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1. Higher dimensional local fields and L-functions

A. N. Parshin

1.0. Introduction

1.0.1. Recall [P1], [FP] that if X is a scheme of dimension n and

X0 ⊂ X1 ⊂ . . . Xn−1 ⊂ Xn = X

is a flag of irreducible subschemes ( dim(Xi) = i ), then one can define a ring

KX0,...,Xn−1

associated to the flag. In the case where everything is regularly embedded, the ring is
an n-dimensional local field. Then one can form an adelic object

AX =
∏′

KX0,...,Xn−1

where the product is taken over all the flags with respect to certain restrictions on
components of adeles [P1], [Be], [Hu], [FP].

Example. Let X be an algebraic projective irreducible surface over a field k and let
P be a closed point of X , C ⊂ X be an irreducible curve such that P ∈ C .

If X and C are smooth at P , then we let t ∈ OX,P be a local equation of C at
P and u ∈ OX,P be such that u|C ∈ OC,P is a local parameter at P . Denote by C
the ideal defining the curve C near P . Now we can introduce a two-dimensional local
field KP,C attached to the pair P,C by the following procedure including completions
and localizations:

ÔX,P = k(P )[[u, t]] ⊃ C = (t)
|

(ÔX,P )C = discrete valuation ring with residue field k(P )((u))
|

ÔP,C := ̂(ÔX,P )
C

= k(P )((u))[[t]]
|

KP,C := Frac (ÔP,C ) = k(P )((u))((t))
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200 A. N. Parshin

Note that the left hand side construction is meaningful without any smoothness condition.

Let KP be the minimal subring of KP,C which contains k(X) and ÔX,P . The ring
KP is not a field in general. Then K ⊂ KP ⊂ KP,C and there is another intermediate
subring KC = Frac (OC) ⊂ KP,C . Note that in dimension 2 there is a duality between
points P and curves C (generalizing the classical duality between points and lines in
projective geometry). We can compare the structure of adelic components in dimension
one and two:

KP KP,C

��
� ??

?

KP

?
?
?

KC

�
�
�

K K

1.0.2. In the one-dimensional case for every character χ: Gal(Kab/K) → C ∗ we
have the composite

χ′:A∗ =
∏′

K∗x
reciprocity map−−−−−−−−→ Gal(Kab/K)

χ−→ C ∗.

J. Tate [T] and independently K. Iwasawa introduced an analytically defined L-function

L(s, χ, f ) =
∫
A∗
f (a)χ′(a)|a|sd∗a,

where d∗ is a Haar measure on A∗ and the function f belongs to the Bruhat–Schwartz
space of functions on A (for the definition of this space see for instance [W1, Ch. VII]).
For a special choice of f and χ = 1 we get the ζ -function of the scheme X

ζX (s) =
∏
x∈X

(1−N (x)−s)−1,

if dim (X) = 1 (adding the archimedean multipliers if necessary). Here x runs through
the closed points of the scheme X and N (x) = |k(x)|. The product converges for
Re(s) > dim X . For L(s, χ, f ) they proved the analytical continuation to the whole
s-plane and the functional equation

L(s, χ, f ) = L(1 − s, χ−1, f̂ ),

using Fourier transformation ( f 7→ f̂ ) on the space AX (cf. [T], [W1], [W2]).
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Part II. Section 1. Higher local fields and L-functions 201

1.0.3. Schemes can be classified according to their dimension

dim (X) geometric case arithmetic case

. . . . . . . . .

2 algebraic surface /Fq arithmetic surface

1 algebraic curve /Fq arithmetic curve

0 Spec(Fq) Spec(F1)

where F1 is the “field of one element”.
The analytical method works for the row of the diagram corresponding to dimension

one. The problem to prove analytical continuation and functional equation for the
ζ -function of arbitrary scheme X (Hasse–Weil conjecture) was formulated by A. Weil
[W2] as a generalization of the previous Hasse conjecture for algebraic curves over
fields of algebraic numbers, see [S1],[S2]. It was solved in the geometric situation by
A. Grothendieck who employed cohomological methods [G]. Up to now there is no
extension of this method to arithmetic schemes (see, however, [D]). On the other hand,
a remarkable property of the Tate–Iwasawa method is that it can be simultaneously
applied to the fields of algebraic numbers (arithmetic situation) and to the algebraic
curves over a finite field (algebraic situation).

For a long time the author has been advocating (see, in particular, [P4], [FP]) the
following:

Problem. Extend Tate–Iwasawa’s analytic method to higher dimensions.

The higher adeles were introduced exactly for this purpose. In dimension one the
adelic groups AX and A∗X are locally compact groups and thus we can apply the
classical harmonic analysis. The starting point for that is the measure theory on locally
compact local fields such as KP for the schemes X of dimension 1. So we have the
following:

Problem. Develop a measure theory and harmonic analysis on n-dimensional local
fields.

Note that n-dimensional local fields are not locally compact topological spaces for
n > 1 and by Weil’s theorem the existence of the Haar measure on a topological group
implies its locally compactness [W3, Appendix 1].

In this work several first steps in answering these problems are described.
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202 A. N. Parshin

1.1. Riemann–Hecke method

When one tries to write the ζ -function of a scheme X as a product over local fields
attached to the flags of subvarieties one meets the following obstacle. For dimension
greater than one the local fields are parametrized by flags and not by the closed points
itself as in the Euler product. This problem is primary to any problems with the measure
and integration. I think we have to return to the case of dimension one and reformulate
the Tate–Iwasawa method. Actually, it means that we have to return to the Riemann–
Hecke approach [He] known long before the work of Tate and Iwasawa. Of course, it
was the starting point for their approach.

The main point is a reduction of the integration over ideles to integration over a
single (or finitely many) local field.

Let C be a smooth irreducible complete curve defined over a field k = Fq .
Put K = k(C). For a closed point x ∈ C denote by Kx the fraction field of the

completion Ôx of the local ring Ox .
Let P be a fixed smooth k-rational point of C . Put U = C \ P , A = Γ(U,OC ).

Note that A is a discrete subgroup of KP .
A classical method to calculate ζ -function is to write it as a Dirichlet series instead

of the Euler product:

ζC (s) =
∑

I∈Div (OC )

|I|sC

where Div (OC ) is the semigroup of effective divisors, I =
∑
x∈X nxx, nx ∈ Z and

nx = 0 for almost all x ∈ C ,

|I|C =
∏
x∈X

q−
∑

nx|k(x):k|.

Rewrite ζC(s) as

ζU (s)ζP (s) =

(∑
I⊂U
|I|sU

)( ∑
supp(I)=P

|I|sP
)
.

Denote A′ = A \ {0}. For the sake of simplicity assume that Pic(U ) = (0) and
introduce A′′ such that A′′ ∩ k∗ = (1) and A′ = A′′k∗. Then for every I ⊂ U there
is a unique b ∈ A′′ such that I = (b). We also write |b|∗ = |(b)|∗ for ∗ = P,U . Then
from the product formula |b|C = 1 we get |b|U = |b|−1

P . Hence

ζC (s) =

(∑
b∈A′′

|b|sU
)(∑

m>0

q−ms
)

=

(∑
b∈A′′

|b|−sP
)∫

a∈K∗
P

|a|sP f+(a)d∗a
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Part II. Section 1. Higher local fields and L-functions 203

where in the last equality we have used local Tate’s calculation, f+ = i∗δ
ÔP

, i:K∗P →
KP , δ

ÔP
is the characteristic function of the subgroup ÔP , d∗(Ô∗P ) = 1. Therefore

ζC(s) =
∑
b∈A′′

∫
a∈K∗

P

|ab−1|sP f+(a)d∗a

=
∑
b∈A′′

∫
c=ab−1

|c|sP f+(bc)d∗c =
∫
K∗
P

|c|sPF (c)d∗c,

where F (c) =
∑
b∈A′ f+(bc).

Thus, the calculation of ζC(s) is reduced to integration over the single local field
KP . Then we can proceed further using the Poisson summation formula applied to the
function F .

This computation can be rewritten in a more functorial way as follows

ζC(s) = 〈| |s, f0〉G · 〈| |s, f1〉G = 〈| |s, i∗(F )〉G×G = 〈| |s, j∗ ◦ i∗(F )〉G,

where G = K∗P , 〈f, f ′〉G =
∫
G
ff ′dg and we introduced the functions f0 = δA′′ =

sum of Dirac’s δa over all a ∈ A′′ and f1 = δOP on KP and the function F = f0⊗f1
on KP × KP . We also have the norm map | |:G → C ∗ , the convolution map
j:G×G→ G, j(x, y) = x−1y and the inclusion i:G×G→ KP ×KP .

For the appropriate classes of functions f0 and f1 there are ζ -functions with a
functional equation of the following kind

ζ(s, f0, f1) = ζ(1− s, f̂0, f̂1),

where f̂ is a Fourier transformation of f . We will study the corresponding spaces of
functions and operations like j∗ or i∗ in subsection 1.3.

Remark 1. We assumed that Pic(U ) is trivial. To handle the general case one has to
consider the curve C with several points removed. Finiteness of the Pic0(C) implies
that we can get an open subset U with this property.

1.2. Restricted adeles for dimension 2

1.2.1. Let us discuss the situation for dimension one once more. We consider the case
of the algebraic curve C as above.

One-dimensional adelic complex

K ⊕
∏
x∈C
Ôx →

∏′

x∈C
Kx
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204 A. N. Parshin

can be included into the following commutative diagram

K ⊕
∏
x∈C Ôx −−−−→

∏′
x∈CKxy y

K ⊕ ÔP −−−−→
∏′
x6=PKx/Ôx ⊕KP

where the vertical map induces an isomorphism of cohomologies of the horizontal
complexes. Next, we have a commutative diagram

K ⊕ ÔP −−−−→
∏′
x6=PKx/Ôx ⊕KPy y

K/A −−−−→
∏′
x6=PKx/Ôx

where the bottom horizontal arrow is an isomorphism (the surjectivity follows from
the strong approximation theorem). This shows that the complex A ⊕ ÔP → KP is
quasi-isomorphic to the full adelic complex. The construction can be extended to an
arbitrary locally free sheaf F on C and we obtain that the complex

W ⊕ F̂P → F̂P ⊗ÔP KP ,

where W = Γ(F, C \ P ) ⊂ K , computes the cohomology of the sheaf F.
This fact is essential for the analytical approach to the ζ -function of the curve C .

To understand how to generalize it to higher dimensions we have to recall another
applications of this diagram, in particular, the so called Krichever correspondence from
the theory of integrable systems.

Let z be a local parameter at P , so ÔP = k[[z]]. The Krichever correspondence
assigns points of infinite dimensional Grassmanians to (C,P, z) and a torsion free
coherent sheaf of OC -modules on C . In particular, there is an injective map from
classes of triples (C,P, z) to A ⊂ k((z)). In [P5] it was generalized to the case of
algebraic surfaces using the higher adelic language.

1.2.2. Let X be a projective irreducible algebraic surface over a field k, C ⊂ X be
an irreducible projective curve, and P ∈ C be a smooth point on both C and X .

In dimension two we start with the adelic complex

A0 ⊕ A1 ⊕ A2 → A01 ⊕ A02 ⊕ A12 → A012,

where

A0 = K = k(X), A1 =
∏
C⊂X

ÔC , A2 =
∏
x∈X
Ôx,

A01 =
∏′

C⊂X
KC , A02 =

∏′

x∈X
Kx, A12 =

∏′

x∈C
Ôx,C , A012 = AX =

∏′
Kx,C .
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In fact one can pass to another complex whose cohomologies are the same as of the
adelic complex and which is a generalization of the construction for dimension one. We
have to make the following assumptions: P ∈ C is a smooth point on both C and X ,
and the surface X \ C is affine. The desired complex is

A⊕ AC ⊕ ÔP → BC ⊕BP ⊕ ÔP,C → KP,C

where the rings Bx , BC , AC and A have the following meaning. Let x ∈ C . Let

Bx =
⋂
D 6=C

(Kx ∩ Ôx,D) where the intersection is taken inside Kx;

BC = KC ∩ (
⋂
x6=P

Bx) where the intersection is taken inside Kx,C ;

AC = BC ∩ ÔC , A = K ∩ (
⋂
x∈X\C Ôx).

This can be easily extended to the case of an arbitrary torsion free coherent sheaf F
on X .

1.2.3. Returning back to the question about the ζ -function of the surface X over
k = Fq we suggest to write it as the product of three Dirichlet series

ζX(s) = ζX\C (s)ζC\P (s)ζP (s) =

( ∑
I⊂X\C

|I|sX
)( ∑

I⊂C\P
|I|sX

)( ∑
I⊂Spec(ÔP,C )

|I|sX
)
.

Again we can assume that the surface U = X \C has the most trivial possible structure.
Namely, Pic(U ) = (0) and Ch(U ) = (0). Then every rank 2 vector bundle on U is
trivial. In the general case one can remove finitely many curves C from X to pass to
the surface U satisfying these properties (the same idea was used in the construction of
the higher Bruhat–Tits buildings attached to an algebraic surface [P3, sect. 3]).

Therefore any zero-ideal I with support in X \ C , C \ P or P can be defined
by functions from the rings A, AC and OP , respectively. The fundamental difference
between the case of dimension one and the case of surfaces is that zero-cycles I and
ideals of finite colength on X are not in one-to-one correspondence.

Remark 2. In [P2], [FP] we show that the functional equation for the L-function on
an algebraic surface over a finite field can be rewritten using the K2-adeles. Then it
has the same shape as the functional equation for algebraic curves written in terms of
A∗ -adeles (as in [W1]).
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1.3. Types for dimension 1

We again discuss the case of dimension one. If D is a divisor on the curve C then the
Riemann–Roch theorem says

l(D)− l(KC −D) = deg (D) + χ(OC),

where as usual l(D) = dim Γ(C,OX (D)) and KC is the canonical divisor. If A = AC

and A1 = A(D) then

H1(C,OX (D)) = A/(A(D) +K), H0(C,OX (D)) = A(D) ∩K
where K = Fq(C). We have the following topological properties of the groups:

A
A(D)

K

A(D) ∩K
A(D) +K

locally compact group,

compact group,

discrete group,

finite group,

group of finite index of A.

The group A is dual to itself. Fix a rational differential form ω ∈ Ω1
K , ω 6= 0 and

an additive character ψ of Fq . The following bilinear form

〈(fx), (gx)〉 =
∑
x

resx(fxgxω), (fx), (gx) ∈ A

is non-degenerate and defines an auto-duality of A.
If we fix a Haar measure dx on A then we also have the Fourier transform

f (x) 7→ f̂ (x) =
∫
A
ψ(〈x, y〉)f (y)dy

for functions on A and for distributions F defined by the Parseval equality

(F̂ , φ̂) = (F, φ).

One can attach some functions and/or distributions to the subgroups introduced above

δD = the characteristic function of A(D)

δH1 = the characteristic function of A(D) +K

δK =
∑
γ∈K

δγ where δγ is the delta-function at the point γ

δH0 =
∑

γ∈A(D)∩K
δγ .

There are two fundamental rules for the Fourier transform of these functions

δ̂D = vol(A(D))δA(D)⊥ ,
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where

A(D)⊥ = A((ω)−D),

and

δ̂Γ = vol(A/Γ)−1δΓ⊥

for any discrete co-compact group Γ. In particular, we can apply that to Γ = K = Γ⊥ .
We have

(δK , δD) = #(K ∩ A(D)) = ql(D),

(δ̂K , δ̂D) = vol(A(D))vol(A/K)−1(δK , δKC−D) = qdegDqχ(OC )ql(KC−D)

and the Parseval equality gives us the Riemann–Roch theorem.
The functions in these computations can be classified according to their types. There

are four types of functions which were introduced by F. Bruhat in 1961 [Br].
Let V be a finite dimensional vector space over the adelic ring A (or over an

one-dimensional local field K with finite residue field Fq ). We put

D = {locally constant functions with compact support},
E = {locally constant functions},
D′ = {dual toD = all distributions},
E′ = {dual to E = distributions with compact support}.

Every V has a filtration P ⊃ Q ⊃ R by compact open subgroups such that all quotients
P/Q are finite dimensional vector spaces over Fq .

If V, V ′ are the vector spaces over Fq of finite dimension then for every homomor-
phism i:V → V ′ there are two maps

F(V )
i∗−→ F(V ′), F(V ′)

i∗−→ F(V ),

of the spaces F(V ) of all functions on V (or V ′ ) with values in C. Here i∗ is the
standard inverse image and i∗ is defined by

i∗f (v′) =

{
0, if v′ /∈ im(i)∑

v 7→v′ f (v), otherwise.

The maps i∗ and i∗ are dual to each other.
We apply these constructions to give a more functorial definition of the Bruhat

spaces. For any triple P , Q, R as above we have an epimorphism i:P/R → P/Q

with the corresponding map for functions F(P/Q)
i∗−→ F(P/R) and a monomorphism

j:Q/R→ P/R with the map for functions F(Q/R)
j∗−→ F(P/R).
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Now the Bruhat spaces can be defined as follows

D = lim−→ j∗ lim−→ i∗ F(P/Q),

E = lim←− j∗ lim−→ i∗ F(P/Q),

D′ = lim←− j∗ lim←− i∗ F(P/Q),

E′ = lim−→ j∗ lim←− i∗ F(P/Q).

The spaces don’t depend on the choice of the chain of subspaces P,Q,R. Clearly we
have

δD ∈ D(A),

δK ∈ D′(A),

δH0 ∈ E′(A),

δH1 ∈ E(A).

We have the same relations for the functions δOP and δA′′ on the group KP considered
in section 1.

The Fourier transform preserves the spaces D and D′ but interchanges the spaces
E and E′ . Recalling the origin of the subgroups from the adelic complex we can say
that, in dimension one the types of the functions have the following structure

E

� �
D D′

� �
E′

01
� �

1 0
� �

∅
corresponding to the full simplicial division of an edge. The Fourier transform is a
reflection of the diagram with respect to the middle horizontal axis.

The main properties of the Fourier transform we need in the proof of the Riemann-
Roch theorem (and of the functional equation of the ζ -function) can be summarized as
the commutativity of the following cube diagram

D⊗D′
j∗

//

i∗

��

E

α∗

��

D⊗D′
yy

99ttttttttt
i∗

//

j∗

��

E′
{{

;;wwwwwwwwww

β∗

��

E′
β∗

// F(F1)

E
α∗

//yy

99tttttttttttt
F(F1)

vvvvvvvvv
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coming from the exact sequence

A i−→ A⊕ A j−→ A,

with i(a) = (a, a), j(a, b) = a− b, and the maps

F1
α−→ A β−→ F1

with α(0) = 0, β(a) = 0. Here F1 is the field of one element, F(F1) = C and the
arrows with heads on both ends are the Fourier transforms.

In particular, the commutativity of the diagram implies the Parseval equality used
above:

〈F̂ , Ĝ〉 = β∗ ◦ i∗(F̂ ⊗ Ĝ)

= β∗ ◦ i∗(F̂ ⊗G) = β∗ ̂j∗(F ⊗G)

= α∗ ◦ j∗(F ⊗G) = β∗ ◦ i∗(F ⊗G)

= 〈F,G〉.

Remark 3. These constructions can be extended to the function spaces on the groups
G(A) or G(K) for a local field K and a group scheme G.

1.4. Types for dimension 2

In order to understand the types of functions in the case of dimension 2 we have to look
at the adelic complex of an algebraic surface. We will use physical notations and denote
a space by the discrete index which corresponds to it. Thus the adelic complex can be
written as

∅ → 0⊕ 1⊕ 2→ 01⊕ 02⊕ 12→ 012,

where ∅ stands for the augmentation map corresponding to the inclusion of H0. Just
as in the case of dimension one we have a duality of A = A012 = 012 with itself defined
by a bilinear form

〈(fx,C), (gx,C )〉 =
∑
x,C

resx,C(fx,Cgx,C ω), (fx,C ), (gx,C ) ∈ A

which is also non-degenerate and defines the autoduality of A.
It can be shown that

A0 = A01 ∩ A02, A⊥01 = A01, A⊥02 = A02, A⊥0 = A01 ⊕ A02,
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and so on. The proofs depend on the following residue relations for a rational differential
form ω ∈ Ω2

k(X)

for all x ∈ X
∑
C3x

resx,C (ω) = 0,

for all C ⊂ X
∑
x∈C

resx,C (ω) = 0.

We see that the subgroups appearing in the adelic complex are not closed under the
duality. It means that the set of types in dimension two will be greater then the set of
types coming from the components of the adelic complex. Namely, we have:

Theorem 1 ([P4]). Fix a divisor D on an algebraic surface X and let A12 = A(D).
Consider the lattice L of the commensurability classes of subspaces in AX generated
by subspaces A01,A02,A12 .

The lattice L is isomorphic to a free distributive lattice in three generators and has
the structure shown in the diagram.

012

qq
qq
qq
qq
qq

MM
MM

MM
MM

MM

01 + 12

MM
MM

MM
MM

MM
01 + 02

qq
qq
q

qq
qq
q

MM
MM

M

MM
MM

M

02 + 12

qq
qq
qq
qq
qq

2 + 01

vv
vv
vv
vv
v

MM
MM

MM
MM

MM
0 + 12

MM
MM

M

MM
MM

M

1 + 02

qq
qq
qq
qq
qq

HH
HH

HH
HH

H

01

HH
HH

HH
HH

H 0 + 1 + 2

qq
qq
qq
qq
qq

MM
MM

MM
MM

MM
12

qq
qq
q

qq
qq
q

02

vv
vv
vv
vv
v

0 + 1

MM
MM

MM
MM

MM
M 1 + 2

qq
qq
q

qq
qq
qq

MM
MM

M

MM
MM

MM

0 + 2

qq
qq
qq
qq
qq
q

1

LL
LL

LL
LL

LL
LL

L 0 2

rr
rr
rr
rr
rr
rr
r

∅

Remark 4. Two subspaces V, V ′ are called commensurable if (V + V ′)/V ∩ V ′ is of
finite dimension. In the one-dimensional case all the subspaces of the adelic complex
are commensurable (even the subspaces corresponding to different divisors). In this
case we get a free distributive lattice in two generators (for the theory of lattices see
[Bi]).
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Just as in the case of curves we can attach to every node some space of functions
(or distributions) on A. We describe here a particular case of the construction, namely,
the space F02 corresponding to the node 02. Also we will consider not the full adelic
group but a single two-dimensional local field K = Fq((u))((t)).

In order to define the space we use the filtration in K by the powers Mn of the
maximal ideal M = Fq((u))[[t]]t of K as a discrete valuation (of rank 1) field. Then
we try to use the same procedure as for the local field of dimension 1 (see above).

If P ⊃ Q ⊃ R are the elements of the filtration then we need to define the maps

D(P/R)
i∗−→ D(P/Q), D(P/R)

j∗−→ D(Q/R)

corresponding to an epimorphism i:P/R → P/Q and a monomorphism j:Q/R →
P/R. The map j∗ is a restriction of the locally constant functions with compact support
and it is well defined. To define the direct image i∗ one needs to integrate along the
fibers of the projection i. To do that we have to choose a Haar measure on the fibers for
all P , Q, R in a consistent way. In other words, we need a system of Haar measures
on all quotients P/Q and by transitivity of the Haar measures in exact sequences it is
enough to do that on all quotients Mn/Mn+1.

Since OK/M = Fq((u)) = K1 we can first choose a Haar measure on the residue
field K1. It will depend on the choice of a fractional ideal Mi

K1
normalizing the Haar

measure. Next, we have to extend the measure on all Mn/Mn+1. Again, it is enough
to choose a second local parameter t which gives an isomorphism

tn:OK/M→Mn/Mn+1.

Having made these choices we can put as above

F02 = lim←− j∗ lim←− i∗ D(P/Q)

where the space D was introduced in the previous section.
We see that contrary to the one-dimensional case the space F02 is not intrinsically

defined. But the choice of all additional data can be easily controlled.

Theorem 2 ([P4]). The set of the spaces F02 is canonically a principal homogeneous
space over the valuation group ΓK of the field K .

Recall that ΓK is non-canonically isomorphic to the lexicographically ordered group
Z⊕ Z.

One can extend this procedure to other nodes of the diagram of types. In particular,
for 012 we get the space which does not depend on the choice of the Haar measures.

The standard subgroup of the type 02 is BP = Fp[[u]]((t)) and it is clear that

δBP ∈ F02.

The functions δBC and δ
ÔP,C

have the types 01, 12 respectively.
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Remark 5. Note that the whole structure of all subspaces in A or K corresponding to
different divisors or coherent sheaves is more complicated. The spaces A(D) of type 12
are no more commensurable. To describe the whole lattice one has to introduce several
equivalence relations (commensurability up to compact subspace, a locally compact
subspace and so on).
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représentations des groupes p-adiques, Bull. Soc. Math. France 89(1961), 43–75.

[D] C. Deninger, Some analogies between number theory and dynamical systems, Doc. Math.
J. DMV, Extra volume ICM I (1998), 163–186.

[FP] T. Fimmel and A. N. Parshin, Introduction into the Higher Adelic Theory, book in
preparation.

[G] A. Grothendieck, Cohomologie l-adique and Fonctions L , Séminaire de Géométrie
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