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Characterisation of a class of equations
with solutions over torsion-free groups

Roger Fenn

Colin Rourke

Abstract We study equations over torsion-free groups in terms of their
“t–shape” (the occurences of the variable t in the equation). A t–shape
is good if any equation with that shape has a solution. It is an out-
standing conjecture [5] that all t–shapes are good. In [2] we proved the
conjecture for a large class of t–shapes called amenable. In [1] Clifford
and Goldstein characterised a class of good t–shapes using a transforma-
tion on t–shapes called the Magnus derivative. In this note we introduce
an inverse transformation called blowing up. Amenability can be defined
using blowing up; moreover the connection with differentiation gives a
useful characterisation and implies that the class of amenable t–shapes
is strictly larger than the class considered by Clifford and Goldstein.
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1 Introduction

Let G be a group. An expression of the form

r = g1t
ε1g2t

ε2g3 · · · tεk = 1, (1)

where k ≥ 1, gi ∈ G and ε = ±1, is called an equation over G in the variable
t with coefficients g1, g2, . . . , gk . The equation is said to have a solution if G
embeds in a group H containing an element t for which (1) holds. This is
equivalent to saying that the natural map

G −→ G ∗ 〈t〉
〈r = 1〉

is injective.

The equation is said to be reduced if it contains no subword tt−1 or t−1t (ie
each coefficient which separates a pair t, t−1 is non-trivial). The equation is
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said to be cyclically reduced if all cyclic permutations are reduced and, unless
explicitly stated otherwise, all equations are assumed to be cyclically reduced.

The t–shape of the word r is the sequence tε1 tε2 · · · tεk .

We use the abbreviated notation tm for the sequence tt · · · t (m times) and t−m

for the sequence t−1t−1 · · · t−1 (m times). We call the t–shape tm (m ∈ Z,
m 6= 0) a power shape. If a t–shape is not a power then after cyclic permutation
it can be written in the form

tr1t−r2tr3 · · · t−ru , u > 1

where each ri is positive.

The sum ε = r1 − r2 + . . . − ru is called the degree of the t–shape. The sum
w = r1 + r2 + . . .+ ru is called the width of the t–shape. Note that the width
is the length of the corresponding equation.

We call a cyclic t–shape good if any corresponding equation with torsion-free
coefficients has a solution.

Conjecture [5] All t–shapes are good.

The conjecture is a special case of the adjunction problem [6] and for a brief
history, see the introduction to [2]. The torsion-free condition is necessary
because the t–shape tt−1 is good [3] but for example the equation ata2t−1 = 1
has no solution over a group in which a has order 4.

The conjecture is known to be true in many cases. Levin [5] has proved that
power shapes are good (without the torsion-free hypothesis). Klyachko [4] has
proved that t–shapes of degree ±1 are good. Furthermore both Clifford and
Goldstein [1] and ourselves [2] have extended Klyachko’s results to larger classes
of t–shapes. The class of good t–shapes in [1] are characterised in terms of the
Magnus derivative and for definitiveness we will call them CG–good. The class
of good t–shapes in [2] are called amenable. No usable characterisation of
amenability was given in [2] and it is the purpose of this note to supply such a
characterisation and to compare the two classes.

The rest of the paper is organised as follows. In the next section (section 2)
we review the Magnus derivative (an operation on t–shapes which we refer to
simply as differentiation) and define the class of CG–good shapes. In section
3 we define another operation on t–shapes called blowing up and prove that
it is the inverse of differentiation. Finally in section 4 we give two simple
characterisations of amenable shapes. The first in terms of blowing up and
the second, similar to the characterisation of CG–good shapes, in terms of

Roger Fenn and Colin Rourke

Geometry and Topology Monographs, Volume 1 (1998)

160



differentiation. We conclude that the class of amenable shapes is strictly larger
than the class of CG–good shapes.

Acknowledgements We are grateful to Martin Edjvet for suggesting that
there might be a connection between the results of the Clifford–Goldstein paper
and ours. We thank the referee for helpful comments.

2 The Magnus derivative

Let T = tε1tε2 · · · tεw , where εi = ±1, be a t–shape. We regard T as a cyclic t–
shape and we define the cyclic t–shape D(T ), the Magnus derivative or simply
derivative of T , as follows.

Arrange the signs of the exponent powers around a circle. The t–shape is well
defined by this up to cyclic symmetry. Between each occurence of +,+ insert
a new +, between each occurence of −,− insert a new − and in all other cases
do nothing. Now delete the original signs. The remaining cyclic sequence of
signs defines a new t–shape, D(T ).

For example tttt−1tt−1t−1t
D→ ttt−1t

D→ tt.

The following is easy to prove.

Lemma Let the cyclic t–shape T have degree ε(T ) and width w(T ) then:

1) ε(DT ) = ε(T ).

2) w(DT ) ≤ w(T ) with equality if and only if T is empty or a power shape.

3) D(T ) = T if and only if T is empty or a power shape.

4) Dα(T ) is empty or a power shape if α > w(T )/2.

5) If T = tr1t−r2tr3 · · · t−rk , where ri ≥ 1, is not a power shape then
DT = tr1−1t−r2+1 · · · t−rk+1 .

We can illustrate the effect of differentiation by looking at the graph of the
t–shape T = tε1 tε2 · · · tεw .

This is a function f = fT : [0, w] → R defined as follows. Define f(0) = 0 and
for integers i in the range 0 < i ≤ w f(i) = ε1 + ε2 + . . . + εi . Extend f over
the whole interval by piecewise-linear interpolation. Notice that the graph of
the t–shape starts at (0, 0) and finishes at (w, ε).

Figure 1 shows the graph of the example above and the effect of differentiation
which ‘smooths off’ the peaks and troughs until a straight line graph is left.
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→ →

t3t−1tt−2t t2t−1t t2

Figure 1: Differentiation

A clump in a cyclic t–shape is defined to be a maximal connected subsequence
of the form tm where |m| > 1. A one-clump shape is a shape with just one
clump, which is not the whole sequence, ie, after possible cyclic permutation
and inversion, a shape of the form tmt−1(tt−1)r where m > 1 and r ≥ 0. We
can now define CG–good. A t–shape is CG–good if, after a (possibly empty)
sequence of differentiations it becomes a one-clump shape.

Theorem (Clifford–Goldstein [1]) All CG–good shapes are good.

3 Blowing up

We shall now introduce the notion of blowing up of a t–shape which was implicit
in [2].

We consider non-cyclic t–shapes whose graphs start and end at level 0 and
which lie between levels −m and 0. Such a t–shape will be called an m–block.
An m–block whose graph reaches level −m at some point will be called a full
m–block.

Definition m–blow up Start with a given cyclic t–shape. Between each pair
t−1t (ie at local minima of the graph) insert a full m–block. Between other
pairs insert a general m–block (see figure 2).

→

Figure 2: An example of a 2–blow-up

The definition of blow up is not explicit in [2]. However we shall see later that
it coincides with the concept of normal form given on page 69 of [2].

Notice that a 0–blow up of a shape T is the original shape T but that, in
general, the result of blowing up depends on the choices of the blocks. We use
the notation Bm(T ) for the set of m–blow ups of T and we abbreviate B1 to
B .
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We now prove that blowing up is anti-differentiation.

Lemma 3.1 U ∈ B(T ) if and only if D(U) = T .

Proof We give a graphical description of D . Start with the graph of a t–shape
T . Introduce a new vertex halfway along each edge of the graph. At each local
maximum (respectively minimum) join the new vertices just below (respectively
above) and truncate. Now contract the horizontal edges and discard the old
vertices. The result is the graph of D(T ).

This process is illustrated in figure 3, where the new vertices are open dots and
the old vertices are black dots.

. . .

. . .

→
. . .

. . .

→
. . .

. . .

Figure 3: Graphical differentiation

To see the connection with 1–blow ups consider the following alternative de-
scription. Introduce the new vertices as before but slide them up to the top of
the edges. Discard all the locally minimal vertices of the graph of T and again
reduce the resulting graph by contracting horizontal edges (see figure 4). In
this description it is clear that the discarded pieces are precisely 1–blocks and
the lemma follows.

. . .

. . .

→
. . .

. . .

→
. . .

. . .

Figure 4: Differentiation and 1–blow up

For the next lemma we need to extend differentiation and blowing up to m–
blocks. If T is an m–block then we define an n–blow up by inserting full n–
blocks at local minima and general n–blocks at all other vertices, including the
first and last vertex (in other words we prefix and append a general n–block).
It can then be seen that the n–blow up of an m–block is an (m+n)–block and
if the original block is full, then the blow up is also full.

We extend differentiation by using the same rule as for cyclic t–shapes. In
graphical terms it has the same meaning as in the last proof: Discard all the lo-
cally minimal vertices of the graph and reduce by contracting horizontal edges.
The proof of the previous lemma then shows that B and D are inverse opera-
tions on m–blocks.

Lemma 3.2 (a) B ◦Bm ⊂ Bm+1 (b) DBm+1 ⊂ Bm .
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Proof A 1–blow up of an m–blow up can be obtained by 1–blowing up the
inserted m–blocks. Part (a) now follows from the remarks above. To see part
(b) observe that D of a (m + 1)–blow up is obtained by differentiating the
inserted pieces and thus results in an m–blow up.

Corollary 3.3 (a) B ◦Bm = Bm+1 (b) Bn = B ◦ . . . ◦B (n factors)
(c) Bn ◦Bm = Bn+m .

Proof (a) By part (a) of lemma 3.2 we just have to show that if U ∈ Bm+1(T )
then U ∈ B ◦Bm(T ). But D(U) ∈ Bm(T ) by part (b), and U ∈ B(D(U)) by
lemma 3.1 and hence U ∈ B(D(U)) ⊂ B ◦Bm(T ).

Parts (b) and (c) follow by induction.

Corollary 3.4 U ∈ Bn(T ) if and only if Dn(U) = T .

Proof Repeat lemma 3.1 n times.

We now turn to the connection of blowing up with the concept of normal form
defined in [2].

On page 69 of [2] we define a word in normal form based on a particular cyclic t–
shape T as a word obtained from T by inserting elements of certain subsets (X ,
J and Y defined on page 65) of the kernel of the exponential map ε: G∗〈t〉 → Z
at top (between t and t−1 ), middle (between t and t or t−1 and t−1 ) and
bottom (between t−1 and t) positions respectively. Inspecting the definitions
of X , J and Y , it can be seen that this corresponds to inserting m–blocks
and then allowing a controlled amount of cancellation. To be precise, define a
leading string of an m–block to be an initial string t−1t−1 . . . t−1 and a trailing
string to be a final string tt . . . t. Cancellation is allowed for specified leading
and trailing strings of all blocks. The defining condition on X is that the
graph of the corresponding block must meet level 0 after deletion of leading
and trailing strings and the defining condition for Y is that the block must be
full. There is no condition on J . We call the blocks corresponding to elements
of X , J and Y , top, middle and bottom blocks, respectively and we denote
the set of words in normal form based on the cyclic t–shape T by NF (T ).

Lemma 3.5 NF (T ) = Bm(T ).

Proof Blowing up corresponds to normal form with no cancellation allowed
and hence NF (T ) ⊃ Bm(T ). For the converse suppose that U is in normal
form based on T and that for a particular top block D the leading t−1 is
allowed to cancel. Define the (m − 1)–block B by D = t−1BtC (see figure
5). Then figure 5 makes clear that U can also be obtained by appending B
to the block inserted in the previous place and replacing D by C . After these
substitutions there are fewer allowed cancellations.
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→ →
A A

B B
C C

D

Figure 5: The simplification move

Similar arguments simplify the situation if cancellation takes place at the end
of a top block or at either end of a middle block. (Notice that no cancellation
can take place at bottom blocks.) Thus by repeating simplifications of this type
a finite number of times, we see that U is an m–blow up of T .

4 Amenability

We now recall the definition of amenable t–shapes from [2].

Recall that a clump in a cyclic t–shape is a maximal connected subsequence
of the form tm or t−m where m > 1. These are said to have order m and
−m respectively. We call a clump of positive order an up clump and a clump
of negative order a down clump. A t–shape is said to be suitable if it has
exactly one up clump which is not the whole sequence and possibly some down
clumps, or if it has exactly one down clump which is not the whole sequence
and possibly some up clumps. It follows that, after a possible cyclic rotation
or inversion, a suitable t–shape has the form

tst−r0tt−r1t . . . tt−rk

where s > 1, k ≥ 0 and ri ≥ 1 for i = 0, . . . , k .

We now define amenable t–shapes. Using lemma 3.5 above we can rephrase the
definition on page 69 of [2] as follows.

Definition Amenable t–shapes A t–shape which is the m–blow up of a
suitable t–shape is called amenable.

Theorem (Fenn–Rourke [2]) Amenable shapes are good.

We now turn to the characterisation of amenability. Using corollary 3.4, the
definition of amenability says that a shape is amenable if and only if it eventually
differentiates to a suitable shape. But now a suitable t–shape is either a one
clump shape or differentiates to tst−r for some r, s ≥ 1. This in turn either
eventually differentiates to tt−1 or to tst−1 or to tt−r for some r, s ≥ 2. Now
the last two are one clump shapes and so we can see that a suitable shape either
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eventually differentiates to a one clump shape or to tt−1 . To make the final
characterisation of amenability as simple as possible, we make the shape tt−1

an honorary amenable shape (it is good [3]) and then we have the following
simple characterisation.

Theorem 4.1 (Characterisation of amenability) A shape is amenable if and
only if, after a (possibly empty) sequence of differentiations, it becomes either
a one-clump shape or the shape tt−1 .

Corollary 4.2 Amenable shapes are a strictly larger class than CG–good
shapes.

Final remarks (1) The class of amenable shapes which are not CG–good
are precisely those which eventually differentiate to tt−1 : an example would
be tt−1t2t−2 . It seems that the methods of Clifford and Goldstein can be
extended with little extra work to the smaller class of shapes which eventually
differentiate to the shape t2t−2 . However we cannot see how to extend their
methods to cover all amenable shapes.

(2) The remark at the top of page 70 of [2], which was left unproven, can be
quickly proved using theorem 4.1.
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