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Divergent sequences of Kleinian groups

Ken’ichi Ohshika

Abstract One of the basic problems in studying topological structures of
deformation spaces for Kleinian groups is to �nd a criterion to distinguish
convergent sequences from divergent sequences. In this paper, we shall give
a su�cient condition for sequences of Kleinian groups isomorphic to surface
groups to diverge in the deformation spaces.
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1 Introduction

The deformation space of a Kleinian group Γ is the space of faithful discrete
representations of Γ into PSL2C preserving parabolicity modulo conjugacy. It
is one of the important aspects of Kleinian group theory to study the structures
of deformation spaces. The �rst thing that was studied among the structures of
deformation spaces was that of subspaces called quasi-conformal deformation
spaces. By works of Ahlfors, Bers, Kra, Marden and Sullivan among others,
the topological types and the parametrization of quasi-conformal deformation
spaces are completely determined using the theory of quasi-conformal mappings
and the ergodic theory on the sphere ([2], [5], [14], [24]). On the other hand,
the total deformation spaces are less understood. A recent work of Minsky [16]
makes it possible to determine the topological structure of the total deformation
space completely in the case of once-puncture torus groups. The other cases are
far from complete understanding. Although very rough topological structures,
for instance the connected components of deformation spaces can be under-
stood by virtue of recent works of Anderson{Canary and Anderson{Canary{
McCullough, more detailed structures like the frontier of quasi-conformal defor-
mation spaces are not yet known even in the case of surface groups with genus
greater than 1.
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A �rst step to understand the topological structure of the deformation space of
a Kleinian group Γ is to give a criterion for a sequence fΓig in the deformation
space to converge or diverge. In this paper, we shall consider the simplest case
when the group Γ is isomorphic to a hyperbolic surface group �1(S) and has
no accidental parabolic elements. In this case, Γi is either quasi-Fuchsian or
a totally degenerate b{group, or a totally doubly degenerate group. Hence by
taking a subsequence, we have only to consider the following three cases: all of
the fΓig are quasi-Fuchsian, or totally degenerate b{groups, or totally doubly
degenerate groups. For such groups, some conditions for sequences to converge
are given for example in Bers [5], Thurston [28] and Ohshika [18]. Thurston’s
convergence theorem is called the double limit theorem. The purpose of this
paper is to give a su�cient condition for sequences to diverge in the deformation
space, which is in some sense complementary to the condition of the double limit
theorem.

Before explaining the content of our main theorem, let us recall that a Kleinian
group isomorphic to a hyperbolic surface group without accidental parabolic
elements has two pieces of information describing the structures near ends as
follows. When such a Kleinian group Γ is quasi-Fuchsian, by the Ahlfors{Bers
theory, we get a pair of points in the Teichmuüller space T (S) corresponding to
the group. In the case when Γ is a totally degenerate b{group, as there is one
end of the non-cuspidal part (H3=Γ)0 which is geometrically �nite, we have
a point in the Teichmüller space. In addition, the geometrically in�nite end
of (H3=Γ)0 determines an ending lamination which is de�ned uniquely up to
changes of transverse measures. Finally in the case when Γ is a totally doubly
degenerate group, (H3=Γ)0 have two geometrically in�nite ends, and we have
a pair of measured laminations which are ending laminations of the two ends.
We shall de�ne an end invariant of such a group Γ to be a pair (�; �) where
each factor is either a point of the Teichmüller space or a projective lamination
represented by an ending lamination, which gives the information on one of the
ends.

The statement of our main theorem is as follows. Suppose that we are given a
sequence of Kleinian groups (Γi; �i) in the parabolicity-preserving deformation
space AHp(S) of Kleinian groups isomorphic to �1(S) for a hyperbolic surface
S . Suppose moreover that the end invariants (�i; �i) have the following prop-
erty: Either in the Thurston compacti�cation or in the projective lamination
space, f�ig and f�ig converge to maximal and connected projective lamina-
tions with the same support. Then the sequence f(Γi; �i)g does not converge
in AHp(S).

To understand the meaning of this theorem, let us contrast it with Thurston’s
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double limit theorem. For simplicity, we only consider the case when Γi is a
quasi-Fuchsian group for the time being. By Ahlfors{Bers theory, a sequence of
quasi-Fuchsian groups f(Γi; �i)g corresponds to a sequence of pairs of marked
hyperbolic structures f(mi; ni)g on S . Consider the case when both mi and
ni diverge in the Teichmüller space and their limits in the Thurston compact-
i�cation are projective laminations [�] and [�] respectively. The double limit
theorem asserts that if � and � �ll up S , viz., any measured lamination has
non-zero intersection number with either � or � , then the sequence f(Γi; �i)g
converges in the deformation space passing through a subsequence if necessary.
The situation of our theorem is at the opposite pole to that of the double limit
theorem. We assume in our theorem that � and � are equal except for the
transverse measures and that they are maximal and connected.

We can see the assumption of maximality is essential by taking look at an ex-
ample of Anderson{Canary [3]. They constructed an example of quasi-Fuchsian
groups converging in AHp(S) which correspond to pairs of marked hyperbolic
structures (mi; ni) such that fmig and fnig converge to the same point in
PL(S). In this example, the support of the limit projective lamination is a
simple closed curve, far from being maximal.

The proof of our theorem is based on an argument sketched in Thurston [26]
which was used to prove his theorem stating that sequences of Kleinian groups
isomorphic to surface groups which converge algebraically to Kleinian groups
without accidental parabolic elements converge strongly. We shall give a de-
tailed proof of this theorem in the last section as an application of our theorem.

The original version of this paper was written during the author’s stay in Uni-
versity of Warwick for the symposium \Analytic and geometric aspects of hyper-
bolic spaces". The author would like to express his gratitude to the organizers
of the symposium, Professors David Epstein and Caroline Series for inviting
him there and giving him a lot of mathematical stimuli.

2 Preliminaries

Kleinian groups are discrete subgroups of the Lie group PSL2C which is the
group of conformal automorphisms of the 2{sphere S2 and the orientation
preserving isometry group of the hyperbolic 3{space H3 . A Kleinian group acts
conformally on S2 and discontinuously on H3 by isometries. In this paper, we
always assume that Kleinian groups are torsion free. For a torsion-free Kleinian
group Γ, the quotient H3=Γ is a complete hyperbolic 3{manifold.
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Let Γ be a Kleinian group, which is regarded as acting on S2 . The subset of
S2 which is the closure of the set consisting of the �xed points of non-trivial
elements in Γ, is called the limit set of Γ, and denoted by �Γ . The limit set �Γ

is invariant under the action of Γ. The complement of �Γ is called the region
of discontinuity of Γ and denoted by ΩΓ . The group Γ acts on ΩΓ properly
discontinuously. If Γ is �nitely generated, the quotient ΩΓ=Γ is a Riemann
surface of �nite type (ie a disjoint union of �nitely many connected Riemann
surfaces of �nite genus with �nitely many punctures) by Ahlfors’ �niteness
theorem [1].

A homeomorphism !: S2 ! S2 is said to be quasi-conformal if it has an
L2{distributional derivative and there exists a function �: S2 ! C called a
Beltrami coe�cient whose essential norm is strictly less than 1, such that
!z = �!z . If the Beltrami coe�cient � for ! satis�es the condition � �
γ(z)γ 0(z)=γ0(z) = �(z) for every γ 2 Γ, then the conjugate !Γ!−1 is again
a Kleinian group. A Kleinian group obtained by such a fashion from Γ is called
a quasi-conformal deformation of Γ. By identifying two quasi-conformal de-
formations which are conformally conjugate, and giving the topology induced
from the representation space, we obtain the quasi-conformal deformation space
of Γ, which we shall denote by QH(Γ). A quasi-conformal deformation of
ΩΓ=Γ can be extended to that of Γ. This gives rise to a continuous map
�: T (ΩΓ=Γ)! QH(Γ). By the works of Ahlfors, Bers, Kra, Marden and Sulli-
van among others, it is known that when Γ is �nitely generated, � is a covering
map, and that especially if Γ is isomorphic to a surface group (or more gen-
erally if Γ satis�es the condition (�) introduced by Bonahon [7]), then � is a
homeomorphism. The inverse of � is denoted by Q.

Let Γ be a �nitely generated Kleinian group. We shall de�ne the deformation
space of Γ. An element γ of PSL2C is said to be parabolic if it is conjugate to a

parabolic element
�

1 1
0 1

�
. The deformation space of Γ, denoted by AHp(Γ),

is the space of faithful discrete representations of Γ into PSL2C preserving
the parabolicity modulo conjugacy with the quotient topology induced from
the representation space. We shall often denote an element (ie an equivalence
class of groups) in AHp(Γ) in a form (G;�) where � is a faithful discrete
representation with the image G which represents the equivalence class. The
quasi-conformal deformation space QH(Γ) is regarded as a subspace of AHp(Γ).

Let C(�Γ) be the intersection of H3 and the convex hull of the limit set �Γ

in the Poincar�e ball H3 [ S2
1 . As C(�Γ) is Γ{invariant, C(�Γ) can be taken

quotient by Γ and gives rise to a closed convex set C(�Γ)=Γ in H3=Γ, which is
called the convex core of H3=Γ. The convex core is the minimal closed convex
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set of H3=Γ which is a deformation retract. A Kleinian group Γ is said to be
geometrically �nite if it is �nitely generated and if the convex core of H3=Γ has
�nite volume, otherwise it is geometrically in�nite. When Γ is geometrically
�nite, QH(Γ) is an open subset of AHp(Γ).

For a sequence fΓig of Kleinian groups, its geometric limit is de�ned as follows.

De�nition 2.1 A Kleinian group H is called the geometric limit of fΓig if
every element of H is the limit of a sequence fγig for γi 2 Γi , and the limit
of any convergent sequence fγij 2 Γijg for a subsequence fΓijg � fΓig is
contained in H .

The geometric limit of non-elementary Kleinian groups is also a Kleinian group.
We call a limit in the deformation space an algebraic limit to distinguish it from
a geometric limit. We also call the �rst factor of a limit in the deformation
space, ie the Kleinian group which is the image of the limit representation, an
algebraic limit. Suppose that f(Γi; �i)g converges in AHp(Γ) to (Γ0; �). Then
there is a subsequence of fΓig converging to a Kleinian group H geometrically.
Moreover, the algebraic limit Γ0 is contained in the geometric limit H . (Refer to
J�rgensen{Marden [13] for the proofs of these facts.) When the algebraic limit
Γ0 coincides with the geometric limit H , we say that the sequence f(Γi; �i)g
converges to (Γ0; �) strongly.

When fΓig converges geometrically to H , there exists a framed (Ki; ri){app-
roximate isometry de�ned below between H3=Γi and H3=H with base-frames
which are the projections of a base-frame on a point in H3 where Ki ! 1 and
ri !1 as i!1. (See Canary{Epstein{Green [9]).)

De�nition 2.2 Let (M1; e1) and (M2; e2) be two Riemannian 3{manifolds
with base-frame whose base-frames are based at x1 2 M1 , and x2 2 M2 re-
spectively. A (K; r){approximate isometry between (M1; e1) and (M2; e2) is a
di�eomorphism from (X1; x1) to (X2; x2) for subsets X1;X2 of M1;M2 con-
taining the r{balls centred at x1; x2 such that df(e1) = e2 and

dM1(x; y)=K � dM2(f(x); f(y)) � KdM1(x; y)

for any x; y 2 X1 .

Let f(Mi; vi)g be a sequence of hyperbolic 3{manifolds with base-frame. We say
that (Mi; vi) converges geometrically (in the sense of Gromov) to a hyperbolic
3{manifold with base-frame (N;w) when for any large r and K > 1 there exists
an integer i0 such that there exists a (K; r){approximate isometry between
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(Mi; vi) and (N;w) for i � i0 . As described above, by choosing base-frames
which are the images of a �xed base-frame in H3 , the sequence of H3=Γi with
the base-frame converges geometrically to H3=H with the base-frame when Γi
converges to H geometrically.

Let M = H3=Γ be a complete hyperbolic 3{manifold. A parabolic element of
Γ is contained in a maximal parabolic subgroup, which is isomorphic to either
Z or Z � Z and corresponds to a cusp of M . This is derived from Margulis’
lemma. By deleting mutually disjoint neighbourhoods of the cusps of M , we
obtain a non-cuspidal part of M , which we shall denote by M0 . We delete
the cusp neighbourhoods where the injectivity radius is less than � for some
universal constant � > 0 so that this procedure of deleting cusp neighbourhoods
is consistent among all the hyperbolic 3{manifolds. The non-cuspidal part M0

is a 3{manifold whose boundary component is either a torus or an open annulus.

By theorems of Scott [22] and McCullough [15], there exists a submanifold
C(M) of M0 such that (C(M); C(M)\@M0) is relatively homotopy equivalent
to (M0; @M0) by the inclusion, which is called a core of M . An end of M0 is
said to be geometrically �nite if some neighbourhood of the end contains no
closed geodesics, otherwise it is called geometrically in�nite. A geometrically
in�nite end e is called geometrically in�nite tame (or simply degenerate) if that
end faces an incompressible frontier component S of a core and there exists a
sequence of simple closed curves fγig on S such that the closed geodesic in M
homotopic to γi tends to the end e as i!1. (In this paper we use this term
only when every component of the frontier of the core is incompressible.) A
Kleinian group Γ is geometrically �nite if and only if every end of (H3=Γ)0 is
geometrically �nite.

In this paper, we shall consider sequences of Kleinian groups isomorphic to
surface groups. Let S be a hyperbolic surface of �nite area. We call punctures of
S cusps. We denote by AHp(S) the space of Kleinian groups modulo conjugacy
which are isomorphic to �1(S) by isomorphisms mapping elements represented
by cusps to parabolic elements. We can also identify this space AHp(S) with
the deformation space of a Fuchsian group G such that H2=G = S . Let (Γ; �)
be a class in AHp(S). We say that a parabolic element γ 2 Γ is accidental
parabolic when �−1(γ) does not correspond to a cusp of S . Assume that (Γ; �)
in AHp(S) has no accidental parabolic element. Then the non-cuspidal part
(H3=Γ)0 has only two ends since one can see that a core is homeomorphic to
S � I and has exactly two frontier components. Therefore in this case, Γ is
either (1) a quasi-Fuchsian group, ie geometrically �nite and the limit set �Γ

is homeomorphic to the circle or (2) a totally degenerate b{group, ie ΩΓ is
connected and simply connected, and (H3=Γ)0 has one geometrically �nite end
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and one geometrically in�nite end, or (3) a totally doubly degenerate group, ie
ΩΓ = ;, and (H3=Γ)0 has two geometrically in�nite tame ends. Recall that a
Kleinian group is called a b{group when its region of discontinuity has a unique
invariant component, which is simply connected.

For a hyperbolic surface S = H2=Γ, we denote the quasi-conformal defor-
mation space of Γ by QF (S). This space consists of quasi-Fuchsian groups
isomorphic to �1(S) by isomorphisms taking elements representing cusps to
parabolic elements. By the Ahlfors{Bers theory, there is a homeomorphism
Q: QF (S) ! T (S) � T (S), which we shall call the Ahlfors{Bers homeomor-
phism. Here T (S) denotes the Teichmüller space of the \complex conjugate"
of S . This can be interpreted as the space of marked hyperbolic structures
on S such that the complex conjugate of the corresponding complex struc-
ture is equal to the structure on the second component of ΩΓ=Γ. We identify
T (S) with T (S) by the above correspondence from now on. By this correspon-
dence, the Fuchsian representations of �1(S) are mapped onto the diagonal of
T (S)� T (S).

Thurston introduced a natural compacti�cation of a Teichmüller space in [27],
which is called the Thurston compacti�cation nowadays. Let S be a hyperbolic
surface of �nite area. Let S denote the set of free homotopy classes of simple
closed curves on S . Let PRS+ denote the projective space obtained from the
space RS+ of non-negative functions on S . We endow PRS+ with the quotient
topology of the weak topology on RS+ n f0g. The Teichmüller space T (S) is
embedded in PRS+ by taking g 2 T (S) to the class represented by a function
whose value at s 2 S is the length of the closed geodesic in the homotopy class.
The closure of the image of T (S) in PRS+ is homeomorphic to the ball and
de�ned to be the Thurston compacti�cation of T (S). The boundary of T (S)
corresponds to \the space of projective laminations" in the following way.

A compact subset of S consisting of disjoint simple geodesics is called a geodesic
lamination. A geodesic lamination endowed with a transverse measure which is
invariant under a homotopy along leaves is called a measured lamination. The
subset of a measured lamination � consisting of the points x 2 � such that
any arc containing x at the interior has a positive measured with respect to the
transverse measure is called the support of �. We can easily see that the support
of a measured lamination � is a geodesic lamination. The set of measured
laminations with the weak topology with respect to measures on �nite unions of
arcs is called the measured lamination space and denoted by ML(S). The set of
simple closed geodesics with positive weight is dense in ML(S). For a measured
lamination (�; �), where � denotes the transverse measure, and a homotopy
class of simple closed curves � , we de�ne their intersection number i(�; �) to be
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infs2� �(s). (We also use the notation i(�; s) to denote i(�; [s]).) By de�ning
the value at � 2 S to be i(�; �), we can de�ne a map �: ML(S) ! RS+ . By
projectivising the both spaces, we have a map �: PL(S)! PRS+ , where PL(S)
denotes the projectivization of ML(S), ie (ML(S) n f;g)=(0;1). It can be
proved that in fact � is an embedding and coincides with the boundary of the
image of T (S), that is, the boundary of the Thurston compacti�cation of T (S).
Refer to Fathi et al [11] for further details of these facts.

Let e be a geometrically in�nite tame end of the non-cuspidal part of a hyper-
bolic 3{manifold M , which faces a frontier component � of a core. From now
on, we always assume that every frontier component of a core is incompress-
ible in M . By the de�nition of geometrically in�nite tame end, there exists
a sequence of simple closed curves fγig on � such that the closed geodesic
homotopic to γi tends to e as i !1. Consider the sequence f[γi]g (the pro-
jective classes represented by fγig) in PL(�). (We identify γi with the closed
geodesic homotopic to γi with respect to some �xed hyperbolic structure on
�.) Since PL(�) is compact, the sequence f[γi]g converges to a projective
lamination [�] 2 PL(�) after taking a subsequence. Such a measured lamina-
tion � is called an ending lamination of e. (The original de�nition is due to
Thurston [26].) An ending lamination is maximal (ie it is not a proper sublam-
ination of another measured lamination), and connected. (Thurston [26], see
also Ohshika [17].) If both � and �0 are ending laminations of an end e, their
intersection number i(�; �0) is equal to 0 (essentially due to Thurston [26] and
Bonahon [7]). We shall give a proof of this fact, based on Bonahon’s result in
section 3. By the maximality, this implies that j�j = j�0j where j�j denotes the
support of �.

In this paper, we shall deal with a hyperbolic 3{manifold M = H3=Γ with a
homotopy equivalence �: S !M preserving cusps. In this case, M has a core
which is homeomorphic to S�I . For a homotopy equivalence �: S !M and a
lamination �, its image �(�) is homotopic to a unique lamination on S�ftg for
both t = 0; 1. When the measured lamination homotopic to �(�) is an ending
lamination, we say that �(�) represents an ending lamination. For an end e
of M , the end invariant of e is de�ned to be a projective lamination [�] on
S such that �(�) represent an ending lamination of e when e is geometrically
in�nite, and the point in the Teichmüller space corresponding to the conformal
structure of the component of ΩΓ=Γ when e is geometrically �nite.

Now, let e1; e2 be the two ends of M0 which are contained in the \upper
complement" and the \lower complement" of a core respectively with respect
to the orientation give on M and S . We de�ne the end invariant of M = H3=Γ
to be a pair (�; �), where � is the end invariant of e1 and � that of e2 . This
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means in particular that when Γ is a quasi{Fuchsian group, the end invariant
is equal to Q(Γ; �) 2 T (S) � T (S), where Q: QF (S) ! T (S) � T (S) is the
Ahlfors{Bers map with the second factor T (S) identi�ed with T (S).

Let S be a hyperbolic surface of �nite area and M a complete hyperbolic 3{
manifold. A pleated surface f : S ! M is a continuous map which is totally
geodesic in S − ‘ for some geodesic lamination ‘ on S such that the path
metric induced by f coincides with the hyperbolic metric on S . We say that a
sequence of pleated surfaces with base point ffi: (Si; xi)! (Mi; yi)g converges
geometrically to a pleated surface with base point f : (S; x) ! (M;y) when
there are (Ki; ri){approximate isometries �i between (Mi; vi) and (M;v), and
�i between (Si; wi) and (S;w) such that Ki ! 1 and ri ! 1 as i ! 1 and
f�i � fi � �−1

i g converges to f uniformly on every compact subset of S , where
vi; v; wi; w are base-frames on xi; x; yi; y respectively. The space of pleated
surfaces has the following compactness property due to Thurston whose proof
can be found in Canary{Epstein{Green [9].

Proposition 2.3 For any sequence of pleated surfaces with base point ffi:
(Si; xi)! (Mi; yi)g such that the injectivity radius at yi is bounded away from
0 as i!1, there exists a subsequence which converges geometrically.

We say that a (measured or unmeasured) geodesic lamination � on S is realized
by a pleated surface f when � is mapped totally geodesically by f . A measured
lamination � lying on a component of the frontier of a core of M represents
an ending lamination of an end of M0 if and only if there is no pleated surface
(homotopic to the inclusion) realizing �. (This follows from Proposition 5.1 in
Bonahon [7] which we shall cite below as Proposition 2.5.)

We shall use the following two results of Bonahon [7] several times in this paper.
The �rst is Proposition 3.4 in his paper.

Lemma 2.4 (Bonahon) Let M be a complete hyperbolic 3{manifold. Let S
be a properly embedded incompressible surface in the non-cuspidal part M0 .
Then there exists a constant C with the following property. Let ��; �� be closed
geodesics in M which are homotopic to closed curves �; � on S by homotopies
coming to the same side of S , and are located at distance at least D from S .
Suppose that neither �� nor �� intersects a Margulis tube whose axis is not
itself, �� or �� . Then we have

i(�; �) � Ce−Dlength(�)length(�) + 2:
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The second is Proposition 5.1 in Bonahon’s paper. Before stating the proposi-
tion, we need to de�ne some terms used there. A train track on a surface S is
a graph with C1{structure such that all edges coming to a vertex are tangent
mutually there. Furthermore we impose the condition that there is no compo-
nent of the complement which is the interior of a monogon or a bigon or an
annulus without angle. We call edges of a train track branches and vertices
switches. A regular neighbourhood of a train track � can be foliated by arcs
transverse to � . Such a neighbourhood is called a tied neighbourhood of � ,
and the arcs are called ties. We say that a geodesic lamination � is carried by
a train track � when a tied neighbourhood of � can be isotoped to contain �
so that each leaf of � should be transverse to the ties.

When � is a measured lamination and carried by a train track � , the transverse
measure induces a weight system on the branches of � , by de�ning the weight of
a branch to be the measure of ties intersecting the branch. We can easily prove
that such a weight system is uniquely determined by � and � . Conversely a
weight system w on a train track � satisfying the switch condition that the sum
of weights on incoming branches and the sum of those on outgoing branches
coincides at each switch, determines a unique measured lamination such that
the weight system which it induces on � is equal to w . Refer to Penner{Harer
[23] for more precise de�nitions and explanations for these facts.

A continuous map f from a surface S to a hyperbolic manifold M is said to be
adapted to a tied neighbourhood N� of a train track � on S when each branch
of � is mapped to a geodesic arc in M and each tie of N� is mapped to a point.
Consider a map f adapted to a tied neighbourhood of a train track � . For a
weight system w on � , we de�ne the length of f(�; w) to be

P
wblength(f(b)),

where the sum is taken over all the branches of � , and wb denotes the weight
on b assigned by w . For a measured lamination � carried by � , if it induces a
weight system w on � , we de�ne the length of f(�) to be the length of f(�; w).

For two branches b; b0 meeting at a switch � from opposite directions, the
exterior angle �(f(b; b0)) between b; b0 with respect to f is the exterior angle
formed by f(b) and f(b0) at f(�). The weight system w determines the weight
flowing from b to b0 . Let b1; : : : ; bp and b01; : : : ; b

0
q be the branches meeting

at a switch � with b1; : : : ; bp coming from one direction and b01; : : : ; b
0
q from

the other. The exterior angle at f(�) is the sum of wk;l�(f(bk; b0l)) for all
k = 1; : : : ; p; l = 1; : : : ; q , where wk;l denotes the weight flowing from bk to b0l .
The quadratic variation of angle at f(�) is the sum of wk;l�2f(bk; b0l) in the
same situation as above. The total curvature of f(�; w) is de�ned to be the
sum of the exterior angles at all the images of switches on � . Similarly, the
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quadratic variation of angle for f(�; w) is de�ned to be the sum of the quadratic
variations of angle at all switches.

Proposition 2.5 (Bonahon) Let M be a complete hyperbolic 3{manifold
and S a hyperbolic surface of �nite type. Let �: S ! M be a continuous
incompressible map taking cusps to cusps, and � a measured lamination on S .
Then the one of the following two cases occurs and they are mutually exclusive.

(1) For any � > 0, there is a map �� homotopic to �, which is adapted to a
train track carrying � such that length(��(�)) < �.

(2) For any �, there is a map �� homotopic to �, which is adapted to a train
track � carrying � by a weight system ! , with the following property:
The total curvature and the quadratic variation of angle for ��(�; w) are
less than �. Furthermore such a map �� satis�es the following: There
are � > 0; t < 1 such that � ! 0; t ! 1 as � ! 0, and for any simple
closed curve γ such that [γ] is su�ciently close to [�] in PL(S), the
closed geodesic γ� homotopic to �(γ) in M has a part of length at least
tlength��(γ) which lies within distance � from ��(γ).

We can easily see that the �rst alternative exactly corresponds to the case when
� represents an ending lamination, and that the second alternative holds if and
only if there is a pleated surface realizing �. Taking this into account, the
proposition implies in particular the following. First, in the situation as in the
proposition, �(�) represents an ending lamination of an end of M0 if and only if
it is not realized by a pleated surface homotopic to � since the two alternatives
are exclusive.

Secondly, if � is an ending lamination, then any measured lamination �0 with
the same support as � is also an ending lamination. This is because a train
track carrying � also carries �0 and if the condition (1) holds for �, it equally
holds for the weight system corresponding to �0 .

There is another proposition which we shall make use of essentially in our
proof. The proposition is an application of Thurston’s covering theorem which
originally appeared in [26] (see also [19] for its proof, and Canary [8] for its
generalization).

Proposition 2.6 (Thurston) Let S be a hyperbolic surface of �nite area.
Let f(Γi; �i)g be a sequence of Kleinian groups in AHp(S) converging to
(G; ). Let Γ1 be a geometric limit of fΓig after taking a subsequence, and let
q: H3=G! H3=Γ1 be the covering map associated with the inclusion G � Γ1 .
Suppose that (H3=G)0 has a geometrically in�nite end e. Then there exists a
neighbourhood E of e such that qjE is a proper embedding.
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3 The main theorem

Our main theorem on a su�cient condition for Kleinian groups isomorphic to
surface groups to diverge in the deformation spaces is the following.

Theorem 3.1 Let S be a hyperbolic surface of �nite area. Let f(Γi; �i)g be
a sequence of Kleinian groups in AHp(S) with isomorphisms �i: �1(S) ! Γi
inducing homotopy equivalences �i: S ! H3=Γi . Let (�i; �i) be an end invari-
ant of (Γi; �i). Suppose that f�ig and f�ig converge in either the Thurston
compacti�cation of the Teichmüller space T (S) or the projective lamination
space PL(S) to maximal connected projective laminations [�] and [�] with the
same support. Then f(Γi; �i)g does not converge in AHp(S).

Let us briefly sketch the outline of the proof of our main theorem. Note that
we can assume by taking a subsequence that all the Γi are the same type
of the three; quasi-Fuchsian groups or totally degenerate b{groups or totally
doubly degenerate groups. We consider here only the case when all the Γi
are quasi-Fuchsian. The proof is by reductio ad absurdum. Suppose that our
sequence f(Γi; �i)g converges in AHp(S). Then we have the algebraic limit
(G; ) which is a subgroup of a geometric limit Γ1 . By applying the continuity
of the length function on AHp(S) �ML(S), which will be stated and proved
in Lemma 4.2, we shall show that  (�) represents an ending lamination of
an end e� in (H3=G)0 . We shall take a neighbourhood E� of e� which can
be projected homeomorphically by the covering map q: H3=G ! H3=Γ1 to a
neighbourhood of an end of (H3=Γ1)0 using Proposition 2.6. Let S0 denote
the non-cuspidal part of S . We shall then show that deep inside E� there is
an embedded surface f 0(S0) homotopic to  jS0 such that every pleated surface
homotopic to q �  touching q � f 0(S0) is contained in q(E�).

By projecting f 0 to H3=Γ1 and pulling back by an approximate isometry, we
get an embedded surface fi: S0 ! H3=Γi which is homotopic to �i converging
to an embedded surface f1: S0 ! H3=Γ1 geometrically which is the projection
of f 0 . By using a technique of interpolating pleated surfaces due to Thurston,
we shall show that there is a pleated surface ki: S ! H3=Γi homotopic to
�i which intersects fi(S0) at an essential simple closed curve. These pleated
surfaces converge geometrically to a pleated surface k1: S0 ! H3=Γ1 , where
S0 is an open incompressible surface on S . The condition that the limit surface
k1 touches f1(S) forces k1 to be a pleated surface from S , and to be lifted
to a pleated surface to H3=G which realizes a measured lamination with the
same support as �. This will contradict the fact that  (�) represents an ending
lamination.
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4 Ending laminations and pleated surfaces

In this section, we shall prove lemmata basically due to Thurston which will be
used in the proof of our main theorem.

Throughout this section, f(Γi; �i)g denotes a sequence as in Theorem 3.1. Sup-
pose that f(Γi; �i)g converges to (G; ) in AHp(S) where  : �1(S)! G is an
isomorphism. (Our proof of Theorem 3.1 is by reductio ad absurdum. There-
fore we assumed above the contrary of the conclusion of Theorem 3.1.) We
also use this symbol  to denote the homotopy equivalence from S to H3=G
corresponding to the isomorphism. We can assume that �i converges to  as
representations by taking conjugates if necessary.

Now let ~z 2 H3 be a point and ~v be a frame based on ~z . Then ~z; ~v are projected
by the universal covering maps to zi; vi of H3=Γi and z; v of H3=G. Since we
assumed that fΓig converges algebraically to G, we can assume by passing
through a subsequence that fΓig converges geometrically to a Kleinian group
Γ1 which contains G as a subgroup. Let v1; z1 be the images in H3=Γ1 of
~v; ~z by the universal covering map.

The hyperbolic manifolds with base frame f(H3=Γi; vi)g converge in the sense
of Gromov to (H3=Γ1; v1). Let q: H3=G! H3=Γ1 be the covering associated
with the inclusion G � Γ1 . Then q(z) = z1 and dq(v) = v1 .

Consider the case when at least one end e of (H3=Γi)0 is geometrically �nite.
Let �i be the boundary components of the convex core of H3=Γi facing e
which corresponds to a component of the quotient of the region of discontinuity
Ω0

Γi
=Γi . Let hi: S ! �i be a homeomorphism homotopic to �i . Now by

the assumption of Theorem 3.1, the marked conformal structures of Ω0
Γi
=Γi

converge to either [�] or [�], say [�]. Then we have the following.

Lemma 4.1 There exist an essential simple closed curve γi on �i , and a
sequences of positive real numbers frig going to 0 such that rilength�i(γi)! 0
and fri(h−1

i (γi)) 2ML(S)g converges to a measured lamination with the same
support as the measured lamination �, where we regard h−1

i (γi) as an element
in ML(S).

Proof Let mi be the point in T (S) determined by the marked conformal
structure on Ω0

Γi
=Γi . By Sullivan’s theorem proved in Epstein{Marden [10], the

assumption in Theorem 3.1 that mi ! [�] implies that the marked hyperbolic
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structures gi on S induced by hi from those on �i as subsurfaces in H3=Γi
also converge to [�] as i!1 in the Thurston compacti�cation of T (S).

Let γi be the shortest essential closed curves on �i with respect to the hyper-
bolic metrics induced from H3=Γi . Consider the limit [�0] of f[h−1

i (γi)]g in
PL(S) passing through a subsequence if necessary. Then there are bounded
sequences of positive real numbers ri such that rih

−1
i (γi) ! �0 in ML(S).

Suppose that i(�; �0) 6= 0. Then by the \fundamental lemma" 8-II-1 in Fathi{
Laudenbach{Poenaru, we should have length(rih−1

i (γi)) ! 1. On the other
hand, since γi is the shortest essential closed curve with respect to gi ,
we see that lengthgi(h

−1(γi)) = length�i(γi) is bounded. This implies that
rilength(h−1

i (γi)) is also bounded as i!1, which is a contradiction. Thus we
have proved that i(�; �0) = 0.

As � is assumed to be maximal and connected, this means that j�j = j�0j. In
particular �0 is not a simple closed curve, and we can see the sequences frig
must go to 0 as i!1.

The next lemma, which asserts the continuity of the lengths of realized mea-
sured laminations, appeared in Thurston [28]. The following proof is based on
Proposition 2.5 due to Bonahon. Soma previously suggested a possibility of
such a proof.

Lemma 4.2 Let L: AHp(S) � ML(S) ! R be the function such that
L((Γ; �); �) is the length of the realization of � on a pleated surface homo-
topic to � when such a pleated surface exists, otherwise set L((Γ; �); �) = 0.
Then L is continuous.

Proof Let f(Gi;  i)g 2 AHp(S) be a sequence which converges to (G0;  0) 2
AHp(S), and let f�jg be measured laminations on S converging to �0 . We
shall prove that L is continuous at ((G0;  0); �0). We can take representatives
for elements of the sequence so that the representations f ig converge to  0 .
Fix a base frame ~v on H3 and let wi be the base frame of H3=Gi which is the
projection of ~v by the universal covering map. Since Gi converges algebraically,
the injectivity radius at the basepoint under wi is bounded away from 0 as
i!1. By compactness of geometric topology (see Corollary 3.1.7 in Canary{
Epstein{Green [9]) and the diagonal argument, we can see that for any large
r > 0 and small � > 0, there exists i0 such that for any i > i0 , there exists
a Kleinian group H 0 containing G0 and a ((1 + �); r){approximate isometry
�i: Br(H3=Gi; wi) ! Br(H3=H 0; w0), where Br denotes an r{ball. (Note that

Ken’ichi Ohshika

Geometry and Topology Monographs, Volume 1 (1998)

432



the group H 0 may depend on i since a geometric limit exists only after taking
a subsequence.)

First suppose that �0 can be realized by a pleated surface homotopic to  0 .
Then by Proposition 2.5, for any small � > 0, there exists a train track � with
a weight system ! carrying �0 and a continuous map f : S ! H3=G0 homotopic
to  0 which is adapted to a tied neighbourhood N� of � such that the total
curvature and the quadratic variation of angle for f(�; !) are less than � .

For a Kleinian group H 0 containing G0 , by composing the covering q: H3=G0 !
H3=H 0 to f , we get a map with the same property homotopic to q �  0 . We
take r and � so that for any geometric limit H 0 , the r{ball centred at the base
point under w0 contains the image of q � f and so that if we pull back q � f
by a ((1 + �); r){approximate isometry and straighten the images of branches
to geodesic arcs, the image of (�; !) has the total curvature and the quadratic
variation of angle less than 2� . Then for i > i0 , there exists a map fi: S !
H3=Gi homotopic to �i which is adapted to � such that fi(�; !) has total
curvature and quadratic variation of angle less than 2� . Again by Proposition
2.5, this implies that there is a neighbourhood U of �0 in ML(S) such that for
any weighted simple closed curve γ in U , there exist �U > 0 depending on U ,
�� > 0, and t� < 1 depending on � such that �U ! 0 as U gets smaller and
�� ! 0; t� ! 1 as � ! 0, and the following holds. We can homotope γ so that
N� \ γ corresponds the weight system !0 (which may not satisfy the switch
condition since γ may not be homotoped into N� ) whose value at each branch
di�ers from that of ! at most �U , and the closed geodesic γ�i homotopic to
 i(γ) has a part with length t�length(γ�i ) which lies within distance �� from
f i(� \γ). The same holds for f and the closed geodesic γ� homotopic to  (γ).

It follows that there is a positive real number � depending on �; �; U which goes
to 0 as � ! 0; � ! 0 and U gets smaller remaining to be a neighbourhood of
�0 , such that if γ; γ0 are weighted simple closed curves in U , then jlength(γ�i )−
length(γ0�)j < � , where γ0� is the closed geodesic in H3=G0 homotopic to
 (γ0). Since the set of weighted simple closed curves is dense in ML(S) and
any realization of measured lamination can be approximated by realizations of
simple closed curves, this implies our lemma in the case when �0 is realizable
by a pleated surface homotopic to  0 .

Next suppose that �0 is not realizable by a pleated surface homotopic to  0 .
This means that �0 is an ending lamination of an end of (H3=G0)0 . By a result
of Thurston in [26] (see also Lemma 4.4 in [17]), it follows that �0 is maximal
and connected. In this case the alternative (i) of Proposition 2.5 holds. Hence
for any small � > 0, there exists a train track � carrying �0 with weight ! and
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a continuous map f homotopic to  0 which is adapted to a tied neighbourhood
N� of � , such that �0 can be homotoped so that the length of f(�; !) is less
than � . Then by the same argument as the last paragraph, there exists i0 such
that if i > i0 there exists a map fi adapted to N� such that fi(�; !) has length
less than 2� .

Since f�jg converges to �0 and �0 is maximal, �j is carried by � for su�ciently
large j with weight !j whose values at branches are close to those of ! . Hence
there exists j0 such that fi(�; !j) is less than 3� if j > j0 . As the length
of realization of �j by a pleated surface homotopic to  i is less than that of
fi(�; !j), this implies our lemma in the case when �0 cannot be realized by a
pleated surface homotopic to  0 .

The following is a well-known result of Thurston appeared in [26] and also a
corollary of Lemma 2.4 due to Bonahon. Nevertheless, as its proof is not so
straightforward when sequences of closed geodesics intersect Margulis tubes
non-trivially, we shall prove here that Lemma 2.4 implies this lemma.

Lemma 4.3 Let M be a hyperbolic 3{manifold. Let e be a geometrically
in�nite tame end of the non-cuspidal part M0 . Let �; �0 be measured lamina-
tions on a frontier component T of a core, which faces e. Suppose that both
� and �0 are ending laminations of the end e. Then the supports of � and �0

coincide.

Proof Let sj and s0j be simple closed curves on T such that for some positive
real numbers xj and yj , we have xjsj ! �, yjs0j ! � and such that the
closed geodesics s�j homotopic to sj and s0j

� homotopic to s0j tend to the end
e as j ! 1. If there exists a constant �0 > 0 such that neither s�j nor s0j

�

intersects an �0{Margulis tube whose axis is not s�j or s0j
� itself, then we can

apply Lemma 2.4 and the proof is completed.

Next suppose that for at least one of s�j and s0j
� (say s�j ), a constant as �0

above does not exist. We shall prove that we can replace sj with another
simple closed curve to which we can apply Lemma 2.4. By assumption, there
exist closed geodesics �j whose lengths go to 0 and such that s�j intersect the
�j {Margulis tube whose axis is �j , where �j ! 0. Let hj : (T; �j) ! M be
a pleated surface homotopic to the inclusion whose image contains s�j as the
image of its pleating locus, where �j is the hyperbolic structure on T induced
by hj . Put a base point yi on T which is mapped into s�j but outside the
�0{Margulis tubes by hj . Let h1: ((T 0; �1); y1)! (M 0; y1) be the geometric
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limit of fhj : (T 0; yj) ! (M;hj(yj))g after taking a subsequence, where T 0 is
an incompressible subsurface in T . We shall �rst show that T 0 cannot be the
entire of T .

Suppose that T 0 = T on the contrary. Let l be the geodesic lamination on
(T; �1) which is the geometric limit of the closed geodesic on (T; �j) corre-
sponding to s�j as j ! 1. Since l cannot approach to a cusp (as T = T 0 ),
it is compact. Therefore we can take a point in the intersection of s�j and the
�j {Margulis tube which converges to a point x on h1(l) associated with the ge-
ometric convergence of fhjg to h1 as j !1. Then for any small �, there is an
essential closed curve passing x with length less than � which can be obtained
by pushing forward by an approximate isometry an essential loop intersecting
s�j of length less than �j for su�ciently large j . This is a contradiction.

Thus there is an extra cusp for h1 . Let c be a simple closed curve on T 0

representing an extra cusp. Let �j: Brj((T; �j); yj)! Brj ((T
0; �1); y1) be an

approximate isometry associated with the geometric convergence of fhjg to
h1 . Let cj be a simple closed curve on T which is homotopic to �−1

j (c). Let
l0 be a measured lamination to which frjcjg converges for some positive real
numbers rj . Let c+j be the closed geodesic on (T; �j) homotopic to cj . Let
� be a measured lamination to whose projective class the hyperbolic struc-
tures �j converge, after passing through a subsequence if necessary. Then as
length�j (c

+
j ) goes to 0 as j !1, we have i(�; l0) = 0 by Lemma 3.4 in [17]. By

the same reason, considering fsjg, we have i(�; �) = 0. Since � is maximal and
connected, these imply that the supports of � and l0 coincide. In particular, l0

is an ending lamination of the end for which � is an ending lamination.

Because the length of the closed geodesic c+j goes to 0 as j ! 1, the closed
geodesic homotopic to hj(cj), whose length is at most the length of c+j , must
be the axis of an �0{Margulis tube for su�ciently large j . Thus we can replace
sj with cj , and and by the same fashion, we can replace s0j with another simple
closed curve if necessary. We can apply Lemma 2.4 for such simple closed
curves.

5 Proof of the main theorem

We shall complete the proof of Theorem 3.1 in this section. Recall that under
the assumption for the reductio ad absurdum, we have (G; ) which is the
algebraic limit of f(Γi; �i)g.
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Lemma 5.1 In the situation of Theorem 3.1, the non-cuspidal part (H3=G)0

of the hyperbolic 3{manifold H3=G has a geometrically in�nite tame end for
which  (�) represents an ending lamination.

Proof Suppose �rst that the end ei of (H3=Γi)0 corresponding to the �rst
factor of the end invariant is geometrically �nite. Then by Lemma 4.1, there
exists a sequence of weighted simple closed curves riγi on S converging to �
such that for the closed geodesic γ�i in H3=Γi homotopic to �i(γi), we have
rilength(γ�i )! 0. By the continuity of length function L on AHp(S)�ML(S)
(Lemma 4.2), we have L((G; ); �) is 0, which means that � cannot be realized
by a pleated surface homotopic to  . As we assumed that � is maximal and con-
nected, there must be a geometrically in�nite tame end of (H3=G)0 with ending
lamination represented by  (�). This last fact, originally due to Thurston, can
be proved using Bonahon’s result: by Proposition 2.5, if L((G; ); �) = 0 and
� is maximal and connected, then for any sequence of simple closed curves �j
on S whose projective classes converge to that of �, the closed geodesics ��j
homotopic to  (�j) tend to an end of (H3=G)0 . This means that  (�) is an
ending lamination for a geometrically tame end of (H3=G)0 .

Next suppose that the end ei is geometrically in�nite. Then �i is represented
by a measured lamination �i which represents an ending lamination of ei , hence
L((Γi; �i); �i) = 0. We can assume that �i lies on the unit ball of ML(S) with
respect to the metric induced from some �xed hyperbolic structure on S . Then
�i converges to a scalar multiple of � since we assumed that �i = [�i] converges
to [�]. By the continuity of L, this implies that L((G; ); �) = 0 and that  (�)
represents an ending lamination for (H3=G)0 .

We shall denote the end in Lemma 5.1, for which  (�) represents an ending
lamination, by e� .

Recall that q: H3=G ! H3=Γ1 is a covering associated with the inclusion.
Now by Proposition 2.6, the end e� has a neighbourhood E� such that qjE�
is a proper embedding. Since � is maximal and connected, the end e� has a
neighbourhood homeomorphic to S0 � R, where S0 is the non-cuspidal part
of S Hence by re�ning E� , we can assume that E� is also homeomorphic to
S0 �R.

Lemma 5.2 We can take an embedding f 0: S0 ! E� homotopic to  jS0

whose image is contained in the convex core such that for any pleated surface
g: S ! H3=Γ1 homotopic to q �  with non-empty intersection with qf 0(S0),
we have g(S) \ (H3=Γ1)0 � q(E�).
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Proof Fix a constant �0 > 0 less than the Margulis constant. There exists
a constant K such that for any hyperbolic metric on S , the diameter of S
modulo the �0{thin part is bounded above by K . (This can be easily seen by
considering the moduli of S .)

Note that since the end e� is geometrically in�nite, it has a neighbourhood
contained in the convex core. Take t 2 R large enough so that S0 � ftg � E�
is contained in the convex core and the distance from S0 � ftg to the frontier
of E� in (H3=G)0 modulo the �0{thin part is greater than 2K . Choose f 0

homotopic  jS0 so that its image is S0 � ftg. Then the distance between
qf 0(S0) and the frontier of q(E�) modulo the �0{thin part is also greater than
2K . Suppose that a pleated surface g: S ! H3=Γ1 touches qf 0(S0). Then
g(S) cannot meet the frontier of q(E�) since the �0{thin part of S0 with respect
to the hyperbolic structure induced by g is mapped into the �0{thin part of
H3=Γ1 , and any path on g(S) has length less than K modulo the �0{thin
part of H3=Γ1 . Also it is impossible for g(S) to go into the cuspidal part of
H3=Γ1 and come back to the non-cuspidal part since the intersection of g(S)
with the cuspidal part of H3=Γ1 is contained in a neighbourhood of cusps
of g(S). This means that without meeting the frontier of q(E�), the pleated
surface g(S) cannot go outside q(E�) in (H3=Γ1)0 . Thus the intersection of
such a pleated surface with (H3=Γ1)0 must be contained in q(E�).

We denote q � f 0 by f1: S0 ! (H3=Γ1)0 . Pulling back this embedding f1
by an approximate isometry �i for su�ciently large i, we get an embedding
fi: S0 ! (H3=Γi)0 . Since f1 comes from the surface homotopic to  in the
algebraic limit, for su�ciently large i, the surface fi is homotopic to �i .

Consider the case when (H3=Γi)0 has a geometrically �nite end; that is Γi
is either quasi-Fuchsian or a totally degenerate b{group. As in the previous
section, let �i be a boundary components of the convex core of H3=Γi , and let
hi: S ! �i be a homeomorphism homotopic to �i . The homeomorphisms hi
can also be regarded as pleated surfaces in H3=Γi . Let �i be the bending locus
of hi , to which we give transverse measures with full support so that �i should
converge to measured laminations as i!1 after taking subsequences. (Since
the unit sphere of the measured lamination space is compact, this is always
possible. Also if hi happens to be totally geodesic, we can set �i to be any
measured lamination on S .)

Lemma 5.3 Suppose that Γi is either quasi-Fuchsian or a totally degenerate
b{group as above. The sequence of the measured laminations f�ig converges to
a measured lamination with the same support as � after taking subsequences.
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Proof Let �0 be a limit of f�ig after taking a subsequence. If i(�; �0) =
0, we have nothing to prove any more because � is maximal and connected.
Now assume that i(�0; �) 6= 0. Then, by the fact that the marked hyperbolic
structure on �i converges to [�] as i ! 1 and Lemma 3.4 in [17], we have
length�i(�i)!1. On the other hand, by the continuity of the length function
L on AHp(S)�ML(S) (Lemma 4.2), we have

lengthH3=Γi(�i(�i)) = L((Γi; �i); �i)! L((G; ); �0) = lengthH3=G( (�0)) <1

where lengthH3=Γi(�i(�i)) denotes the length of the image of �i realized by
pleated surface homotopic to �i etc. Since �i is mapped by hi into the bending
locus of �i , it is realized by hi , hence length�i(�i) = lengthH3=Γi(�i(�i)). This
is a contradiction.

Now we assume that Γi is quasi-Fuchsian. Then there are two boundary com-
ponents �i;�0i of the convex core of H3=Γi , and homeomorphisms hi: S !
�i � H3=Γi and h0i: S ! �0i � H3=Γi homotopic to �i which are regarded as
pleated surfaces. We have two measured laminations of unit length �i and �0i
whose supports are the bending loci of hi and h0i . By Lemma 5.3, the sequence
of the measured laminations f�ig converges to a measured lamination �0 and
f�0ig converges to a measured lamination �00 such that j�0j = j�00j = j�j. As the
space of transverse measures on a geodesic lamination is connected (or more
strongly, convex with respect to the natural PL structure), we can join �0 and
�00 by an arc �: I = [0; 1]!ML(S) such that j�(t)j = j�j. Join �i and �0i by
an arc �i: I !ML(S) which converges to the arc � joining �0 and �00 .

Next suppose that Γi is a totally degenerate b{group. We can assume without
loss of generality that the �rst factor �i of the end invariant represents an
ending lamination and the second �i a conformal structure. Then we have a
pleated surface hi: S ! �i homotopic to �i whose image is the boundary of the
convex core. Let �i be a measured lamination of the unit length whose support
is equal to that of the bending locus as before. Again by Lemma 5.3, we see
that f�ig converges to a measured lamination �0 with the same support as �.
Let �0i be a measured lamination of the unit length representing the class �i .
By the assumption of Theorem 3.1, the sequence f�0ig converges to a measured
lamination �00 with the same support as �. As in the case of quasi-Fuchsian
group, we join �0 and �00 by an arc �, and then join �i and �0i by an arc �i
which does not pass an ending lamination for H3=Γi at the interior so that it
will converge to � uniformly.

In the case when Γi is a totally doubly degenerate group, both �i and �i are
represented by ending laminations. Let �i representing �i and �0i representing
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�i be measured laminations of the unit length. Then by assumption, f�ig and
f�0ig converge to measured laminations �0 and �00 with the same support as �.
As before we join �0 and �00 by an arc �, and �i; �

0
i by �i which does not pass

an ending lamination of H3=Γi at the interior so that f�ig converges to �.

Next we shall consider constructing for each i a homotopy consisting of pleated
surfaces and negatively curved surfaces in H3=Γi as in Thurston [26]. What
we shall have is a homotopy between hi and h0i in the case when Γi is quasi-
Fuchsian; a half-open homotopy Ĥi: S � [0; 1)! H3=Γi such that Ĥi(S �ftg)
tends to the unique geometrically in�nite end as r ! 1 in the case when Γi is
a totally degenerate b{group; and an open homotopy Ĥi: S � (0; 1) ! H3=Γi
such that Ĥi(S � ftg) tends to one end as t ! 0 and to the other as t ! 1
in the case when Γi is a totally doubly degenerate group. To construct such
a homotopy, we need the notion of rational depth for measured laminations
due to Thurston. An alternative approach to construct such a homotopy using
singular hyperbolic triangulated surfaces can be found in Canary [8].

A train track � is called birecurrent when the following two conditions are
satis�ed. (This de�nition is due to Penner{Harer [23].) (1) The � supports a
weight system which is positive on each branch b of � . (2) For each branch b of
� , there exists a multiple curve � (ie a disjoint union of non-homotopic essential
simple closed curves) transverse to � which intersects b such that S − � − �
has no bigon component.

A birecurrent train track which is not a proper sub-train track of another bire-
current train track is said to be complete.

Any measured lamination is carried by some complete train track. (Refer to
Corollary 1.7.6 in [23].) The weight systems on a complete train track gives rise
to a coordinate system in the measured lamination space. (See Lemma 3.1.2 in
[23].) The rational depth of a measured lamination is de�ned to be the dimen-
sion of the rational vector space of linear functions with rational coe�cients
vanishing on the measured lamination with respect to a coordinate system as-
sociated with a complete train track carrying the measured lamination. This
de�nition is independent of the choice of a coordinate system since functions
corresponding to coordinate changes are linear functions with rational coe�-
cients. The set of measured laminations with rational depth n has codimension
n locally at regular points. In particular a generic arc in the measured lamina-
tion space does not pass a measured lamination with rational depth more than
1.

Now perturb � and �i to a piece-wise linear path with respect to the PL
structure ofML(S) determined by complete train tracks �xing the endpoints so
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that for each t 2 I , the measured lamination �i(t) is not an ending lamination
and has rational depth 0 or 1, and that for each i there exist only countably
many values t for which �i(t) has rational depth 1.

The following lemma was �rst proved in section 9 in Thurston [26]. A fairly
detailed proof can be found there.

Lemma 5.4 If a measured lamination has rational depth 0, then each compo-
nent of its complement is either an ideal triangle or a once-punctured monogon
except when S is a once-punctured torus. In the case when S is a once-
punctured torus, each component of the complement is an ideal once-punctured
bigon. A pleated surface f : S ! M realizing a measured lamination � of ra-
tional depth 0 is unique among the maps in the homotopy class, and every
sequence of homotopic pleated surfaces realizing measured laminations con-
verging to � converges to the pleated surface realizing � .

Proof First we shall show that each complementary region of a measured
lamination of rational depth 0 is either an ideal triangle or an ideal once-
punctured monogon unless S is a once-punctured torus.

Suppose that S is not a once-punctured torus and that a measured lamination
� has a complementary region which is neither an ideal triangle nor an ideal
once-punctured monogon. Then, we can construct a birecurrent train track �
carrying � whose complement has a component which is neither a triangle nor
a once-punctured monogon. (Refer to section 1.7 in [23].)

A birecurrent train track is maximal if and only if every component of its
complement is either a triangle or a once-punctured monogon, and non-maximal
birecurrent train track is a sub-train track of a complete train track. (Theorem
1.3.6 in [23].) Hence there exists a complete train track � 0 containing � as a
proper sub-train track. Since there is a branch of � 0 through which � does not
pass after homotoping � so that it is carried by � 0 , it follows that with respect
to the coordinate system corresponding to � 0 , the measured lamination � has
rational depth at least 1.

In the case when S is a once-punctured torus, again Theorem 1.3.6 in [23] says
that a birecurrent train track is maximal if and only if its (unique) complemen-
tary region is a once-punctured bigon. Thus the same argument as above also
implies our claim in the case of once-punctured torus.

Next we shall show the uniqueness of realization of a measured lamination
of rational depth 0. Let f; g be two pleated surfaces realizing a measured
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lamination � of depth 0. The pleated surfaces f; g induce hyperbolic metrics
m1;m2 respectively on S . (These may di�er as we do not know if f and
g coincide.) The measured lamination � is homotopic to measured geodesic
laminations �1 with respect to m1 and �2 with respect to m2 . Consider the
universal covers p1: H2 ! (S;m1) and p2: H2 ! (S;m2). Let ~�1 be p−1

1 (�1)
and let ~�2 be p−1

2 (�2).

The pleated surfaces f; g are lifted to maps ~f; ~g: H2 ! H3 . Since � has
compact support, there is a homeomorphism from S to S homotopic to the
identity which takes �1 to �2 and is equal to the identity near cusps. Also
for a homotopy between f and g , the distance moved by the homotopy on
the compact set � has an upper bound. These imply that for each leaf l of
~� the images of the corresponding leaves l1 of ~�1 by ~f and l2 of ~�2 by ~g are
within a bounded distance. Since both ~f(l1) and ~g(l2) are geodesics in H3

and two geodesics lying in bounded distance coincides in H3 , these two images
must coincide. Hence we have a map q: H2 ! H2 equivariant with respect
to the action of �1(S) with the property ~f j~�1 = ~g � qj~�1 which maps ~�1 to ~�2

isometrically.

It remains to prove that q extends to an equivariant isometry q of H2 with the
property ~f = ~g � q . Since � has rational depth 0, each of its complementary
regions is either an ideal triangle or an ideal once-punctured monogon unless
S is a once-punctured torus. An ideal triangle on S is lifted to that on H2 .
Since the three sides of the triangle are mapped to geodesics by ~f or ~g , the
triangle must be mapped totally geodesically. Considering that there is only one
isometry type of ideal triangles, we can see that this implies q can be extended
to ideal triangle complementary components without problem.

For complementary regions which are ideal once-punctured monogon, or ideal
once-punctured bigon in the case when S is a once-punctured torus, we have
to use the fact that pleated surfaces are totally geodesics near cusps. (This
is proved in Proposition 9.5.5 in Thurston [26].) Once we know this, we can
subdivide such regions into ideal triangles by adding geodesics tending to cusps
on S , which are mapped to geodesics by f or g . Since each cusp of S is mapped
to the same cusp of M by f and g , we can arrange them so that the lifts of
these added geodesics should be compatible with q . Hence by extending the
map �nally to ideal triangles, we get a map q as we wanted.

Finally let us prove the last sentence of our lemma. Let �j be measured lami-
nations converging to � , and fj a pleated surface realizing �j . Since � can be
realized by a pleated surface, the alternative (2) of Proposition 2.5 should be
valid for � . We shall show that if there is no compact set in M which intersects
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all the images of fj , then we can see that the alternative (2) of Proposition 2.5
fails to hold for � .

Suppose that the alternative (2) of Proposition 2.5 holds for � . Then for any
� > 0 and t < 1, there exist a map f�: S ! M homotopic to f such that
for any simple closed curve γ whose projective class is close to that of � , the
closed geodesic γ� homotopic to f�(γ) has a part of length at least tlength(γ�)
which is contained in the �{neighbourhood of f�(�). Note that as � ! 0, this
map f� converges to a pleated surface realizing � , which must be equal to f .
(Refer to [20] for a further explanation.) On the other hand, since �j is also
realized by a pleated surface homotopic to f , the alternative (2) holds also for
�j . Then we have a surface f �j with the same property as f� above replacing �
with �j . Since we assumed that fj tends to an end of M , we can have surfaces
f
�j
j going to an end and a simple closed curve γj whose projective class is close

to that of �j such that a large part of the closed geodesic γ�j is contained in

the �j {neighbourhood of f �jj (S). This is a contradiction because γ�j must also
have a large part contained in the �{neighbourhood of f�(S) which remains in
a neighbourhood of f(S).

Thus the surfaces fj(S) remain to intersect a compact set, hence converge
to a pleated surface g homotopic to f uniformly on any compact set of S .
(Theorem 5.2.18 in Canary{Epstein{Green [9].) The pleated surface g realizes
a geodesic lamination �1 which is a geometric limit of f�jg regarded as geodesic
laminations forgetting the transverse measures. It is known that �1 contains
the support of � . (See for example Lemma 5.3.2. in [9].) Thus g also realizes
� , and by the uniqueness of such pleated surfaces proved above, we see that
f=g , which means that ffjg converges to f uniformly on any compact set of
S .

Now let Hi: S � I; S � [0; 1); S � (0; 1) ! H3=Γi (depending on the type
of Γi ; a quasi-Fuchsian group or a totally degenerate b{group or a totally
doubly degenerate) be a map such that for each t 2 I; [0; 1); (0; 1), the map
Hi( ; t): S ! H3=Γi is a pleated surface realizing �i(t). Then Hi is continuous
with respect to t by Lemma 5.4 except at values t where �(t) has rational depth
1, which are countably many. Since we made �j piece-wise linear we can see
that the right and left limits exists even at t where �i(t) has depth 1. (This can
be seen by considering a complete train track giving a coordinate near �i(t).)
As was shown in Thurston [26], (see section 4 in [20] for an explanation), at such
a point of discontinuity t, the left limit and the right limit di�er only in a com-
plementary region R of �i(t) which is either an ideal quadrilateral or an ideal
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once-punctured bigon except when S is a once-punctured torus. Then we can
modify Hi to a continuous homotopy Ĥi by interpolating negatively curved
surfaces realizing �i(t0) between limt!t0−0 Hi( ; t) and limt!t0+0Hi( ; t) at
each t0 where �i(t0) has rational depth 1 as in Thurston [26]. These nega-
tively curved surface coincide with the left and the right limit outside R where
the right and left limit di�er.

We need to prove that a family of surfaces thus obtained is continuous with
respect to the parameter. The only case that we have to take care of is when
the values tk for which �i(tk) has depth 1 accumulates to a point t0 2 I .
The negatively curved surfaces interpolated at tk have the same image as a
pleated surface realizing �(tk) outside a complementary region Rk . The image
of Rk by the left limit pleated surface and the right limit surface bound an ideal
tetrahedron if Rk is an ideal quadrilateral or a solid torus with cusps if Rk is an
ideal once-punctured bigon in the case when S is not a once-punctured torus.
The form of Rk gets thinner and thinner as k ! 1 since tk accumulates.
(This can again be seen by considering a coordinate chart given by a complete
train track.) This implies that the trajectories of the homotopy between the
left limit and the right limit, which are contained in the ideal tetrahedron or
the solid torus have length going to 0 as k ! 1. Even in the case when S
is a once-punctured torus, a similar argument can work although we need to
take more cases into account. Thus we can see that Ĥ( ; t) is continuous with
respect t even at the point t0 to which depth-1 points tk accumulate.

Lemma 5.5 For each i, there is a pleated surface ki: S ! H3=G homotopic
to �i touching fi(S0) which realizes a measured lamination �i such that f�ig
converges to a measured lamination � with the same support as � after taking
a subsequence. Moreover we can choose ki so that k−1

i (fi(S0)) contains an
essential component relative to cusps.

Remark 1 Although the last sentence of this lemma is not necessary for our
purpose now, it will be used for our forthcoming work in [21]. Also Canary’s
result on �lling a convex core by pleated surfaces in [8] will su�ce to prove only
the former part of our lemma.

Proof Recall that f 0(S0) is contained in the convex core of H3=G. Then we
can assume that fi(S0) is also contained in the convex core of H3=Γi . It follows
that fi(S0) is contained in the image of Ĥi .

By perturbing fi(S0) if necessary, we can assume that Ĥi is transverse to
fi(S0) and that Ĥ−1

i (fi(S0)) is an embedded surface in S � (0; 1). Let F

Divergent sequences of Kleinian groups

Geometry and Topology Monographs, Volume 1 (1998)

443



be a component of Ĥ−1
i (fi(S0)) which separates S � f0g from S � f1g. It

is easy to see such a component exists because in the case when Γi is quasi-
Fuchsian, �i and �0i lie in di�erent components of H3=Γi − fi(S0), in the case
when Γi is a b{group, fi(S0) separates a geometrically in�nite end from �i ,
and in the case when Γi is doubly degenerate, fi(S0) separates two ends. Then
�1(F ) is mapped onto �1(S) by the homomorphism induced by inclusion, hence
(ĤijF )#: �1(F )! �1(fi(S0)) is surjective.

We can assume that for each t 2 I , the intersection (S�ftg)\F is at most one
dimensional by perturbing fi(S0) again if necessary. Then there exists t0 2 I
such that (S � ft0g) \ F contains a simple closed curve K which represents
a non-trivial element of �1(S) relatively to the punctures of S . If Ĥi( ; t0)
is a pleated surface, we simply let ki be Ĥi( ; t0). In this case, k−1

i (fi(S0))
contains K , which is essential relatively to the cusps. The pleated surface ki
realizes a measured lamination �t0i in the image of �i , which we let be �i .
The measured lamination �i = �t0i converges after taking a subsequence to a
measured lamination in �(I) hence with the same support as �.

Suppose that Ĥi( ; t0) is an interpolated negatively curved surface. Let �t0i
be the measured lamination of rational depth 1 realized by Ĥi( ; t0). We can
assume that Ĥi( ; t0)(�t0i ) is transverse to fi(S0) again by a perturbation of
fi(S0) without changing the homotopy class of K . Let J = [t0; t1] � I be
an interval such that Ĥi( ; [t0; t1)) are interpolated negatively curved surfaces
and Ĥi( ; t1) is a pleated surface realizing �t0i . Let C be a component of the
complement of �t0i which is not an ideal triangle. Since �t0i has rational depth
1, such a component is unique and every simple closed curve in C is either
represents a cusp or homotopic to FrC .

On the other hand, by the construction of interpolated surfaces, ĤijFrC� J is
constant with respect to t 2 J . If C � ft0g does not intersect K , the pleated
surface Ĥi( ; t1) \ F contains a simple closed curve homotopic to K , and we
can let Ĥi( ; t1) be ki . Suppose that C � ft0g intersects K .

First consider the case when S is not a once-punctured torus. Then C is either
simply connected or an ideal once-punctured monogon. Consider a component
� of (C � J) \ F intersecting K . Since K does not represent a cusp, each
component of � \ (C � ft0g) \K must be an open arc. Since ĤijFrC � J is
constant with respect to t 2 J , the component � must be isotopic to f�\ (C�
ft0g)g�J �xing � \ (FrC�J). This implies that there exists a component K 0

of S � ft1g \ F such that Ĥi(K 0; t1) is homotopic in H3=Γi to Ĥi(K; t0) on
fi(S0). Hence by letting Ĥi( ; t1) be ki , we get a surface as we wanted.
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C � ft1g

C � J

C � ft0g �

(
� \ (C � ft0g)

�
� J

Next suppose that S is a once-punctured torus. The only case to which the
argument above cannot be applied is one when C is a once-punctured open
annulus and K is contained in C � ft0g. By isotoping fi(S0) if necessary we
can assume that all the components of (C � J) \ F are annuli. Still there is
a possibility that the component of (C � J) \ F containing K is an annulus
which is parallel into C � ft0g, and our argument above would break down. If
there is another essential (ie incompressible and not boundary-parallel, where
we regard C � @J as the boundary,) component of (C � J) \ F , then we can
retake K so that K lies on its boundary and our argument above can be applied.
Suppose that all the components are inessential. Then consider another interval
J 0 = [t2; t0] � I , such that Ĥi( ; t) is an interpolated surface if t 2 (t2; t0] and
Ĥi( ; t2) is a pleated surface realizing �t0i . Again we can assume that all the
components of (C � J 0)\F are annuli. Then some component of (C � J 0)\F
is essential because otherwise F cannot be a surface separating S � f0g from
S � f1g. Hence by the argument as before, retaking K , we can assume that
the component of (S � J 0) \ F containing K intersects S � ft2g by a simple
closed curves homotopic to K .

Thus in either case, we can get a pleated surface ki realizing �t0i , which is either
Ĥi( ; t1) or Ĥi( ; t2), and which intersects fi(S0) so that the inverse image of
fi(S0) has a non-contractible component that is not homotopic to a cusp.

Proof of Theorem 3.1 Consider a geometric limit k1: S0 ! H3=Γ1 of the
sequence of pleated surfaces ki: S ! H3=Γi constructed above. (Here S0 is an
open incompressible surface on S .) By construction, k1(S) intersects f1(S0).
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Suppose that S0 is not equal to S . Then there is a frontier component c of S0

on S which does not represent a cusp of S . Note that we can apply the same
argument as Lemma 5.2, and prove that k1(S) does not meet the frontier of
q(E�). Now since k1(c) is homotopic to a cusp component of H3=Γ1 which
can be reached from q(E�), it is homotopic to the image of a cusp of S by f1 .
By pulling back a homotopy by an approximate isometry, this implies that ki(c)
is homotopic to the image of a cusp by fi . Since both ki and fi are homotopic
to �i , this means that c is homotopic to a cusp of S . This is a contradiction.

Thus S0 must be equal to S , and we have a limit pleated surface k1: S !
H3=Γ1 touching f1(S0). By Lemma 5.2, we see that k1(S) \ (H3=Γ1)0 is
contained in q(E�). Therefore k1 can be lifted to a pleated surface k0: S !
H3=G whose intersection with (H3=G)0 is contained in E� .

Now since ki is homotopic to the pull-back of k1 = q � k0 by an approximate
isometry for su�ciently large i, and ki is homotopic to �i , we see that k0

must be homotopic to  . As ki realizes �i and f�ig converges to �, the
pleated surfaces k1 and k0 realize �. As j�j = j�j, by changing the transverse
measure, � can also be realized by k0 . On the other hand, by Lemma 5.1,
 (�) is an ending lamination hence � cannot be realized by a pleated surface
homotopic to  . This is a contradiction. Thus we have completed the proof of
Theorem 3.1.

6 Strong convergence of surface groups

In Theorems 9.2, 9.6.1 in Thurston [26], it is stated and roughly proved that if
a sequence of Kleinian groups, which are isomorphic to a freely indecomposable
Kleinian group (ie satisfying the condition (�) introduced by Bonahon) without
accidental parabolics preserving the parabolicity, converges algebraically to a
Kleinian group without accidental parabolic elements, then the convergence is
strong (ie the geometric limit coincides with the algebraic limit.) (See also
Canary [8].) We gave its detailed proof in Ohshika [19] except for the case
when the Kleinian group is algebraically isomorphic to a surface group. The
reason why we did not include the case of surface group there is that it would
necessitate to prove that for a convergent sequence, the hyperbolic structures
on the two boundary components cannot degenerate to the same point in the
Thurston boundary. As this is proved in Theorem 3.1, we can give the proof
for the case of surface group here. Let (Γi; �i) be a Kleinian group without
accidental parabolic elements with isomorphism �i: �1(S) ! Γi � PSL2C
for a hyperbolic surface of �nite area S . Thurston’s original proof in [26]
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in this case consists of proving that the projectivized bending laminations of
two boundary components of the convex cores of H3=Γi cannot converge to
projective lamination with the same support. This is exactly the argument on
which our proofs of the main theorems are based.

Corollary 6.1 Let S be a hyperbolic surface of �nite area. Let (Γi; �i)
be a Kleinian group without accidental parabolic elements with isomorphism
�i: �1(S) ! Γi � PSL2C. Suppose that f(Γi; �i)g converges algebraically to
a Kleinian group (G; ) without accidental parabolic elements. Then G is also
the geometric limit of fΓig. In other words, fΓig converges strongly to G.

Proof We have only to prove that every subsequence of f(Γi; �i)g has a sub-
sequence which converges strongly to (G; ). Since a subsequence of f(Γi; �i)g
satis�es the condition of Corollary 6.1, we only need to show that f(Γi; �i)g in
the statement of the corollary has a subsequence strongly converging to (G; ).

By taking a subsequence, we can assume that all of the f(Γi; �i)g are ei-
ther quasi-Fuchsian or totally degenerate groups or totally doubly degenerate
groups, and that fΓig converges geometrically to a Kleinian group Γ1 . Sup-
pose �rst that all of the fΓig are quasi-Fuchsian. Let (mi; ni) 2 T (S)�T (S) be
Q((Γi; �i)). If both fmig and fnig converge inside the Teichmüller space (after
taking a subsequence), f(Γi; �i)g converges to a quasi-Fuchsian group strongly
as is well known. (See for example J�rgensen{Marden [13].) Assume that one
of fmig and fnig, say fmig, does not converge inside the Teichmüller space
and converges to a projective lamination [�] in the Thurston compacti�cation
of the Teichmüller space, and that the other, say fnig, converges inside the Te-
ichmüller space. Then G is a b{group. By the same argument as the proof of
Lemma 5.1, the measured lamination � cannot be realized by a pleated surface
homotopic to  . If � is not maximal and connected, as is shown in Thurston [26]
or Lemma 4.4 in [17], G has an accidental parabolic element, which contradicts
our assumption. Hence � is maximal and connected,  (�) represents an ending
lamination of the geometrically in�nite tame end of (H3=G)0 , and G is a to-
tally degenerate b{group. Let �i be a boundary component of the convex core
of H3=Γi corresponding to the ideal boundary component with the structure
ni . Then as is shown in [19], the pleated surface �i converges geometrically to
a boundary component �1 of the convex core of H3=Γ1 which can be lifted
to a boundary component � of the convex core of H3=G, which must be the
whole boundary of the convex core as G is a totally degenerate b{group. Hence
a neighbourhood of the geometrically �nite end of (H3=G)0 is mapped homeo-
morphically to that of a geometrically �nite end of (H3=Γ1)0 by the covering
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projection q: H3=G ! H3=Γ1 . On the other hand, by Proposition 2.6, there
is also a neighbourhood of the geometrically tame end of (H3=G)0 which is
mapped homeomorphically to a neighbourhood of a geometrically in�nite tame
end of (H3=Γ1)0 by q . This implies that G = Γ1 .

Next assume that neither fmig nor fnig converges inside the Teichmüller
space. After taking a subsequence, we can assume that fmig converges to
a projective lamination [�] 2 PL(S) and fnig converges to a projective lami-
nation [�] 2 PL(S) in the Thurston compacti�cation of the Teichmüller space.
Since neither � nor � can be realized by a pleated surface homotopic to  by
Lemma 5.1, they must be maximal and connected again by Thurston [26] or
Lemma 4.4 in [17]. Then we can apply Theorem 3.1 to our situation and see
that the support of � is di�erent from that of �. This implies that the end of
(H3=G)0 with ending lamination represented by  (�) is di�erent from one with
ending lamination represented by  (�) by Lemma 4.3, hence G is totally dou-
bly degenerate. Let e� and e� denote the two distinct ends of (H3=G)0 with
ending laminations represented by  (�) and  (�) respectively. By Proposition
2.6, there are neighbourhoods E� of e� and E� of e� such that qjE� and qjE�
are homeomorphisms to neighbourhoods of ends of (H3=Γ1)0 . As (H3=G)0

has only two ends, this can happen only when Γ1 = G or G is a subgroup
of Γ1 of index 2. We can see that the latter cannot happen by Lemma 2.3
in [19] (this fact is originally due to Thurston [26]). Thus we have proved our
corollary when all of fΓig are quasi-Fuchsian.

Next assume that all the Γi are totally degenerate b{groups. Let mi be the
marked hyperbolic structure on S determined by the conformal structure of
ΩΓi=Γi , and let �i be an ending lamination of unit length of the geometri-
cally in�nite tame end of (H3=Γi)0 . We can assume that f�ig converges to a
measured lamination � after taking a subsequence. By the same argument as
before, � is maximal and connected, and  (�) represents an ending lamination
of (H3=G)0 by Lemma 5.1. First assume that fmig converges inside the Te-
ichmüller space. Then as before, the boundary �i of the convex core of H3=Γi
converges geometrically to a boundary component �1 of the convex core of
H3=Γ1 which can be lifted to a boundary component � of the convex core
of H3=G. Hence G is a totally degenerate b{group, and a neighbourhood of
the geometrically �nite end of (H3=G)0 is mapped homeomorphically by q to
a neighbourhood of an end of H3=Γ1 . Then as before, using Proposition 2.6,
we can conclude that G = Γ1 .

Next assume that fmig does not converge inside the Teichmüller space. Then
after taking a subsequence, we can assume that fmig converges to a projective
lamination [�]. By the same argument as before, we can see that � is maximal
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and connected, and  (�) represents an ending lamination. Then by Theo-
rem 3.1, we can see that the support of � is di�erent from that of �. Hence G
is totally doubly degenerate, and by Proposition 2.6, we conclude that G = Γ1 .

Finally suppose that all the Γi are totally doubly degenerate. Let �i and
�i be measured laminations of the unit length such that �i(�i) and �i(�i)
represent ending laminations of the two geometrically in�nite tame ends of
(H3=Γi)0 . By taking a subsequence, we can assume that f�ig converges to
a measured lamination � and f�ig converges to a measured lamination � in
ML(S). Then as before, both � and � are maximal and connected, and  (�)
and  (�) represent ending laminations of (H3=G)0 . By Theorem 3.1, we can
see that the support of � is di�erent from that of �. Hence the end of (H3=G)0

with ending lamination represented by  (�) is di�erent from that with ending
lamination represented by  (�) by Lemma 4.3, which implies that G is totally
doubly degenerate. Then by Proposition 2.6 again, we conclude that G = Γ1 ,
and the proof is completed.
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