Assume 3.2. There is a splitting

Wh(�) ’ �c _ �HP1 _ Wh(�)
(�c;�HP1)

and a co�ber sequence

�2ko −! Wh(�)
(�c;�HP1)

�−!
P0�CP1−1

�HP1
�−! �3ko :

The map � induces a split injection on homotopy groups in all degrees, and the
map � induces an injection on mod p cohomology in degrees � 2p − 3. Thus

��(Wh(�)) �= ��(�c)� ��(�HP1)� tors��

�
�CP1−1

�HP1

�
:

Proof The co�ber sequence arises by splitting o� �HP1 from the middle
horizontal co�ber sequence in 3.8. The assertion about � follows by retraction
from the corresponding statement in 3.8. The map � is the composite of the
maps

P0�CP1−1

�HP1
in−! P0�CP1−1

‘−! �3ku
r�−1

−−−! �3ko :

On mod p cohomology (r�−1)� is split injective and ‘� is injective in degrees
� 2p− 3 by 3.8. The kernel of in� is �H�(HP1;Fp), which is concentrated in
degrees � 1 mod 4. But in degrees � 2p − 3 all of H�(�3ko;Fp) is in degrees
� 3 mod 4, so also the composite �� is injective in this range of degrees.

Remark 3.14 Note that the upper co�ber sequence in 3.4 maps as in 3.6 to
the middle horizontal co�ber sequence in 3.8, which in turn maps to the co�ber
sequence in 3.13. In 5.4 we will see that � is (4p − 2)-connected.
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4 Homotopical analysis

Homotopy of the �ber of the restricted S1 -transfer map

To make the p-primary homotopy groups of Wh(�) explicit we refer to 3.8 and
compute the p-torsion in the homotopy of CP1−1 in an initial range of degrees.
This is related to CP1 by the co�ber sequence

(4.1) �CP1−1 −! �CP1 t−! S

extracted from (3.5). We also use the co�ber sequence

c ^ CP1 f^1−−! CP1 e^1−−! j ^ CP1

obtained by smashing (2.5) with CP1 . There are Atiyah-Hirzebruch spectral
sequences:

E2
s;t = Hs(CP1;�t(j)) =) js+t(CP1)(4.2)

E2
s;t = Hs(CP1;�t(S)) =) �s+t(CP1)(4.3)

E2
s;t = Hs(CP

1
−1;�t(S)) =) �s+t(CP

1
−1) :(4.4)

We will now account for the abutment of (4.2) in all degrees, and for (4.3)
and (4.4) in total degrees � < j�2b1j = (2p+1)q and � < j�2b−1j = (2p+1)q−4,
respectively.

Let vp(n) be the p-adic valuation of a natural number n. In degrees � < j�2j =
(2p+1)q−2 the p-torsion in ��(S) = �S� is generated by the image-of-J classes
��i 2 �Sqi−1 of order p1+vp(i) for i � 1, and the cokernel-of-J classes [37, 1.1.14]

�1 2 �Spq−2; �1�1 2 �S(p+1)q−3; �2
1 2 �S2pq−4 and �1�

2
1 2 �S(2p+1)q−5 ;

each of order p.

Theorem 4.5 Above the horizontal axis and in total degrees � < j�2j−2, the
Atiyah{Hirzebruch E1s;t -term for ��CP

1
−1 agrees with that for j�(CP1), plus

the Z=p-module generated by �1bm , �1�1bmp , �2
1bm (and �1�

2
1bmp , which is

in a higher total degree) for 1 � m � p− 3, minus the Z=p-module generated
by �1bmp for m � p− 2.

We give the proof in a couple of steps.
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Connective J-theory of complex projective space

On the horizontal axis the E2 -terms of (4.2) and (4.3) have the form E2
�;0 =

H�(CP1) = Zfbn j n � 1g, which has the structure of a divided power algebra
on b1 . By Toda [43] or Mosher [31, 2.1], the corresponding part of the E1 -term
of (4.3) consists of the polynomial algebra on b1 , i.e.,

(4.6) E12n;0 = Zfn! bng � E2
2n;0 = Zfbng

for all n � 1. Hence the order of the images of the di�erentials dr2n;0 landing
in total degree 2n− 1 all multiply to n!.

It is known by [31, 4.7(a)] that these di�erentials from the horizontal axis
land in the image-of-J, i.e., have the form �bk with � a multiple of some ��i .
Hence (4.6) also gives the E1 -term of (4.2) on the horizontal axis. Since the
Atiyah{Hirzebruch spectral sequence for j�(CP1) only has classes in (even,
odd) bidegrees above the horizontal axis, there can be no further di�erentials
in (4.2). In even total degrees it follows that j2n(CP1) �= Zfn! bng for n � 1.

In odd total degrees, the E2 -term of (4.2) contains the classes pe��ibk in bidegree
(s; t) = (2k; qi−1), for 0 � e � vp(i). It follows that the p-valuation of the order
of the groups E2

s;t in total degree s+t = 2n−1 equals
P
e�0 [(n− 1)=pe(p − 1)],

so the p-valuation of the order of the �nite group j2n−1(CP1) isX
e�0

�
n− 1

pe(p − 1)

�
−
X
e�0

�
n

pe � p

�
:

Here the second sum equals vp(n!). Compare [18, 4.3] due to Knapp. For
n � p2(p− 1) the terms with e � 2 vanish.

Stable homotopy of complex projective space

We now return to (4.3) where the E2 -term contains additional classes from
H�(CP1;��(c)). The primary operation P 1 detects �1 , and P 1(yk) = kyk+p−1

in mod p cohomology, so there are di�erentials dq(�bk+p−1) = k�1�bk for all
� 2 ��(S). In the case � = 1 these di�erentials were already accounted for by
the di�erentials leading to (4.6), but for t < j�2j there are also di�erentials

dq(�1bk+p−1) = �1�1bk and dq(�2
1bk+p−1) = �1�

2
1bk

up to unit multiples, for k 6� 0 mod p, k � 1. This leaves the classes �1bmp
(already in j�(CP1)), �1�1bmp and �1�

2
1bmp for m � 1 in odd total degrees,

and the classes �1b1; : : : ; �1bp−2 , �1bmp−1 for m � 1, �2
1b1; : : : ; �

2
1bp−2 and

�2
1bmp−1 for m � 1 in even total degrees.
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The (well-known) p-fold Toda bracket �1 = h�1; : : : ; �1i implies di�erentials

d(p−1)q(��1bk+(p−1)2) = ��1bk

when k + (p − 1)2 = mp, up to unit multiples. So the classes �1bmp (from
j�(CP1)) and �1�1bmp for m � p− 1 support d(p−1)q -di�erentials, which kill
the classes �1bmp−1 and �2

1bmp−1 for m � 1. For bidegree reasons this accounts
for all di�erentials in (4.3) in total degrees � < j�2b1j.
To pass from CP1 to CP1−1 we must take into account the di�erentials in (4.4)
that cross the vertical axis, which amounts to the restricted S1 -transfer map t
as in (4.1). The image-of-J in its target ��(S) is hit by classes on the horizontal
axis of (4.3), by [32, 4.3] or Crabb and Knapp, cf. [18, 5.8]. The cokernel-of-J
classes are hit by the di�erentials

dq(�1bp−2) = �1�1b−1 ; d(p−1)q(�1b(p−2)p) = �1b−1 ;

dq(�2
1bp−2) = �1�

2
1b−1 ; d(p−1)q(�1�1b(p−2)p) = �2

1b−1

in (4.4). Looking over the bookkeeping concludes the proof of Theorem 4.5.

Torsion homotopy of the smooth Whitehead spectrum

Theorem 4.7 (a) Assume 3.2. The torsion homotopy of Wh(�) decomposes
as

tors��(Wh(�)) �= ��(�c)� tors ��(�CP
1
−1)

in all degrees.

(b) In degrees � < j�2j+ 1 = (2p+ 1)q − 1

��(�c) �= Z=pf��1;��1�1;��2
1 ;��1�

2
1g

with generators in degrees pq − 1, (p + 1)q − 2, 2pq − 3 and (2p + 1)q − 4,
respectively.

(c) In even degrees � < j�2j − 1 = (2p + 1)q − 3 the p-valuation of the order
of tors�2n(�CP1−1) equals��

n− 1
p − 1

�
+
�
n− 1
p(p− 1)

��
−
��

n

p

�
+
�
n

p2

��
;

plus 1 when n = p2−2+mp for 1 � m � p−3, minus 1 when n = p−1+mp
for m � p− 2.

(d) In odd degrees � < j�2j − 1 = (2p+ 1)q− 3 the p-valuation of the order of
tors�2n+1(�CP1−1) equals 1 when n = p2− p− 1 +m or n = 2p2− 2p− 2 +m
for 1 � m � p− 3, and is 0 otherwise.
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Example 4.8 (a) When p = 3, the 3-torsion in ��Wh(�) has order 3 in
degrees 11, 16, 18, 20, 21 and 22, order 32 in degree 24, order 33 in degree 14,
and is trivial in the remaining degrees � < 25.

(b) When p = 5, the 5-torsion in ��Wh(�) has order 5 in degrees 18, 26, 28,
34, 36, 39, 41, 43, 48, 50, 52, 54, 58, 60, 62, 64, 68, 70, 72, 77, 78, 79, 80 and 81,
order 52 in degrees 42, 44, 56, 74 and 76, order 53 in degrees 46, 66 and 82,
order 54 in degree 84, and is trivial in the remaining degrees � < 85.

In roughly half this range we can give the following simpler statement.

Corollary 4.9 (a) For p � 5, the low-degree p-torsion in ��Wh(�) is Z=p in
degrees � = 2n for m(p− 1) < n < mp and 1 < m < p, except in degree 2p2−
2p − 2 (corresponding to n = mp − 1 and m = p − 1). The next p-torsion is
Z=pf��1g in degree 2p2−2p−1, and a group of order p2 in degree 2p2−2p+2.

(b) For p = 3 the bottom 3-torsion in ��Wh(�) is Z=3f��1g in degree 11,
followed by Z=3f��1�1g � Z=9 in degree 14.

The asserted group structure of �14Wh(�)(3) can be obtained from 5.5(a) below
and the mod 3 Adams spectral sequence.

Remark 4.10 Klein and the author showed in [18, 1.3(iii)] that for any odd
prime p, regular or irregular, below degree 2p2 − 2p − 2 there are direct sum-
mands Z=p in �2nWh(�) for m(p − 1) < n < mp and 1 < m < p. The
calculations above show that under the added hypothesis 3.2, these classes con-
stitute all of the p-torsion in ��Wh(�), in this range of degrees.

5 Cohomological analysis

We can determine the mod p cohomology of Wh(�) as a module over the
Steenrod algebra A, up to an extension, in all degrees. To do this, we apply
cohomology to the splitting and co�ber sequence in 3.13.

Some cohomology modules

Let us briefly write H�(X) = H�(X;Fp) for the mod p cohomology of a
spectrum X , where p is an odd prime. It is naturally a left module over
the mod p Steenrod algebra A [40]. Let An be the subalgebra of A gener-
ated by the Bockstein operation � and the Steenrod powers P 1; : : : ; P p

n−1

and let En be the exterior subalgebra generated by the Milnor primitives
�;Q1; : : : ; Qn , where Q0 = � and Qn+1 = [P p

n

; Qn]. For an augmented sub-
algebra B � A we write I(B) = ker(� : B ! Fp) for the augmentation ideal,
and let A==B = A⊗B Fp = A=A � I(B).
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Proposition 5.1 (a) H�(HZ) �= A==E0 = A=A(�) and H�(‘) �= A==E1 =
A=A(�;Q1).

(b) The co�ber sequence �q−1‘! j ! ‘ induces a nontrivial extension

0! A==A1 ! H�(j)! �pq−1A==A1 ! 0

of A-modules. As an A-module H�(j) is generated by two classes 1 and b in
degree 0 and pq − 1, respectively, with �(b) = P p(1).

(c) The co�ber sequence S
e−! j ! �c induces an identi�cation H�(�c) �=

ker(e� : H�(j)! Fp). There is a nontrivial extension

0! I(A)=A(�; P 1)! H�(�c)! �pq−1A==A1 ! 0

of A-modules.

Proof For (a), see [2, 2.1]. For (c), clearly the given co�ber sequence identi�es
H�(�c) with the positive degree part of H�(j). The long exact sequence in
cohomology associated to the co�ber sequence given in (b) is:

�qA==E1
( r−1)�−−−−−! A==E1 −! H�(j) −! �q−1A==E1

( r−1)�−−−−−! �−1A==E1 :

The map e : S ! j is (pq− 2)-connected [37, 1.1.14], so e� : H�(j)! H�(S) =
Fp is an isomorphism for � � pq − 2. Thus P 1 2 A==E1 is in the image of
( r − 1)� , and so ( r − 1)� is induced up over A1 � A by

�qA1==E1
P 1

−−! A1==E1 ;

which has kernel �pqFp generated by �qP p−1 and cokernel Fp generated by
1. Hence there is an extension A==A1 ! H�(j) ! �pq−1A==A1 . Note that
the bottom classes in A==A1 are 1 and P p in degrees 0 and pq , respectively.
Let b 2 Hpq−1(j) be the class mapped to �pq−1(1) in �pq−1A==A1 . By the
Hurewicz theorem for �c it is dual to the Hurewicz image of the bottom class
��1 2 �pq−1(�c). Since �1 2 �pq−2(c) � �pq−2(S) has order p there is a
nontrivial Bockstein �(b) in H�(�c), and thus also in H�(j). The only possible
value in degree pq is P p(1). Part (c) now follows easily from (b).

Proposition 5.2 (a) H�(�HP1) �= Fpf�yk j k � 2 eveng.
(b) H�(�CP1−1[−1]) �= �−1A=C . Here C � A is the annihilator ideal of
�y−1 , which is spanned over Fp by all admissible monomials in A except 1
and the P i for i � 1.

(c) The co�ber sequence P0�CP1−1[−1] ! �CP1−1[−1] ! �−1HZ induces an
identi�cation H�(P0�CP1−1[−1]) �= �−2C=A(�).

(d) For 1 � i � (p − 3)=2 there are isomorphisms H�(�CP1−1[2i − 1]) �=
Fpf�yk j k = 2i− 1 +m(p− 1);m � 0g.
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Proof Any admissible monomial P I with I = (i1; : : : ; in) and n � 2 acts
trivially on �y−1 because z = P in(�y−1) is in the image from H�(�CP1),
which is an unstable A-module, and then P in−1(z) = 0 by instability.

Cohomology of the smooth Whitehead spectrum

Proposition 5.3 The A-module homomorphism

�� : H�(�3ko)! H�(P0�CP1−1=�HP1)

splits as the direct sum of the injection

�q−1A==E1 −! �−2C=A(�)

taking �q−1(1) to �−2Q1 , and the homomorphisms

��i : �4i−1A==E1 −! H�(�CP1−1[2i− 1])
�= Fpf�yk j k = 2i− 1 +m(p− 1);m � 0g

taking �4i−1(1) to �y2i−1 for 1 � i � (p− 3)=2.

Proof By (2.4) and 5.1(a) the source of �� splits as the direct sum of the
cyclic A-modules �4i−1A==E1 for 1 � i � (p − 1)=2. Here 4i − 1 = q − 1 for
i = (p − 1)=2. Hence �� is determined as an A-module homomorphism by its
value on the generators �4i−1(1). These are all in degrees � q − 1 = 2p − 3,
and �� is injective in this range by 3.13. By (3.12), 5.2(c) and (d) the target
of �� splits as the direct sum of Fpf�yk j k � 2i − 1 + m(p − 1);m � 0g for
1 � i � (p − 3)=2 and �−2C=A(�). The bottom class of the latter is �−2Q1 ,
in degree q − 1. Hence the target of �� has rank 1 in each degree 4i − 1 for
1 � i � (p − 1)=2, and so (up to a unit which we suppress) �� maps �4i−1(1)
to �y2i−1 for 1 � i � (p− 3)=2 and �q−1(1) to �−2Q1 .

The homomorphism �q−1A==E1 ! �−2C=A(�) is injective, as its continuation
into �−2A==E0 is induced up over E1 � A from the injection �q−1Fp !
�−2E1==E0 taking �q−1(1) to �−2Q1 .

Theorem 5.4 Assume 3.2. There is a splitting

H�(Wh(�)) �= H�(�c)�H�(�HP1)�H�
�

Wh(�)
(�c;�HP1)

�
and an extension of A-modules

0! cok(��) −! H�
�

Wh(�)
(�c;�HP1)

�
−! �−1 ker(��)! 0
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where

cok(��) �= �−2C=A(�;Q1)�
(p−3)=2M
i=1

H�(�CP1−1[a])=A(�ya)

and

�−1 ker(��) �=
(p−3)=2M
i=1

�2aCa=A(�;Q1) :

In both sums we briefly write a = 2i− 1, so a is odd with 1 � a � p− 4. Here
H�(�CP1−1[a]) = Fpf�yk j k � a mod p − 1; k � ag, A(�ya) � H�(�CP1−1[a])
is the submodule generated by �ya , and Ca � A is the annihilator ideal of
�ya 2 H�(�CP1−1[a]).

Proof The splitting and extension follow by applying cohomology to 3.13. The
cohomologies of �c and �HP1 are given in 5.1(c) and 5.2(a), respectively. The
descriptions of ker(��) and cok(��) are immediate from 5.3.

Example 5.5 (a) When p = 3 there is a splitting

H�(Wh(�)) �= H�(�c)�H�(�HP1)� �−2C=A(�;Q1) :

(b) When p = 5 there is an extension

0! �−2C=A(�;Q1)�H�(�CP1−1[1])=A(�y)

−! H�
�

Wh(�)
(�c;�HP1)

�
−! �2C1=A(�;Q1)! 0

where

H�(�CP1−1[1])=A(�y) �= Fpf�yk j k � 1 mod p− 1; k � 1; k 6= pe; e � 0g

and C1 � A is spanned over Fp by all admissible monomials in A except 1 and
the P I for I = (pe; pe−1; : : : ; p; 1) with e � 0.

Remark 5.6 (a) The A-module �−2C=A(�;Q1) can be shown to split o�
from H�(Wh(�)=(�c;�HP1)) by considering the lower co�ber sequence in 3.6.

(b) For p � 5 the extension of �2C1=A(�;Q1) by H�(�CP1−1[1])=A(�y) is
not split. By 4.9 the bottom p-torsion homotopy of Wh(�) is Z=p in degree
4p − 2, which implies that there is a nontrivial mod p Bockstein relating the
bottom classes �2P 2 and �y2p−1 of these two A-modules, respectively.
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6 Applications to automorphism spaces

We now recall the relation between Whitehead spectra, smooth concordance
spaces and di�eomorphism groups, to allow us to formulate a geometric inter-
pretation of our calculations.

Spaces of concordances and h-cobordisms

Let M be a compact smooth n-manifold, possibly with corners, and let I =
[0; 1] be the unit interval. To study the automorphism space DIFF (M) of
self-di�eomorphisms of M relative to the boundary @M , one is led to study
the concordance space

C(M) = DIFF (M � I;M � 1)

of smooth concordances on M , also known as the pseudo-isotopy space of M
[17]. This equals the space of self-di�eomorphisms  of the cylinder M � I
relative to the part @M � I [M � 0 of the boundary. Both DIFF (M) and
C(M) can be viewed as topological or simplicial groups, and there is a �ber
sequence

(6.1) DIFF (M � I) −! C(M) r−! DIFF (M)

where r restricts a concordance  to the upper end M � 1 of the cylinder.

Let J = [0;1). The smooth h-cobordism space H(M) of M [48, section 1]
is the space of smooth codimension zero submanifolds W � M � J that are
h-cobordisms with M = M � 0 at one end, relative to the trivial h-cobordism
@M � I . There is a �bration over H(M) with C(M) as �ber and the con-
tractible space of collars on M � 0 in M � J as total space. Hence H(M) is
a non-connective delooping of C(M), i.e., C(M) ’ ΩH(M). The homotopy
types of the di�eomorphism group DIFF (M), the concordance space C(M)
and the h-cobordism space H(M) are of intrinsic interest in geometric topology.

There are stabilization maps � : C(M)! C(I�M) and � : H(M)! H(I�M).
By Igusa’s stability theorem [17], the former map is at least k -connected when
n � maxf2k + 7; 3k + 4g. Then this is also a lower bound for the connectivity
of the canonical map

�: C(M) −! C(M) = hocolim‘ C(I‘ �M)

to the mapping telescope of the stabilization map � repeated in�nitely often.
We call C(M) the stable concordance space of M , and call the connectivity
of �: C(M) ! C(M) the concordance stable range of M . Likewise there is a
stable h-cobordism space H(M) = hocolim‘H(I‘�M), and C(M) ’ ΩH(M).
The connectivity of the map H(M)! H(M) is one more than the concordance
stable range of M .
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The stable parametrized h-cobordism theorem

Waldhausen proved in [51] that when X = M is a compact smooth manifold
there is a homotopy equivalence

(6.2) H(M) ’ ΩΩ1Wh(M) ;

i.e., that the Whitehead space Ω1Wh(M) of M is a delooping of the stable h-
cobordism space H(M) of M . This stable parametrized h-cobordism theorem
is the fundamental result linking algebraic K -theory of spaces to concordance
theory. At the level of �0 it recovers the (stable) h- and s-cobordism theorems
of Smale, Barden, Mazur and Stallings. Waldhausen’s theorem includes in
particular the assertion that the stable h-cobordism space H(M) and the stable
concordance space C(M) are in�nite loop spaces.

The functor X 7! A(X) preserves connectivity of mappings, in the sense that
if X ! Y is a k -connected map with k � 2 then A(X) ! A(Y ) is also k -
connected [46, 1.1], [6, 10.9]. It follows that Wh(M), H(M) and C(M) take
k -connected maps to k -, (k− 1)- and (k− 2)-connected maps, respectively, for
k � 2.

Let � = �1(M) be the fundamental group of X = M . The classifying map
M ! B� for the universal covering of M is k -connected for some k � 2, so
also A(M) ! A(B�) is k -connected. Let R = Z[�]. Then the linearization
map L : A(B�) ! K(R) is a rational equivalence by [46, 2.2]. Hence rational
information about K(R) gives rational information about A(M) up to degree k ,
and about C(M) up to degree k − 2, which in turn agrees with C(M) in the
concordance stable range.

For example, Farrell and Hsiang [14] show that �mC(Dn)⊗Q has rank 1 in all
degrees m � 3 mod 4, and rank 0 in other degrees, for n su�ciently large with
respect to m. From this they deduce that �mDIFF (Dn) ⊗ Q has rank 1 for
m � 3 mod 4 and n odd, and rank 0 otherwise, always assuming that m is in
the concordance stable range for Dn .

For � a �nite group, A(X) and Wh(X) are of �nite type by theorems of Dwyer
[10] and Betley [3], so the integral homotopy type is determined by the rational
homotopy type and the p-adic homotopy type for all primes p. Therefore our
results on the p-adic homotopy type of Wh(�) have following application:

Theorem 6.3 Assume 3.2.

(a) Suppose p � 5 and let M be a (4p− 2)-connected compact smooth mani-
fold whose concordance stable range exceeds (4p− 4), e.g., an n-manifold with

Geometry & Topology, Volume 7 (2003)



180 John Rognes

n � 12p − 5. Then the �rst p-torsion in the homotopy of the smooth con-
cordance space C(M), and in the homotopy of the smooth h-cobordism space
H(M), is

�4p−4C(M)(p)
�= �4p−3H(M)(p)

�= Z=p :

(b) Suppose p = 3 and let M be an 11-connected compact smooth manifold
whose concordance stable range exceeds 9, e.g., an n-manifold with n � 34.
Then the �rst 3-torsion in the homotopy of the smooth concordance space
C(M), and in the homotopy of the smooth h-cobordism space H(M), is

�9C(M)(3)
�= �10H(M)(3)

�= Z=3 :

Proof The �rst p-torsion in ��Wh(�) is Z=p in degree � = 4p− 2 for p � 5,
and Z=3f��1g in degree � = 11 for p = 3, and ��Wh(�) is �nite in all of
these degrees. When M is (4p − 2)-connected, resp. 11-connected, the map
��Wh(M) ! ��Wh(�) is an isomorphism in this degree. And ��−2C(M) �=
��−1H(M) �= ��Wh(M). So if the concordance stable range is at least (4p−3),
resp. 10, also ��−2C(M) �= ��−2C(M) and ��−1H(M) �= ��−1H(M) in this
degree.

Similar statements may of course be given for when the subsequent torsion
groups in ��Wh(�) agree with ��−2C(M) and ��−1H(M), under stronger
connectivity and dimension hypotheses.

By [18, 1.4] there is a summand Z=p in �4p−4C(M) for any p � 5, regular or
not, but we need 3.2 to show that this is the �rst p-torsion in ��C(M).

Theorem 6.4 Assume 3.2.

(a) Suppose p � 5 and let M = Dn with n � 12p−5. Then �4p−4DIFF (Dn+1)
or �4p−4DIFF (Dn) contains an element of order p.

(b) Suppose p = 3 and let M = Dn with n � 34. Then �9DIFF (Dn+1) or
�9DIFF (Dn) contains an element of order 3.

Proof Consider the exact sequence in homotopy induced by (6.1), with Dn�
I �= Dn+1 . A Z=p in �mC(Dn) either comes from �mDIFF (Dn+1), which
known to be �nite in these cases by [14], or maps to �mDIFF (Dn).
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