Geometry & Topology Monographs Volume 1: The Epstein Birthday Schrift Pages 335{340

Complex projective structures on Kleinian groups

Albert Marden

Abstract Let M^3 be a compact, oriented, irreducible, and boundary incompressible 3{manifold. Assume that its fundamental group is without rank two abelian subgroups and $@M^3 \notin :$. We will show that every homomorphism : $_1(M^3) ! PSL(2; \mathbb{C})$ which is not \boundary elementary" is induced by a possibly branched complex projective structure on the boundary of a hyperbolic manifold homeomorphic to M^3 .

AMS Classi cation 30F50; 30F45, 30F60, 30F99, 30C99

Keywords Projective structures on Riemann surfaces, hyperbolic 3{ manifolds

1 Introduction

Let M^3 be a compact, oriented, irreducible, and boundary incompressible 3{ manifold such that its fundamental group $_1(M^3)$ is without rank two abelian subgroups. Assume that $@M^3 = R_1 [::: [R_n \text{ has } n \ 1 \text{ components, each a surface necessarily of genus exceeding one.}$

We will study homomorphisms

$$: _{1}(M^{3}) ! G PSL(2; \mathbf{C})$$

onto groups *G* of Möbius transformations. Such a homomorphism is called *elementary* if its image *G* xes a point or pair of points in its action on $\mathbf{H}^3[@\mathbf{H}^3]$, ie on hyperbolic 3{space and its \sphere at in nity". More particularly, the homomorphism is called *boundary elementary* if the image $(_1(R_k))$ of some boundary subgroup is an elementary group. (This de nition is independent of how the inclusion $_1(R_k)$, $! _1(M^3)$ is taken as the images of di erent inclusions of the same boundary group are conjugate in *G*).

The purpose of this note is to prove:

Theorem 1 Every homomorphism : $_1(M^3)$! $PSL(2; \mathbb{C})$ which is not boundary elementary is induced by a possibly branched complex projective structure on the boundary of some Kleinian manifold \mathbf{H}^3 [() = M^3 .

Copyright Geometry and Topology

This result is based on, and generalizes:

Theorem A (Gallo{Kapovich{Marden [1]} Let *R* be a compact, oriented surface of genus exceeding one. Every homomorphism $_1(R) ! PSL(2; \mathbf{C})$ which is not elementary is induced by a possibly branched complex projective structure on $\mathbf{H}^2 = R$ for some Fuchsian group .

Theorem 1 is related to Theorem A as simultaneous uniformization is related to uniformization. Its application to quasifuchsian manifolds could be called simultaneous projectivization. For Theorem A nds a single surface on which the structure is determined whereas Theorem 1 nds a structure simultaneously on the pair of surfaces arising from some quasifuchsian group.

2 Kleinian groups

Thurston's hyperbolization theorem [3] implies that M^3 has a hyperbolic structure: there is a Kleinian group $_0 = _1(M^3)$ with regular set ($_0$) $@\mathbf{H}^3$ such that $\mathcal{M}(_0) = \mathbf{H}^3 [$ ($_0$) = $_0$ is homeomorphic to \mathcal{M}^3 . The group $_0$ is not uniquely determined by \mathcal{M}^3 , rather \mathcal{M}^3 determines the deformation space $D(_0)$ (taking a xed $_0$ as its origin).

We de ne $D(_0)$ as the set of those isomorphisms : $_0 ! PSL(2; \mathbb{C})$ onto Kleinian groups which are induced by orientation preserving homeomorphisms $\mathcal{M}(_0) ! \mathcal{M}()$. Then $D(_0)$ is de ned as $D(_0)=PSL(2; \mathbb{C})$, since we do not distinguish between elements of a conjugacy class.

Let $V(_0)$ denote the representation space $V(_0) = PSL(2; \mathbb{C})$ where $V(_0)$ is the space of boundary nonelementary homomorphisms : $_0 ! PSL(2; \mathbb{C})$.

By Marden [2], $D(_0)$ is a complex manifold of dimension $\overset{\square}{=} [3(\text{genus } R_k) - 3]$ and an open subset of the representation variety $V(_0)$. If M^3 is acylindrical, $D(_0)$ is relatively compact in $V(_0)$ (Thurston [4]).

The fact that $D(_0)$ is a manifold depends on a uniqueness theorem (Marden [2]). Namely two isomorphisms $_i: _0 ! _i$; i = 1/2, are conjugate if and only if $_2 _1^{-1}: _1 ! _2$ is induced by a homeomorphism $\mathcal{M}(_1) ! \mathcal{M}(_2)$ which is homotopic to a conformal map.

Complex projective structures on Kleinian groups

3 Complex projective structures

For the purposes of this note we will use the following de nition (cf [1]). A *complex projective structure* for the Kleinian group is a locally univalent meromorphic function f on () with the property that

$$f(z) = (f(z); z 2 (f(z); 2 ; 2))$$

for some homomorphism : $! PSL(2; \mathbf{C})$. We are free to replace f by a conjugate AfA^{-1} , for example to normalize f on one component of ().

Such a function f solves a Schwarzian equation

$$S_f(z) = q(z); \quad q(z)^{-\ell}(z)^2 = q(z); \quad 2 \quad ; \quad 2 \quad ();$$

where q(z) is the lift to () of a holomorphic quadratic di erential de ned on each component of @M(). Conversely, solutions of the Schwarzian,

$$S_q(z) = q(z); z 2$$
 ();

are determined on each component of () only up to post composition by any Möbius transformation. The function f has the property that it not only is a solution on each component, but that its restrictions to the various components

t together to determine a homomorphism $! PSL(2; \mathbf{C})$. Automatically (cf [1]), the homomorphism induced by f is boundary nonelementary.

When *branched* complex projective structures for a Kleinian group are required, it su ces to work with the simplest ones: f(z) is meromorphic on (), induces a homomorphism : $PSL(2; \mathbb{C})$ (which is automatically boundary nonelementary), and is locally univalent except at most for one point, modulo Stab(__0), on each component __0 of (). At an exceptional point, say z = 0,

$$f(z) = z^2(1 + o(z)); \neq 0:$$

Such f are characterized by Schwarzians with local behavior

$$S_f(z) = q(z) = -3z^2 + bz + a_i z';$$
 $b^2 + 2a_0 = 0;$

At any designated point on a component R_k of @M(), there is a quadratic di erential with leading term $-3=2z^2$. To be admissible, a di erential must be the sum of this and any element of the $(3g_k - 2)$ {dimensional space of quadratic di erentials with at most a simple pole at the designated point. In addition it must satisfy the relation $b^2 + 2a_0 = 0$. That is, the admissible di erentials are parametrized by an algebraic variety of dimension $3g_k - 3$. For details, see [1].

If a branch point needs to be introduced on a component R_k of @M(), it is done during a construction. According to [1], a branch point needs to be introduced if and only if the restriction

$$: _{1}(R_{k}) ! PSL(2; \mathbf{C})$$

does not lift to a homomorphism

$$: _1(R_k) ! SL(2; \mathbf{C}):$$

4 Dimension count

The vector bundle of holomorphic quadratic di erentials over the Teichmüller space of the component R_k of $@M(_0)$ has dimension $6g_k - 6$. All together these form the vector bundle $Q(_0)$ of quadratic di erentials over the Kleinian deformation space $D(_0)$. That is, $Q(_0)$ has *twice* the dimension of $V(_0)$. The count remains the same if there is a branching at a designated point.

For example, if $_0$ is a quasifuchsian group of genus g, $Q(_0)$ has dimension 12g - 12 whereas $V(_0)$ has dimension 6g - 6. Corresponding to each nonelementary homomorphism : $_0 ! PSL(2; \mathbf{C})$ that lifts to $SL(2; \mathbf{C})$ is a group

in $D(_0)$ and a quadratic di erential on the designated component of (): This in turn determines a di erential on the other component. There is a solution of the associated Schwarzian equation $S_q(z) = q(z)$ satisfying

f(z) = (f(z); z 2 (f(z); 2 z))

Theorem 1 implies that $V(_0)$ has at most 2^n components. For this is the number of combinations of (+, -) that can be assigned to the n{components of $@\mathcal{M}(_0)$ representing whether or not a given homomorphism lifts. For a quasifuchsian group $_0$, $V(_0)$ has two components (see [1]).

5 **Proof of Theorem 1**

We will describe how the construction introduced in [1] also serves in the more general setting here.

By hypothesis, each component $_k$ of $(_0)$ is simply connected and covers a component R_k of $@\mathcal{M}(_0)$. In addition, the restriction

: $_1(R_k) = Stab(_k) ! G_k PSL(2; \mathbf{C})$

is a homomorphism to the nonelementary group G_k .

The construction of [1] yields a simply connected Riemann surface J_k lying over S^2 , called a pants conguration, such that:

(i) There is a conformal group $_k$ acting freely in J_k such that $J_{k=k}$ is homeomorphic to R_k .

(ii) The holomorphic projection $: J_k ! S^2$ is locally univalent if lifts to a homomorphism $: {}_1(R_k) ! SL(2; \mathbb{C})$. Otherwise is locally univalent except for one branch point of order two, modulo ${}_k$.

(iii) There is a quasiconformal map h_k : $_k ! J_k$ such that

$$h_k(z) = (1) h_k(z); 2 Stab(-k); z 2 k;$$

Once h_k is determined for a representative $_k$ for each component R_k of $@\mathcal{M}(_0)$, we bring in the action of $_0$ on the components of $(_0)$ and the corresponding action of $(_0)$ on the range. By means of this action a quasi-conformal map h is determined on all $(_0)$ which satis es

$$h(z) = () h(z); 2_0; z 2_{(0)}:$$

The Beltrami di erential $(z) = (h)_z = (h)_z$ satis es

$$(Z) = (Z) = (Z)$$

It may equally be regarded as a form on $@M(_0)$. Using the fact that the limit set of $_0$ has zero area, we can solve the Beltrami equation $g_z = g_z$ on S^2 . It has a solution which is a quasiconformal mapping g and is uniquely determined up to post composition with a Möbius transformation. Furthermore g uniquely determines, up to conjugacy, an isomorphism ': $_0 !$ to a group in $D(_0)$.

The composition hg^{-1} is a meromorphic function on each component of (). It satisfies

$$(hg^{-1})(z) = (-1)(z) + hg^{-1}(z); \quad 2 ; z 2 ():$$

The composition is locally univalent except for at most one point on each component of (), modulo its stabilizer in . That is, $h \ g^{-1}$ is a complex projective structure on that induces the given homomorphism , via the identi cation '.

6 Open questions

Presumably, a nonelementary homomorphism : $_0 ! PSL(2; \mathbb{C})$ can be elementary for one, or all, of the n = 1 components of $@M(_0)$. Presumably too, the restrictions to $@M(_0)$ of a boundary nonelementary homomorphism can lift to a homomorphism into $SL(2; \mathbb{C})$ without the homomorphism $_0 ! PSL(2; \mathbb{C})$ itself lifting. However we have no examples of these phenomena.

According to Theorem 1, there is a subset $P(_0)$ of the vector bundle $Q(_0)$ consisting of those homomorphic di erentials giving rise to, say, unbranched complex projective structures on the groups in $D(_0)$. What is the analytic structure of $P(_0)$; is it a nonsingular, properly embedded, analytic subvariety?

When does a given Schwarzian equation $S_F(z) = q(z)$ on () have a solution which induces a homomorphism of ?

References

- [1] **D Gallo, M Kapovich, A Marden**, *The monodromy groups of Schwarzian equations on compact Riemann surfaces*, preprint (1997 revised)
- [2] A Marden, The geometry of nitely generated Kleinian groups, Annals of Math. 99 (1974) 383{462
- [3] WP Thurston, *Three dimensional manifolds, Kleinian groups, and hyperbolic geometry*, Bull. Amer. Math. Soc. 6 (1982) 357{381
- [4] **W P Thurston**, *Hyperbolic structures on* 3 *{manifolds I*, Annals of Math. 124 (1986) 203{246

School of Mathematics, University of Minnesota Minneapolis, MN 55455, USA

Email: am@math.umn.edu

Received: 1 June 1998

340