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On the �xed-point set of automorphisms of
non-orientable surfaces without boundary

M Izquierdo

D Singerman

Abstract Macbeath gave a formula for the number of �xed points for
each non-identity element of a cyclic group of automorphisms of a compact
Riemann surface in terms of the universal covering transformation group
of the cyclic group. We observe that this formula generalizes to determine
the �xed-point set of each non-identity element of a cyclic group of auto-
morphisms acting on a closed non-orientable surface with one exception;
namely, when this element has order 2. In this case the �xed-point set
may have simple closed curves (called ovals) as well as �xed points. In this
note we extend Macbeath’s results to include the number of ovals and also
determine whether they are twisted or not.
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For David Epstein on the occasion of his sixtieth birthday

1 Introduction

Let Y be a compact non-orientable Klein surface of genus p � 3. By genus
here we mean the number of cross-caps of the surface. Let t: Y ! Y be an
automorphism of order M . If 1 � i < M and if i 6= M=2 then the �xed-point
set of ti consists of isolated �xed points and their number can be calculated,
as described below, by a formula which is completely analogous to Macbeath’s
formula [5] concerning automorphisms of Riemann surfaces. However, if M =
2N then the �xed-point set of the involution tN consists of a �nite number
n of disjoint simple closed curves called ovals together with a �nite number of
isolated �xed points [2], [6]. The ovals may be twisted or untwisted which means
that they have Möbius band or annular neigbourhoods respectively.
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In this note we calculate the number of ovals and isolated �xed-points of tN

and whether the ovals are twisted or not.

The information is given, as in Macbeath [5] in terms of the universal covering
transformation group.

The authors acknowledge Mälardalen University and the Swedish Natural Sci-
ence Research Council for �nancial support.

2 The universal covering transformation group

If Y is a compact non-orientable Klein surface of genus p � 3 then the orientable
two-sheeted covering surface of Y has genus � 2, so that the universal covering
space of Y is the upper half-plane H (with the hyperbolic metric) and the group
of covering transformations is a non-orientable surface subgroup K generated
by glide-reflections. If G is a group of automorphisms of Y then the elements
of G lift to a non-euclidean crystallographic (NEC) group Γ acting on H. There
is a smooth epimorphism

�: Γ! G (1)

whose kernel is K , where smooth means that � preserves the orders of elements
of �nite order in Γ. The transformation group (Γ;H) is called the universal
covering transformation group of (G;Y ).

Now let G = htjt2N = 1i be a cyclic group of order 2N . As � is smooth we
must have �(c) = tN for every reflection c in Γ. Also we cannot have two
distinct reflections in Γ whose product has �nite order. So it follows, in the
canonical presentation of NEC groups as given in [4] or [3], that Γ has empty
period cycles.

Thus Γ has signature of the form

s(Γ) = (g;�; [m1; :::;mn]; f( )kg) (2)

with k empty period cycles; then Γ has one of the two presentations depending
on whether there is a + or a − in the signature;

for the (+) case

x1; : : : ; xn; e1; : : : ; ek; c1; : : : ; ck; a1; b1; : : : ; ag; bg j
xmii = 1; i = 1; :::; n; c2j = cje

−1
j cjej = 1; j = 1; :::; k;

x1:::xne1:::eka1b1a
−1
1 b−1

1 :::agbgagh
−1b−1

g (3)
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for the (−) case

x1; : : : ; xn; e1; : : : ; ek; c1; : : : ; ck; d1; :::; dg j
xmii = 1; i = 1; :::; n; c2j = cje

−1
j cjej = 1; j = 1; :::; k; x1:::xne1:::ekd

2
1:::d

2
g (4)

In these presentations the generators xi are elliptic elements, the generators
cj are reflections, the generating reflections of Γ, and the generators ej are
orientation-preserving transformations called the connecting generators. Each
empty period cycle corresponds to a conjugacy class of reflections in Γ.

One important fact to note about these presentations is that the connecting
generator ej commutes with the generating reflection cj , and in fact the cen-
tralizer of cj in Γ is just the group gphcj ; eji �= C2 � C1 . (See [8] )

3 The �xed-point set of a power of t

Let Y be a non-orientable surface of topological genus p � 3 and let t be an
automorphism of order 2N . If 1 � i < 2N and i 6= N then the number of
�xed points of the automorphism ti is given by Macbeath’s formula (see [5] ).
If ti has order d than ti has

2N
X
djmj

1
mj

(5)

�xed points, where mj runs over the periods in s(Γ).

This is because Macbeath’s proof (applying to Fuchsian groups) only uses the
facts that each period corresponds to a unique conjugacy class of elliptic ele-
ments of Γ, and each elliptic element has a unique �xed point in H. Now, the
number of isolated �xed points of ti is independent of the smooth epimorphism
� above. However the epimorphism � does play a part in the number of ovals
of tN .

Theorem 3.1 Let Y be a non-orientable surface of topological genus p � 3.
Let G �= C2N = ht j t2N = 1i be a group of automorphisms of Y , and let � and
Γ be as described in equations 1 and 2. If �(ej) = tvj than the number of ovals
of the involution tN is

kX
j=1

(N; vj) (6)

and the number of isolated �xed points of tN is

2N
X

mj even

1
mj

:
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Proof Let � = �−1(htN i) so that � contains the group K = Ker� with index
2. Now, � must have signature of the form

s(Γ) = (g;�; [2(r)]; f( )sg) (7)

with r periods equal to 2 and s empty period cycles.

The reason that all periods in � are equal to 2 is because if mj in s(Γ) is even
then x

mj=2
j 2 � and any elliptic element of � are conjugate to some xmj=2j (see

[7] ).

By results in [2] (see also [3]), r is the number of isolated �xed points of tN and
is given by Macbeath’s formula

2N
X

mj even

1
mj

It also follows from [2] that the number of ovals of tN is just the number s
of period cycles in �, which corresponds to the number of conjugacy classes
of reflections in �. As a reflection cj in � belongs also to Γ and the group
Γ has k conjugacy classes of reflections, we just have to determine into how
many �{conjugacy classes the Γ{conjugacy class of cj splits. We shall use the
epimorphism � to calculate this number.

There is a transitive action of Γ on the �{conjugacy classes of cj in � by
letting γ 2 Γ map the reflection gcjg

−1 to gγcjγ
−1g−1 , with g 2 �. (Because

� / Γ). Clearly, if � 2 � then � has a trivial action on these �{conjugacy
classes. So we have an action of Γ=� �= C2N=C2

�= CN on these classes. As the
centralizer of cj in Γ is just hcj ; eji, the stabilizer of the �{conjugacy classes of
cj in � are the cosets �;�ej ; : : : ;�e

�j−1
j , where �j = exp�ej , the least positive

power of ej that belongs to �. Now, let "j = expKej . Then either "j = �j or
"j = 2�j .

The additive group Z2N contains a subgroup isomorphic to ZN and a 2 ZN
has order N

(N;a) in ZN so that a has the same order in Z2N if and only if
(2N; a) = 2(N; a). If (2N; a) = (N; a) then the order of a in Z2N is twice the
order of a in ZN and we then �nd that

"j = �j if (2N; vj) = 2(N; vj)

and
"j = 2�j if (2N; vj) = (N; vj);

where �(ej) = tvj .
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By the above argument on the action of Γ=� on the �{conjugacy classes of cj
we see that the number of such classes is N=�j , which is

if "j = �j

N

�j
=

N

"j
=

N(2N; vj)
2N

=
(2N; vj)

2
= (N; vj);

or if "j = 2�j
N

�j
=

2N
"j

=
2N(2N; vj)

2N
= (2N; vj) = (N; vj)

Thus in both cases the generating reflection cj of Γ induces (N; vj) conjugacy
classes of reflections in �. Thus the number of ovals of tN in Y is

kX
j=1

(N; vj) (8)

Theorem 3.2 The ovals of tN in Y induced by the j th period cycle in Γ are
twisted if (2N; vj) = (N; vj) and untwisted if (2N; vj) = 2(N; vj).

Proof As we have found in Theorem 3.1, the j th empty period cycle in Γ
induces (N; vj) empty period cycles in �. The generating reflections of these
period cycles are just conjugates of cj in Γ and, as the corresponding connecting
generator ej is just the orientation-preserving element generating the centralizer
of cj in Γ, we see that the connecting generator of each of the period cycles in
� induced by the j th period cycle in Γ is just conjugate to e

�j
j , �j = exp�ej

as in the proof of Theorem 3.1. Now, let �0: � ! C2 = gph�i, where � = tN ,
be the restriction of the epimorphism �: Γ! C2N . Then

if "j = �j

�0(e�jj ) = �0(e"jj ) = �(e"jj ) = 1

if "j = 2�j

�0(e�jj ) = �0(e
"j
2
j ) = �(e

"j
2
j ) = �;

� the generator of C2 . Generally, if c is the generating reflection of an empty
period cycle of � and e is the corresponding connecting generator then �gures
1 and 2 show that �0(e) = 1 corresponds to an untwisted oval while �0(e) = �
corresponds to a twisted oval.

However, as in the proof of Theorem 3.1 "j = �j if and only if (2N; vj) =
2(N; vj) and hence we have untwisted ovals while "j = 2�j if and only if
(2N; vj) = (N; vj) and we have twisted ovals.
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Figure 1: �0(e) = 1 so e 2 K Figure 2: �0(e) = � so ce 2 K

4 Bounds and examples

In [6] (also see [2]) Scherrer showed that that if an involution of a non-orientable
surface of genus p has j F j �xed points and j V j ovals then

j F j +2 j V j� p+ 2:

In our examples we will show that for any integer N we can �nd a non-orientable
surface of genus p admitting a C2N action with generator t such that tN attains
the Scherrer bound.

Example 1 Bujalance [1] found the maximum order for an automorphism t
of a non-orientable surface Y of genus p � 3; it is 2p for odd p and 2(p−1) for
even p. The universal covering transformation group Γ has signature s(Γ) =
(0; [2; p]; f( )g) for odd p, and signature s(Γ) = (0; [2; 2(p − 1)]; f( )g) for
even p. There is, essentially, only one way of de�ning the epimorphism � in
each case:

if p is odd, we de�ne �: Γ ! C2p by �(x1) = tp , �(x2) = t2 , �(c) = tp , and
�(e) = tp−2 ,

if p is even, we de�ne �: Γ! C2(p−1) by �(x1) = tp−1 , �(x2) = t1 , �(c) = tp−1 ,
and �(e) = tp−2 .

Using Macbeath’s formula (5) we see that the involution tp has p �xed points
for surfaces of both odd and even genera. Now, if p is odd then the involution
tp also has, by Theorems 3.1 and 3.2, one twisted oval if p is odd as (p; p−2) =
(2p; p− 2) = 1. If p is even then the involution tp−1 has, by Theorems 3.1 and
3.2, one untwisted oval as (p−1; p−2) = 1 and (2(p−1); p−2) = 2(p; p−2) = 2.
We note that the involution tp obeys the Scherrer bound. Note that the orders
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of the cyclic groups in Bujulance’s examples are � 2 mod 4. Our second
example shows that the Scherrer bound can be obtained for the involution in a
C4 action.

Example 2 Let Y be a non-orientable surface of genus p � 3, and let t be
an automorphism of Y of order 4. Let Γ have signature

(0; +; [2(r); 4; 4]; ( )k)

and de�ne a smooth epimorphism �: Γ ! C4 by mapping the generators of
order two to t2 , the two generators of order 4 to t and t−1 and the connecting
generators to the identity. We then �nd that for the involution t2 , j F j= 2r+2,
and j V j= 2k ,and p = 4k + 2r , so that we �nd in�nitely many surfaces where
the Scherrer bound is attained for the involution in C4 . This is easily extended
to groups of order 4m by replacing the two periods 4 in the signature of Γ by
4m.
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