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On the Burau representation modulo a small prime

D Cooper

D D Long

Abstract We discuss techniques for analysing the structure of the group
obtained by reducing the image of the Burau representation of the braid
group modulo a prime. The main tools are a certain sesquilinear form �rst
introduced by Squier and consideration of the action of the group on a
Euclidean building.
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1 Introduction

Despite the work of many authors, the group theoretic image of linear rep-
resentations of the braid groups remains mysterious in most cases. The �rst
nontrivial example, the Burau representation is not at all well understood. This
representation

�n: Bn ! GL(n− 1;Z[t; t−1])

is known not to be faithful for n � 6 ([5] and [6]) but the nature of the image
group and in particular, a presentation for the image group has not been found.
In [3], we simpli�ed the problem by composing �n with the map which reduces
coe�cients modulo 2. In this way, we were able to give a presentation for
the image of the simpli�ed representation �4 ⊗ Z2 . (Throughout this paper
we use the notation Zp for the �nite �eld with p elements.) Of course, the
motivation for this approach comes from the classical problem of whether the
representation �4 is faithful and to this end we pose the question:

Question 1.1 Is there any prime p for which the representation

�4 ⊗ Zp: B4 ! GL(3;Zp[t; t−1])

is faithful?
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It is a consequence of some results of this note that the representation is not
faithful in the case p = 3, (below we exhibit a braid word in the kernel) however
the program for attacking the problem runs into di�culty at the �nal stage when
p = 5. This case remains open and has some features which suggest it may be
di�erent to the �rst two primes.

In order to describe our approach, we recall that the group GL(3;Zp[t; t−1])
acts on a certain contractible two dimensional simplicial complex, � = �(p) a
so-called Euclidean building (see [2]). This is de�ned by embedding

GL(3;Zp[t; t−1]) −! GL(3;Zp(t))

where Zp(t) is the �eld of fractions of the ring Zp[t; t−1]. This target group
admits a discrete rank one valuation de�ned by �(p=q) = degree(q)−degree(p).
A standard construction now yields the complex �. We briefly outline how this
building and action are de�ned, restricting our attention to the case n = 4, since
this is the only case in which we shall subsequently be interested. This will serve
the additional purpose of establishing notation. Standard properties of � imply
that

O = fx 2 Zp(t) j �(x) � 0 g

is a subring of Zp(t), the valuation ring associated to � . This is a local ring and
the unique maximal ideal is easily seen to be M = fx 2 Zp(t) j �(x) > 0 g, a
principal ideal. Choose some generator � for this ideal. This element is called
a uniformizing parameter and by construction we have that �(�) = 1. Since M
is maximal, the quotient k = Zp(t)=M is a �eld, the residue class �eld. One
sees easily that in this case, the residue class �eld is Zp .

Now let V be the vector space Zp(t)3 . By a lattice in V we shall mean an
O{submodule, L, of the form L = Ox1 � Ox2 � Ox3 where fx1; x2; x3g is
some basis for V . Thus the columns of a non-singular 3 � 3 matrix with
entries in Zp(t) de�nes a lattice. The standard lattice is the one corresponding
to the identity matrix. We de�ne two lattices L and L0 to be equivalent,
if for some � 2 Zp(t)� we have L = �L0 . We denote equivalence class by
[L]. The building � is de�ned as a flag complex in the following way. The
points are equivalence classes of lattices, and [L0]; ::::; [Lk ] span a k{simplex
(in our situation k = 0; 1; 2 are the only possibilities) if and only if one can �nd
representatives so that �L0 � L1 � ::: � Lk � L0 .

All 2{simplices are of the form f[x1; x2; x3]; [x1; x2; �x3]; [x1; �x2; �x3]g; this
is usually referred to as a chamber and denoted by C . Clearly the group
GL3(Zp(t)) acts on lattices and one sees easily that incidence is preserved,
so that the group acts simplicially on �. It is shown in [2] that this building
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is a so-called Euclidean building, in particular, it is contractible and can be
equipped with a metric which makes it into a CAT (0) space and for which
GL3(Zp(t)) acts as a group of isometries. The metric is such that each 2 di-
mensional simplex is isometric to a unit Euclidean equilateral triangle.

We now return to our situation. One of the di�culties of dealing with repre-
sentations of braid groups is that it is extremely di�cult to determine exactly
which matrices are in the image. We bypass this by dealing with a group which
contains im(�4 ⊗ Zp). To de�ne this group, we recall that it was shown by
Squier [7] that the Burau representation is unitary in the sense that there is a
matrix

J =

0@ −(s+ 1=s) 1=s 0
s −(s+ 1=s) 1=s
0 s −(s+ 1=s)

1A
with the property that A�JA = J for all A 2 im(�n). Here the involution �
comes from extending the involution of Zp[t; t−1] generated by t! 1=t to the
matrix group by (ai;j)� = (a�j;i), where s2 = t.

We de�ne the subgroup IsomJ(�) of GL(3;Zp(t)) to be those matrices with
Laurent polynomial entries which are unitary for the form J . The advantage
of dealing with this subgroup is that the condition that a matrix lies inside
IsomJ(�) is easily used.

The strategy now is to examine the action of IsomJ(�) on �. This is interest-
ing in its own right. Moreover, the greater ease of dealing with this subgroup
means that we are able to compute the complex �=IsomJ(�) together with all
vertex, edge and 2{simplex stabilisers. We then appeal to results of Haefliger
[4] to compute a presentation for the group IsomJ(�).

Now recall that homotheties act trivially on � so that the presentation for
IsomJ(�) is to be compared with the following presentation of B4=centre(B4):

Lemma 1.2 The group B4=centre(B4) is presented as

hx; y j x4 = y3 = 1 [x2; yxy] = 1 i

where x = �1�2�3 and y = x�1 .

This is presumably well known to the experts|it is derived in [3]. The starting
point for this work is:

Lemma 1.3 The group stabJ(I) acts on � as a �nite group.
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Sketch of proof If A 2 stabJ(I), then its action on � is unchanged by ho-
mothety and it’s easily seen that we can adjust any such A by applying �tk
so that A 2 SL(3;O). Rewriting the unitary condition as A� = JA−1J−1

and noting that J 2 GL(3;O), we see that A� 2 SL(3;O). However the only
matrices with Laurent polynomial entries for which A and A� have all entries
valuing positively are the constant matrices.

Thus we have shown that the only such A have constant entries up to homoth-
ety. In particular, they are unchanged by setting t = 1, so that stabJ(I) can be
regarded as a subgroup of the �nite group GL(3;Zp), completing the proof.

This has the immediate corollary:

Corollary 1.4 For every vertex v 2 �, stabJ(v) is a �nite group.

Proof The building � is locally �nite, in fact the link of every vertex is the
flag manifold in the vector space Z3

p . The stabiliser of any vertex acts on this
set as a group of permutations, so by passing to a subgroup of �nite index in
stabJ(v) we obtain a subgroup which acts as the identity on all vertices in the
link. Since every vertex is connected to I by some chain of vertices, we see
that for every v , there is a subgroup of �nite index which lies inside stabJ(I),
a �nite group.

We now focus on the case p = 3. In this case one �nds by calculation:

Theorem 1.5 At the prime 3, group stabJ(I) acts on � as Z4
�= hxi.

Remark 1.6 For p = 2; 3; 5, the group stabJ(I) acts as the cyclic group Z4 .
For p = 7 it is cyclic of order 8 and for p = 11, cyclic of order 12.

One important di�erence between the case p = 2 and that of the larger primes
is that it is one of the consequences of the results of [3] that IsomJ(�(2)) �=
im(�4 ⊗ Z2), this is not so for (at least some and conjecturally all) primes
p � 3. In particular, for p = 3, we are able to construct (see below) an element
u 2 IsomJ(�(3)) which has order 6; it is easy to see that this element does
not lie in the subgroup im(�4 ⊗ Z3). Its matrix is given by:

u =

0@ 2 + t+ t2 2 + t2 2 + 2t + 2t2

2 + 2t2 2 + t+ 2t2 2 + t+ t2

2 + t 2 + t 2 + 2t

1A
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However, having noted this di�erence, the qualitative picture of the quotient
complex is very similar to the case p = 2; the complex consists of a compact
piece coming from behaviour of groups close to the identity lattice, together with
a single annular end. Application of Haefliger’s methods yields the following
group theoretic result:

Theorem 1.7 When p = 3, the group IsomJ(�) is presented as:

Generators: x; y; u

Relations:

(1) x4 = y3 = u6 = 1

(2) [x2; yxy] = 1

(3) [x; u−1x−1y−1xyxy] = 1

(4) [yxy; u−1x−1y−1xyxy] = 1

(5) [xyx; u2] = 1

(6) [x2yx; u3] = 1

(7) (u2x2yx)2 = (x2yxu2)2

(8) In�nitely many other relations to do with nilpotence.

Of course the veri�cation that these relations hold is a trivial matter of multi-
plying matrices modulo 3. We remark that the relations contained in (8) are
explicitally known.

We claim that a computer application of the Reidemeister{Schreier algorithm
contained in the computer program GAP applied to the presentation involving
the �rst seven relations proves:

Corollary 1.8 The index [IsomJ(�) : hx; yi] is �nite.

This index is a divisor of 162. The corollary already implies that im(�4 ⊗ Z3)
is not faithful. One way to see this is that one sees easily (for example from
the matrix representation) that the element w = u−1x−1y−1xyxy has in�nite
order. The presentation implies that it commutes with x. However, since
[IsomJ(�) : hx; yi] is �nite, some power of w lies in the subgroup generated by
x and y and this gives an unexpected element commuting with x. Alternatively,
in the course of the proof, one discovers that IsomJ(�) contains arbitrarily
large soluble subgroups and this can also be used to show that the representation
is not faithful. In fact, one can be more speci�c; the computer can be used to
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give a presentation for the subgroup generated by hx; yi; one �nds for example,
that there is a relation (where x = x−1 and y = y−1 ):

x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y:
x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y:x:y

That this relation does not hold in the braid group is easily checked by com-
puting the integral Burau matrix.

2 Outline of the proof for p = 3

In spirit, if not in detail, the proof follows the ideas introduced in [3], to which
we refer the reader. We work outwards from the identity lattice, successively
identifying point stabilisers. This enables us to �nd representatives for each
orbit and hence build the quotient complex. The compact part alluded to
above comes from the action of the group on vertices fairly close to the orbit of
the identity; as one moves farther away there is a certain amount of stabilisation
and it is this which gives rise to the single annular end.

We refer to the orbit of the lattice I as the group points. The result Lemma
1.3 shows that every group point has stabiliser Z4 . We recall the link of any
vertex may be considered as the flag geometry of the vector space Z3

3 , so that
every vertex has 26 points in its link, and each vertex in the link is adjacent to
four other vertices in the link.

We need to recall the notation introduced in [3]. We make a (noncanonical)
choice of representative lattices for each of the 26 vertices by writing down
matrices whose columns de�ne the lattice. Subsequent vertices are coded by
using these matrices, regarded as elements of GL(3;Z3[t; t−1]) as acting on �.
As an example, denoting the matrix representative chosen for the thirteenth
vertex by M13 , then the representative elements in the link of the the thirteenth
vertex are chosen to be M13:Mj for 1 � j � 26. Of course, one vertex has
several names in this notation, for example the identity vertex appears in the
link of each of its vertices.

The �rst task is to examine how many group points lie in the link of the identity.

Lemma 2.1 Link(I) contains precisely 18 group points:

y; y2; x:y; x:y2; x2:y; x2:y2;
x3:y; x3:y2; y:x:y; (y:x:y)−1; x:y:x:y; x:(y:x:y)−1;

w; w−1; (y:x:y)−1:w; x:(y:x:y)−1:w; y:x:y:w−1; x:y:x:y:w−1;

where w is the element introduced at the end of section 1.
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Of course the fact that these are all group points is immediate and the fact that
they are distance one from I is a calculation. The content of the lemma is that
there are no more group points. This proved by noting that the lattice

M19 =

0@ 1 0 t
0 t 0
0 0 t

1A
is in the link of the identity and is stabilised by the element u. Thus it cannot
be a group point as its stabiliser contains an element of order 6. The action of
known group elements now accounts for all the other elements in Link(I).

We indicate briefly how one can construct any isometries which may exist in the
stabiliser of M19 , in particular, how one can �nd the element u. This involves
an elaboration of the method used in Lemma 1.3.

Suppose that g 2 IsomJ(�) has g[M19] = [M19]. The de�nition shows that this
is the same as the existence of an element � 2 GL3(O) with g:M19 = M19:�.
The form of the elements M19 and g means that � has Laurent polynomial
entries. Then

��(M�19JM19)� = (M19�)�:J:(M19�) = (g:M19)�:J:(g:M19) = M�19JM19

since g is an isometry. It follows that � is an isometry of the form M�19JM19

and although unlike Lemma 1.3, this form does not have its matrix lying in
GL3(O), we have a bound on the valuations of its entries, so that exactly
as in the lemma, we have a bound on the valuations possible for the entries
of �. Since we are dealing with a �xed �nite �eld, it follows that there are
only a �nite number of possibilities for the entries of � and one can check by
direct enumeration which of these make M19�M

−1
19 into a J isometry. (In fact

sharper, more practical methods exist, but this would take us too far a�eld.)

We now give some indication of how one can give complete descriptions of all
vertex stabilisers. The idea is to work outwards from the identity; it turns out
that we need no more elements than those we have already introduced.

Recalling the notation de�ned above, a calculation shows that that action of u
on its link is given by the permutation

(7�)(11�)(18�)(23�)(3�13�)(6�8�)(14�24�26�)(17�21�20�)
(1�5�12�22�19�10�)(4�16�25�15�2�9�)

where x� is shorthand for M19:x. The two six cycles consist of 12 group points,
(I = 2� ), there are 14 points in the orbit of M19 and two remaining, as yet
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unidenti�ed points, 7� and 11� . Points in the orbit of M19 we refer to as n{
points. Observe that neither of the unidenti�ed points can be group points as
they contain an element of order 6 in their stabiliser.

Using this information we now show:

Lemma 2.2 The group stabJ(M19) acts on � as a �nite group Z6
�= hui.

Sketch of Proof First consider the map i0: stabJ(M19)! Aut(Link(M19)).
We begin by noting that this map is injective, for any element of the kernel must
�x every vertex in Link(M19), in particular the vertex I , so that the kernel can
only consist of powers of the element x. However, one checks that no element
of the group hxi other than the identity �xes M19 proving the assertion.

We refer to the above permutation, where we recall the vertex 2� is the identity
vertex. Pick an element γ 2 stabJ(M19); it is type-preserving so that it must
map the group points in Link(M19) which correspond to lines back to lines,
and those which correspond to planes to planes. Since u acts transitively on
this orbit, we can �nd some power of u so that uk:γ �xes the vertex 2� . Now
exactly as in the previous paragraph, we deduce that uk:γ = I , so that γ is a
power of u as required.

We now analyse the two new points 7� and 11� . We have already shown that
these are not group points; we now show that they are not n{points.

Firstly, one �nds that xyx(7�) = 11� , so that this is only one orbit of point and
moreover that u acts as an element of order two on Link(7�). Moreover, we can
construct a potentially new element in stabJ(7�) namely u1 = (xyx)−1:u:xyx.
A calculation reveals that the action of the group hu; u1i on Link(7�) is the
dihedral group D3 . It now follows from 1.5 and 2.2 that the orbit of 7� is
distinct from that of the group and n{points.

In fact, the stabiliser is larger than this and one �nds that there is an element
h 2 hx; y; ui of order 3 which commutes with this dihedral group.

h =

0@ 1 + t4 1 + t2 + t4 1 + t+ 2t2 + 2t3

2t+ 2t2 + 2t4 2 + t2 + 2t4 2 + 2t+ t2 + t3

0 0 2t2

1A
We omit the arguments which identify the stabilisers of these two points, as
this is slightly special, however the results are that one shows successively:

Lemma 2.3 The map i1: stabJ(7�)! Aut(Link(7�)) has im(i1) �= Z3 �D3 .
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Corollary 2.4 The group stabJ(7�) has order 54 with structure given by the
nonsplit central extension:

1! hu2i �= Z3 ! stabJ(7�)! Z3 �D3 ! 1

The orbit type for the action of stabJ(7�) acting on its stabiliser is f9; 9; 3; 3; 1; 1g
where the orbits of size 9 are n{points, the orbits of size 3 are of type 7�

and there are two points as yet unaccounted for, namely M19:M7:M7 and
M19:M7:M11 for which we adopt the notational shorthand 7(2) and 11(2) . As
above, xyx(7(2)) = 11(2) .

This is the point at which the behaviour stabilises. For later use, it is more con-
venient to de�ne for i � 0, a sequence of elements �i+1 = (xyx)−iu:u1(xyx)i .
Then we have:

Theorem 2.5 For k � 2, the map ik: stabJ(7(k)) ! Aut(Link(7(k))) has
image of order 54.

Moreover, stabJ(7(k)) is generated by the elements u, h, �1 , .... , �k .

Sketch Proof The argument is inductive; we explain the step k = 2 which
contains all the essential ingredients. We set H(2) = hu; �1; �2i � stabJ(7(2)).
Note that every element of H(2) stabilises 7(3) and 11(3) . We refer to Figure
1, which shows the hexagon Link(7(2))=H(2). Our claim is that no element of
� 2 stabJ(7(2)) can move 7(3) .

1 2

3

11
7

8

(3) (3)

(3)

(3)
(3)

(3) 7 (2)

Figure 1
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We argue as follows. Note that since elements in vertex stablisers are type
preserving, the only possibilities for �(7(3)) (assuming that it is moved) are the
H(2) orbit of 1(3) or the H(2) orbit of 3(3) .

However, the former orbit contains 9 elements and the latter 3, so that in any
case, � must move some element in the H(2) orbit of 1(3) back into this orbit.
By composing with an element of H(2), we see that this implies the existence
of an element moving 7(3) lying in stabJ(k(3)) \ im(i2) where k(3) lies in the
H(2) orbit of 1(3) . After conjugating by an element of H(2), we may assume
that this element lies in stabJ(1(3)) = (xyx)−1stabJ(2(3))xyx. But 2(3) = 7� ,
so that stabJ(1(3)) = (xyx)−1stabJ(7�)xyx. An examination of the generating
elements shows that no element of this latter group moves 7(3) , a contradiction.

A similar argument establishes that stabJ(7(2)) stabilises 11(3) .

We now show that im(i2) is a group of order at most 54. The reason is this: All
of im(i2) stabilises 7(3) hence permutes the four points in the link adjacent to
it, however one of these points is 11(3) , which is also �xed by the whole group.
Therefore by passing to a subgroup of im(i2) of index at most 3 we stabilise
the point 3(3) . Arguing similarly for 3(3) , we deduce that im(i2) contains a
subgroup of index at most 9 which stabilises 2(3) = 7� . This is a group whose
structure is already completely determined and one �nds that stabJ(7�) acts
on Link(7(2)) as a group of order 6, proving the claim.

Now the group H(2) is easily analysed; in particular, one shows easily that it
acts on the link as a group of order 54. This establishes that i2(H(2)) = im(i2)
as required.

The kernel of the map i2: stabJ(7(2)) ! Aut(Link(7(2))) is a subgroup of
stabJ(7�). Recalling that H(2) is generated by u, �1 and �2 , it follows that u,
h, �1 and �2 generate stab(7��), completing the �rst step of the induction.

Given this theorem, one can now give a complete description of the groups
stabJ(7(k)) by analysing how ker(ik) � stabJ(7(k−1)) acts on Link(7(k)). As
a consequence, one proves that the group stabJ(7(k)) has order 2:32k+1 . It
follows immediately that the orbits 7(k) are all distinct.

We recap our progress so far. From the information that the stabiliser of the
lattice I is a cyclic group of order four, we have identi�ed the stabiliser of every
vertex in the building; this information su�ces to deduce that the orbits for
the action of IsomJ(�) on � are precisely I;M19; 7(k) for k � 1. Moreover,
this already shows:

Corollary 2.6 The group IsomJ(�) is generated by x, y and u.
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The construction of the entire complex �=IsomJ(�) rests largely on the work
set forth above and we shall not go into it in detail. Broadly it involves two
steps: The identi�cation of a candidate set of orbits of edges and triangles
coming from the action of fairly short elements, followed by the proof that
no further identi�cations are possible. This latter step is accomplished by the
detailed understanding we have developed of the vertex stabilisers. This task
gets easier as one moves further away from the group points, as stabilisers
get larger and there are less orbits to be considered; eventually the action of
stabilisers on links becomes constant. As a result, the complex has a fairly
natural decomposition into two pieces; a compact part and some \tubes". We
refer the reader to [3] for details in the case p = 2. For example, a picture of
the tube comes from the concatenation of hexagons shown in Figure 2.

1 2

38 7

7 11

7

7

* ****

** **

****

11

11

(3) (3)

(4) (4)

= 3(3)

Figure 2

3 The case p = 5

The analysis in this case follows the same outline as indicated above, though of
course the details become much more complicated. Nonetheless, one obtains a
presentation of the group IsomJ(�(5)). The quotient complex has interesting
features not present in the �rst two cases; for example in contrast to the cases
p = 2 and p = 3, the complex which emerges has three annular ends.

Once again one �nds extra elements in IsomJ(�(5)) which it turns out do not
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lie in the group generated by x and y . The simplest of these is the element �2

shown below:

�2 =

0@ 4 1 + 2t + 2t2 3 + t
1 + t 4 + 2t 2 + 2t

1 4 + 3t + 4t2 2 + 2t

1A
This is an element of order 4 and one �nds that:

Theorem 3.1 The group IsomJ(�(5)) is generated by x, y and �2

In fact, we are able to complete all the analysis up until the very last step and
in particular, we are able to �nd a presentation of the group IsomJ(�(5)). It is
rather complicated and GAP was unable to show that the index [IsomJ(�(5)) :
hx; yi] was �nite. We have been unable to prove that it is in�nite and unable
to analyse the situation su�ciently to prove or disprove that hx; yi contains no
extra relations.
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