ISSN 1464-8997 479

Geometry & Topology Monographs Volume 1: The Epstein Birthday Schrift Pages 479{492

The boundary of the deformation space of the fundamental group of some hyperbolic 3{manifolds bering over the circle

Leonid Potyagailo

Abstract By using Thurston's bending construction we obtain a sequence of faithful discrete representations $_{\it fi}$ of the fundamental group of a closed hyperbolic 3{manifold bering over the circle into the isometry group $_{\it fi}$ of the hyperbolic space $_{\it fi}$ The algebraic limit of $_{\it fi}$ contains a nitely generated subgroup $_{\it fi}$ whose 3{dimensional quotient $_{\it fi}$ = $_{\it fi}$ has in nitely generated fundamental group, where $_{\it fi}$ is the discontinuity domain of $_{\it fi}$ acting on the sphere at in nity $_{\it fi}$ = $_{\it fi}$ Moreover $_{\it fi}$ is isomorphic to the fundamental group of a closed surface and contains in nitely many conjugacy classes of maximal parabolic subgroups.

AMS Classi cation 57M10, 30F40, 20H10; 57S30, 57M05, 30F10, 30F35

Keywords Discrete (Kleinian) subgroups, deformation spaces, hyperbolic $4\{manifolds, conformally flat 3\{manifolds, surface bundles over the circle$

1 Introduction and statement of results

A nitely generated Kleinian group G is called geometrically nite if for some ">0 there exists an "{neighbourhood of $H_G=G$ in $\mathbf{H}^{n+1}=G$ which is of nite hyperbolic volume. Here $H_G = \mathbf{H}^{n+1}$ is the convex hull of G.

Let us consider for n=3 a hyperbolic $3\{\text{manifold } M=H^3=(PSL_2\mathbf{C})\}$ bering over the circle S^1 with ber a closed surface. The notation is $M={}^{\sim}S^1$. A representation: ${}_{1}(M)$! Conf(\mathbf{S}^3) is called admissible if the following conditions are satisfied.

- (1) : $! \operatorname{Conf}(\mathbf{S}^3)$ is faithful and () = 0 is Kleinian.
- (2) preserves the type of each element, ie () is loxodromic for all 2
- (3) is induced by a homeomorphism f: () ! ($_0$), namely f $f^{-1} =$ (), 2 .

The set of all admissible representations modulo conjugation in $Conf(S^3)$ is called the deformation space $Def(\)$ of the group $\ .$

The set $Def(\)$ inherits the topology of convergence on generators of on compact subsets in S^3 because $Def(\)$ $Conf(S^3)$ $^k=$, k 2 N (is conjugation in $Conf(S^3)$). As $Def(\)$ is a bounded domain [13] two questions have arisen. The rst is to describe the cases when $Def(\)$ is non-trivial and the second is to study the boundary $@Def(\)$, as was done for the classical Teichmüller space [2], [10]. The answer to the rst question is still unknown even in the case when M is Haken. We will consider the case when M contains many totally geodesic surfaces. Each of them produces a curve in $Def(\)$ by Thurston's `bending" construction [19]. Our main interest is in groups which appear on the boundary $@Def(\)$. These are higher dimensional analogs of $B\{groups$ which arise as the limits of sequences of quasifuchsian groups in classical Teichmüller space.

One of the most fundamental questions is to describe the topological type of the orbifold $M(\)=\ (\)=\ (a\ manifold\ in\ the\ case\ when\ is\ torsion-free),$ in particular, when is a function group it is important to know when the fundamental group $_1(M_G=\ =\)$ turns out to be nitely generated, or even more generally when it has nite homotopy type.

In dimension 2 the famous theorem of Ahlfors [1] says that a nitely generated non-elementary Kleinian group G Conf(\mathbb{R}^2) has a factor-space (G)=G consisting of a nite number of Riemann surfaces S_1,\ldots,S_n each having a nite hyperbolic area.

We discovered in [7] that the weakest topological version of Ahlfors' theorem does not hold starting already with dimension 3. Namely we constructed a nitely generated function group F $\operatorname{Conf}(\mathbf{S}^3)$ such that the group $_1(_{F}=F)$ is not nitely generated. Afterwards it was pointed out in [15] that this group is in fact not nitely presented.

It has also been shown that there exists a nitely generated Kleinian group with in nitely many conjugacy classes of parabolics [6].

In [14] we constructed a nitely generated group F_1 such that $_1(_{F_1}=F_1)$ is not nitely generated and having in nitely many non-conjugate elliptic elements; moreover F_1 appears as an in nitely presented subgroup of a geometrically nite Kleinian group in \mathbf{H}^4 without parabolic elements. On the other hand, it was shown in [4] that a nitely generated but in nitely presented group can also appear as a subgroup of a cocompact group in SO(1/4).

Theorem 1 Let $= {}_{1}(M)$ be the fundamental group of a hyperbolic $3\{$ manifold M bering over the circle with ber a closed surface . Suppose that is commensurable with the reflection group R determined by the faces of a right-angular polyhedron D H^{3} . Then there exists a nite-index subgroup L and a path $_{t}$: [0;1] \mathbb{V} Def() such that $_{t}$ converges to a faithful representation $_{1}$ 2 $\mathbb{Q}Def()$ (as t ! 1) and the following hold:

- (1) $_1(F_L)$ contains in nitely many conjugacy classes of maximal parabolic subgroups,
- (2) $_{1}(_{_{1}(F_{L})})=_{1}(F_{L})$ is in nitely generated,

where $F_L = L \setminus_1$ is isomorphic to the fundamental group of a closed hyperbolic surface which nitely covers and $_1(F_L)$ acts discontinuously on an invariant component $_{_1(F_L)}$ \mathbf{S}^3 .

Remark Groups satisfying all the conditions of Theorem 1 do exist. An example of Thurston, of the reflection group in the faces of the right-angular dodecahedron, which is commensurable with a group of a closed surface bundle, is given in [18].

Acknowledgement This paper was prepared several years ago while the author had a Humboldt Fellowship at the Rühr-Universität in Bochum. The author is deeply grateful to Heiner Zieschang and to the Humboldt Foundation for this opportunity. I would also like to thank Nicolaas Kuiper (who died recently) for reading a preliminary version of the manuscript and to express my gratitude to the referee for many useful remarks and corrections.

2 Outline of the proof

Before giving a formal proof of the Theorem let us describe it informally.

Our construction is inspired essentially by papers [6], [8] and [14]. In the rst two a free Kleinian group of nite rank satisfying the conclusion (2) was produced, whereas now we give an example of a closed surface group with this property. Our present construction is essentially easier than that of [14]. Also, we produce a curve in the deformation space whose limit point is the group in question.

 PSL_2C commensurable with **Step 1** We start with an uniform lattice the reflection group R whose limit set is the Euclidean 2{sphere $@B_1$ { the S^3 . There exists a Fuchsian subgroup H_2 boundary of the ball B_1 leaving invariant a vertical plane whose intersection with B_1 is a round circle, its limit set (H_2) (see gure 1). The group H_2 also leaves invariant a geodesic plane W2 B_1 . Consider the action of the group in the outside ball $B_1 = \mathbf{S}^3 n B_1$. For some nite-index subgroup 1 of we construct a new group G_1 obtained by Maskit's Combination theorem from $_1$ and combined along the common subgroup $H_2 = \text{Stab } w_2$, where is the reflection in . The new group G_1 is still isomorphic to some subgroup G*R* of nite index essentially because the same construction can be done inside B_1 by reflecting the picture along the geodesic plane W_2 . Thus G_1 belongs to the deformation space $Def(G_1)$. One can obtain a fundamental domain $R(G_1)$ which is situated in a small neighbourhood of the spheres $@B_1$ and $(@B_1)$.

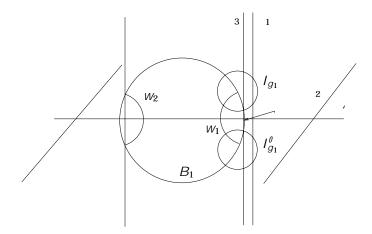


Figure 1

Step 2 There is another geodesic plane w_1 B_1 disjoint from w_2 whose stabilizer in $_1$ is H_1 (see gure 2). Denote by B_2 the ball (B_1) . Take a sphere B_1 passing through the circle $w_3 \setminus B_2$ { the limit set of the group H_1 { and tangent to the isometric spheres of some element $g_1 \ 2_{-1}$, where H_1 is a subgroup of $_1$ stabilizing w_1 . We now construct a family of Euclidean spheres $_t$ (0 $_t$ 1; $_t$ =) and corresponding groups G_t obtained as before from G_1 and $_tG_1$ $_t$ by using the combination method along common closed surface subgroups. We prove then that there is a path $_t$: $_t$:

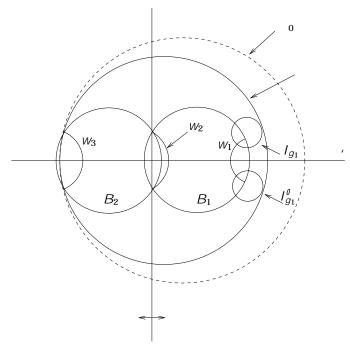


Figure 2

3 Preliminaries

We will consider the Poincare model of hyperbolic space \mathbf{H}^3 in the unit ball B_1 equipped with the hyperbolic metric . By a right-anguled polyhedron D \mathbf{H}^3 we mean a polyhedron all of whose dihedral angles are =2.

Consider the tesselation of \mathbf{H}^3 by images of D under the reflection group R from Theorem 1. Denote by $W + \mathbf{H}^3$ the collection of geodesic planes W such that there exists $r \geq R$, for which $r(W) \setminus \mathcal{D}$ is a face of D.

It is easy to see that if $\ _1$ and $\ _2$ are two faces of D with $\ _1$ \ $\ _2$ = ;, then also the geodesic planes $\ _{-1}$ $\ _1$ and $\ _{-2}$ $\ _2$ have no point in common. One can easily show that the distance between $\ _1$ and $\ _2$, as well as that of $\ _{-1}$ and $\ _{-2}$, is realized by a common perpendicular ' for which ' \int $D \in \ _{-1}$.

Let $_0 = R \setminus$ which is a subgroup of a nite index in both groups R and . By passing to a subgroup of a nite index and preserving notation, we may assume that $_0$ is a normal subgroup in R, $jR:_0j < 1$. For a plane $w \ 2 \ W$ we write $H_W = \operatorname{Stab}(w;_0) = fg \ 2 \ _0$; gw = wg. It is not hard to see that H_W is a Fuchsian group of the rst kind commensurable with the reflection group determined by the edges of some face of the polyhedron $r(D_1)$; $r \ 2 \ R$.

Let us now x two disjoint planes w_1 and w_2 from W containing opposite faces of D and let ' be their common perpendicular; up to conjugation in Isom \mathbf{H}^3 we can assume that ' is a Euclidean diameter of B_1 . Denote $B_1 = \mathbf{S}^3 ncl(B_1)$ as well (where cl()) is the closure of a set). We have the following:

$$I_{g_1} \setminus_{1} \neq : \text{ and } g_1(I_{g_1} \setminus_{1}) = I_{g_1}^{\emptyset} \setminus_{1}:$$
 where $I_{g_1} : I_{g_1}^{\emptyset} = I_{g_1^{-1}}$ are isometric spheres of g_1 : (1)

Proof Up to further conjugation in Isom B_1 preserving 'we may assume that a_1 is the vertical plane tangent to $a_2 B_1$ at $a_3 C_1 C_2 C_2 C_2$. Take $a_4 C_2 C_3$ and let $a_4 C_4 C_4$ be any primitive element corresponding to a simple dividing loop on the surface $a_4 C_4$ be any primitive element corresponding to a simple dividing loop on the surface $a_4 C_4$ be any primitive element corresponding to a simple dividing loop on the surface $a_4 C_4$ be any primitive element corresponding to a simple dividing loop on the surface $a_4 C_4$ be any primitive element corresponding to a simple dividing loop on the surface $a_4 C_4$ be any primitive element corresponding to a simple dividing loop on the surface $a_4 C_4$ be any primitive element corresponding to a simple dividing loop on the surface $a_4 C_4$ be any primitive element corresponding to a simple dividing loop on the surface $a_4 C_4$ be any primitive element corresponding to a simple dividing loop on the surface $a_4 C_4$ be any primitive element corresponding to a simple dividing loop on the surface $a_4 C_4$ be any primitive element corresponding to a simple dividing loop on the surface $a_4 C_4$ be any primitive element corresponding to a simple dividing loop on the surface $a_4 C_4$ be any primitive element corresponding to a simple dividing loop on the surface $a_4 C_4$ be any primitive element corresponding to a simple dividing loop on the surface $a_4 C_4$ be any primitive element corresponding to a simple dividing loop on the surface $a_4 C_4$ be any primitive element corresponding to a simple dividing loop of the surface $a_4 C_4$ be any primitive element corresponding to a simple dividing loop of the surface $a_4 C_4$ be any primitive element corresponding to a simple dividing loop of the surface $a_4 C_4$ be a surface $a_4 C_4$

Suppose rst that $I_{g_1} \setminus_{3} = \%$. In this case we proceed as follows. Put $I_{g_1} \setminus_{w_2} 2R$, where $I_{g_1} \setminus_{w_2} 2R$, where $I_{g_1} \setminus_{w_2} 2R$, where $I_{g_1} \setminus_{w_3} 2R$, where $I_{g_1} \setminus_{w_3} 2R$, where $I_{g_1} \setminus_{w_3} 2R$ is a hyperbolic element whose invariant axis is $I_{g_1} \setminus_{w_3} 2R$. In fact this follows directly from the fact that the xed point of the hyperbolic element is a conical limit point of $I_{g_1} \setminus_{w_3} 2R$, and so the approximating sequence $I_{g_1} \setminus_{w_3} 2R$ should intersect a xed horosphere (or equivalently by sending to the in nity and passing to the half-space model one can see that becomes now a dilation $I_{g_1} \setminus_{w_3} 2R$ by which implies that the translations of the image of $I_{g_1} \setminus_{w_3} 2R$

powers of the dilation will intersect a xed horosphere at in nity). Since $_0$ is normal in R it now follows that ng_1 $^{-n}$ 2 $[H_{^n(W_1)}; H_{^n(W_1)}]$ $_0$ and $^n(I_{g_1}) = I_{^ng_1}$ $^{-n}$. The latter is true since $_1$ preserves each Euclidean plane passing through $B_1 \setminus '$ and, hence $(^ng_1 ^{-n})j_{^n(I_{g_1})}$ is an Euclidean isometry. So up to replacing w_1 by $^n(w_1)$ and g_1 by $^ng_1 ^{-n}$ if needed, we may assume that $I_{g_1} \setminus _3 \not = j$. The same conclusion is then obviously true for a plane $_1$ B_1 su ciently close to $_3$.

For $'_1=I_{g_1}\setminus {}_1$ we now claim that $g_1('_1)='_2=I^{\emptyset}_{g_1}\setminus {}_1$. Indeed, $g_1={}_2$ where ${}_2$ is orthogonal to ${}_1$ and contains ' (gure 1). Evidently

$$g_1('_1) = {}_{2}(I_{g_1} \setminus {}_{1}) = {}_{2}(I_{g_1}) \setminus {}_{1} = I_{g_1}^{\emptyset} \setminus {}_{1}$$
 (2)

since $_{2}(_{1}) = _{1}$. The lemma is proved.

So we can suppose that w_1 2 W is chosen satisfying all the conclusions of Lemma 1. Let w_2 2 W be a geodesic plane disjoint from w_1 and let ' be their common perpendicular passing through the origin of B_1 . Now consider the Euclidean plane orthogonal to ' (gure 2) such that

It is not hard to see that $Stab(\ ;\)=Stab(w_2;\)=H_{w_2}.$ Reflecting our picture in the plane we get

$$B_2 = (B_1) ; W_3 = (W_2)$$
 and $H_{W_3} = H_{W_1} :$

By Lemma 1 we can now nd a Euclidean sphere centered on 'which goes through the circle $W_3 \setminus @B_2$ and is tangent to I_{g_1} (gure 2). Moreover, by Lemma 1, is tangent also to $I_{g_1}^{\emptyset}$.

Denote $\theta = -1$ ().

Lemma 2 There exists a subgroup $_1$ $_0$ of nite index such that the following conditions hold:

- (a) The boundary of the isometric fundamental domain $P(\ _1)$ B_1 lies in a regular "{neighbourhood of @ B_1 B_1 = \mathbf{S}^3 ncl(B_1); ">0.
- (b) $I = 770 \cdot 10^{-1} g_1 \cdot g_1^{-1} g$.
- (c) For subgroups $H_1={}_1\setminus H_{w_1}$; $H_2={}_1\setminus H_{w_2}$ there exists another fundamental domain $R({}_1)$ B_1 of ${}_1$ such that

$$R(\ _1) \setminus (\ _{\lceil} \ _{0}) = P(H) \setminus (\ _{\lceil} \ _{0});$$

where P(H) is an isometric fundamental domain for the group $H = hH_1$; H_2i .

(d) $g_1 \ 2 \ _1 \setminus [H_1, H_1]$.

Proof This Lemma can be obtained by repeating the arguments of [14, Main Lemma]. We just sketch these considerations. First, we choose a subgroup $_0$ of a nite index satisfying conditions (a) and (b) such that $g_1 \ 2^-$ by using the property of separability of in nite cyclic subgroups in $_0$ [9].

Let us introduce the following notation: $_{1}^{-}=B_{1}n^{S}_{2}$ ($_{1}^{-}$) where $_{1}^{-}$ is the component of $\mathbf{S}^{3}n$ for which w_{3} 2 $_{1}^{-}$. Let $_{1}^{\emptyset}=\operatorname{Stab}(_{1}^{-};_{1})$.

The complete proof of the following assertion can be also found in [14, Lemma 3].

Lemma 3 The group $G_1 = h \begin{pmatrix} 0 \\ 1 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ i is discontinuous and

- (1) $G_1 = \begin{pmatrix} 0 & H_2 \\ 1 & H_2 \end{pmatrix} \begin{pmatrix} 0 & 1 \end{pmatrix}$.
- (2) G_1 is isomorphic to a subgroup G_1 R of nite index.

Sketch of proof (1) This follows from the fact that the plane is strongly invariant under H_2 in 0_1 by [14, Lemma 3.c], which means H_2 = and $\lambda = \frac{1}{2} \frac{1}{2} n H_2$. One can now get assertion (1) from Maskit's First Combination theorem [11].

(2) Consider the reflection w_2 in the geodesic plane w_2 B_1 . We claim that the group $G_1 = h \ _1^0$; $w_2 \ _1^0 \ _{w_2} i$ is isomorphic to G_1 . Indeed, w_2 is also strongly invariant under H_2 in $\ _1^0$ and we again observe that $G_1 = \ _1^0 \ _{H_2} (\ _{w_2} \ _1^0 \ _{w_2}) = G_1$ because $w_2 \ j_{w_2} = \ j = id$.

Now $_{w_2}$ 2 R. Therefore, G_1 R and G_1 has a compact fundamental domain $R(G_1)=R(\begin{smallmatrix} \emptyset \\ 1 \end{smallmatrix})\setminus {}_{w_2}(R(\begin{smallmatrix} \emptyset \\ 1 \end{smallmatrix}))$. The covering \mathbf{H}^3 $(G_1\setminus {}_0)$! \mathbf{H}^3 G_1 is nite since $jR: {}_{0}j<1$ and, hence, the manifold $M(G_1\setminus {}_0)=\mathbf{H}^3$ $(G_1\setminus {}_0)$ is compact. Thus, the covering $M(G_1\setminus {}_0)$! $M({}_0)$ is nite as well and so j ${}_{0}:G_1\setminus {}_{0}j<1$.

Corollary 4 There exists a path $_{t}$: [0;1] ! $Def(G_1)$ such that $_{0} = G_1$ and $_{1} = G_1$.

Proof By choosing a continuous family of spheres t for which $t = W_2 \setminus t = (H_2)$; $t \in t$ $t \in$

By construction the domain $R(G_1) = R(\begin{smallmatrix} \emptyset \\ 1 \end{smallmatrix}) \setminus (R(\begin{smallmatrix} \emptyset \\ 1 \end{smallmatrix}))$ is fundamental for the action of G_1 in G_1 .

Claim 5 $R(G_1) \setminus = P(H_3) [I_{g_1} [I_{g_1}^{\emptyset}] \setminus .$

Proof Recall that $^+$ ($^-$) means the right (left) component of \mathbf{S}^3n ($I_{g_1}\ 2^+$). Then $^+\ \setminus\ R(^0_1) = P(H_1)\ \setminus\ =\ I_{g_1}\ I_{g_1}^0\ \setminus\$ by (b) and (c) of Lemma 2.

Let us consider now the family of spheres t centered on the $y\{axis (gure 2) such that <math>t \setminus W_3 = t \setminus W_3$; $t \in S_1 = t \setminus S_2 = t \setminus S_3$, where $t \in S_1 \setminus S_3 = t \setminus S_4$ (recall $t \in S_4 = t \setminus S_4$) \ ext($t \in S_4 = t \setminus S_4$) \ ext($t \in S_4 = t \setminus S_4$) \ ext($t \in S_4 = t \setminus S_4$). Denote by $t \in S_4 = t \setminus S_4$ the corresponding reflections. As before take the domain $t \in S_4 = t \setminus S_4$ and the group $t \in S_4 = t \setminus S_4$ where $t \in S_4 = t \setminus S_4$ is the unbounded component of $t \in S_4$ and $t \in S_4$.

Denote $G_t = hG_1^0$; ${}_tG_1^0$ ${}_ti$. Evidently, $G_1 = \lim_{t \downarrow -1} G_t$.

Lemma 6 The groups G_t are discontinuous, $t \ge [0;1]$.

Proof First, let us prove the lemma for $t \in 1$. By Claim 5 we have now that $R(G_1) \setminus_{t} P(H_3) \setminus_{t}$. Moreover we claim also that

$$g_{t} \setminus_{t=;;g} g_{2} G_{1} n H_{3}; H_{3}_{t} = t;$$

where $H_{3} = H_{1}$: (3)

To prove (3) we only need to show that $g(\ _t \setminus (H_3)) \setminus (\ _t \setminus (H_3)) = \ ;$, but this can be shown from the fact that each point of (H_3) is a point of approximation (see [14, Claim 1]).

Geometry and Topology Monographs, Volume 1 (1998)

All conditions of Maskit's First Combination theorem are now satis ed for the groups G_1^{\emptyset} and ${}_tG_1^{\emptyset}$ ${}_t$ $(t \neq 1)$ [11] and we obtain also

$$G_t = G_1^{\emptyset} \quad H_3 \left(\quad {}_t G_1^{\emptyset} \quad {}_t \right) \tag{4}$$

where the G_t are all discontinuous, $t \ge [0:1)$.

Let us now consider the group G_1 and the domain $R(G_1) = R(G_1) \setminus (R(G_1))$. Our goal now is to show that $R(G_1)$ is a fundamental domain for the action of G_1 in $G_1 \cap G_2 \cap G_3$. If now $G_1 \cap G_2 \cap G_4$ is a set of generators of $G_1 \cap G_2 \cap G_3$ then $G_1 \cap G_2 \cap G_3 \cap G_4$ is included in $G_2 \cap G_3 \cap G_4$ and $G_2 \cap G_4 \cap G_5$ is included in $G_3 \cap G_4 \cap G_5$ because some of its isometric spheres belong to the boundary $R(G_1) \cap G_4 \cap G_5$

We want to apply the Poincare Polyhedron theorem [12]. Indeed, an arbitrary cycle of edges in $\mathscr{Q}R(G_1)$ consists either of edges situated in $\mathscr{Q}(R(G_1)) \setminus \operatorname{int}()$, and $\mathscr{Q}(R(G_1)) \setminus \operatorname{ext}()$, or is an edge cycle $I_1 = I_{g_1} \setminus I_{g_2}$; $I_2 = I_{g_1}^{\emptyset} \setminus I_{g_2}^{\emptyset}$, where I_{g_k} ; $I_{g_k}^{\emptyset}$ are the isometric spheres of I_k and I_k and I_k are the isometric spheres of I_k are the isometric spheres of I_k and I_k are the isometric spheres of I_k and I_k are the isometric spheres of I_k are the isometric spheres of I_k and I_k are the isometric spheres of

We now claim that the element $g=g_2^{-1}$ g_1 is parabolic with a xed point $d=I_{g_1}\setminus I_{g_2}$. Indeed, g_2^{-1} $g_1=I_{g_1}$ because $g_1=I_{g_1}$ and g_1 is orthogonal to (gure 2). Now it is easy to check that g(d)=d, $g_1I_{g_1}$ int($g_2I_{g_2}$) and $g(\operatorname{int}(I_{g_1}))=\operatorname{ext}(g(I_{g_1}))$, therefore the elements g and $g^0=g_1$ g_1 g_1^{-1} are parabolics.

All conditions of the Maskit{Poincare theorem are valid at the edges $'_i$ also and, hence, G_1 is discontinuous. Lemma 6 is proved.

Lemma 7 The group G_0 is isomorphic to a subgroup L^{\emptyset} R of a nite index.

Proof We repeat our construction of G_0 by modelling it in \mathbf{H}^3 so as to get the required isomorphism.

Recall that we started from the group ${}^{0}_{1}$ Isom(\mathbf{H}^{3}) and showed that $G_{1}=h_{1}^{0}$; ${}^{0}_{1}$ $i=G_{1}=h_{1}^{0}$; ${}^{0}_{w_{2}}$ ${}^{0}_{1}$ (see Lemma 4). Next we constructed G_{0} by using reflection in ${}^{0}_{0}={}^{0}_{0}$ such that ${}^{0}_{0}\setminus w_{3}={}^{0}_{0}\setminus B_{1}={}^{0}_{0}$; ${}^{0}_{0}\setminus B_{1}={}^{0}_{0}$;

Let $= W_2(W_1)$ \mathbf{H}^3 ; 2 W. Again let us take the subgroup G_1 of G_1 which is $G_1 = \operatorname{Stab}(\mathbf{H}^3 n G_1(^-); G_1)$, where $^-$ is a subspace $\mathbf{H}^3 n$ not containing W_2 .

Geometry and Topology Monographs, Volume 1 (1998)

By construction the fundamental domain $R(G_1) = R(\begin{smallmatrix} \ell \\ 1 \end{smallmatrix}) \setminus_{w_2} (R(\begin{smallmatrix} \ell \\ 1 \end{smallmatrix}))$ of the group G_1 satis es $R(G_1) \setminus_{e} = P(H_3^{\ell} = \operatorname{Stab}(\begin{smallmatrix} \ell \\ 1 \end{smallmatrix}))$. Again by Maskit's First Combination theorem we have a group L^{ℓ} :

$$L^{\emptyset} = G_1 \quad H_0^{\emptyset} \left(G_1 \right) \tag{5}$$

We constructed an isomorphism $'_1$: G_1 ! G_1 in Lemma 4 such that $'_1$ $_{\mathcal{W}_2}$ = $'_1$, therefore $'_1(\mathcal{H}_3^\emptyset)$ = \mathcal{H}_3 and $'_1(G_1)$ = G_1^\emptyset . It follows now from (4) and (5) that the map $'_1$ $_{G_1}$ can be extended to an isomorphism ': \mathcal{L}^\emptyset ! G_0 .

Index $jR: L^{\theta}j$ is nite because L^{θ} has a compact fundamental domain. The Lemma is proved.

Recall that we identify $[\] 2 \operatorname{Def}(L^{\emptyset})$ with (L^{\emptyset}) .

Lemma 8 There exists a path $_t$: [0;1] ! $_C/(\operatorname{Def}(L^{\emptyset}))$ such that $_0 = L^{\emptyset}$, $_1 = G_1 \ 2 @ \operatorname{Def}(L^{\emptyset}), _{t}([0;1)) \ \operatorname{Def}(L^{\emptyset}).$

Proof We have constructed a path $_t$: [0:1] ! $Def(G_1)$ in Corollary 4 such that $_0 = G_1$, $_1 = G_1$ and $_t$ is a family of admissible representations. Let further $_t$ $_{G_1} = _t^{\emptyset}$. Obviously, the representations $_t^{\emptyset}$ are also admissible and $_1^{\emptyset}(G_1) = G_1^{\emptyset}$. We can easily extend our family $_t^{\emptyset}$ to a family of admissible representations $_t$: $_t^{\emptyset}$! $_t^{\emptyset}$ $_t^{\emptyset}$ by the formula $_t = _t^{\emptyset}$ $_t^{\emptyset}$, where $_t^{\emptyset}$ are the spheres constructed in Corollary 4.

Observe that $_1 =$ and now take a new continuous family of spheres $_t$ for which $_t \setminus w_3 = (H_s) = w_3 \setminus B_2$ and $_1 = w_3$; $_2 = _0$ where w_3 is the sphere containing w_3 ($t \ge [0;1]$).

Again we have a path ${}^{\ell}_t(L^{\ell}) = hG_1^{\ell}$; ${}_tG_1^{\ell}$ ${}_ti$. Composing the path ${}_t$ with ${}^{\ell}_t$ and with the path corresponding to spheres ${}_t$ connecting ${}_0$ with ${}_1$ we get required path ${}_t$. The Lemma is proved.

4 Proof of Theorem 1

(1) Denote by $F = {}_1$ a xed ber group of our initial manifold M, and let also $F_0 = {}_0 \setminus F$.

By J rgensen's theorem [5] the limit $_1=\lim_{\substack{t'=1\\t'=1}} _t$ is an isomorphism $_1:L^{\theta}$! G_1 . Let us consider the subgroup $L=L^{\theta}\setminus_{0}:j_0:Lj<1$. Put also $F_L=L\setminus F_0$ for its normal subgroup. We have also the curve $_t(L)$ Def(L). Let $N=_1(L):F=_1(F_L)$. Let us show that $g=g_2^{-1}$ g_1 2 F. To this

end let us recall that the element g_1 was chosen from the very beginning being in $[H_{W_1}; H_{W_1}]$ (Lemma 1). Recalling also that $_1^{-1}(g_1) = g_1$ and denoting $_1^{-1}(g_2) = g_2^0$, by construction we get $g_2^0 = g_1$; $= _{W_2}(W_1)$; g_1 2 $[H_{W_1}; H_{W_1}]$ $[F_0; F_0]$ (see Lemma 1). The group $_0$ was chosen to be normal in the reflection group R, and since $[_0; _0]$ F, it is straightforward to see that

$$r[F_0; F_0]r^{-1}$$
 $F_0; r 2R:$

Hence, $g_2^{\ell} \ 2 \ F_0$, and for the element $g^{\ell} = (g_2^{\ell})^{-1} \ g_1$ we immediately obtain $g^{\ell} \ 2 \ F_L = F_0 \setminus L^{\ell}$. It follows that $_1(g^{\ell}) = g = g_2^{-1} \ g_1 \ 2 \ F_0 \setminus G_1 = F$ as was promised.

We have that N is isomorphic to the semi-direct product of F and the in nite cyclic group \mathbb{Z} , so taking the element $t \ 2 \ NnF$ projecting to the generator of N=F, we observe that the elements

$$g_n = t^n g t^{-n} 2 F ; g 2 F ; n 2 \mathbf{Z}$$
 (6)

are all parabolics. Since N contains no abelian subgroups of rank bigger than 1 and $t^n \not a F$ ($n \not a \mathbf{Z}$) one can easily see that the elements (6) are also non-conjugate in F. We have proved (1) of the Theorem.

(2) By the construction, the fundamental polyhedron $R(G_1)$ of the group G_1 contains only one conjugacy class of parabolic elements g of rank 1. There is a strongly invariant cusp neighborhood $B_g = [0,1]$ R^1 [0,1) which comes from the construction of $R(G_1)$. So each parabolic g_n of type (6) gives rise to submanifold

$$B_{g_n} hg_n i = T_n \quad [0; 1); T_n = S^1 \quad S^1$$
 (7)

in the manifold $M(F) = {}_{N} F$. Therefore M(F) contains in nitely many parabolic ends (7) bounded by tori T_{D} . They all are non-parallel in M(F) and therefore by Scott's \core " theorem the group ${}_{1}(M(F))$ is not nitely generated [16].

Remark By using the argument of [14] one can prove:

Theorem 2 There is a (non-faithful) represention $_{1+}$ " which is "{close to $_{1}$ for some small " > 0 such that the group $_{1+}$ " (F_{L}) is in nitely generated, has in nitely many non-conjugate elliptic elements. Moreover, $_{1+}$ " (F_{L}) is a normal in nitely presented subgroup of a geometrically nite group $_{1+}$ "(L) without parabolics.

To prove the theorem one can continue to deform the group for 1 < t - 1 + m (these representations will no longer be faithful) in order to get an elliptic element g_t whose isometric spheres form an angle (t) instead of being tangent. To do this in our Lemma 2, instead of the sphere to the isometric spheres of <math>to the isometric spheres of the isometric spheres of <math>to the isometric spheres of the isometric spheres of <math>to the isometric spheres of the isometric spheres

References

- [1] **LV Ahlfors**, *Finitely generated Kleinian groups*, Amer. J. Math. 86 (1964) 413{429; 87 (1965) 759
- [2] L Bers, On boundaries of Teichmüller spaces and on Kleinian groups I, Annals of Math. 91 (1970) 570{600
- [3] **B Bowditch**, Geometrical niteness of hyperbolic groups, preprint, University of Melbourne
- [4] **B Bowditch**, **G Mess**, *A 4{Dimensional Kleinian Group*, Trans. Amer. Math. Soc. 344 (1994) 391{405
- [5] **T J rgensen**, Compact 3 (manifolds of constant negative curvature bering over the circle, Annals of Math. 106 (1977) 61{72
- [6] **M Kapovich**, On Absence of Sullivan's cusp niteness theorem in higher dimensions, preprint
- [7] **M Kapovich**, **L Potyagailo**, On absence of Ahlfors' niteness theorem for Kleinian groups in dimension 3, Topology and its Applications, 40 (1991) 83 {91
- [8] M Kapovich, L Potyagailo, On absence of Ahlfors' and Sullivan's niteness theorems for Kleinian groups in higher dimensions, Siberian Math. Journal 32 (1992) 61{73
- [9] **D Long**, *Immersions and embeddings of totally geodesic surfaces*, Bull. London Math. Soc. 19 (1987) 481{484
- [10] **B Maskit**, On boundaries of Teichmüller spaces and on Kleinian groups, II, Annals of Math. 91 (1970) 608{638
- [11] **B Maskit**, *On Klein's Combination theorem III*, from: \Advances in the theory of Riemann Surfaces", Princeton Univ. Press (1971) 297{310

- [12] **B Maskit**, *Kleinian groups*, Springer{Verlag (1988)
- [13] **J Morgan**, Group action on trees and the compacti cation of the space of conjugacy classes of SO(n;1) {representations, Topology 25 (1986) 1{33}
- [14] **L Potyagailo**, Finitely generated Kleinian groups in 3{space and 3{manifolds of in nite homotopy type, Trans. Amer. Math. Soc. 344 (1994) 57{77
- [15] **L Potyagailo**, *The problem of niteness for Kleinian groups in 3 {space*, from: \Proceedings of International Conference, Knots-90", Osaka (1992)
- [16] **P Scott**, Finitely generated 3 (manifold groups are nitely presented, J. London Math. Soc. 6 (1973) 437{440
- [17] **P Scott**, Subgroups of surface groups are almost geometric, J. London Math. Soc. 17 (1978) 555{565; Correction ibid 32 (1985) 217{220
- [18] **D Sullivan**, Travaux de Thurston sur les groupes quasi-fuchsiens et les varietes hyperboliques de dimension 3 bres sur S^1 , Lecture Notes in Math, 842, Springer{Verlag, Berlin{New York (1981) 196{214}}
- [19] **W Thurston**, *The geometry and topology of 3 {manifolds*, Princeton University Lecture Notes (1978)

Departement de Mathematiques Universite de Lille 1 59655 Villeneuve d'Ascq, France

Email: potyag@gat.univ-lille1.fr

Received: 20 November 1997 Revised: 7 November 1998