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Abstract

In an earlier paper, we introduced a knot invariant for a null-homologous knot
K in an oriented three-manifold Y , which is closely related to the Heegaard
Floer homology of Y . In this paper we investigate some properties of these
knot homology groups for knots in the three-sphere. We give a combinatorial
description for the generators of the chain complex and their gradings. With
the help of this description, we determine the knot homology for alternating
knots, showing that in this special case, it depends only on the signature and
the Alexander polynomial of the knot (generalizing a result of Rasmussen for
two-bridge knots). Applications include new restrictions on the Alexander poly-
nomial of alternating knots.
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226 Peter Ozsv�ath and Zolt�an Szab�o

1 Introduction

In [25], we introduced a collection of Abelian groups associated to a closed,
oriented three-manifold Y , the Heegaard Floer homology of Y .1 In [27], we in-
troduced a \knot �ltration" on the Heegaard Floer homology of a three-manifold
Y which is induced from a null-homologous knot K in Y , see also [30]. Taking
the homology groups of the associated graded object, we obtain Floer homology
groups ĤFK(Y;K) =

L
i2Z ĤFK(Y;K; i) (where the integer i appearing here

corresponds to the �ltration level) which are topological invariants of the knot
K .

Our aim here is to study these invariants in the case where the ambient three-
manifold is the three-sphere, in which case dHF (S3) = Z. Working with a
suitable Heegaard diagram compatible with a planar projection of the knot, we
describe the \classical" aspects of the Floer theory { generators of the knot
complex, their �ltration levels, and absolute gradings { in terms of combina-
torics of a (generic) knot projection to the plane (though the di�erentials in the
knot complex still elude such a description). With this combinatorial descrip-
tion in hand, we are able to completely determine the Heegaard Floer homology
for alternating knots { i.e. those which admit a projection for which the cross-
ing types alternate between overcrossings and undercrossings { and give some
topological applications. More calculations based on these descriptions will be
given in a future paper [29].

1.1 Classical Floer data for classical knots

Let K � S3 be a knot. To de�ne the knot Floer homology, we must work with a
Heegaard diagram for S3 which is compatible with the knot K . Speci�cally, we
require that the knot K is supported entirely inside one of the two handlebodies,
meeting exactly one of the attaching disks in a single transverse intersection
point. As in [27], we then obtain a set of generators X of the chain complexdCF (S3) (the chain complex whose homology calculates dHF (S3) �= Z), which
are endowed with a pair of integer-valued functions, the �ltration level F and
the absolute grading gr.

For the boundary operator on dCF (S3), if x corresponds to a generator and
y appears with non-zero multiplicity in the expansion of @x, then gr(y) =

1In most of this paper, we work with the simplest version of Heegaard Floer ho-
mology, dHF (Y ), for three-manifolds with H1(Y ;Z) = 0. In this case dHF (Y ) is a
Z-graded, �nitely generated Abelian group.
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Heegaard Floer homology and alternating knots 227

gr(x) − 1, while F(x) � F(y). Thus, the associated graded complex for the
�ltration F , which we denote here by ĈFK(S3;K), is also freely generated by
X , but its boundary operator now preserves F , and hence we have the splitting

ĈFK(S3;K) =
M
fi2Zg

ĈFK(S3;K; i);

where ĈFK(S3;K; i) is the subcomplex generated by elements x 2 X with
F(x) = i. We reiterate: although this associated chain complex ĈFK(S3;K)
depends on the choice of Heegaard diagram used for S3 , its homology

ĤFK(S3;K) =
M
i2Z

ĤFK(S3;K; i)

does not.

A decorated projection for K is a generic knot projection of K , together with
a choice of a distinguished edge. In Section 2, we associate a natural Heegaard
diagram for K to any decorated knot projection for K . This allows us to
describe the generators X and the functions F and gr in terms of the knot
projection. For the description of the generators, we use the notion of states
introduced by Kau�man for the Alexander polynomial, see [16]. We recall this
briefly here.

Let K � S3 be an oriented knot, and �x a decorated projection of K . The
projection gives a planar graph G whose vertices correspond to the double-
points of the projection of K . Since G is four-valent, there are four distinct
quadrants (bounded by edges) emanating from each vertex, each of which is a
corner of the closure of some region of S2 − G. Let m denote the number of
vertices of G. Clearly, G divides S2 into m+2 regions. The two regions which
share the distinguished edge will be denoted A and B . In fact, we will always
choose our projections so that A is the unbounded region.

De�nition 1.1 A Kau�man state (cf. [16]) for a decorated knot projection
of K is a map which associates to each vertex of G one of the four in-coming
quadrants, so that:

� the quadrants associated to distinct vertices are subsets of distinct regions
in S2 −G

� none of the quadrants is a corner of the distinguished regions A or B .

It is easy to see that a Kau�man state sets up a one-to-one correspondence
between vertices of G and the connected components of S2 − G − A − B .
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228 Peter Ozsv�ath and Zolt�an Szab�o

There is a very simple description of Kau�man states in graph-theoretic terms
(see also [16]). The regions in the complement of the planar projection can
be colored black and white in a chessboard pattern, by the rule that any two
regions which share an edge have opposite color. There is then an associated
\black graph", whose vertices correspond to the regions colored black, and
whose edges correspond to vertices in G which connect the opposite black
regions. In these terms, Kau�man states are in one-to-one correspondence
with the maximal subtrees of the black graph (under a correspondence which
associates to a Kau�man state x the union of vertices of G, thought of now as
edges in the black graph, to which x associates a black quadrant).

Let S denote the set of Kau�man states for our decorated knot projection. We
de�ne two functions F : S −! Z and M : S −! Z, called the �ltration level
and absolute grading respectively.

To describe the �ltration level, note that the orientation on the knot K asso-
ciates to each vertex v 2 G a distinguished quadrant whose boundary contains
both edges which point towards the vertex v . We call this the quadrant which
is \pointed towards" at v . There is also a diagonally opposite region which is
\pointed away from" (i.e. its boundary contains the two edges pointing away
from v). We de�ne the local �ltration contribution of x at v , denoted by
s(x; v), by the following rule (illustrated in Figure 2), where �(v) denotes the
sign of the crossing (which we recall in Figure 1):

2�(v)s(x; v) =

8<:
1 x(v) is the quadrant pointed towards at v
−1 x(v) is the quadrant away from at v

0 otherwise.

The �ltration level associated to a Kau�man state, then, is given by the sum

S(x) =
X

v2Vert(G)

s(x; v):

Note that the function S(x) is the T -power appearing for the contribution of
x to the symmetrized Alexander polynomial, see [1], [17].

The grading M(x) is de�ned analogously. First, at each vertex v , we de�ne
the local grading contribution m(x; v). This local contributions is non-zero on
only one of the four quadrants { the one which is pointed away from at v . At
this quadrant, the grading contribution is minus the sign �(v) of the crossing,
as illustrated in Figure 3. Now, the grading M(x) of a Kau�man state x is
de�ned by the formula

M(x) =
X

v2Vert(G)

m(x; v):
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Heegaard Floer homology and alternating knots 229

Figure 1: Crossing conventions Crossings of the �rst kind are assigned +1, and
those of the second kind are assigned −1.

0 00 0

−1/2

1/2

1/2

−1/2

Figure 2: Local �ltration level contributions s(x; v) We have illustrated the local
contributions of s(x; v) for both kinds of crossings. (In both pictures, \upwards" region
is the one which the two edges point towards.)

0 00 0

00

−1 1

Figure 3: Local grading contributions m(x; v) We have illustrated the local con-
tribution of m(x; v).

With these objects in place, we can now state the following:

Theorem 1.2 Let K be a knot in the three-sphere, and choose a decorated
knot projection of K . Then, there is a Heegaard diagram for K with the
property that the knot complex ĈFK(S3;K) is freely generated by Kau�man
states of the decorated projection. Moreover, if x denotes the generator of
ĈFK(S3;K) and x is its corresponding Kau�man state, then F(x) = S(x)
and gr(x) = M(x).

1.2 Heegaard Floer homology for alternating knots

In the special case where the knot is alternating, Theorem 1.2 easily determines
the knot homology completely in terms of the Alexander polynomial �K of the
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230 Peter Ozsv�ath and Zolt�an Szab�o

knot K and its signature �(K).

In the following theorem, we use the sign conventions according to which the
signature of the left-handed trefoil is +2, cf. [20].

Theorem 1.3 Let K � S3 be an alternating knot in the three-sphere, and
write its symmetrized Alexander polynomial as

�K(T ) = a0 +
X
s>0

as(T s + T−s):

Then, ĤFK(S3;K; s) is supported entirely in dimension s+ �
2 , and indeed

ĤFK(S3;K; s) �= Zjasj:

It is very suggestive to compare the above result with the corresponding theorem
of Lee on the Khovanov homology for alternating knots (see [19], see also [18],
[2], [13]). We can also use the above theorem to calculate the Heegaard Floer
homologies of three-manifolds obtained by zero-surgeries along the knot. In
particular, we obtain the following result, which is a generalization of a theorem
of Rasmussen (see [30]) which calculates the Heegaard Floer homology of three-
manifolds obtained as integer surgeries along two-bridge knots. (In e�ect, our
methods show that alternating knots are \perfect" in Rasmussen’s sense.)

To state our results in a useful form, we recall more aspects of the Heegaard
Floer homology package from [25]. Speci�cally, there is a variant of the Hee-
gaard Floer homology HF+(Y ) which is a module over the ring Z[U ]. This
module is related to the variant dHF (Y ) considered earlier by a canonical long
exact sequence

� � � −−−−! dHF (Y ) −−−−! HF+(Y ) U−−−−! HF+(Y ) −−−−! � � �
The group HF+(Y ) can be given an absolute Z=2Z grading. In fact, these
groups obtain some additional structure, depending on the the homological
properties of Y , which we describe now in the case where H1(Y ;Z) �= Z (as
is the case for zero-framed surgery on a knot in S3 ). In this case, there is a
splitting HF+(Y ) �=

L
s2ZHF

+(Y; s) with the property that HF+(Y; s) �=
HF+(Y;−s). Indeed, the summand HF+(Y; s) is endowed with a relative
Z=2sZ grading2 (compatible with the Z=2Z mentioned earlier), and in par-
ticular when s = 0, it gives a relative Z-grading. Indeed the summand with

2Let S be an Abelian group. An (absolutely) S -graded Abelian group is an Abelian
group G generated by a set X , equipped with a map gr: X −! S . A relatively S -
graded Abelian group is an Abelian group G generated by a set X , equipped with a
relative grading gr0 : X �X −! S with gr0(x; y) + gr0(y; z) = gr0(x; z).
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Heegaard Floer homology and alternating knots 231

s = 0 can be given an absolute grading with values in the set 1
2 +Z. Although

this choice might seem unnatural at �rst glance, it �ts neatly with the four-
dimensional theory, cf. [28]. Action by the ring element U decreases all of these
gradings by 2.

Let T +
k denote the Q-graded Z[U ]-module which is abstractly isomorphic to

Z[U;U−1]=Z[U ], graded so that multiplication by U decreasing grading by two,
and its bottom-most homogeneous generator has degree k 2 Q. Recall that
HF+(S3) �= T +

0 .

Given a knot K and an integer s, let ts(K) denote the torsion coe�cients
de�ned by

ts(K) =
1X
j=1

jajsj+j

(where here the as are the coe�cients of the symmetrized Alexander polynomial
of K ). These integers are closely related to the Milnor torsion of the knot [21],
see also [32].

Finally, for � 2 2Z, we let �(�; s) be the integer de�ned by

�(�; s) = max(0; dj�j − 2jsj
4

e): (1)

Note that �(�; s) is the sth torsion coe�cient of the (2; j�j + 1) torus knot.

Theorem 1.4 Let K be an alternating knot, oriented so that � = �(K) � 0,
and let S3

0(K) denote the three-manifold obtained by zero-surgery on K . Then,

� for all s > 0, we have a Z[U ]-module isomorphism

HF+(S3
0(K); s) �= Zbs �

�
Z[U ]=U �(�;s)

�
;

where the �rst summand is supported in degree s+ �
2 (mod 2), while the

second summand has odd parity, and �(�; s) is de�ned as in Equation (1),
� for s = 0, we have an isomorphism of graded Z[U ] modules

HF+(S3
0(K)) �= Zb0 � T +

−1=2 � T
+
−2�(�;0)+ 1

2

and the cyclic summand Zb0 lies in degree �−1
2 .

Thus, in both cases, bs is given by the formula

(−1)s+
�
2 bs = �(�; s) − ts(K): (2)

In fact, Theorem 1.4 is a formal consequence of Theorem 1.3 (for any knot which
satis�es the conclusion of Theorem 1.4, the conclusion of Theorem 1.3 holds).
In fact, there are some non-alternating knots which satisfy the conclusion of
Theorem 1.4. An example is given in Section 4.
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1.3 Applications to the topology of alternating knots

We now describe some of the consequences of the above calculations for alter-
nating knots, combined with other results on Heegaard Floer homology.

As a �rst consequence, we obtain the following calculation of the \correction
terms" for three-manifolds obtained as surgery on S3 along K , for any alternat-
ing knot K . This correction term is de�ned using the absolute grading on the
Z[U ] module HF+(Y ) when Y is an integer homology three-sphere, described
in [28]. (As explained in that reference, when H1(Y ;Z) = 0, the group HF+(Y )
can be endowed with an absolute Z-grading.) This number is the analogue of
the gauge-theoretic invariant of Fr�yshov introduced in [10], [12], constraining
the intersection forms of four-manifolds which bound Y . Speci�cally, according
to Theorem 1.12 of [28], if Y is an integer homology three-sphere, then for each
negative-de�nite four-manifold W which bounds Y , we have the inequality

�2 + rk(H2(W ;Z)) � 4d(Y ); (3)

for each characteristic vector � for the intersection form H2(W ;Z).3 Recall
that Elkies [8] proves that for any negative-de�nite, unimodular form over Z,

max
fcharacteristic vectors � for V g

�2 + rk(V ) � 0;

with equality holding if and only if the bilinear form V is diagonalizable (over
Z). In view of these results, then, d(Y ) bounds the \exoticness" of intersection
forms of smooth, de�nite four-manifolds which bound Y , providing a relative
version of Donaldson’s diagonalization theorem [6], see also [10] and [12].

In general, calculating d(Y ) is challenging. But for surgeries on alternating
knots, we have the following explicit result (compare [30], [11]):

Corollary 1.5 Let K � S3 be an alternating knot, then

d(S3
1(K)) = 2 min(0;−d−�(K)

4
e):

In another direction, Theorem 1.4 can be used to give restrictions on the Alexan-
der polynomials of alternating knots. A classical result of Crowell and Murasugi
(see [4] and [22]) states that the coe�cients of the symmetrized Alexander poly-
nomial for such a knot alternate in sign (indeed, the sign of as is (−1)s+

�
2 ).

Theorem 1.4 in turn immediately gives the following inequality for the torsion
coe�cients, which is easily seen to generalize this alternating phenomenon:

3Recall that for a bilinear form Q over a lattice V �= Zn , a characteristic vector is
a vector c 2 V with the property that Q(v; v) � Q(c; v) (mod 2) for all v 2 V .
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Corollary 1.6 Let K be an alternating knot in the three-sphere. Then for
all s 2 Z, we have that

(−1)s+
�
2 (ts(K)− �(�; s)) � 0;

where �(�; s) are the constants de�ned in Equation (1).

For example, consider the nine-crossing knot K appearing in the standard knot
tables as 942 , see for example [3]. This knot has

�(K) = 2 and �K(T ) = −1 + 2(T + T−1)− (T 2 + T−2);

i.e. its Alexander polynomial is alternating, but it fails to satisfy the conditions
of Corollary 1.6, so it is not alternating. (Note this particular result is classical,
see [5].)

Other restrictions on the Alexander polynomials of alternating knots have been
conjectured by Fox, see [9] (see also [23], where these properties are veri�ed
for a large class of alternating knots). Speci�cally, Fox conjectures that for
an alternating knot, the absolute values of the coe�cients of the Alexander
polynomial jasj are non-increasing in s, for s � 0. It is easy to see that the
above corollary veri�es Fox’s conjecture for alternating knots of genus 2. For a
general alternating knot, the inequalities stated above for coe�cients s < g− 1
are independent of Fox’s prediction. However, for the �rst coe�cient change,
i.e. when s = g− 1, the above inequalities translate into the following stronger
bound:

jag−1j � 2jagj+

8<:
−1 if j�j = 2g

1 if j�j = 2g − 2
0 otherwise.

Finally, we describe a relationship between Theorem 1.4 and contact geometry.
Recall that a �bered knot K � S3 endows S3 with an open book decompo-
sition, and hence a contact structure, using a construction of Thurston and
Winkelnkemper, see [31]. One can ask which contact structure this is.

For this purpose, recall that a contact structure in S3 has a classical invariant,
the \Hopf invariant" of the induced two-plane �eld h(�) 2 Z, which is an integer
which uniquely speci�es the homotopy class of � . This number is de�ned by

4h(�) = c1(k)2 + 2− 2�(W )− 3�(W );

where W is any almost-complex four-manifold which bounds S3 so that the
induced complex tangencies on its boundary coincide with � , k is the canonical
class of the almost-complex structure, �(W ) is the Euler characteristic of W ,
and �(W ) is the signature of its intersection form.
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Using results on the knot homology of �bered knots described in [26] (which, in
turn, are based on the important work of Giroux [14]), we obtain the following:

Corollary 1.7 Let K � S3 be an alternating, �bered knot of genus g , and
let �K denote its induced contact structure over S3 . Then,

h(�K) = −�(K)
2
− g(K): (4)

Moreover, the induced contact structure on S3 is tight if and only if h(�K) = 0.

In [7], Eliashberg classi�es contact structures over S3 , showing that for each
non-zero integer i, there is a unique contact structure �i whose Hopf invariant
is i, while there are two contact structures with vanishing Hopf invariant: the
\standard" (tight) contact structure, and another (overtwisted) one. Combin-
ing Corollary 1.7 with Eliashberg’s classi�cation, we obtain the following:

Corollary 1.8 The standard contact structure and all other contact structures
in S3 with negative Hopf invariant are precisely those contact structures which
are represented by alternating, �bered knots.

1.4 Alternating links

Theorem 1.3, together with many of its consequences, admits a straightforward
generalization to the case of non-split, alternating links. We state and prove the
generalization in Section 4. As an illustration, we use this as a stepping-stone
for a calculation of the knot homology for a non-alternating knot, 948 .

Acknowledgements The authors wish to warmly thank Jacob Rasmussen
and Andr�as Stipsicz for interesting conversations.
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2 Proof of Theorem 1.2.

We prove here the state-theoretic interpretation of the classical Floer data,
stated in Theorem 1.2. The main ingredient is a Heegaard diagram which is
naturally associated to a decorated knot projection. (Note that this is not
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the usual diagram induced from placing the knot into \bridge position".) We
describe this Heegaard diagram, after briefly recalling some of the ingredients of
the knot Floer complex for knots (specializing for simplicity to the case where
the ambient manifold is S3 ).

2.1 Classical Floer data.

We give here a rapid description of the data for the knot Floer complex captured
in Theorem 1.2. We refer the reader to [27] for a more detailed discussion.

Fix an oriented knot K � S3 . A marked Heegaard diagram is triple of data

(�; f�1; : : : ; �gg; f�1; : : : ; �gg;m);

where here

� � is an oriented surface of genus g ,

� f�1; : : : ; �gg are pairwise disjoint, embedded circles in � representing the
attaching circles for a handlebody U� ; similarly, f�1; : : : ; �gg are pairwise
disjoint, embedded circles in � representing the attaching circles for a
handlebody U�

� m is a marked point on the attaching circle �1 , which is disjoint from
the �i

� the Heegaard diagram describes S3 , i.e. we have a di�eomorphism U�[�

U� �= S3

� under this identi�cation, the knot K is supported entirely inside U� , and
it is disjoint from the attaching disks for �j with j > 1, meeting the
attaching disk for �1 in a single positive, transverse intersection point.

We consider the g -fold symmetric product Symg(�), with two distinguished
tori

T� = �1 � � � � � �g and T� = �1 � � � � � �g:

The generators X for the chain complex ĈFK(S3;K) are intersection points
between T� and T� in Symg(�). Let w and z be two points in � which are
near m, but which lie on either side of �1 . A choice of orientation on K gives
an ordering on these two points. More precisely, we can �nd arc � connecting
z to w so that � is disjoint from all �i and �j with j > 1, meeting �1 in a
single, transverse intersection point. Orienting � in the same direction as K ,
we order the two base points so that � goes from z to w .

Geometry & Topology, Volume 7 (2003)
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By simple topological considerations (cf. Section 2 of [25]), given two intersec-
tion points x;y 2 T�\T� , we can �nd a Whitney disk � for T� and T� which
connects x to y ; i.e. a map � from the standard complex disk D into Symg(�)
with the properties that

uf�
��Re(�) � 0 and j�j = 1g � T�; uf�

��Re(�) � 0 and j�j = 1g � T�;
u(−i) = x; u(i) = y:

Let p be a point in �− �1 − � � � − �g − �1 − � � � − �g , we let np(�) denote the
algebraic intersection number of � with the submanifold p � Symg−1(�). In
fact, by choosing reference points in each connected component of �−�1−� � �−
�g − �1 − � � � − �g , we obtain a function from this set of regions to Z, denoted
D(�), and called the domain associated to �. As explained in Section 2 of [25],
when g > 2, the homotopy class of � is uniquely determined by D(�). We
denote the set of homotopy classes of Whitney disks by �2(x;y).

We now describe the functions F and gr, referred to in the introduction. The
de�nitions we sketch here are somewhat simpler than the general de�nitions
given in [27]4, owing to the fact that our ambient manifold is S3 .

First, we discuss gr. Given x and y , let � be a Whitney disk connecting x to
y . We claim that if �(�) denotes the Maslov index of �, then �(�)−2nw(�) is
independent of the choice of �. Indeed (cf. Equation (10) of [25]), the function
gr is determined up to an additive constant by the relation

gr(x)− gr(y) = �(�)− 2nw(�):

The remaining indeterminacy is removed using the Heegaard Floer homology
of S3 : dCF (S3) is a chain complex which is generated by the same intersection
points X (though its boundary operator allows for more di�erentials than the
knot Floer complex ĈFK(S3;K)), its boundary operator decreases gr by one,
and its homology is Z, supported in a single dimension. The indeterminacy,
then, is removed by the convention that the homology is supported in dimension
zero.

Similarly, if x and y are a pair of intersection points and � is a Whitney
disk connecting them, then we claim that the di�erence of intersection numbers

4In fact, in [27], the �ltration is denoted sm , and in the case we are considering now,
it takes values in the set of Spinc structures on S3

0(K). This is related to the present
function F by the formula

F(x) = hc1(sm(x)); [ bF ]i;

where here bF is the closed surface in S3
0(K) obtained by capping o� a Seifert surface

F for K which respects the orientation of K .
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nz(�)−nw(�) is independent of the choice of �. Indeed (cf. Lemma 2.5 of [27]),
the function F is determined up to an additive constant, by the equation

F(x)−F(y) = nz(�)− nw(�):

The remaining indeterminacy of F is removed with the help of the observation
that X

x2F(x)

(−1)gr(x)TF(x) = T c�K(T );

where here �K(T ) denotes the symmetrized Alexander polynomial of K (see
Equation (1) of [27]), and c is some integer. The additive indeterminacy of F ,
then, is removed by requiring that c = 0.

We have not de�ned here the di�erential on the chain complex. Loosely speak-
ing, the di�erential on dCF (S3) counts pseudo-holomorphic Whitney disks u

with nw(u) = 0, while the di�erential on ĈFK(S3;K) counts those which
satisfy nw(u) = 0 = nz(u). Details are given in [27].

2.2 The Heegaard diagram belonging to a decorated knot pro-
jection

Let K be an oriented knot in S3 , and �x a decorated knot projection of K
{ i.e. a generic planar projection G of K with n crossings, and a choice of
distinguished edge e which appears in the closure of the unbounded region A.
With these choices, we construct a Heegaard diagram for (S3;K) as follows.

Let B denote the other region which contains the edge e, and let � be the
boundary of a regular neighborhood in S3 of G (i.e. it is a surface of genus
n+ 1); we orient � as @(S3− nd(G)). We associate to each region r 2 R(G)−
A, an attaching circle �r (which follows along the boundary of r). To each
crossing v in G we associate an attaching circle �v as indicated in Figure 4. In
addition, we let � denote the meridian of the knot, chosen to be supported in
a neighborhood of the distinguished edge e.

Each vertex v is contained in four (not necessarily distinct) regions. Indeed,
it is clear from Figure 4, that in a neighborhood of each vertex v , there are
at most four intersection points of �v with circles corresponding to these four
quadrants. (There are fewer than four intersection points with �v if v is a
corner of the unbounded region A.) Moreover, the circle corresponding to �
meets the circle �B in a single point (and is disjoint from the other circles). It
is easy to see that for any choice of marked point m 2 �, the construction we
have just described gives a marked Heegaard diagram for K .
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The correspondence between states and generators for the knot complex
ĈFK(S3;K), T� \ T� , should now be clear: an intersection point gives at
each vertex (i.e. � -curve) one of four quadrants (corresponding to the up to
four �-curves). Moreover, since the meridian � meets exactly one �-curve,
the curve corresponding to the region B , that corresponding �-curve is not
assigned to any of the vertices.

r2

r3 r4

r1

�3 �4

�2�1

�

Figure 4: Special Heegaard diagram for knot crossings At each crossing as
pictured on the left, we construct a piece of the Heegaard surface on the right (which
is topologically a four-punctured sphere). The curve � is the one corresponding to the
crossing on the left; the four arcs �1; : : : ; �4 will close up. (Note that if one of the four
regions r1; : : : ; r4 contains the distinguished edge e , its corresponding �-curve should
not be included). Note that the Heegaard surface is oriented from the outside.

Before turning to the other aspects of Theorem 1.2, we recall a very useful
technical device: the \Clock Theorem" of Kau�man.

De�nition 2.1 Two distinct states x and y are said to di�er by a transposition
if there is a pair of vertices v1 to v2 with the property that:

� xjG−v1−v2 � yjG−v1−v2 ,

� there is a straight path P from v1 to v2 (i.e. a path which follows along
the knot K ) which does not contain the distinguished edge, so that x(v1)
and y(v1) are the two quadrants which contain the �rst edge in P , and
x(v2) and y(v2) are the two quadrants which contain the last edge in P .

Theorem 2.2 (Kau�man) Any two distinct states x and y can be connected
by a sequence of transpositions.

The proof of the above result can be found in Chapter 2 of [16].

We now establish some lemmas used in the proof of Theorem 1.2.
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Lemma 2.3 Suppose that the two states x and y di�er by a transposition,
and let x and y denote the corresponding generators of the knot complex.
Then, F(x) −F(y) = S(x)− S(y).

Proof Orient the edge between v1 and v2 as it appears in the knot. There
are now four cases, according to whether v1 or v2 are under- or over-crossings.

Suppose that the edge takes us from under-crossing at v1 to an over-crossing at
v2 (i.e. our edge is on the bottom at v1 and on the top at v2 ). In this case, we
claim that after possibly switching the roles of x and y , we can �nd a homotopy
class � 2 �2(x;y), with nw(�) = 0 and nz(�) = 1. Indeed, the domain
associated to �, D(�), has all local multiplicities zero or one; topologically, it is
a connected surface with a collection of circle boundary components. Assume
for a moment that there are no intermediate crossings between v1 and v2 . In
this case, the topology of D(�) is given as follows: the genus of D(�) is given by
the number of vertices encountered twice between v2 and the �nal point, it has
one boundary component corresponding to the meridian �, it has one boundary
circle for each vertex encountered only once between v2 and the �nal point (the
corresponding � -circle), and there is one �nal boundary component (with four
distinguished corner points) which is formed from arcs in �v1 , �v2 , and the
two �-curves corresponding to the two regions which contain the edge from v1

to v2 . This is pictured in Figure 5. In the case where there are intermediate
crossings between v1 and v2 , the surface looks much the same, except that
now there are additional circle components, one corresponding to each compact
region in the complement in R2 of the part of the projection between v1 and
v2 (or equivalently, one for each vertex between v1 and v2 ). Speci�cally, these
circle components are the �-curves of these intermediate regions.

The detailed description of the topology of D(�) is not particularly relevant to
the proof of the present lemma (though it is relevant in the proof of the next
one); all we need here is the fact that nw(�) = 0 and nz(�) = 1, from which
it follows immediately that F(x) − F(y) = 1. From the de�nition of S(x),
it follows easily that S(x) − S(y) = 1 (i.e. independent of the orientation on
the two pieces of K transverse to our edge at v1 and v2 ) as well, verifying the
lemma in this case.

Suppose that both v1 and v2 are under-crossings. When there are no interme-
diate intersection points between v1 and v2 , it is easy to �nd a square which
serves as D(�) for some � 2 �2(x;y) with nw(�) = nz(�) = 0, supported on
the region of the Heegaard surface corresponding to the edge, as pictured in
Figure 5. In particular, the �ltration di�erence is zero. When there are in-
termediate intersection points, the region D(�) now is a square with a �nite
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number of circles removed, but it is still disjoint from w and z . Now, it is easy
to see that the formula S(x)−S(y) gives zero, independent of the crossing signs
of the two vertices.

The remaining two cases (where v2 is an over-crossing) are handled similarly.

Figure 5: Illustration of Lemma 2.3 The top row represents the original projection
diagram: the light circles represent the state x, while the dark ones represent y . In
the second row, we have the corresponding Heegaard picture, with the support of the
homotopy class � 2 �2(x;y) lightly shaded. (Note that there are two other cases not
pictured here, but the corresponding pictures are the same as these, only viewed from
underneath.)

Lemma 2.4 Suppose that the two states x and y di�er by a transposition,
at vertices v1 and v2 . Then, the absolute value of the di�erence in gradings
between the corresponding generators x in y is one. More precisely, if x is
represented by light dots in Figure 6, and y is represented by the dark ones,
then gr(x)− gr(y) = 1.

Proof Domains with nw(�) = 0 connecting intersection points which di�er
by a transposition have already been demonstrated in the proof of Lemma 2.3
(see Figure 5). Our task here is to calculate their Maslov index (and, indeed,
to show that it is one in all the above cases).

In all cases, we have seen that the domains D(�) are topologically a square
with a �nite number of handles attached, and a �nite number of disks removed.
Letting x;y 2 T� \ T� denote the intersection points corresponding to the
states x and y , and writing x = fx1; : : : ; xgg, and y = fy1; : : : ; ygg, we have
(for some numbering) that for i = 3; : : : ; g , xi = yi , while x1 , y1 , x2 , and y2

are the four corner points of the square. Now, in the interior of each handle
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Figure 6: Grading di�erence for intersection points which di�er by a transpo-
sition Let x be the state represented by the dark dots, and y be the one represented
by the light ones. Then, gr(x) − gr(y) = 1.

attached to the square, we have a point xi (for i > 2), and also on each circle
we have a point xi , and all the remaining intersection points xi (with i > 2) lie
in the exterior of D(�). Thus, these extra intersection points do not a�ect the
Maslov index. Moreover, each of the handles can be deleted, while deleting the
corresponding intersection point xi without a�ecting the Maslov index. (This
latter operation corresponds to destabilizing the Heegaard diagram, see [25].)

It remains then to calculate the Maslov index of a homotopy class � whose
domain consists of square minus a �nite collection of disks. We claim that for
such a homotopy class, �(�) = 1. This can be seen, for example, by �nding
such a homotopy class in a suitably chosen (genus n+ 2) Heegaard diagram for
#n+1(S1�S1) (where here n denotes the number of disks removed), and using
the fact that dHF (#n+1(S1 � S1); s0) �= H�(T n+1;Z) as relatively Z-graded
groups where here s0 denotes the Spinc structure with �rst Chern class equal
to zero (cf. Section 5 of [25]). Speci�cally, we can �nd such a domain which
connects two intersection points whose absolute gradings are known to di�er
by one. We illustrate this in the case where n = 1, in Figure 7.

We �nd it useful to introduce one more notion before proceeding to the proof
of Theorem 1.2. Recall that the decoration on the knot projection (the dis-
tinguished edge, and the orientation on the knot projection) induces a natural
ordering on all the edges of the knot projection. If v is any vertex in the
knot projection, the edge after v is the last edge (in this ordering) whose clo-
sure contains v . The edge which immediately precedes it will be called the
v -penultimate edge, and we denote it by ev . Note also that the orientation of
K and the reference point speci�es an ordering on the vertices, as follows. We
say that v1 < v2 if the vertex v1 is crossed the second time before v2 is (on a
path beginning in the interior of the distinguished edge and following K ).
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A

A
B

C

Cx1

x2

x3

y2y1

z

Figure 7: Maslov index calculation of a square minus a disk Above, we have
pictured a g = 3 Heegaard diagram for #2(S2�S1). The dark lines represent � -curves,
and the dashed ones represent �-curves. Note that the disks labeled with capital letters
A, B , or C are to be removed, and their boundaries are pairwise identi�ed, according
to their pictured labeling. There are four intersection points in T� \ T� , all of which
represent the Spinc structure with trivial �rst Chern class, using the pictured reference
point z . Let x = fx1; x2; x3g and y = fy1; y2; y3g with y3 = x3 . It is easy to �nd
a domain for a Whitney disk � 2 �2(x;y) which is a square with a disk removed.
Moreover, the grading di�erence between these two elements is one (they are also
connected by a square).

There is a canonical state x0 which is uniquely characterized by the property
that for each crossing v , x0(v) is one of the two quadrants whose closure con-
tains v -penultimate edge, according to the following lemma:

Lemma 2.5 The canonical state x0 is well-de�ned.

Proof Let R(G) denote the set of regions in S2 − G − A − B . Let X0 =
A [ B . We will inductively de�ne the canonical state x0 by �nding an or-
dering fv1; : : : ; vmg of all the vertices in the graph G, with the property that
x0jfv1; : : : ; vng is uniquely de�ned (note that it is not the same as the ordering
induced by the orientation of K ). Correspondingly, we will exhaust S2 by a
sequence of regions

X0 � X1 � � � � � Xm = S2

with the property that x0jfv1; : : : ; vng maps onto the set of regions in Xn −
G−X0 (and hence Xn+1 is de�ned by attaching to Xn a region Rn 2 R(G)).
In our induction hypothesis, we will assume that the vi -penultimate edge is
contained in the interior of Xi .
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Figure 8: The canonical state x0 for 816 We have illustrated here the canonical
state x0 for the alternating knot 816 . The light circle indicates the distinguished edge,
and the arrow indicates the orientation.

For the initial step (n = 0), x0 is vacuously de�ned.

For the inductive step, either Xn = S2 (in which case we are �nished), or Xn is
a proper subset of S2 , in which case it must have corners, since we have assumed
that our graph belongs to a knot projection. Consider the last corner point vn+1

of Xn (with respect to the ordering induced by the orientation on the knot).
It is clear that the vn+1 -penultimate edge must appear in two quadrants, one
of which is contained in Xn , and the other of which is contained in a region
Rn+1 � S2−Xn (for if this hypothesis is not satis�ed, we would simply be able
to �nd a later corner vertex). It follows then that vn+1 62 fv1; : : : ; vng (for the
edges before all those vertices are all contained in the interiors of Xn ). We then
de�ne x0(vn+1) to be the quadrant of Rn+1 containing the vn+1 -penultimate
edge. Let Xn+1 = Xn [ Rn+1 . It is now clear from the construction of Xn+1

that the vn+1 -penultimate edge is contained in the interior of Xn+1 .

Observe that the above argument not only constructs the canonical state x0 but,
since there was no ambiguity in the de�nition, establishes its uniqueness.

Proof of Theorem 1.2 The correspondence between states and generators
of ĈFK(S3;K) in the appropriate Heegaard diagram was already explained in
the beginning of this section. We adopt here the notational convention that if
x and y are states, then x and y are their corresponding intersection points.

To prove the assertion about �ltration levels, we appeal to Lemma 2.3, according
to which if x and y are any two states which di�er by a transposition, then

S(x)− S(y) = F(x) −F(y):
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Combining this with Kau�man’s theorem, we see that there is a constant c1
which a priori depends on the knot projection, with the property that if x is
any state, then

S(x) = F(x) + c1:

In particular, it follows that for some suitable choice of signs (given by the the
Z=2Z grading of the intersection point x), the polynomial

ΓK(T ) =
X
x2S

(�1)T S(x);

has the form Γ(T ) = T c1 � �K(T ) where �K(T ) denotes the symmetrized
Alexander polynomial. Indeed, the fact that that c1 = 0 follows from the fact
that ΓK(T ) is symmetric: indeed, it coincides with the Conway-normalized
Alexander polynomial, according to Chapter VI of [17].

When x and y are states which di�er by a transposition, and x and y their
corresponding intersection points, it follows easily from Lemma 2.4 that

gr(x)− gr(y) = M(x)−M(y):

From Kau�man’s theorem, it then readily follows that there is a constant c2
with the property that for any state x,

gr(x) = M(x) + c2:

To see that c2 = 0, we verify that if x0 is the canonical state (whose existence
was established in Lemma 2.5 above) and x0 its corresponding intersection
point,

M(x0) = 0 = gr(x0):

Indeed, it is straightforward to see that M(x0) = 0: the local contributions
m(x0; v) vanish for each vertex.

To see that x0 has vanishing absolute grading, we proceed as follows. One can
reduce the Heegaard diagram for the knot described above to another Heegaard
diagram for S3 by handlesliding the � -curves of vertices. We then arrange the
�v -curves in descending order, according to this ordering of the corresponding
vertices, and then handleslide them \forwards" across the reference point z
(but never across w). In this manner, we obtain a new Heegaard diagram
for S3 , where the � -curve at any vertex v now meets only the up to two �-
curves corresponding to the two quadrants which contain the v -penultimate
edge. Thus, the canonical state also induces an intersection point x00 for this
new Heegaard diagram, and indeed its absolute degree agrees with that of x0 ,
since the handleslides never crossed w (compare Section 5 of [25]). Moreover,
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the uniqueness of Lemma 2.5 ensures that x00 is, in fact, the only intersection
point in T�\T� for this new Heegaard diagram, so it must have absolute degree
zero.

3 Results on alternating knots

For the purposes of Theorem 1.3, it is useful to have the following explicit
description of the signature �(K) of an alternating link, which follows from
work of Gordon and Litherland [15] as interpreted by Lee, see [19], which we
now recall.

Consider the four quadrants meeting at some vertex v . If we orient the bound-
ary of one of these quadrants Q (in the manner induced from the orientation of
the plane), we obtain an ordering on the two consecutive edges contained in the
boundary of Q. If the �rst of these edges is part of an \overcross" at v , we call
Q an over-�rst quadrant; otherwise, we call Q an under-�rst quadrant. The
alternating condition on a knot projection is equivalent to the condition that
all the over-�rst quadrants have the same color (and hence that all the under-
�rst ones have the other color). For de�niteness, we color all the under-�rst
quadrants white, as illustrated in Figure 9.

Figure 9: Coloring conventions for alternating knots We adopt the pictured
convention in the statement of Theorem 3.1.

Theorem 3.1 (Theorem 6 of [15], see also Proposition 3.3 of [19]) Let K
be a knot with alternating projection G. Then, with the coloring conventions
illustrated in Figure 9, the signature of K is calculated by the formula

�(K) = #(black regions in the planar projection)−#(positive crossings)− 1:

Proof of Theorem 1.3 Let x be any state. Glancing at the de�nitions of
the local contributions m(x; v) and s(x; v), one sees that

m(x; v) − s(x; v) +
�
�(v) + 1

2

�
=
�

0 if x(v) is an under-�rst quadrant
1
2 if x(v) is an over-�rst quadrant.
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Adding this up over all the vertices v , and bearing in mind that the over-
�rst quadrants are all black, and that there is exactly one black region (the
distinguished one) which is not represented as x(v) for some vertex v , it follows
that

2(M(x) − S(x)) =
#(black regions in the planar projection)−#(positive crossings)− 1;

a quantity which agrees with �(K), according to Theorem 3.1. The theorem
now follows immediately from Theorem 1.2.

It is straightforward if tedious to verify that in fact the previous theorem deter-
mines the �ltered chain homotopy type of the knot complex uniquely in terms
of the Alexander polynomial and the signature of the knot. Rather than in-
flicting the necessary linear algebra on our reader, we content ourselves here
with the proof of Theorem 1.4. For the proof, we will use the relationship be-
tween the knot complex and the Floer homology of three-manifolds obtained
by su�ciently large surgeries on K , which we recall presently.

Recall that when K � S3 is a knot, we have the (Z� Z)-�ltered complex

CFK1(S3;K) = f[x; i; j]
��F(x) + (i− j) = 0g:

Of course, the Z� Z-grading of [x; i; j] is (i; j), and

gr[x; i; j] = gr(x) + 2i:

The subcomplex where i � 0 (or j � 0) represents CF−(S3), the whole com-
plex represents CF1(S3), and the quotient represents CF+(S3). More inter-
estingly, this complex can be used to calculate HF+(S3

n(K)) for su�ciently
large n. Speci�cally, �x an integer s, and let HF+(S3

n(K); [s]) denote HF+

calculated using a Spinc structure which extends over the two-handle B4
n(K)

to a Spinc structure satisfying

hc1(s); [ bF ]i = s− n;

where here [ bF ] 2 H2(B4
n(K);Z) �= Z is a generator. Consider the quotient

complex of C , which is generated by tuples [x; i; j] with i � 0 or j � s, denoted
Cfi � 0 or j � sg. It is shown in Theorem 4.4 of [27] that the homology of
Cfi � 0 or j � sg calculates HF+(S3

n; [s]), under a map which shifts grading
by 1−n

4 ; and indeed the natural projection map from Cfi � 0 or j � sg to
Cfi � 0g models the map induced from B4

n(K) induced by the Spinc structure
s.
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Proof of Theorem 1.4 The proof relies on the fact, which follows from The-
orem 1.3, that if we write � = �(K), then for each intersection point x

gr(x) = F(x) +
�

2
;

and hence, for each [x; i; j] 2 CFK1(S3;K),

gr[x; i; j] = i+ j +
�

2
: (5)

To calculate HF+(S3
0(K); s), we calculate �rst HF+(S3

n(K); s) for all su�-
ciently large n.

We have the following short exact sequence

0! Cfmax(i; j−s) � 0g ! Cfi � 0g�Cfj � sg ! Cfmin(i; j−s) � 0g ! 0;

where H�(Cfmin(i; j − s) � 0g) is supported in degrees � s + �=2. It follows
that

H�s+�
2
−2 (Cfmax(i; j − s) � 0g) �= H�s+�

2
−2 (Cfi � 0g � Cfj � sg)

�= HF+
�s+�

2
−2(S3)�HF+

�−s+�
2
−2(S3)

= HF+
�s+�

2
−2(S3) (6)

(with the last equality following from the fact that −s+ �
2 − 2 < 0).

In the remaining degrees, we obtain information from the short exact sequence

0 −! Cfmax(i; j − s) � −1g −! C −! Cfmin(i; j − s) � 0g −! 0

Now, H�(Cfmax(i; j − s) � −1g) is supported in dimensions � s + �=2 − 2.
Letting R denote the the part in degree s+ �=2 − 2, we have

0 −! HF1�s+�
2
−1(S3) −! H�s+�

2
−1(Cfmin(i; j − s) � 0g) �−! R −! � � � (7)

Thus, there are two case for HF+(S3
n(K)) for large n. When s + �

2 � 0, the
above arguments show that

H�(Cfmax(i; j − s) � 0g) �= HF1�s+�
2
−1(S3)� Zbi(s+�

2
−1);

for some non-negative integer bs . In fact, when s + �
2 − 1 � 0, the map from

C to Cfi � 0g clearly factors through Cfi � 0 or j � sg. Thus, the above
arguments show that

H�(Cfmax(i; j − s) � 0g) �= HF+(S3)� Zbs(s+�
2
−1):

Ths identi�cation of H�(Cfmax(i; j−s)g) �= HF+(S3
n; [s]) for su�ciently large

n, together with the integer surgery long exact sequence ([24], see also [28])

� � � −! HF+(S3) F1−! HF+(S3
0(K); s) F2−! HF+(S3

n(K); [s]) F3−! � � �
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now gives the result when s 6= 0.

In the case where s = 0, we still have a (possibly trivial) cyclic summand Zb0 in
HF+(S3

n(K); 0) (for n su�ciently large) supported in dimension 1−n
4 + �

2 − 1,
with the property that

HF+(S3
n(K); 0) �= T +

−2d−�
4
e+ 1−n

4

� Zb0:

Now, in the integral surgeries long exact sequence, the map F3 consists of a
sum of terms, each of which decreases the absolute grading by at least 1−n

4 . It
follows immediately (again, using our hypothesis that � < 0) that this map in
the present case must vanish.

The map F2 now shifts degree by (n − 3)=4 and the map F1 shifts degree by
−1=2 (cf. Lemma 7.10 of [28]), so the calculation of HF+(S3

0(K); 0) follows.

The only remaining piece now is the veri�cation of Equation (2). But this
follows immediately from Theorem 9.1 of [24], where the Euler characteristic of
HF+(Y0) is identi�ed with the torsion of S3

0 , or, more precisely, provided that
i 6= 0,

−ti(K) = �(HF+(S3
0(K); i))

(see also [24] for the statement when i = 0).

We now turn to the proofs of the corollaries listed in the introduction.

Proof of Corollary 1.6 This is an immediate application of the theorem (af-
ter reflecting K if necessary), bearing in mind that, of course, bs � 0.

Proof of Corollary 1.5 In general, we have that d(S3
1(K)) = d 1

2
(S3

0(K))− 1
2

(see Proposition 4.12 of [28]). In the case where �(K) � 0, the result then is
an immediate application of Theorem 1.4. When �(K) > 0, let r(K) denote
the reflection of K ; then we have (see [28]) that

d 1
2
(S3

0(K)) = −d− 1
2
(S3

0(r(K))) =
1
2

(with the last equation following once again from Theorem 1.4).

For the proof of Corollary 1.7, we use the results from [26], which in turn
rely on results of Giroux [14]. Speci�cally, if K � Y is a �bered knot of
genus g , then ĤFK(−Y;K;−g) �= Z. The image of the generator of this
group inside dHF (−Y ) is shown in [26] to depend on the knot only through
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its induced contact structure �K , giving rise to an element c(�K) 2dHF (−Y ).
Moreover, when Y �= S3 (or, more generally, � is any contact structure over a
three-manifold Y whose whose induced Spinc structure has torsion �rst Chern
class), c(�) is a homogeneous element whose absolute degree c(�) coincides with
the Hopf invariant of � . Finally, in Theorem 1.4 of [26], the invariant is shown
to vanishing for overtwisted contact structures.

Proof of Corollary 1.7 According to Theorem 1.3 the degree of an element
in �ltration degree −g (and hence, as above, the Hopf invariant of the induced
homotopy class of two-plane �eld) is given by Equation (4). Note that the sign
appearing in front of the signature occurs because, in the de�nition of c(�), we
are reverse the orientation on the ambient three-manifold, which is equivalent
to reflecting the knot.

In the case where this Hopf invariant vanishes, the induced element in dHF (S3)
must be non-trivial, for it is the only generator in degree zero (again, according
to Theorem 1.3). Thus, according to Theorem 1.4 of [26], the induced contact
structure is tight.

Proof of Corollary 1.8 The fact that the Hopf invariant of is non-positive,
follows readily from Equation (4), together with the fact that j�(K)j � 2g .

Moreover, we have seen in Corollary 1.7 that the overtwisted contact structure
with vanishing Hopf invariant cannot be represented by an alternating knot;
while it is clear that unknot represents the tight contact structure.

Finally, using Equation (4), we see that for each i > 0, the i-fold connected
sum of the �gure eight knot realizes the contact structure with Hopf invariant
−i.

4 Alternating links

Recall that in [27], we de�ned a generalization of the knot invariants ĤFK
to the case of links. These link invariants satisfy a skein exact sequence (cf.
Theorem 10.2 of [27]): suppose that p is a positive crossing for a projection of
a link L+ , for which both strands belong to the same component of L+ , then
there is a long exact sequence (for each s 2 Z) of the form:

� � � −! ĤFK(L−; s)
f−! ĤFK(L0; s)

g−! ĤFK(L+; s) −! � � � (8)
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where L− is the modi�ed version of L+ (with a crossing-change at p), and L0

is the resolution at p of L+ . Both maps f and g drop absolute grading by
1=2, where the remaining map is non-increasing on the absolute grading.

For the following statement, recall that a link L called a non-split, alternating
link if it has a projection which is connected, and also, if we traverse any com-
ponent of L, the crossings in this projection alternate between over-crossings
and under-crossings.

Theorem 4.1 Let L � S3 be a non-split, oriented, alternating link in the
three-sphere, and let �L be its Alexander-Conway polynomial. Writing

(T−1=2 − T 1=2)n−1 ��L = a0 +
X
s>0

as(T s + T−s);

we have that ĤFK(S3; L; s) is supported entirely in dimension s + �
2 , and

indeed

ĤFK(S3; L; s) �= Zjasj:

Here, � is the signature of the link L.

Proof Recall �rst that the skein exact sequence can be used to show that

�(ĤFK(S3; L; i)) = ai

(cf. [27]).

In view of this calculation, the theorem is obtained by induction on the number
of components of L, with Theorem 1.3 as base case.

For the inductive step, let p be an intersection point where two di�erent strands
of L meet. We can �nd two links links L− and L+ with one more intersec-
tion point q , both of which admit alternating projections, and which have the
the property that their resolution L0 at q is our original L. The two cases,
according to the sign of the intersection point p, are illustrated in Figure 10.

When p is a positive intersection point for L, we see that (after the obvious
cancellation), L− has one fewer positive intersection points than L does, while
L+ has one more positive intersection point. Moreover, the number of black
regions (using the coloring conventions of Figure 9) are the same for all three
links. If, on the other hand, p is a negative intersection point, then the number
of black regions for L− is one greater than number for L, which in turn is one
greater than the number for L+ . Moreover, the number of positive intersection
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points is the same for all three. Thus, applying Theorem 3.1, we can conclude
that in either case,

�(L−)− 1 = �(L) = �(L+) + 1: (9)

It is now straightforward to conclude the result for L = L0 from the skein exact
sequence, and the inductive hypothesis on L− and L+ .

Figure 10: Skein moves on alternating links On the left, we have two possible
candidates for L− , in the middle we have the two versions of L , while on the right we
have two candidates for L+ . It is easy to see that if the links L are alternating, then
the changes L− and L+ can also be arranged to alternate (after cancelling an extra
pair of intersection points, if necessary.

Theorem 4.1 can be used to give easy generalizations to (non-split) alternating
links of the results stated in the introduction for alternating knots. Rather
than enumerating these, we use Theorem 4.1 to give a calculation of ĤFK for
the (non-alternating) knot pictured on the left in Figure 11 (known as \948 "
according to the standard knot tables, cf. [3]).

If we change the indicated crossing, we obtain the right-handed trefoil K− ,
which has

�(K−) = −2
�K− = T−1 − 1 + T:

If the knot crossing is resolved, we obtain the two-component link L pictured
on the right in Figure 11 (given the speci�ed orientation). It is straightforward
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Figure 11: The knot 948 We have illustrated this nine-crossing knot. If the crossing
circled with a dotted circle is switched, we obtain the right-handed trefoil; while if
the crossing is resolved, it is easy to see that we obtain the (oriented) alternating link
pictured on the right.

to calculate that

�(L) = −1
(T−1=2 − T 1=2) ��L = T−2 − 6T−1 + 10− 6T + T 2:

It is now an immediate application of the skein exact sequence and Theorem 4.1
that the conclusion of Theorem 4.1 holds for 948 (and hence also the conclusion
of Theorem 1.4), even though 948 does not possess an alternating projection.

More calculations of knot homology groups are given [29].
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