Part III

2-Knots
Chapter 14

Knots and links

In this chapter we introduce the basic notions and constructions of knot theory. Many of these apply equally well in all dimensions, and for the most part we have framed our definitions in such generality, although our main concern is with 2-knots (embeddings of S^2 in S^4). In particular, we show how the classification of higher dimensional knots may be reduced (essentially) to the classification of certain closed manifolds, and we give Kervaire’s characterization of high dimensional knot groups.

In the final sections we comment briefly on links and link groups.

14.1 Knots

The standard orientation of R^n induces an orientation on the unit n-disc $D^n = \{(x_1, \ldots, x_n) \in R^n \mid \Sigma x_i^2 \leq 1\}$ and hence on its boundary $S^{n-1} = \partial D^n$, by the convention “outward normal first”. We shall assume that standard discs and spheres have such orientations. Qualifications shall usually be omitted when there is no risk of ambiguity. In particular, we shall often abbreviate $X(K)$, $M(K)$ and πK (defined below) as X, M and π, respectively.

An n-knot is a locally flat embedding $K : S^n \rightarrow S^{n+2}$. (We shall also use the terms “classical knot” when $n = 1$, “higher dimensional knot” when $n \geq 2$ and “high dimensional knot” when $n \geq 3$.) It is determined up to (ambient) isotopy by its image $K(S^n)$, considered as an oriented codimension 2 submanifold of S^{n+2}, and so we may let K also denote this submanifold. Let r_n be an orientation reversing self homeomorphism of S^n. Then K is invertible, +amphicheiral or -amphicheiral if it is isotopic to $rK = r_{n+2}K$, $K\rho = Kr_n$ or $-K = rK\rho$, respectively. An n-knot is trivial if it is isotopic to the composite of equatorial inclusions $S^m \subset S^{m+1} \subset S^{n+2}$.

Every knot has a product neighbourhood: there is an embedding $j : S^n \times D^2$ onto a closed neighbourhood N of K, such that $j(S^n \times \{0\}) = K$ and ∂N is bicollared in S^{n+2} [KS75,FQ]. We may assume that j is orientation preserving, and it is then unique up to isotopy rel $S^n \times \{0\}$. The exterior of K is the compact $(n + 2)$-manifold $X(K) = S^{n+2} - \text{int}N$ with boundary $\partial X(K) \cong$
$S^n \times S^1$, and is well defined up to homeomorphism. It inherits an orientation from S^{n+2}. An n-knot K is trivial if and only if $X(K) \simeq S^1$; this follows from Dehn’s Lemma if $n = 1$, is due to Freedman if $n = 2$ ([FQ] - see Corollary 17.1.1 below) and is an easy consequence of the s-cobordism theorem if $n \geq 3$.

The knot group is $\pi K = \pi_1(X(K))$. An oriented simple closed curve isotopic to the oriented boundary of a transverse disc $\{ j \} \times S^1$ is called a meridian for K, and we shall also use this term to denote the corresponding elements of π. If μ is a meridian for K, represented by a simple closed curve on ∂X then $X \cup_{\mu} D^2$ is a deformation retract of $S^{n+2} - \{ * \}$ and so is contractible. Hence π is generated by the conjugacy class of its meridians.

Assume for the remainder of this section that $n \geq 2$. The group of pseudoisotopy classes of self homeomorphisms of $S^n \times S^1$ is $(\mathbb{Z}/2\mathbb{Z})^3$, generated by reflections in either factor and by the map τ given by $\tau(x, y) = (\rho(y)(x), y)$ for all x in S^n and y in S^1, where $\rho : S^1 \to SO(n+1)$ is an essential map [Gl62, Br67, Kt69]. As any self homeomorphism of $S^n \times S^1$ extends across $D^{n+1} \times S^1$ the knot manifold $M(K) = X(K) \cup (D^{n+1} \times S^1)$ obtained from S^{n+2} by surgery on K is well defined, and it inherits an orientation from $S^{n+2} \times S^1$ via X. Moreover $\pi_1(M(K)) \cong \pi K$ and $\chi(M(K)) = 0$. Conversely, suppose that M is a closed orientable 4-manifold with $\chi(M) = 0$ and $\pi_1(M)$ is generated by the conjugacy class of a single element. (Note that each conjugacy class in π corresponds to an unique isotopy class of oriented simple closed curves in M.). Surgery on a loop in M representing such an element gives a 1-connected 4-manifold Σ with $\chi(\Sigma) = 2$ which is thus homeomorphic to S^2 and which contains an embedded 2-sphere as the cocore of the surgery. We shall in fact study 2-knots through such 4-manifolds, as it is simpler to consider closed manifolds rather than pairs.

There is however an ambiguity when we attempt to recover K from $M = M(K)$. The cocore $\gamma = \{ 0 \} \times S^1 \subset D^{n+1} \times S^1 \subset M$ of the original surgery is well defined up to isotopy by the conjugacy class of a meridian in $\pi K = \pi_1(M)$. (In fact the orientation of γ is irrelevant for what follows.) Its normal bundle is trivial, so γ has a product neighbourhood, P say, and we may assume that $M - int P = X(K)$. But there are two essentially distinct ways of identifying ∂X with $S^n \times S^1 = \partial(S^n \times D^2)$, modulo self homeomorphisms of $S^n \times S^1$ that extend across $S^n \times D^2$. If we reverse the original construction of M we recover $(S^{n+2}, K) = (X \cup_{j} S^n \times D^2, S^n \times \{ 0 \})$. If however we identify $S^n \times S^1$ with ∂X by means of $j\tau$ we obtain a new pair

$$(\Sigma, K^*) = (X \cup_{j\tau} S^n \times D^2, S^n \times \{ 0 \}).$$

It is easily seen that $\Sigma \simeq S^{n+2}$, and hence $\Sigma \cong S^{n+2}$. We may assume that the homeomorphism is orientation preserving. Thus we obtain a new n-knot
14.2 Covering spaces

Let K be an n-knot. Then $H_1(X(K);\mathbb{Z}) \cong \mathbb{Z}$ and $H_i(X(K);\mathbb{Z}) = 0$ if $i > 1$, by Alexander duality. The meridians are all homologous and generate $\pi/\pi' = H_1(X;\mathbb{Z})$, and so determine a canonical isomorphism with \mathbb{Z}. Moreover $H_2(\pi;\mathbb{Z}) = 0$, since it is a quotient of $H_2(X;\mathbb{Z}) = 0$.

We shall let $X'(K)$ and $M'(K)$ denote the covering spaces corresponding to the commutator subgroup. (The cover X'/X is also known as the infinite

K^*, which we shall call the Gluck reconstruction of K. The knot K is reflexive if it is determined as an unoriented submanifold by its exterior, i.e., if K^* is isotopic to K, rK, $K\rho$ or $-K$.

If there is an orientation preserving homeomorphism from $X(K_1)$ to $X(K)$ then K_1 is isotopic to K, K^*, $K\rho$ or $K^*\rho$. If the homeomorphism also preserves the homology class of the meridians then K_1 is isotopic to K or to K^*. Thus K is determined up to an ambiguity of order at most 2 by $M(K)$ together with the conjugacy class of a meridian.

A Seifert hypersurface for K is a locally flat, oriented codimension 1 submanifold V of S^{n+2} with (oriented) boundary K. By a standard argument these always exist. (Using obstruction theory it may be shown that the projection $pr_{23}^{-1} : \partial X \to S^n \times S^1 \to S^1$ extends to a map $p : X \to S^1$ [Ke65]. By topological transversality we may assume that $p^{-1}(1)$ is a bicollared, proper codimension 1 submanifold of X. The union $p^{-1}(1) \cup j(S^n \times [0,1])$ is then a Seifert hypersurface for K.) We shall say that V is minimal if the natural homomorphism from $\pi_1(V)$ to πK is a monomorphism.

In general there is no canonical choice of Seifert surface. However there is one important special case. An n-knot K is fibred if there is such a map $p : X \to S^1$ which is the projection of a fibre bundle. (Clearly K^* is then fibred also.) The exterior is then the mapping torus of a self homeomorphism θ of the fibre F of p. The isotopy class of θ is called the (geometric) monodromy of the bundle. Such a map p extends to a fibre bundle projection $q : M(K) \to S^1$, with fibre $\tilde{F} = F \cup D^{n+1}$, called the closed fibre of K. Conversely, if $M(K)$ fibres over S^1 then the cocore γ is homotopic (and thus isotopic) to a cross-section of the bundle projection, and so K is fibred. If the monodromy has finite order (and is nontrivial) then it has precisely two fixed points on ∂F, and we may assume that the closed monodromy also has finite order. However the converse is false; the closed monodromy may have finite order but not be isotopic to a map of finite order with nonempty fixed point set.

14.2 Covering spaces

Let K be an n-knot. Then $H_1(X(K);\mathbb{Z}) \cong \mathbb{Z}$ and $H_i(X(K);\mathbb{Z}) = 0$ if $i > 1$, by Alexander duality. The meridians are all homologous and generate $\pi/\pi' = H_1(X;\mathbb{Z})$, and so determine a canonical isomorphism with \mathbb{Z}. Moreover $H_2(\pi;\mathbb{Z}) = 0$, since it is a quotient of $H_2(X;\mathbb{Z}) = 0$.

We shall let $X'(K)$ and $M'(K)$ denote the covering spaces corresponding to the commutator subgroup. (The cover X'/X is also known as the infinite
cyclic cover of the knot.) Since $\pi/\pi' = Z$ the (co)homology groups of X' are modules over the group ring $Z[Z]$, which may be identified with the ring of integral Laurent polynomials $\Lambda = Z[t, t^{-1}]$. If A is a Λ-module, let zA be the Z-torsion submodule, and let $e_iA = \text{Ext}_A^i(A, \Lambda)$.

Since Λ is noetherian the (co)homology of a finitely generated free Λ-chain complex is finitely generated. The Wang sequence for the projection of X_0 onto X may be identified with the long exact sequence of homology corresponding to the exact sequence of coefficients

$$0 \rightarrow \Lambda \rightarrow \Lambda \rightarrow Z \rightarrow 0.$$

Since X has the homology of a circle it follows easily that multiplication by $t - 1$ induces automorphisms of the modules $H_i(X; \Lambda)$ for $i > 0$. Hence these homology modules are all finitely generated torsion Λ-modules. It follows that $\text{Hom}_\Lambda(H_i(X; \Lambda), \Lambda)$ is 0 for all i, and the UCSS collapses to a collection of short exact sequences

$$0 \rightarrow e^2H_{i-2} \rightarrow H^i(X; \Lambda) \rightarrow e^1H_{i-1} \rightarrow 0.$$

The infinite cyclic covering spaces X' and M' behave homologically much like $(n+1)$-manifolds, at least if we use field coefficients [Mi68, Ba80]. If $H_i(X; \Lambda) = 0$ for $1 \leq i \leq (n+1)/2$ then X' is acyclic; thus if also $\pi = Z$ then $X \simeq S^1$ and so K is trivial. All the classifications of high dimensional knots to date assume that $\pi = Z$ and that X_0 is highly connected.

When $n = 1$ or 2 knots with $\pi = Z$ are trivial, and it is more profitable to work with the universal cover \tilde{X} (or \tilde{M}). In the classical case \tilde{X} is contractible [Pa57]. In higher dimensions X is aspherical only when the knot is trivial [DV73]. Nevertheless the closed 4-manifolds $M(K)$ obtained by surgery on 2-knots are often aspherical. (This asphericity is an additional reason for choosing to work with $M(K)$ rather than $X(K)$.)

14.3 Sums, factorization and satellites

The sum of two knots K_1 and K_2 may be defined (up to isotopy) as the n-knot $K_1 \sharp K_2$ obtained as follows. Let $D^n(\pm)$ denote the upper and lower hemispheres of S^n. We may isotope K_1 and K_2 so that each $K_i(D^n(\pm))$ contained in $D^{n+2}(\pm)$, $K_1(D^n(+))$ is a trivial n-disc in $D^{n+2}(+)$, $K_2(D^n(-))$ is a trivial n-disc in $D^{n+2}(-)$ and $K_1|_{S^{n-1}} = K_2|_{S^{n-1}}$ (as the oriented boundaries of the images of $D^n(-)$). Then we let $K_1 \sharp K_2 = K_1|_{D^n(-)} \cup K_2|_{D^n(+)}$. By van Kampen’s theorem $\pi(K_1 \sharp K_2) = \pi K_1 \ast_{Z} \pi K_2$ where the amalgamating subgroup

Geometry & Topology Monographs, Volume 5 (2002)
is generated by a meridian in each knot group. It is not hard to see that \(X'(K_1 \sharp K_2) \simeq X'(K_1) \vee X'(K_2) \) and so in particular \(\pi'(K_1 \sharp K_2) \cong \pi'(K_1) * \pi'(K_2) \).

The knot \(K \) is irreducible if it is not the sum of two nontrivial knots. Every knot has a finite factorization into irreducible knots [DF87]. (For 1- and 2-knots whose groups have finitely generated commutator subgroups this follows easily from the Grushko-Neumann theorem on factorizations of groups as free products.) In the classical case the factorization is essentially unique, but for each \(n \geq 3 \) there are \(n \)-knots with several distinct such factorizations [BHK81]. Essentially nothing is known about uniqueness (or otherwise) of factorization when \(n = 2 \).

If \(K_1 \) and \(K_2 \) are bred then so is their sum, and the closed fibre of \(K_1 \sharp K_2 \) is the connected sum of the closed fibres of \(K_1 \) and \(K_2 \). However in the absence of an adequate criterion for a 2-knot to fibre, we do not know whether every summand of a fibred 2-knot is fibred. In view of the unique factorization theorem for oriented 3-manifolds we might hope that there would be a similar theorem for fibred 2-knots. However the closed fibre of an irreducible 2-knot need not be an irreducible 3-manifold. (For instance, the Artin spin of a trefoil knot is an irreducible fibred 2-knot, but its closed fibre is \((S^2 \times S^1) \sharp (S^2 \times S^1) \)).

A more general method of combining two knots is the process of forming satellites. Although this process arose in the classical case, where it is intimately connected with the notion of torus decomposition, we shall describe only the higher-dimensional version of [Kn83]. Let \(K_1 \) and \(K_2 \) be \(n \)-knots (with \(n \geq 2 \)) and let \(\gamma \) be a simple closed curve in \(X(K_1) \), with a product neighbourhood \(U \). Then there is a homeomorphism \(h \) which carries \(S^{n+2} - \text{int} U \cong S^n \times D^2 \) onto a product neighbourhood of \(K_2 \). The knot \(\Sigma(K_2; K_1, \gamma) \) is called the satellite of \(K_1 \) about \(K_2 \) relative to \(\gamma \). We also call \(K_2 \) a companion of \(hK_1 \).

If either \(\gamma = 1 \) or \(K_2 \) is trivial then \(\Sigma(K_2; K_1, \gamma) = K_1 \). If \(\gamma \) is a meridian for \(K_1 \) then \(\Sigma(K_2; K_1, \gamma) = K_1 \sharp K_2 \). If \(\gamma \) has finite order in \(\pi K_1 \) let \(q \) be that order; otherwise let \(q = 0 \). Let \(w \) be a meridian in \(\pi K_2 \). Then \(\pi = \pi K \cong (\pi K_2/\langle w^q \rangle) *_{Z/qZ} \pi K_1 \), where \(w \) is identified with \(\gamma \) in \(\pi K_1 \), by Van Kampen’s theorem.

14.4 Spinning and twist spinning

The first nontrivial examples of higher dimensional knots were given by Artin [Ar25]. We may paraphrase his original idea as follows. As the half space \(R^3_+ = \{ (w, x, y, z) \in R^4 \mid w = 0, z \geq 0 \} \) is spun about the axis \(A = \{ (0, x, y, 0) \} \),
it sweeps out the whole of R^4, and any arc in R^3_+ with endpoints on A sweeps out a 2-sphere.

Fox incorporated a twist into Artin’s construction [Fo66]. Let r be an integer and choose a small $(n+2)$-disc B^{n+2} which meets K in an n-disc B^n such that (B^{n+2}, B^n) is homeomorphic to the standard pair. Then $S^{n+2} - \text{int}B^{n+2} = D^n \times D^2$, and we may choose the homeomorphism so that $\partial(K - \text{int}B^n)$ lies in $\partial D^n \times \{0\}$. Let ρ_θ be the self homeomorphism of $D^n \times D^2$ that rotates the D^2 factor through θ radians. Then $\cup_{0 \leq \theta < 2\pi}(\rho_\theta(K - \text{int}B^n) \times \{\theta\})$ is a submanifold of $(S^{n+2} - \text{int}B^{n+2}) \times S^1$ homeomorphic to $D^n \times S^1$ and which is standard on the boundary. The r-twist spin of K is the $(n+1)$-knot τ_rK with image

$$\tau_rK = \cup_{0 \leq \theta < 2\pi}(\rho_\theta(K - \text{int}B^n) \times \{\theta\})) \cup (S^{n-1} \times D^2)$$

in $S^{n+3} = ((S^{n+2} - \text{int}B^{n+2}) \times S^1) \cup (S^{n+1} \times D^2)$.

The 0-twist spin is the Artin spin $\sigma K = \tau_0K$, and $\pi \sigma K \cong \pi K$. The group of τ_rK is obtained from πK by adjoining the relation making the r^{th} power of (any) meridian central. Zeeman discovered the remarkable fact that if $r \neq 0$ then τ_rK is fibred, with geometric monodromy of order dividing r, and the closed fibre is the r-fold cyclic branched cover of S^{n+2}, branched over K [Ze65]. Hence τ_1K is always trivial. Twist spins of -amphicheiral knots are -amphicheiral, while twist spinning interchanges invertibility and +amphicheirality [Li85].

If K is a classical knot the factors of the closed fibre of τ_rK are the cyclic branched covers of the prime factors of K, and are Haken, hyperbolic or Seifert fibred. With some exceptions for small values of r, the factors are aspherical, and $S^2 \times S^1$ is never a factor [Pl84]. If $r > 1$ and K is nontrivial then τ_rK is nontrivial, by the Smith Conjecture.

For other formulations and extensions of twist spinning see [GK78], [Li79], [Mo83,84] and [Pl84’].

14.5 Ribbon and slice knots

An n-knot K is a slice knot if it is concordant to the unknot; equivalently, if it bounds a properly embedded $(n+1)$-disc Δ in D^{n+3}. Such a disc is called a slice disc for K. Doubling the pair (D^{n+3}, Δ) gives an $(n+1)$-knot which meets the equatorial S^{n+2} of S^{n+3} transversally in K; if the $(n+1)$-knot can be chosen to be trivial then K is doubly slice. All even-dimensional knots are
slice [Ke65], but not all slice knots are doubly slice, and no adequate criterion is yet known. The sum $K_d^2 - K$ is a slice of $\tau_1 K$ and so is doubly slice [Su71].

An n-knot K is a ribbon knot if it is the boundary of an immersed $(n+1)$-disc Δ in S^{n+2} whose only singularities are transverse double points, the double point sets being a disjoint union of discs. Given such a “ribbon” $(n+1)$-disc Δ in S^{n+2} the cartesian product $\Delta \times D^p \subset S^{n+2} \times D^p \subset S^{n+2+p}$ determines a ribbon $(n+1+p)$-disc in S^{n+2+p}. All higher dimensional ribbon knots derive from ribbon 1-knots by this process [Yn77]. As the p-disc has an orientation reversing involution this easily implies that all ribbon n-knots with $n \geq 2$ are amphicheiral. The Artin spin of a 1-knot is a ribbon 2-knot. Each ribbon 2-knot has a Seifert hypersurface which is a once-punctured connected sum of copies of $S^1 \times S^2$ [Yn69]. Hence such knots are reflexive. (See [Su76] for more on geometric properties of such knots.)

An n-knot K is a homotopy ribbon knot if it has a slice disc whose exterior W has a handlebody decomposition consisting of 0-, 1- and 2-handles. The dual decomposition of W relative to $\partial W = M(K)$ has only $(n+1)$- and $(n+2)$-handles, and so the inclusion of M into W is n-connected. (The definition of “homotopically ribbon” for 1-knots given in Problem 4.22 of [GK] requires only that this latter condition be satisfied.) Every ribbon knot is homotopy ribbon and hence slice [Hi79]. It is an open question whether every classical slice knot is ribbon. However in higher dimensions “slice” does not even imply “homotopy ribbon”. (The simplest example is $\tau_2 3_1$ - see below.)

More generally, we shall say that K is π_1-slice if the inclusion of $M(K)$ into the exterior of some slice disc induces an isomorphism on fundamental groups. Nontrivial classical knots are never π_1-slice, since $H_2(\pi_1(M(K));\mathbb{Z}) \cong \mathbb{Z}$ is nonzero while $H_2(\pi_1(D^4 - \Delta);\mathbb{Z}) = 0$. On the other hand higher-dimensional homotopy ribbon knots are π_1-slice.

Two 2-knots K_0 and K_1 are s-concordant if there is a concordance $K: S^2 \times [0,1] \to S^4 \times [0,1]$ whose exterior is an s-cobordism $(rel \, \partial)$ from $X(K_0)$ to $X(K_1)$. (In higher dimensions the analogous notion is equivalent to ambient isotopy, by the s-cobordism theorem.)

14.6 The Kervaire conditions

A group G has weight 1 if it has an element whose conjugates generate G. Such an element is called a weight element for G, and its conjugacy class is called a weight class for G. If G is solvable then it has weight 1 if and only if G/G' is cyclic, for a solvable group with trivial abelianization must be trivial.
If π is the group of an n-knot K then

1. π is finitely presentable;
2. π is of weight 1;
3. $H_1(\pi; \mathbb{Z}) = \pi/\pi' \cong \mathbb{Z}$; and
4. $H_2(\pi; \mathbb{Z}) = 0$.

Kervaire showed that any group satisfying these conditions is an n-knot group, for every $n \geq 3$ [Ke65]. These conditions are also necessary when $n = 1$ or 2, but are then no longer sufficient, and there are as yet no corresponding characterizations for 1- and 2-knot groups. If (4) is replaced by the stronger condition that $\text{def}(\pi) = 1$ then π is a 2-knot group, but this condition is not necessary [Ke65]. (See §9 of this chapter, §4 of Chapter 15 and §4 of Chapter 16 for examples with deficiency ≤ 0.) Gonzalez-Acuna has given a characterization of 2-knot groups as groups admitting certain presentations [GA94]. (Note also that if π is a high dimensional knot group then $q(\pi) \geq 0$, and $q(\pi) = 0$ if and only if π is a 2-knot group.)

If K is a nontrivial classical knot then πK has one end [Pa57], so $X(K)$ is aspherical, and $X(K)$ collapses to a finite 2-complex, so $\text{g.d.} \pi \leq 2$. Moreover π has a Wirtinger presentation of deficiency 1, i.e., a presentation of the form

$$\langle x_i, 0 \leq i \leq n \mid x_j = w_j x_0 w_j^{-1}, 1 \leq j \leq n \rangle.$$

A group has such a presentation if and only if it has weight 1 and has a deficiency 1 presentation P such that the presentation of the trivial group obtained by adjoining the relation killing a weight element is AC-equivalent to the empty presentation [Yo82']. (See [Si80] for connections between Wirtinger presentations and the condition that $H_2(\pi; \mathbb{Z}) = 0$.) If G is an n-knot group then $\text{g.d.} G = 2$ if and only if $\text{c.d.} G = 2$ and $\text{def}(G) = 1$, by Theorem 2.8.

Since the group of a homotopy ribbon n-knot (with $n \geq 2$) is the fundamental group of a $(n+3)$-manifold W with $\chi(W) = 0$ and which can be built with 0-, 1- and 2-handles only, such groups also have deficiency 1. Conversely, if a finitely presentable group G has weight 1 and and deficiency 1 then we use such a presentation to construct a 5-dimensional handlebody $W = D^5 \cup \{ \overline{h}_1^1 \} \cup \{ \overline{h}_2^2 \}$ with $\pi_1(\partial W) = \pi_1(W) \cong G$ and $\chi(W) = 0$. Adjoining another 2-handle h along a loop representing a weight class for $\pi_1(\partial W)$ gives a homotopy 5-ball B with 1-connected boundary. Thus $\partial B \cong S^4$, and the boundary of the cocore of the 2-handle h is clearly a homotopy ribbon 2-knot with group G. (In fact any group of weight 1 with a Wirtinger presentation of deficiency 1 is the group of a ribbon n-knot, for each $n \geq 2$ [Yj69] - see [H3].)
The deficiency may be estimated in terms of the minimum number of generators of the \(\Lambda \)-module \(e^2(\pi' / \pi''') \). Using this observation, it may be shown that if \(K \) is the sum of \(m + 1 \) copies of \(\tau_2 \tau_3 \) then \(\text{def}(\pi K) = -m \) [Le78]. Moreover there are irreducible 2-knots whose groups have deficiency \(-m\), for each \(m \geq 0 \). [Kn83].

A knot group \(\pi \) has two ends if and only if \(\pi' \) is finite. We shall determine all such 2-knots in §4 of Chapter 15. Nontrivial torsion free knot groups have one end [Kl93]. There are also many 2-knot groups with infinitely many ends. The simplest is perhaps the group with presentation

\[
\langle a, b, t \mid a^3 = b^7 = 1, \ ab = b^2 a, \ ta = a^2 t \rangle.
\]

It is evidently an HNN extension of the metacyclic group generated by \(\{a, b\} \), but is also the free product of such a metacyclic group with \(\pi \tau_2 \tau_3 \), amalgamated over a subgroup of order 3 [GM78].

14.7 Weight elements, classes and orbits

Two 2-knots \(K \) and \(K_1 \) have homeomorphic exteriors if and only if there is a homeomorphism from \(M(K_1) \) to \(M(K) \) which carries the conjugacy class of a meridian of \(K_1 \) to that of \(K \) (up to inversion). In fact if \(M \) is any closed orientable 4-manifold with \(\chi(M) = 0 \) and with \(\pi = \pi_1(M) \) of weight 1 then surgery on a weight class gives a 2-knot with group \(\pi \). Moreover, if \(t \) and \(u \) are two weight elements and \(f \) is a self homeomorphism of \(M \) such that \(u \) is conjugate to \(f_*(t^{\pm 1}) \) then surgeries on \(t \) and \(u \) lead to knots whose exteriors are homeomorphic (via the restriction of a self homeomorphism of \(M \) isotopic to \(f \)). Thus the natural invariant to distinguish between knots with isomorphic groups is not the weight class, but rather the orbit of the weight class under the action of self homeomorphisms of \(M \). In particular, the orbit of a weight element under \(\text{Aut}(\pi) \) is a well defined invariant, which we shall call the *weight orbit*. If every automorphism of \(\pi \) is realized by a self homeomorphism of \(M \) then the homeomorphism class of \(M \) and the weight orbit together form a complete invariant for the (unoriented) knot. (This is the case if \(M \) is an infrasolvmanifold.)

For oriented knots we need a refinement of this notion. If \(w \) is a weight element for \(\pi \) then we shall call the set \{\(\alpha(w) \mid \alpha \in \text{Aut}(\pi) \), \(\alpha(w) \equiv w \mod \pi' \}\} a *strict weight orbit* for \(\pi \). A strict weight orbit determines a transverse orientation for the corresponding knot (and its Gluck reconstruction). An orientation for the ambient sphere is determined by an orientation for \(M(K) \). If \(K \) is invertible or +amphicheiral then there is a self homeomorphism of \(M \) which is orientation...
preserving or reversing (respectively) and which reverses the transverse orientation of the knot, i.e., carries the strict weight orbit to its inverse. Similarly, if K is -amphicheiral there is an orientation reversing self homeomorphism of M which preserves the strict weight orbit.

Theorem 14.1 Let G be a group of weight 1 and with $G/G' \cong \mathbb{Z}$. Let t be an element of G whose image generates G/G' and let c_t be the automorphism of G' induced by conjugation by t. Then

1. t is a weight element if and only if c_t is meridianal;
2. two weight elements t, u are in the same weight class if and only if there is an inner automorphism c_g of G' such that $c_u = c_g c_t c_g^{-1}$;
3. two weight elements t, u are in the same strict weight orbit if and only if there is an automorphism d of G' such that $c_u = dc_t d^{-1}$ and $dc_t d^{-1} c_t^{-1}$ is an inner automorphism;
4. if t and u are weight elements then u is conjugate to $(g''t)^{\pm1}$ for some g'' in G''.

Proof The verification of (1-3) is routine. If t and u are weight elements then, up to inversion, u must equal $g't$ for some g' in G'. Since multiplication by t^{-1} is invertible on G'/G'' we have $g' = khth^{-1}t^{-1}$ for some h in G' and k in G''. Let $g'' = h^{-1}kh$. Then $u = g't = hg''th^{-1}$.

An immediate consequence of this theorem is that if t and u are in the same strict weight orbit then c_t and c_u have the same order. Moreover if C is the centralizer of c_t in $\text{Aut}(G')$ then the strict weight orbit of t contains at most $[\text{Aut}(G') : C \text{Inn}(G')] \leq [\text{Out}(G')]$ weight classes. In general there may be infinitely many weight orbits [Pl83']. However if π is metabelian the weight class (and hence the weight orbit) is unique up to inversion, by part (4) of the theorem.

14.8 The commutator subgroup

It shall be useful to reformulate the Kervaire conditions in terms of the automorphism of the commutator subgroup induced by conjugation by a meridian. An automorphism ϕ of a group G is **meridianal** if $\langle (g^{-1}\phi(g) \mid g \in G) \rangle_G = G$. If H is a characteristic subgroup of G and ϕ is meridianal the induced automorphism of G/H is then also meridianal. In particular, $H_1(\phi) - 1$ maps
\[H_1(G; \mathbb{Z}) = G/G' \] onto itself. If \(G \) is solvable an automorphism satisfying the latter condition is meridional, for a solvable perfect group is trivial.

It is easy to see that no group \(G \) with \(G/G' \cong \mathbb{Z} \) can have \(G' \cong \mathbb{Z} \) or \(D \). It follows that the commutator subgroup of a knot group never has two ends.

Theorem 14.2 [HK78, Le78] A finitely presentable group \(\pi \) is a high dimensional knot group if and only if \(\pi \cong \pi' \times_{\theta} \mathbb{Z} \) for some meridional automorphism \(\theta \) such that \(H_2(\theta) - 1 \) is an automorphism of \(H_2(\pi'; \mathbb{Z}) \).

If \(\pi \) is a knot group then \(\pi'/\pi'' \) is a finitely generated \(\Lambda \)-module. Levine and Weber have made explicit the conditions under which a finitely generated \(\Lambda \)-module may be the commutator subgroup of a metabelian high dimensional knot group [LW78]. Leaving aside the \(\Lambda \)-module structure, Hausmann and Kervaire have characterized the finitely generated abelian groups \(A \) that may be commutator subgroups of high dimensional knot groups [HK78]. “Most” can occur; there are mild restrictions on 2- and 3-torsion, and if \(A \) is infinite it must have rank at least 3. We shall show that the abelian groups which are commutator subgroups of 2-knot groups are \(\mathbb{Z}^3 \), \(\mathbb{Z}[\frac{1}{2}] \) (the additive group of dyadic rationals) and the cyclic groups of odd order. The commutator subgroup of a nontrivial classical knot group is never abelian.

Hausmann and Kervaire also showed that any finitely generated abelian group could be the centre of a high dimensional knot group [HK78]. We shall show that the centre of a 2-knot group is either \(\mathbb{Z}^2 \), torsion free of rank 1, finitely generated of rank 1 or is a torsion group. (The only known examples are \(\mathbb{Z}^2 \), \(\mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z}) \), \(\mathbb{Z} \), \(\mathbb{Z}/2\mathbb{Z} \) and 1.) The centre of a classical knot group is nontrivial if and only if the knot is a torus knot [BZ]; the centre is then \(\mathbb{Z} \).

Silver has given examples of high dimensional knot groups \(\pi \) with \(\pi' \) finitely generated but not finitely presentable [Si91]. He has also shown that there are embeddings \(j : T \to S^4 \) such that \(\pi_1(S^4 - j(T))' \) is finitely generated but not finitely presentable [Si97]. However no such 2-knot groups are known. If the commutator subgroup is finitely generated then it is the unique HNN base [Si96]. Thus knots with such groups have no minimal Seifert hypersurfaces.

The first examples of high dimensional knot groups which are not 2-knot groups made use of Poincaré duality with coefficients \(\Lambda \). Farber [Fa77] and Levine [Le77] independently found the following theorem.

Theorem 14.3 (Farber, Levine) Let \(K \) be a 2-knot and \(A = H_1(M(K); \Lambda) \). Then \(H_2(M(K); \Lambda) \cong e_1 A \), and there is a nondegenerate \(\mathbb{Z} \)-bilinear pairing \([,] : zA \times zA \to \mathbb{Q}/\mathbb{Z} \) such that \([\alpha, t\beta] = [\alpha, \beta] \) for all \(\alpha \) and \(\beta \) in \(zA \).
Most of this theorem follows easily from Poincaré duality with coefficients Λ, but some care is needed in order to establish the symmetry of the pairing. When K is a fibred 2-knot, with closed fibre F, the Farber-Levine pairing is just the standard linking pairing on the torsion subgroup of $H_1(F;\mathbb{Z})$, together with the automorphism induced by the monodromy.

In particular, Farber observed that the group π with presentation
\[\langle a, t \mid tat^{-1} = a^2, a^5 = 1 \rangle \]
is a high dimensional knot group but if ℓ is any nondegenerate \mathbb{Z}-bilinear pairing on $\pi' \cong \mathbb{Z}/5\mathbb{Z}$ with values in \mathbb{Q}/\mathbb{Z} then $\ell(ta,t\beta) = -\ell(\alpha,\beta)$ for all α, β in π', and so π is not a 2-knot group.

Corollary 14.3.1 [Le78] $H_2(\pi';\mathbb{Z})$ is a quotient of $\text{Hom}_\Lambda(\pi'/\pi'',\mathbb{Q}(t)/\Lambda)$.

In many cases every orientation preserving meridianal automorphism of a torsion free 3-manifold group is realizable by a fibred 2-knot.

Theorem 14.4 Let N be a closed orientable 3-manifold whose prime factors are virtually Haken or $S^1 \times S^2$. If K is a 2-knot such that $\langle \pi K \rangle' \cong \nu = \pi_1(N)$ then $M(K)$ is homotopy equivalent to the mapping torus of a self homeomorphism of N. If θ is a meridianal automorphism of ν then $\pi = \nu \times_\theta \mathbb{Z}$ is a 2-knot group if and only if θ fixes the image of the fundamental class of N in $H_3(\nu;\mathbb{Z})$.

Proof The first assertion follows from Corollary 4.6.1. The classifying maps for the fundamental groups induce a commuting diagram involving the Wang sequences of $M(K)$ and π from which the necessity of the orientation condition follows easily. (It is vacuous if ν is free group.)

If $\theta_*c_N[\pi(N)] = c_N[\pi(N)]$ then θ may be realized by an orientation preserving self homotopy equivalence g of N [Sw74]. Let $N = P \# R$ where P is a connected sum of copies of $S^1 \times S^2$ and R has no such factors. By the Splitting Theorem of [La74], g is homotopic to a connected sum of homotopy equivalences between the irreducible factors of R with a self homotopy equivalence of P. Every virtually Haken 3-manifold is either Haken, hyperbolic or Seifert-fibred, by [CS83] and [GMT96], and self homotopy equivalences of such manifolds are homotopic to homeomorphisms, by [Hm], Mostow rigidity and [Sc83], respectively. A similar result holds for $P = \#(S^1 \times S^2)$, by [La74]. Thus we may assume that g is a self homeomorphism of N. Surgery on a weight class in the mapping torus of g gives a fibred 2-knot with closed fibre N and group π.

Geometry & Topology Monographs, Volume 5 (2002)
If Thurston’s Geometrization Conjecture is true then it would suffice to assume that N is a closed orientable 3-manifold with $\pi_1(N)$ torsion free. The mapping torus is determined up to homeomorphism among fibred 4-manifolds with fibre N by its homotopy type if N is hyperbolic, Seifert fibred or if its prime factors are Haken or $S^1 \times S^2$, since homotopy implies isotopy in each case, by Mostow rigidity, [Sc85, BO91] and [HL74], respectively.

Yoshikawa has shown that a finitely generated abelian group is the base of some HNN extension which is a high dimensional knot group if and only if it satisfies the restrictions on torsion of [HK78], while if a knot group has a non-finitely generated abelian base then it is metabelian. Moreover a 2-knot group π which is an HNN extension with abelian base is either metabelian or has base $Z \oplus (Z/\beta Z)$ for some odd $\beta \geq 1$ [Yo86, Yo92]. In §6 of Chapter 15 we shall show that in the latter case β must be 1, and so π has a deficiency 1 presentation $\langle t, x \mid tx^n t^{-1} = x^{n+1} \rangle$. No nontrivial classical knot group is an HNN extension with abelian base. (This is implicit in Yoshikawa’s work, and can also be deduced from the facts that classical knot groups have cohomological dimension ≤ 2 and symmetric Alexander polynomial.)

14.9 Deficiency and geometric dimension

J.H.C. Whitehead raised the question “is every subcomplex of an aspherical 2-complex also aspherical?” This is so if the fundamental group of the subcomplex is a 1-relator group [Go81] or is locally indicable [Ho82] or has no nontrivial superperfect normal subgroup [Dy87]. Whitehead’s question has interesting connections with knot theory. (For instance, the exterior of a ribbon n-knot or of a ribbon concordance between classical knots is homotopy equivalent to such a 2-complex. The asphericity of such ribbon exteriors has been raised in [Co83] and [Go81].)

If the answer to Whitehead’s question is YES, then a high dimensional knot group has geometric dimension at most 2 if and only if it has deficiency 1 (in which case it is a 2-knot group). For let G be a group of weight 1 and with $G/G' \cong Z$. If $C(P)$ is the 2-complex corresponding to a presentation of deficiency 1 then the 2-complex obtained by adjoining a 2-cell to $C(P)$ along a loop representing a weight element for G is 1-connected and has Euler characteristic 1, and so is contractible. The converse follows from Theorem 2.8. On the other hand a positive answer in general implies that there is a group G such that $c.d.G = 2$ and $g.d.G = 3$ [BB97].

If the answer is NO then either there is a finite nonaspherical 2-complex X such that $X \cup_f D^2$ is contractible for some $f : S^1 \to X$ or there is an infinite ascending chain of nonaspherical 2-complexes whose union is contractible [Ho83]. In the finite case $\chi(X) = 0$ and so $\pi = \pi_1(X)$ has deficiency 1; moreover, π has weight 1 since it is normally generated by the conjugacy class represented by f. Such groups are 2-knot groups. Since X is not aspherical (2) $\beta_1^{(2)}(\pi) \neq 0$, by Theorem 2.4, and so π' cannot be finitely generated, by Lemma 2.1.

A group is called knot-like if it has abelianization \mathbb{Z} and deficiency 1. If the commutator subgroup of a classical knot group is finitely generated then it is free; Rapaport asked whether this is true of all knot-like groups G, and established this in the 2-generator, 1-relator case [Rp60]. This is true also if G' is FP_2, by Corollary 2.5.1. If every knot-like group has a finitely presentable HNN base then this Corollary would settle Rapaport’s question completely, for if G' is finitely generated then it is the unique HNN base for G [Si96].

In particular, if the group of a fibred 2-knot has a presentation of deficiency 1 then its commutator subgroup must be free. Any 2-knot with such a group is s-concordant to a fibred homotopy ribbon knot (see §6 of Chapter 17). Must it in fact be a ribbon knot?

It follows also that if τ_rK is a nontrivial twist spin then $\text{def}(\pi_1\tau_rK) \leq 0$ and τ_rK is not a homotopy ribbon 2-knot. For $S^2 \times S^1$ is never a factor of the closed fibre of τ_rK [Pl84], and so $(\pi_1\tau_rK)'$ is never a nontrivial free group.

The next result is a consequence of Theorem 2.5, but the argument below is self contained.

Lemma 14.5 If G is a group with $\text{def}(G) = 1$ and $e(G) = 2$ then $G \cong \mathbb{Z}$.

Proof The group G has an infinite cyclic subgroup A of finite index, since $e(G) = 2$. Let C be the finite 2-complex corresponding to a presentation of deficiency 1 for G, and let D be the covering space corresponding to A. Then D is a finite 2-complex with $\pi_1(D) = A \cong \mathbb{Z}$ and $\chi(D) = [\pi : A]\chi(C) = 0$. Since $H_2(D; \mathbb{Z}[A]) = H_2(\tilde{D}; \mathbb{Z})$ is a submodule of a free $\mathbb{Z}[A]$-module and is of rank $\chi(D) = 0$ it is 0. Hence \tilde{D} is contractible, and so G must be torsion free and hence abelian.

It follows immediately that $\text{def}(\pi_23_1) = 0$, since $\pi_23_1 \cong (\mathbb{Z}/3\mathbb{Z}) \times_{-1} \mathbb{Z}$. Moreover, if K is a nontrivial classical knot then π' is infinite. Hence if π' is finitely generated then $H^1(\pi; \mathbb{Z}[\pi]) = 0$, and so $X(K)$ is aspherical, by Poincaré duality.
Theorem 14.6 Let K be a 2-knot with group π. Then $\pi \cong \mathbb{Z}$ if and only if $\text{def}(\pi) = 1$ and $\pi_2(M(K)) = 0$.

Proof The conditions are necessary, by Theorem 11.1. If they hold then $\beta_j^{(2)}(M) = \beta_j^{(2)}(\pi)$ for $j \leq 2$, by Theorem 6.54 of [Lü], and so $0 = \chi(M) = \beta_2^{(2)}(\pi) - 2\beta_1^{(2)}(\pi)$. Now $\beta_1^{(2)}(\pi) - \beta_2^{(2)}(\pi) \geq \text{def}(\pi) - 1 = 0$, by Corollary 2.4.1. Therefore $\beta_1^{(2)}(\pi) = \beta_2^{(2)}(\pi) = 0$ and so $g.d.\pi \leq 2$, by the same Corollary. Since $\text{def}(\pi) = 1$ the manifold M is not aspherical, by Theorem 3.6. Hence $H^1(\pi; \mathbb{Z}[\pi]) \cong H_3(M; \mathbb{Z}[\pi]) \neq 0$. Since π is torsion free it is indecomposable as a free product [KL93]. Therefore $e(\pi) = 2$ and so $\pi \cong \mathbb{Z}$, by Lemma 14.5.

In fact K must be trivial ([FQ] - see Corollary 17.1.1). A simpler argument is used in [H1] to show that if $\text{def}(\pi) = 1$ then $\pi_2(M)$ maps onto $H_2(M; \Lambda)$, which is nonzero if $\pi' \neq \pi''$.

14.10 Asphericity

The outstanding property of the exterior of a classical knot is that it is aspherical. Swarup extended the classical Dehn’s lemma criterion for unknotting to show that if K is an n-knot such that the natural inclusion of S^n (as a factor of $\partial X(K)$) into $X(K)$ is null homotopic then $X(K) \simeq S^1$, provided πK is accessible [Sw75]. Since it is now known that finitely presentable groups are accessible [DD], it follows that the exterior of a higher dimensional knot is aspherical if and only if the knot is trivial. Nevertheless, we shall see that the closed 4-manifolds $M(K)$ obtained by surgery on 2-knots are often aspherical.

Theorem 14.7 Let K be a 2-knot. Then $M(K)$ is aspherical if and only if πK is a PD$_4$-group (which must then be orientable).

Proof The condition is clearly necessary. Suppose that it holds. Let M^+ be the covering space associated to $\pi^+ = \text{Ker}(w_1(\pi))$. Then $[\pi : \pi^+] \leq 2$, so $\pi' < \pi^+$. Since $\pi/\pi' \cong \mathbb{Z}$ and $t - 1$ acts invertibly on $H_1(\pi'; \mathbb{Z})$ it follows that $\beta_1(\pi^+) = 1$. Hence $\beta_2(M^+) = 0$, since M^+ is orientable and $\chi(M^+) = 0$. Hence $\beta_2(\pi^+)$ is also 0, so $\chi(\pi^+) = 0$, by Poincaré duality for π^+. Therefore $\chi(\pi) = 0$ and so M must be aspherical, by Corollary 3.5.1.

We may use this theorem to give more examples of high dimensional knot groups which are not 2-knot groups. Let $A \in GL(3, \mathbb{Z})$ be such that $\text{det}(A) = -1$,
$\det(A-I) = \pm 1$ and $\det(A+I) = \pm 1$. The characteristic polynomial of A must be either $f_1(X) = X^3 - X^2 - 2X + 1$, $f_2(X) = X^3 - X^2 + 1$, $f_3(X) = X^3 f_1(X^{-1})$ or $f_4(X) = X^3 f_2(X^{-1})$. It may be shown that the rings $\mathbb{Z}[X]/(f_i(X))$ are principal ideal domains. Hence there are only two conjugacy classes of such matrices, up to inversion. The Kervaire conditions hold for $\mathbb{Z}^3 \times A \mathbb{Z}$, and so it is a 3-knot group. However it cannot be a 2-knot group, since it is a PD_4-group of nonorientable type. (Such matrices have been used to construct fake RP^4 s [CS76].)

Is every (torsion free) 2-knot group with $H^s(\pi; \mathbb{Z}[\pi]) = 0$ for $s \leq 2$ a PD_4-group? Is every 3-knot group which is also a PD_4-group a 2-knot group? (Note that by Theorem 3.6 such a group cannot have deficiency 1.)

We show next that knots with such groups cannot be a nontrivial satellite.

Theorem 14.8 Let $K = \Sigma(K_2; K_1, \gamma)$ be a satellite 2-knot. If πK is a PD_4-group then $K = K_1$ or K_2.

Proof Let q be the order of γ in πK_1. Then $\pi = \pi K \cong \pi K_1 \ast_C B$, where $B = \pi K_2/\langle\langle w^q\rangle\rangle$, and C is cyclic. Since π is torsion free $q = 0$ or 1. Suppose that $K \neq K_1$. Then $q = 0$, so $C \cong \mathbb{Z}$, while $B \neq C$. If $\pi K_1 \neq C$ then πK_1 and B have infinite index in π, and so $c.d. \pi K_1 \leq 3$ and $c.d. B \leq 3$, by Strebel’s Theorem. A Mayer-Vietoris argument then gives $4 = c.d. \pi \leq 3$, which is impossible. Therefore K_1 is trivial and so $K = K_2$.

In particular if πK is a PD_4-group then K is irreducible.

14.11 Links

A μ-component n-link is a locally flat embedding $L : \mu S^n \to S^{n+2}$. The exterior of L is $X(L) = S^{n+2} \setminus \text{int}N(L)$, where $N(L) \cong \mu S^n \times D^2$ is a regular neighbourhood of the image of L, and the group of L is $\pi L = \pi_1(X(L))$. Let $M(L) = X(L) \cup \mu D^{n+1} \times S^1$ be the closed manifold obtained by surgery on L in S^{n+2}.

An n-link L is trivial if it bounds a collection of μ disjoint locally flat 2-discs in S^n. It is split if it is isotopic to one which is the union of nonempty sublinks L_1 and L_2 whose images lie in disjoint discs in S^{n+2}, in which case we write $L = L_1 \sqcup L_2$, and it is a boundary link if it bounds a collection of μ disjoint hypersurfaces in S^{n+2}. Clearly a trivial link is split, and a split link is a boundary link; neither implication can be reversed if $\mu > 1$. Knots
14.11 Links

are boundary links, and many arguments about knots that depend on Seifert hypersurfaces extend readily to boundary links. The definitions of slice and ribbon knots and s-concordance extend naturally to links.

A 1-link is trivial if and only if its group is free, and is split if and only if its group is a nontrivial free product, by the Loop Theorem and Sphere Theorem, respectively. (See Chapter 1 of [H3].) Gutiérrez has shown that if \(n \geq 4 \) an \(n \)-link \(L \) is trivial if and only if \(\pi L \) is freely generated by meridians and the homotopy groups \(\pi_j(X(L)) \) are all 0, for \(2 \leq j \leq (n + 1)/2 \) [Gu72]. His argument applies also when \(n = 3 \). While the fundamental group condition is necessary when \(n = 2 \), we cannot yet use surgery to show that it is a complete criterion for triviality of 2-links with more than one component. We shall settle for a weaker result.

Theorem 14.9 Let \(M \) be a closed 4-manifold with \(\pi_1(M) \) free of rank \(r \) and \(\chi(M) = 2(1 - r) \). If \(M \) is orientable it is s-cobordant to \([S^1 \times S^3]\), while if it is nonorientable it is s-cobordant to \((S^1 \times S^3)[S^r - 1(S^1 \times S^3)]\).

Proof We may assume without loss of generality that \(\pi_1(M) \) has a free basis \(\{x_1, \ldots, x_r\} \) such that \(x_i \) is an orientation preserving loop for all \(i > 1 \), and we shall use \(c_{M*} \) to identify \(\pi_1(M) \) with \(F(r) \). Let \(N = [S^r(S^1 \times S^3)] \) if \(M \) is orientable and let \(N = (S^1 \times S^3)[S^r - 1(S^1 \times S^3)] \) otherwise. (Note that \(w_1(N) = w_1(M) \) as homomorphisms from \(F(r) \) to \(\{\pm 1\} \).) Since \(c.d. \pi_1(M) \leq 2 \) and \(\chi(M) = 2 \pi_1(M) \), we have \(\pi_2(M) \cong \check{H}^2(F(r); \mathbb{Z}[F(r)]) \), by Theorem 3.12. Hence \(\pi_2(M) = 0 \) and so \(\pi_3(M) \cong H_3(M; \mathbb{Z}) \cong D = H^1(F(r); \mathbb{Z}[F(r)]) \), by the Hurewicz theorem and Poincaré duality. Similarly, we have \(\pi_3(N) = 0 \) and \(\pi_3(N) \cong D \).

Let \(c_{M*} = g_M h_M \) be the factorization of \(c_M \) through \(P_3(M) \), the third stage of the Postnikov tower for \(M \). Thus \(\pi_i(h_M) \) is an isomorphism if \(i < 3 \) and \(\pi_j(P_3(M)) = 0 \) if \(j > 3 \). As \(K(F(r), 1) = \vee S^1 \) each of the fibrations \(g_M \) and \(g_N \) clearly have cross-sections and so there is a homotopy equivalence \(k : P_3(M) \to P_3(N) \) such that \(g_M = g_N k \). (See Section 5.2 of [Ba].) We may assume that \(k \) is cellular. Since \(P_3(M) = M \cup \{\text{cells of dimension} \geq 3\} \) it follows that \(kh_M = h_N f \) for some map \(f : M \to N \). Clearly \(\pi_i(f) \) is an isomorphism for \(i < 3 \). Since the universal covers \(\tilde{M} \) and \(\tilde{N} \) are 2-connected open 4-manifolds the induced map \(\tilde{f} : \tilde{M} \to \tilde{N} \) is an homology isomorphism, and so is a homotopy equivalence. Hence \(f \) itself is a homotopy equivalence. As \(Wh(F(r)) = 0 \) any such homotopy equivalence is simple.

If \(M \) is orientable \([M, G/TOP] \cong Z \), since \(H^2(M; \mathbb{Z}/2\mathbb{Z}) = 0 \). As the surgery obstruction in \(L_4(F(r)) \cong Z \) is given by a signature difference, it is a bijection.
and so the normal invariant of f is trivial. Hence there is a normal cobordism $F : P \to N \times I$ with $F|\partial_- P = f$ and $F|\partial_+ P = id_N$. There is another normal cobordism $F' : P' \to N \times I$ from id_N to itself with surgery obstruction $\sigma_5(P',F') = -\sigma_5(P,F)$ in $L_5(F(r))$, by Theorem 6.7 and Lemma 6.9. The union of these two normal cobordisms along $\partial_+ P = \partial_- P'$ is a normal cobordism from f to id_N with surgery obstruction 0, and so we may obtain an s-cobordism W by 5-dimensional surgery (rel ∂).

A similar argument applies in the nonorientable case. The surgery obstruction is then a bijection from $[N;G/TOP]$ to $L_4(F(r),-) = Z/2Z$, so f is normally cobordant to id_N, while $L_5(Z,-) = 0$, so $L_5(F(r),-) \cong L_5(F(r-1))$ and the argument of [FQ] still applies.

Corollary 14.9.1 Let L be a μ-component 2-link such that πL is freely generated by μ meridians. Then L is s-concordant to the trivial μ-component link.

Proof Since $M(L)$ is orientable, $\chi(M(L)) = 2(1-\mu)$ and $\pi_1(M(L)) \cong \pi L = F(\mu)$, there is an s-cobordism W with $\partial W = M(L) \cup M(\mu)$, by Theorem 14.9. Moreover it is clear from the proof of that theorem that we may assume that the elements of the meridianal basis for πL are freely homotopic to loops representing the standard basis for $\pi_1(M(\mu))$. We may realise such homotopies by μ disjoint embeddings of annuli running from meridians for L to such standard loops in $M(\mu)$. Surgery on these annuli (i.e., replacing $D^3 \times S^1 \times [0,1]$ by $S^2 \times D^2 \times [0,1]$) then gives an s-concordance from L to the trivial μ-component link.

A similar strategy may be used to give an alternative proof of the higher dimensional unlinking theorem of [Gu72] which applies uniformly for $n \geq 3$. The hypothesis that πL be freely generated by meridians cannot be dropped entirely [Po71]. On the other hand, if L is a 2-link whose longitudes are all null homotopic then the pair $(X(L),\partial X(L))$ is homotopy equivalent to the pair $(\sharp^\mu S^1 \times D^3,\partial(\sharp^\mu S^1 \times D^3))$ [Sw77], and hence the Corollary applies.

There is as yet no satisfactory splitting criterion for higher-dimensional links. However we can give a stable version for 2-links.

Theorem 14.10 Let M be a closed 4-manifold such that $\pi = \pi_1(M)$ is isomorphic to a nontrivial free product $G \ast H$. Then M is stably homeomorphic to a connected sum $M_G \sharp M_H$ with $\pi_1(M_G) \cong G$ and $\pi_1(M_H) \cong H$.

Geometry & Topology Monographs, Volume 5 (2002)
Let \(K = K_G \cup [-1,1] \cup K_H/(*G \sim -1, +1 \sim *H) \), where \(K_G \) and \(K_H \) are \(K(G,1) \)- and \(K(H,1) \)-spaces with basepoints \(*G\) and \(*H\) (respectively). Then \(K \) is a \(K(\pi,1) \)-space and so there is a map \(f : M \to K \) which induces an isomorphism of fundamental groups. We may assume that \(f \) is transverse to \(0 \in [-1,1] \), so \(V = f^{-1}(0) \) is a submanifold of \(M \) with a product neighbourhood \(V \times [-\epsilon,\epsilon] \). We may also assume that \(V \) is connected, by the arc-chasing argument of Stallings’ proof of Kneser’s conjecture. (See page 67 of [Hm].) Let \(j : V \to M \) be the inclusion. Since \(f j \) is a constant map and \(\pi_1(f) \) is an isomorphism \(\pi_1(j) \) is the trivial homomorphism, and so \(j^*w_1(M) = 0 \). Hence \(V \) is orientable and so there is a framed link \(L \subset V \) such that surgery on \(L \) in \(V \) gives \(S^3 \) [Li62]. The framings of the components of \(L \) in \(V \) extend to framings in \(M \). Let \(W = M \times [0,1] \cup_{\mu D^2 \times [-\epsilon,\epsilon] \times \{1\}} (\mu D^2 \times D^2 \times [-\epsilon,\epsilon]) \), where \(\mu \) is the number of components of \(L \). Note that if \(w_2(M) = 0 \) then we may choose the framed link \(L \) so that \(w_2(W) = 0 \) also [Kp79]. Then \(\partial W = M \cup \tilde{M} \), where \(\tilde{M} \) is the result of surgery on \(L \) in \(M \). The map \(f \) extends to a map \(F : W \to K \) such that \(\pi_1(F|_{\tilde{M}}) \) is an isomorphism and \((F|_{\tilde{M}})^{-1}(0) \cong S^3 \). Hence \(\tilde{M} \) is a connected sum as in the statement. Since the components of \(L \) are null-homotopic in \(M \) they may be isotoped into disjoint discs, and so \(\tilde{M} \cong M \sharp (\sharp^\mu S^2 \times S^2) \). This proves the theorem.

Note that if \(V \) is a homotopy 3-sphere then \(M \) is a connected sum, for \(V \times R \) is then homeomorphic to \(S^3 \times R \), by 1-connected surgery.

Theorem 14.11 Let \(L \) be a \(\mu \)-component \(2 \)-link with sublinks \(L_1 \) and \(L_2 = L \setminus L_1 \) such that there is an isomorphism from \(\pi L \) to \(\pi L_1 \ast \pi L_2 \) which is compatible with the homomorphisms determined by the inclusions of \(X(L) \) into \(X(L_1) \) and \(X(L_2) \). Then \(X(L) \) is stably homeomorphic to \(X(L_1 \amalg L_2) \).

Proof By Theorem 14.10, \(M(L)\sharp(\sharp^a S^2 \times S^2) \cong N_2 P \), where \(\pi_1(N) \cong \pi L_1 \) and \(\pi_1(P) \cong \pi L_2 \). On undoing the surgeries on the components of \(L_1 \) and \(L_2 \), respectively, we see that \(M(L)\sharp(\sharp^a S^2 \times S^2) \cong N_2 \bar{P} \), and \(M(L_1)\sharp(\sharp^a S^2 \times S^2) \cong \bar{N} \bar{P} \), where \(\bar{N} \) and \(\bar{P} \) are simply connected. Since undoing the surgeries on all the components of \(L \) gives \(\sharp^a S^2 \times S^2 \cong \bar{N} \bar{P} \), \(\bar{N} \) and \(\bar{P} \) are each connected sums of copies of \(S^2 \times S^2 \), so \(\bar{N} \) and \(\bar{P} \) are stably homeomorphic to \(M(L_1) \) and \(M(L_2) \), respectively. The result now follows easily.

Similar arguments may be used to show that, firstly, if \(L \) is a \(2 \)-link such that \(c.d. \pi L \leq 2 \) and there is an isomorphism \(\theta : \pi L \to \pi L_1 \ast \pi L_2 \) which is compatible with the natural maps to the factors then there is a map \(f_\circ : \)
Chapter 14: Knots and links

$M(L)_o = M(L) \setminus \text{int}D^4 \to M(L_1) \sqcup M(L_2)$ such that $\pi_1(f_o) = \theta$ and $\pi_2(f_o)$ is an isomorphism; and secondly, if moreover f_o extends to a homotopy equivalence $f : M(L) \to M(L_1) \sqcup M(L_2)$ and the factors of πL are either classical link groups or are square root closed accessible then L is s-concordant to the split link $L_1 \sqcup L_2$. (The surgery arguments rely on [AFR97] and [Ca73], respectively.) However we do not know how to bridge the gap between the algebraic hypothesis and obtaining a homotopy equivalence.

14.12 Link groups

If π is the group of a μ-component n-link L then

1. π is finitely presentable;
2. π is of weight μ;
3. $H_1(\pi; \mathbb{Z}) = \pi/\pi' \cong \mathbb{Z}^\mu$; and
4. (if $n > 1$) $H_2(\pi; \mathbb{Z}) = 0$.

Conversely, any group satisfying these conditions is the group of an n-link, for every $n \geq 3$ [Ke 65]. (Note that $q(\pi) \geq 2(1 - \mu)$, with equality if and only if π is the group of a 2-link.) If (4) is replaced by the stronger condition that $\text{def}(\pi) = \mu$ (and π has a deficiency μ Wirtinger presentation) then π is the group of a (ribbon) 2-link which is a sublink of a (ribbon) link whose group is a free group. (See Chapter 1 of [H3].) The group of a classical link satisfies (4) if and only if the link splits completely as a union of knots in disjoint balls. If subcomplexes of aspherical 2-complexes are aspherical then a higher-dimensional link group group has geometric dimension at most 2 if and only if it has deficiency μ (in which case it is a 2-link group).

A link L is a boundary link if and only if there is an epimorphism from $\pi(L)$ to the free group $F(\mu)$ which carries a set of meridians to a free basis. If the latter condition is dropped L is said to be an homology boundary link. Although sublinks of boundary links are clearly boundary links, the corresponding result is not true for homology boundary links. It is an attractive conjecture that every even-dimensional link is a slice link. This has been verified under additional hypotheses on the link group. For a 2-link L it suffices that there be a homomorphism $\phi : \pi L \to G$ where G is a high-dimensional link group such that $H_3(G; \mathbb{F}_2) = H_4(G; \mathbb{Z}) = 0$ and where the normal closure of the image of ϕ is G [Co84]. In particular, sublinks of homology boundary 2-links are slice links.
A choice of (based) meridians for the components of a link \(L \) determines a homomorphism \(f : F(\mu) \to \pi L \) which induces an isomorphism on abelianization. If \(L \) is a higher dimensional link \(H_2(\pi L; \mathbb{Z}) = H_2(F(\mu); \mathbb{Z}) = 0 \) and hence \(f \) induces isomorphisms on all the nilpotent quotients \(F(\mu)/F(\mu)[n] \cong \pi L/(\pi L)[n] \),

and a monomorphism \(F(\mu) \to \pi L/(\pi L)[\omega] = \pi L/\cap_{n \geq 1} (\pi L)[n] \) [St65]. (In particular, if \(\mu \geq 2 \) then \(\pi L \) contains a nonabelian free subgroup.) The latter map is an isomorphism if and only if \(L \) is a homology boundary link. In that case the homology groups of the covering space \(X(L)^{\omega} \) corresponding to \(\pi L/(\pi L)[\omega] \) are modules over \(\mathbb{Z}[\pi L/(\pi L)[\omega]] \cong \mathbb{Z}[F(\mu)] \), which is a coherent ring of global dimension 2. Poincaré duality and the UCSS then give rise to an isomorphism \(e^2e^2(\pi L/(\pi L)[\omega]) \cong e^2(\pi L/(\pi L)[\omega]) \), where \(e^i(M) = Ext^i_{\mathbb{Z}[F(\mu)]}(M, \mathbb{Z}[F(\mu)]) \), which is the analogue of the Farber-Levine pairing for 2-knots.

The argument of [HK78'] may be adapted to show that every finitely generated abelian group is the centre of the group of some \(\mu \)-component boundary \(n \)-link, for any \(\mu \geq 1 \) and \(n \geq 3 \). However the centre of the group of a 2-link with more than one component must be finite. (In all known examples the centre is trivial.)

Theorem 14.12 Let \(L \) be a \(\mu \)-component 2-link with group \(\pi \). If \(\mu > 1 \) then

1. \(\pi \) has no infinite amenable normal subgroup;
2. \(\pi \) is not an ascending HNN extension over a finitely generated base.

Proof If (1) or (2) is false then \(\beta_1^{(2)}(\pi) = 0 \) (see §2 of Chapter 2), and clearly \(\mu > 0 \). Since \(\beta_2^{(2)}(M(L)) = \chi(M(L)) + 2\beta_1^{(2)}(\pi) = 2(1 - \mu) \), we must have \(\mu = 1 \). \(\square \)

In particular, the exterior of a 2-link with more than one component never fibres over \(S^1 \). (This is true of all higher dimensional links: see Theorem 5.12 of [H3].) Moreover a 2-link group has finite centre and is never amenable. In contrast, we shall see that there are many 2-knot groups which have infinite centre or are solvable.

The exterior of a classical link is aspherical if and only the link is unsplittable, while the exterior of a higher dimensional link with more than one component is never aspherical [Ec76]. Is \(M(L) \) ever aspherical?
14.13 Homology spheres

A closed connected n-manifold M is an homology n-sphere if $H_q(M; \mathbb{Z}) = 0$ for $0 < q < n$. In particular, it is orientable and so $H_n(M; \mathbb{Z}) \cong \mathbb{Z}$. If π is the group of an homology n-sphere then

1. π is finitely presentable;
2. π is perfect, i.e., $\pi = \pi'$; and
3. $H_2(\pi; \mathbb{Z}) = 0$.

A group satisfying the latter two conditions is said to be superperfect. Every finitely presentable superperfect group is the group of an homology n-sphere, for every $n \geq 5$ [Ke69], but in low dimensions more stringent conditions hold.

As any closed 3-manifold has a handlebody structure with one 0-handle and equal numbers of 1- and 2-handles, homology 3-sphere groups have deficiency 0. Every perfect group with a presentation of deficiency 0 is an homology 4-sphere group (and therefore is superperfect) [Ke69]. However none of the implications “G is an homology 3-sphere group” \Rightarrow “G is finitely presentable, perfect and def(G) = 0” \Rightarrow “G is an homology 4-sphere group” \Rightarrow “G is finitely presentable and superperfect” can be reversed, as we shall now show.

Although the finite groups $SL(2, \mathbb{F}_p)$ are perfect and have deficiency 0 for each prime $p \geq 5$ [CR80] the binary icosahedral group $I^* = SL(2, \mathbb{F}_5)$ is the only nontrivial finite perfect group with cohomological period 4, and thus is the only finite homology 3-sphere group.

Let $G = \langle x, s \mid x^3 = 1, sx^3s^{-1} = x^{-1} \rangle$ be the group of τ_23_1 and let $H = \langle a, b, c, d \mid bab^{-1} = a^2, cbc^{-1} = b^2, dcd^{-1} = c^2, ada^{-1} = d^2 \rangle$ be the Higman group [Hg51]. Then H is perfect and def(H) = 0, so there is an homology 4-sphere Σ with group H. Surgery on a loop representing sa^{-1} in $\Sigma \Omega M(\tau_23_1)$ gives an homology 4-sphere with group $\pi = (G * H)/(\langle sa^{-1} \rangle)$. Then π is the semidirect product $\rho \rtimes H$, where $\rho = (\langle G' \rangle)_{\pi}$ is the normal closure of the image of G' in π. The obvious presentation for this group has deficiency -1. We shall show that this is best possible.

Let $\Gamma = \mathbb{Z}[H]$. Since H has cohomological dimension 2 [DV73'] the augmentation ideal $I = \text{Ker}(\varepsilon : \Gamma \rightarrow \mathbb{Z})$ has a short free resolution

$$C_* : 0 \rightarrow \Gamma^4 \rightarrow \Gamma^4 \rightarrow I \rightarrow 0.$$

Let $B = H_1(\pi; \Gamma) \cong \rho/\rho'$. Then $B \cong \Gamma/\Gamma(3, a + 1)$ as a left Γ-module and there is an exact sequence

$$0 \rightarrow B \rightarrow A \rightarrow I \rightarrow 0,$$
in which \(A = H_1(\pi, 1; \Gamma) \) is a relative homology group [Cr61]. Since \(B \cong \Gamma \otimes_{\Lambda} (\Lambda/\Lambda(3, a + 1)) \), where \(\Lambda = \mathbb{Z}[a, a^{-1}] \), there is a free resolution

\[
0 \rightarrow \Gamma \xrightarrow{(3,a+1)} \Gamma^2 \xrightarrow{(a+1,-3)} \Gamma \rightarrow B \rightarrow 0.
\]

Suppose that \(\pi \) has deficiency 0. Evaluating the Jacobian matrix associated to an optimal presentation for \(\pi \) via the natural epimorphism from \(\mathbb{Z} \) to \(\Gamma \) gives a presentation matrix for \(A \) as a module (see [Cr61] or [Fo62]). Thus there is an exact sequence

\[
D_0 : \cdots \rightarrow \Gamma^n \rightarrow \Gamma^m \rightarrow A \rightarrow 0.
\]

A mapping cone construction leads to an exact sequence of the form

\[
D_1 \rightarrow C_1 \oplus D_0 \rightarrow B \oplus C_0 \rightarrow 0
\]

and hence to a presentation of deficiency 0 for \(B \) of the form

\[
D_1 \oplus C_0 \rightarrow C_1 \oplus D_0 \rightarrow B.
\]

Hence there is a free resolution

\[
0 \rightarrow L \rightarrow \Gamma^p \rightarrow \Gamma^p \rightarrow B \rightarrow 0.
\]

Schanuel’s Lemma gives an isomorphism \(\Gamma^{1+p+1} \cong L \oplus \Gamma^{p+2} \), on comparing these two resolutions of \(B \). Since \(\Gamma \) is weakly finite the endomorphism of \(\Gamma^{p+2} \) given by projection onto the second summand is an automorphism. Hence \(L = 0 \) and so \(B \) has a short free resolution. In particular, \(\text{Tor}_2^\Gamma(R, B) = 0 \) for any right \(\Gamma \)-module \(R \). But it is easily verified that if \(\overline{\mathbb{B}} \cong \Gamma/(3, a + 1) \Gamma \) is the conjugate right \(\Gamma \)-module then \(\text{Tor}_2^\Gamma(\overline{\mathbb{B}}, B) \neq 0 \). Thus our assumption was wrong, and \(\text{def}(\pi) = -1 < 0 \).

If \(k \geq 0 \) let \(G_k = (\mathbb{F}_3^k \rtimes I^*) \), where \(I^* \) acts diagonally on \((\mathbb{F}_3^k)^k \), with respect to the standard action on \(\mathbb{F}_3^k \), and let \(H_k \) be the subgroup generated by \(\mathbb{F}_3^k \) and \((1, 2, 1, 0) \). Then \(G_k \) is a finite superperfect group, \(\langle G_k : H_k \rangle = 12 \), \(\beta_1(H_k; \mathbb{F}_3^k) = 1 \) and \(\beta_2(H_k; \mathbb{F}_3^k) = k^2 \). Applying part (1) of Lemma 3.11 we find that \(\text{def}G_k < 0 \) if \(k > 3 \) and \(q^{SG}(G_k) > 2 \) if \(k > 4 \). In the latter case \(G_k \) is not realized by any homology 4-sphere. (This argument derives from [HW85].)

Does every finite homology 4-sphere group have deficiency 0? Our example above is “very infinite” in the sense that the Higman group \(H \) has no finite quotients, and therefore no finite-dimensional representations over any field [Hg51]. The smallest finite superperfect group which is not known to have deficiency 0 nor to be an homology 4-sphere group is \(G_1 \), which has order 3000 and has the deficiency -2 presentation

\[
\langle x, y, e \mid x^2 = y^3 = (xy)^5, xex^{-1} = yey^{-1}, eyey^{-1} = yey^{-1}e, ey^2e = ye \rangle.
\]
Kervaire’s criteria may be extended further to the groups of links in homology spheres. Unfortunately, the condition $\chi(M) = 0$ is central to most of our arguments, and is satisfied only by the manifolds arising from knots in homology 4-spheres.
Chapter 15

Restrained normal subgroups

It is plausible that if K is a 2-knot whose group $\pi = \pi K$ has an infinite restrained normal subgroup N then either π' is finite or $\pi \cong \Phi$ (the group of Fox’s Example 10) or $M(K)$ is aspherical and $\sqrt{\pi} \neq 1$ or N is virtually Z and π/N has infinitely many ends. In this chapter we shall give some evidence in this direction. In order to clarify the statements and arguments in later sections, we begin with several characterizations of Φ, which plays a somewhat exceptional role. In §2 we assume that N is almost coherent and locally virtually indicable, but not locally finite. In §3 we assume that N is abelian of positive rank and almost establish the tetrachotomy in this case. In §4 we determine all such π with π' finite, and in §5 we give a version of the Tits alternative for 2-knot groups. In §6 we shall complete Yoshikawa’s determination of the 2-knot groups which are HNN extensions over abelian bases. We conclude with some observations on 2-knot groups with infinite locally finite normal subgroups.

15.1 The group Φ

Let $\Phi \cong Z*_{2}$ be the group with presentation $\langle a, t \mid tat^{-1} = a^2 \rangle$. This group is an ascending HNN extension with base Z, is metabelian, and has commutator subgroup isomorphic to $Z[\frac{1}{2}]$. The 2-complex corresponding to this presentation is aspherical and so $g.d.\Phi = 2$.

The group Φ is the group of Example 10 of Fox, which is the boundary of the ribbon D^3 in S^4 obtained by “thickening” a suitable immersed ribbon D^2 in S^3 for the stevedore’s knot 6_2 [Fo62]. Such a ribbon disc may be constructed by applying the method of §7 of Chapter 1 of [H3] to the equivalent presentation $\langle t, u, v \mid vuv^{-1} = t, tut^{-1} = v \rangle$ for Φ (where $u = ta$ and $v = t^2at^{-1}$).

Theorem 15.1 Let π be a 2-knot group such that $c.d.\pi = 2$ and π has a nontrivial normal subgroup E which is either elementary amenable or almost coherent, locally virtually indicable and restrained. Then either $\pi \cong \Phi$ or π is an iterated free product of (one or more) torus knot groups, amalgamated over central subgroups. In either case $\text{def}(\pi) = 1$.
Proof If \(\pi \) is solvable then \(\pi \cong Z * m \), for some \(m \neq 0 \), by Corollary 2.6.1. Since \(\pi / \pi' \cong Z \) we must have \(m = 2 \) and so \(\pi \cong \Phi \).

Otherwise \(E \cong Z \), by Theorem 2.7. Then \([\pi : C_{\pi'}(E)] \leq 2 \) and \(C_{\pi'}(E) \) is free, by Bieri’s Theorem. This free subgroup must be nonabelian for otherwise \(\pi \) would be solvable. Hence \(E \cap C_{\pi'}(E) = 1 \) and so \(E \) maps injectively to \(H = \pi / C_{\pi'}(E) \). As \(H \) has an abelian normal subgroup of index at most 2 and \(H / H' \cong Z \) we must in fact have \(H \cong Z \). It follows easily that \(C_\Phi(E) = Z \) and so \(\pi' \) is free. The further structure of \(\pi \) is then due to Strebel [St76]. The final observation follows readily.

The following alternative characterizations of \(\Phi \) shall be useful.

Theorem 15.2 Let \(\pi \) be a 2-knot group with maximal locally finite normal subgroup \(T \). Then \(\pi / T \cong \Phi \) if and only if \(\pi \) is elementary amenable and \(h(\pi) = 2 \). Moreover the following are equivalent:

1. \(\pi \) has an abelian normal subgroup \(A \) of rank 1 such that \(\pi / A \) has two ends;
2. \(\pi \) is elementary amenable, \(h(\pi) = 2 \) and \(\pi \) has an abelian normal subgroup \(A \) of rank 1;
3. \(\pi \) is almost coherent, elementary amenable and \(h(\pi) = 2 \);
4. \(\pi \cong \Phi \).

Proof Since \(\pi \) is finitely presentable and has infinite cyclic abelianization it is an HNN extension \(\pi \cong H *_{\phi} \) with base \(H \) a finitely generated subgroup of \(\pi' \), by Theorem 1.13. Since \(\pi \) is elementary amenable the extension must be ascending. Since \(h(\pi / T) = 1 \) and \(\pi' / T \) has no nontrivial locally-finite normal subgroup \(\pi' / T \cong \sqrt{\pi'/T} \leq 2 \). The meridional automorphism of \(\pi' \) induces a meridional automorphism on \(\pi / T \) and so \(\pi' / T = \sqrt{\pi'/T} \). Hence \(\pi / T \) is a torsion free rank 1 abelian group. Let \(J = H / H \cap T \). Then \(h(J) = 1 \) and \(J \leq \pi' / T \) so \(J \cong Z \). Now \(\phi \) induces a monomorphism \(\psi : J \to J \) and \(\pi / T \cong J *_{\psi} \). Since \(\pi / \pi' \cong Z \) we must have \(J *_{\psi} \cong \Phi \).

If (1) holds then \(\pi \) is elementary amenable and \(h(\pi) = 2 \). Suppose (2) holds. We may assume without loss of generality that \(A \) is the normal closure of an element of infinite order, and so \(\pi / A \) is finitely presentable. Since \(\pi / A \) is elementary amenable and \(h(\pi / A) = 1 \) it is virtually \(Z \). Therefore \(\pi \) is virtually an HNN extension with base a finitely generated subgroup of \(A \), and so is coherent. If (3) holds then \(\pi \cong \Phi \), by Corollary 3.17.1. Since \(\Phi \) clearly satisfies conditions (1-3) this proves the theorem.

Corollary 15.2.1 If \(T \) is finite and \(\pi / T \cong \Phi \) then \(T = 1 \) and \(\pi \cong \Phi \).
15.2 Almost coherent, restrained and locally virtually indicable

We shall show that the basic tetrachotomy of the introduction is essentially correct, under mild coherence hypotheses on πK or N. Recall that a restrained group has no noncyclic free subgroups. Thus if N is a countable restrained group either it is elementary amenable and $h(N) \leq 1$ or it is an increasing union of finitely generated one-ended groups.

Theorem 15.3 Let K be a 2-knot whose group $\pi = \pi K$ is an ascending HNN extension over an FP_2 base H with finitely many ends. Then either π' is finite or $\pi \cong \Phi$ or $M(K)$ is aspherical.

Proof This follows from Theorem 3.17, since a group with abelianization Z cannot be virtually Z^2.

Is $M(K)$ still aspherical if we assume only that H is finitely generated and one-ended?

Corollary 15.3.1 If H is FP_3 and has one end then $\pi' = H$ and is a PD_3^+-group.

Proof This follows from Lemma 3.4 of [BG85], as in Theorem 2.13.

Does this remain true if we assume only that H is FP_2 and has one end?

Corollary 15.3.2 If π is an ascending HNN extension over an FP_2 base H and has an infinite restrained normal subgroup A then either π' is finite or $\pi \cong \Phi$ or $M(K)$ is aspherical or $\pi' \cap A = 1$ and π/A has infinitely many ends.

Proof If H is finite or $A \cap H$ is infinite then H has finitely many ends (cf. Corollary 1.16.1) and Theorem 15.3 applies. Therefore we may assume that H has infinitely many ends and $A \cap H$ is finite. But then $A \not\subseteq \pi'$, so π is virtually $\pi' \times Z$. Hence $\pi' = H$ and $M(K)'$ is a PD_3-complex. In particular $\pi' \cap A = 1$ and π/A has infinitely many ends.

In §4 we shall determine all 2-knot groups with π' finite. If K is the r-twist spin of an irreducible 1-knot then the r^{th} power of a meridian is central in π and either π' is finite or $M(K)$ is aspherical. (See §3 of Chapter 16.) The final possibility is realized by Artin spins of nontrivial torus knots.
Chapter 15: Restrained normal subgroups

Theorem 15.4 Let \(K \) be a 2-knot whose group \(\pi = \pi K \) is an HNN extension with \(FP_2 \) base \(B \) and associated subgroups \(I \) and \(\phi(I) = J. \) If \(\pi \) has a restrained normal subgroup \(N \) which is not locally finite and \(\beta_1^{(2)}(\pi) = 0 \) then either \(\pi' \) is finite or \(\pi \cong \Phi \) or \(M(K) \) is aspherical or \(N \) is locally virtually \(Z \) and \(\pi/N \) has infinitely many ends.

Proof If \(\pi' \cap N \) is locally finite then it follows from Britton’s lemma (on normal forms in HNN extensions) that either \(B \cap N = I \cap N \) or \(B \cap N = J \cap N. \) Moreover \(N \trianglelefteq \pi' \) (since \(N \) is not locally finite), and so \(\pi'/\pi' \cap N \) is finitely generated. Hence \(B/B \cap N \cong I/I \cap N \cong J/J \cap N. \) Thus either \(B = I \) or \(B = J \) and so the HNN extension is ascending. If \(B \) has finitely many ends we may apply Theorem 15.3. Otherwise \(B \cap N \) is finite, so \(\pi' \cap N = B \cap N \) and \(N \) is virtually \(Z. \) Hence \(\pi/N \) is commensurable with \(B/B \cap N, \) and \(e(\pi/N) = \infty. \)

If \(\pi' \cap N \) is locally virtually \(Z \) and \(\pi/\pi' \cap N \) has two ends then \(\pi \) is elementary amenable and \(h(\pi) = 2, \) so \(\pi \cong \Phi. \) Otherwise we may assume that either \(\pi'/\pi' \cap N \) has one end or \(\pi' \cap N \) has a finitely generated, one-ended subgroup.

In either case \(H^s(\pi; \mathbb{Z}[\pi]) = 0 \) for \(s \leq 2, \) by Theorem 1.18, and so \(M(K) \) is aspherical, by Theorem 3.5. \(\square \)

Note that \(\beta_1^{(2)}(\pi) = 0 \) if \(N \) is amenable. Every knot group is an HNN extension with finitely generated base and associated subgroups, by Theorem 1.13, and in all known cases these subgroups are \(FP_2. \)

Theorem 15.5 Let \(K \) be a 2-knot such that \(\pi = \pi K \) has an almost coherent, locally virtually indicable, restrained normal subgroup \(E \) which is not locally finite. Then either \(\pi' \) is finite or \(\pi \cong \Phi \) or \(M(K) \) is aspherical or \(E \) is abelian of rank 1 and \(\pi/E \) has infinitely many ends or \(E \) is elementary amenable, \(h(E) = 1 \) and \(\pi/E \) has one or infinitely many ends.

Proof Let \(F \) be a finitely generated subgroup of \(E. \) Since \(F \) is \(FP_2 \) and virtually indicable it has a subgroup of finite index which is an HNN extension over a finitely generated base, by Theorem 1.13. Since \(F \) is restrained the HNN extension is ascending, and so \(\beta_1^{(2)}(F) = 0, \) by Lemma 2.1. Hence \(\beta_1^{(2)}(E) = 0 \) and so \(\beta_1^{(2)}(\pi) = 0, \) by Theorem 7.2 of [Lü].

If every finitely generated infinite subgroup of \(E \) has two ends, then \(E \) is elementary amenable and \(h(E) = 1. \) If \(\pi/E \) is finite then \(\pi' \) is finite. If \(\pi/E \) has two ends then \(\pi \) is almost coherent, elementary amenable and \(h(\pi) = 2, \) and so \(\pi \cong \Phi, \) by Theorem 15.2. If \(E \) is abelian and \(\pi/E \) has one end, or if \(E \)
has a finitely generated, one-ended subgroup and π is not elementary amenable of Hirsch length 2 then $H^s(\pi; \mathbb{Z}[\pi]) = 0$ for $s \leq 2$, by Theorem 1.17. Hence $M(K)$ is aspherical, by Theorem 3.5.

The remaining possibilities are that either π/E has infinitely many ends or that E is locally virtually \mathbb{Z} but nonabelian and π/E has one end.

Does this theorem hold without any coherence hypothesis? Note that the other hypotheses hold if E is elementary amenable and $h(E) \geq 2$. If E is elementary amenable, $h(E) = 1$ and π/E has one end is $H^2(\pi; \mathbb{Z}[\pi]) = 0$?

Corollary 15.5.1 Let K be a 2-knot with group $\pi = \pi K$. Then either π' is finite or $\pi \cong \Phi$ or $M(K)$ is aspherical and $\sqrt{\pi} \cong \mathbb{Z}^2$ or $M(K)$ is homeomorphic to an infrasolvmanifold or $h(\sqrt{\pi}) = 1$ and $\pi/\sqrt{\pi}$ has one or infinitely many ends or $\sqrt{\pi}$ is locally finite.

Proof Finitely generated nilpotent groups are polycyclic. If $\pi/\sqrt{\pi}$ has two ends we may apply Theorem 15.3. If $h(\sqrt{\pi}) = 2$ then $\sqrt{\pi} \cong \mathbb{Z}^2$, by Theorem 9.2, while if $h > 2$ then π is virtually poly-\mathbb{Z}, by Theorem 8.1.

Under somewhat stronger hypotheses we may assume that π has a nontrivial torsion free abelian normal subgroup.

Theorem 15.6 Let N be a group which is either elementary amenable or is locally FP_3, virtually indicable and restrained. If $c.d.N \leq 3$ then N is virtually solvable.

Proof Suppose first that N is locally FP_3 and virtually indicable, and let E be a finitely generated subgroup of N which maps onto \mathbb{Z}. Then E is an ascending HNN extension $H \ast_{\phi} E$ with FP_3 base H and associated subgroups. If $c.d.H = 3$ then $H^3(H; \mathbb{Z}[E]) \cong H^3(H; \mathbb{Z}[H]) \otimes_H \mathbb{Z}[E] \neq 0$ and the homomorphism $H^3(H; \mathbb{Z}[E]) \rightarrow H^3(H; \mathbb{Z}[E])$ in the Mayer-Vietoris sequence for the HNN extension is not onto, by Lemma 3.4 and the subsequent Remark 3.5 of [BG85]. But then $H^4(E; \mathbb{Z}[E]) \neq 0$, contrary to $c.d.N \leq 3$. Therefore $c.d.H \leq 2$, and so H is elementary amenable, by Theorem 2.7. Hence N is elementary amenable, and so is virtually solvable by Theorem 1.11.

In particular, $\zeta\sqrt{N}$ is a nontrivial, torsion free abelian characteristic subgroup of N. A similar argument shows that if N is locally FP_n, virtually indicable, restrained and $c.d.N \leq n$ then N is virtually solvable.
Chapter 15: Restrained normal subgroups

15.3 Abelian normal subgroups

In this section we shall consider 2-knot groups with infinite abelian normal subgroups. The class with rank 1 abelian normal subgroups includes the groups of torus knots and twist spins, the group \(\Phi \), and all 2-knot groups with finite commutator subgroup. If there is such a subgroup of rank \(> 1 \) the knot manifold is aspherical; this case is considered further in Chapter 16.

Theorem 15.7 Let \(K \) be a 2-knot whose group \(\pi = \pi K \) has an infinite abelian normal subgroup \(A \), of rank \(r \). Then \(r \leq 4 \) and

1. if \(A \) is a torsion group then \(\pi' \) is not \(FP_2 \);
2. if \(r = 1 \) either \(\pi' \) is finite or \(\pi \cong \Phi \) or \(M(K) \) is aspherical or \(e(\pi/A) = \infty \);
3. if \(r = 1 \), \(e(\pi/A) = \infty \) and \(\pi' \leq C_\pi(A) \) then \(A \) and \(\sqrt{\pi} \) are virtually \(Z \);
4. if \(r = 1 \) and \(A \not\leq \pi' \) then \(M(K) \) is a \(PD_3^+ \)-complex, and is aspherical if and only if \(\pi' \) is a \(PD_3^+ \)-group if and only if \(e(\pi') = 1 \);
5. if \(r = 2 \) then \(A \cong Z^2 \) and \(M(K) \) is aspherical;
6. if \(r = 3 \) then \(A \cong Z^3 \), \(A \leq \pi' \) and \(M(K) \) is homeomorphic to an infrasolvmanifold;
7. if \(r = 4 \) then \(A \cong Z^4 \) and \(M(K) \) is homeomorphic to a flat 4-manifold.

Proof If \(\pi' \) is \(FP_2 \) then \(M(K)' \) is a \(PD_3 \)-complex, by Corollary 4.5.2, and so locally finite normal subgroups of \(\pi \) are finite.

The four possibilities in case (2) correspond to whether \(\pi/A \) is finite or has one, two or infinitely many ends, by Theorem 15.5. These possibilities are mutually exclusive; if \(e(\pi/A) = \infty \) then a Mayer-Vietoris argument as in Lemma 14.8 implies that \(\pi \) cannot be a \(PD_4 \)-group.

Suppose that \(r = 1 \), and \(A \leq \zeta \pi' \). Then \(A \) is a module over \(Z[\pi/\pi'] \cong \Lambda \). On replacing \(A \) by a subgroup, if necessary, we may assume that \(A \) is cyclic as a \(\Lambda \)-module and \(\Lambda \)-torsion free. If moreover \(e(\pi/A) = \infty \) then \(\sqrt{\pi}/A \) must be finite and \(K = \pi'/A \) is not finitely generated. We may write \(K \) as an increasing union of finitely generated subgroups \(K = \cup_{n \geq 1} K_n \). Let \(S \) be an infinite cyclic subgroup of \(A \) and let \(G = \pi'/S \). Then \(G \) is an extension of \(K \) by \(A/S \), and so is an increasing union \(G = \cup G_n \), where \(G_n \) is an extension of \(K_n \) by \(A/S \). If \(A \) is not finitely generated then \(A/S \) is an infinite abelian normal subgroup. Therefore if some \(G_n \) is finitely generated then it has one end, and so \(H^1(G_n; F) = 0 \) for any free \(Z[G_n] \)-module \(F \). Otherwise we may write \(G_n \) as an increasing union of finitely generated subgroups \(G_n = \cup_{m \geq 1} G_{nm} \), where

Geometry & Topology Monographs, Volume 5 (2002)
Suppose next that A is not contained in π'. Let x_1, \ldots, x_n be a set of generators for π and let s be an element of A which is not in π'. As each commutator $[s,x_i]$ is in $\pi' \cap A$ it has finite order, e_i say. Let $e = \Pi e_i$. Then $[s^e,x] = s^e(xs^{-1}x^{-1})^e = (sx^s^{-1}x)^e$, so s^e commutes with all the generators. The subgroup generated by $\{s^e\} \cup \pi'$ has finite index in π and is isomorphic to $Z \times \pi'$, so π' is finitely presentable. Hence $M(K)'$ is an orientable PD_3-complex, by Corollary 4.5.2, and $M(K)$ is aspherical if and only if π' has one end, by Theorem 4.1. (In particular, A is finitely generated.)

If $r = 2$ then $A \cong Z^2$ and $M(K)$ is aspherical by Theorem 9.2. If $r > 2$ then $r \leq 4$, $A \cong Z^r$ and $M(K)$ is homeomorphic to an infrasolvmanifold by Theorem 8.1. In particular, π is virtually poly-Z and $h(\pi) = 4$. If $r = 3$ then $A \leq \pi'$, for otherwise $h(\pi/\pi' \cap A) = 2$, which is impossible for a group with abelianization Z. If $r = 4$ then $[\pi:A] < \infty$ and so $M(K)$ is homeomorphic to a flat 4-manifold.

It remains an open question whether abelian normal subgroups of PD_n groups must be finitely generated. If this is so, Φ is the only 2-knot group with an abelian normal subgroup of positive rank which is not finitely generated.

The argument goes through with A a nilpotent normal subgroup. Can it be extended to the Hirsch-Plotkin radical? The difficulties are when $h(\sqrt{\pi}) = 1$ and $e(\pi/\sqrt{\pi}) = 1$ or ∞.

Corollary 15.7.1 If A has rank 1 its torsion subgroup T is finite, and if moreover π' is infinite and π'/A is finitely generated $T = 1$.

The evidence suggests that if π' is finitely generated and infinite then A is free abelian. Little is known about the rank 0 case. All the other possibilities allowed by this theorem occur. (We shall consider the cases with rank ≥ 2.)
Chapter 15: Restrained normal subgroups

further in Chapter 16.) In particular, if \(\pi \) is torsion free and \(\pi' \cap A = 1 \) then \(\pi' \) is a free product of \(PD^+_2 \)-groups and free groups, and the various possibilities (\(\pi' \) finite, \(e(\pi') = 1 \) or \(e(\pi') = \infty \)) are realized by twists spins of classical knots. Is every 2-knot \(K \) such that \(\zeta \pi \not\leq \pi' \) and \(\pi \) is torsion free \(s \)-concordant to a fibred knot?

Corollary 15.7.2 If \(\pi' \) finitely generated then either \(\pi' \) is finite or \(\pi' \cap A = 1 \) or \(M(K) \) is aspherical. If moreover \(\pi' \cap A \) has rank 1 then \(\zeta \pi' \neq 1 \).

Proof As \(\pi' \cap A \) is torsion free \(Aut(\pi' \cap A) \) is abelian. Hence \(\pi' \cap A \leq \zeta \pi' \). □

If \(\pi' \) is \(FP_2 \) and \(\pi' \cap A \) is infinite then \(\pi' \) is the fundamental group of an aspherical Seifert fibred 3-manifold. There are no known examples of 2-knot groups \(\pi \) with \(\pi' \) finitely generated but not finitely presentable.

We may construct examples of 2-knots with such groups as follows. Let \(N \) be a closed 3-manifold such that \(\nu = \pi_1(N) \) has weight 1 and \(\nu/\nu' \cong \mathbb{Z} \), and let \(w = w_1(N) \). Then \(H^2(N; \mathbb{Z}^w) \cong \mathbb{Z} \). Let \(M_c \) be the total space of the \(S^1 \)-bundle over \(N \) with Euler class \(e \in H^2(N; \mathbb{Z}^w) \). Then \(M_c \) is orientable, and \(\pi_1(M_c) \) has weight 1 if \(e = \pm 1 \) or if \(w \neq 0 \) and \(e \) is odd. In such cases surgery on a weight class in \(M_c \) gives \(S^4 \), so \(M_c \cong M(K) \) for some 2-knot \(K \).

In particular, we may take \(N \) to be the result of 0-framed surgery on a classical knot. If the classical knot is \(3_1 \) or \(4_1 \) (i.e., is fibred of genus 1) then the resulting 2-knot group has commutator subgroup \(\Gamma_1 \). For examples with \(w \neq 0 \) we may take one of the nonorientable surface bundles with group \(\langle t, a_i, b_i \mid 1 \leq i \leq n \rangle | \Pi[a_i, b_i] = 1, \tau_0 t^{-1} = b_i, \tau_1 b_i t^{-1} = a_i b_i (1 \leq i \leq n) \rangle \), where \(n \) is odd. (When \(n = 1 \) we get the third of the three 2-knot groups with commutator subgroup \(\Gamma_1 \). See Theorem 16.13.)

Theorem 15.8 Let \(K \) be a 2-knot with a minimal Seifert hypersurface, and such that \(\pi = \pi K \) has an abelian normal subgroup \(A \). Then \(A \cap \pi' \) is finite cyclic or is torsion free, and \(\zeta \pi \) is finitely generated.

Proof By assumption, \(\pi = HNN(H; \phi : I \cong J) \) for some finitely presentable group \(H \) and isomorphism of \(\phi \) of subgroups \(I \) and \(J \), where \(I \cong J \cong \pi_1(V) \) for some Seifert hypersurface \(V \). Let \(t \in \pi \) be the stable letter. Either \(H \cap A = I \cap A \) or \(H \cap A = J \cap A \) (by Britton’s Lemma). Hence \(\pi' \cap A = \bigcup_{n \in \mathbb{Z}} t^n (I \cap A) t^{-n} \) is a monotone union. Since \(I \cap A \) is an abelian normal subgroup of a 3-manifold group it is finitely generated [Ga92], and since \(V \) is orientable \(I \cap A \) is torsion.

Geometry & Topology Monographs, Volume 5 (2002)
free or finite. If \(A \cap I \) is finite cyclic or is central in \(\pi \) then \(A \cap I = t^n (A \cap I) t^{-n} \), for all \(n \), and so \(A \cap \pi' = A \cap I \). (In particular, \(\zeta \pi \) is finitely generated.) Otherwise \(A \cap \pi' \) is torsion free.

This argument derives from [Yo92,97], where it was shown that if \(A \) is a finitely generated abelian normal subgroup then \(\pi' \cap A \leq I \cap J \).

Corollary 15.8.1 Let \(K \) be a 2-knot with a minimal Seifert hypersurface. If \(\pi = \pi K \) has a nontrivial abelian normal subgroup \(A \) then \(\pi' \cap A \) is finite cyclic or is torsion free. Moreover \(\zeta \pi \cong 1, Z/2Z, Z, Z \oplus (Z/2Z) \) or \(Z^2 \).

The knots \(\tau_0 \mathcal{A}_1 \), the trivial knot, \(\tau_0 \mathcal{A}_1 \) and \(\tau_0 3_1 \) are fibred and their groups have centres 1, \(Z, Z \oplus (Z/2Z) \) and \(Z^2 \), respectively. A 2-knot with a minimal Seifert hypersurface and such that \(\zeta \pi = Z/2Z \) is constructed in [Yo82]. This paper also gives an example with \(\zeta \pi \cong 1, Z/2Z, Z, Z \oplus (Z/2Z) \) or \(Z^2 \).

15.4 Finite commutator subgroup

It is a well known consequence of the asphericity of the exteriors of classical knots that classical knot groups are torsion free. The first examples of higher dimensional knots whose groups have nontrivial torsion were given by Mazur [Mz62] and Fox [Fo62]. These examples are 2-knots whose groups have finite commutator subgroup. We shall show that if \(\pi \) is such a group \(\pi' \) must be a CK group, and that the images of meridianal automorphisms in \(\text{Out}(\pi') \) are conjugate, up to inversion. In each case there is just one 2-knot group with given finite commutator subgroup. Many of these groups can be realized by twist spinning classical knots. Zeeman introduced twist spinning in order to study Mazur’s example; Fox used hyperplane cross sections, but his examples (with \(\pi' \cong Z/3Z \)) were later shown to be twist spins [Kn83'].

Lemma 15.9 An automorphism of \(Q(8) \) is meridianal if and only if it is conjugate to \(\sigma \).

Proof Since \(Q(8) \) is solvable an automorphism is meridianal if and only if the induced automorphism of \(Q(8)/Q(8)' \) is meridianal. It is easily verified that all such elements of \(\text{Aut}(Q(8)) \cong (Z/2Z)^2 \rtimes SL(2, \mathbb{F}_2) \) are conjugate to \(\sigma \).
Lemma 15.10 All nontrivial automorphisms of I^* are meridianal. Moreover each automorphism is conjugate to its inverse. The nontrivial outer automorphism class of I^* cannot be realised by a 2-knot group.

Proof Since the only nontrivial proper normal subgroup of I^* is its centre ($\zeta I^* = Z/2Z$) the first assertion is immediate. Since $\text{Aut}(I^*) \cong S_5$ and the conjugacy class of a permutation is determined by its cycle structure each automorphism is conjugate to its inverse. Consideration of the Wang sequence for the projection of $M(K)'$ onto $M(K)$ shows that the meridional automorphism induces the identity on $H_3(\pi^*;\mathbb{Z})$, and so the nontrivial outer automorphism class cannot occur, by Lemma 11.4.

The elements of order 2 in $A_5 \cong \text{Inn}(I^*)$ are all conjugate, as are the elements of order 3. There are two conjugacy classes of elements of order 5.

Lemma 15.11 An automorphism of T_k^* is meridianal if and only if it is conjugate to ρ^{3k-1} or $\rho^{3k-1} \eta$. All such automorphisms have the same image in $\text{Out}(T_k^*)$.

Proof Since T_k^* is solvable an automorphism is meridianal if and only if the induced automorphism of $T_k^*/(T_k^*)'$ is meridianal. Any such automorphism is conjugate to either ρ^{2j+1} or to $\rho^{2j+1} \eta$ for some $0 \leq j < 3^{k-1}$. (Note that 3 divides $2^{2j} - 1$ but does not divide $2^{2j+1} - 1$.) However among them only those with $2j + 1 = 3^{k-1}$ satisfy the isometry condition of Theorem 14.3.

Theorem 15.12 Let K be a 2-knot with group $\pi = \pi K$. If π' is finite then $\pi' \cong P \times (Z/nZ)$ where $P = 1, Q(8), I^*$ or T_k^*, and $(n,2|P|) = 1$, and the meridional automorphism sends x and y in $Q(8)$ to y and xy, is conjugation by a noncentral element on I^*, sends x, y and z in T_k^* to y^{-1}, x^{-1} and z^{-1}, and is -1 on the cyclic factor.

Proof Since $\chi(M(K)) = 0$ and π has two ends π' has cohomological period dividing 4, by Theorem 11.1, and so is among the groups listed in §2 of Chapter 11. As the meridional automorphism of π' induces a meridional automorphism on the quotient by any characteristic subgroup, we may eliminate immediately the groups $O^*(k)$ and $A(m, e)$ and direct products with $Z/2nZ$ since these all have abelianization cyclic of even order. If $k > 1$ the subgroup generated by x in $Q(8k)$ is a characteristic subgroup of index 2. Since $Q(2^n a)$ is a quotient of $Q(2^n a, b, c)$ by a characteristic subgroup (of order bc) this eliminates this class also. Thus there remain only the above groups.

It is clear that automorphisms of a group \(G = H \times J \) such that \(|H|, |J| = 1\) correspond to pairs of automorphisms \(\phi_H \) and \(\phi_J \) of \(H \) and \(J \), respectively, and \(\phi \) is meridional if and only if \(\phi_H \) and \(\phi_J \) are. Multiplication by \(s \) induces a meridional automorphism of \(Z/mZ \) if and only if \((s-1, m) = (s, m) = 1\). If \(Z/mZ \) is a direct factor of \(\pi' \pi'' = H_1(M(K); \Lambda) \) and so \(s^2 \equiv 1 \) modulo \((m)\), by Theorem 14.3. Hence we must have \(s \equiv -1 \) modulo \((m)\). The theorem now follows from Lemmas 15.9-15.11.

Finite cyclic groups are realized by the 2-twist spins of 2-bridge knots, while the commutator subgroups of \(\tau_3 \tau_1, \tau_3 \tau_1 \) and \(\tau_3 \tau_1 \) are \(Q(8), T_1^* \) and \(I^* \), respectively. As the groups of 2-bridge knots have 2 generator 1 relator presentations the groups of these twist spins have 2 generator presentations of deficiency 0. The groups with \(\pi' \equiv Q(8) \times (Z/nZ) \) also have such presentations, namely \(\langle t, u \mid tu^2t^{-1} = u^{-2}, t^2u^n t^{-2} = u^n t u^n t^{-1} \rangle \). They are realized by fibred 2-knots [Yo82], but if \(n > 1 \) no such group can be realized by a twist spin (see §3 of Chapter 16). An extension of the twist spin construction may be used to realize such groups by smooth fibred knots in the standard \(S^4 \), if \(n = 3, 5, 11, 13, 19, 21 \) or 27 [Kn88,Tr90]. Is this so in general? The direct products of \(T_1^* \) and \(I^* \) with cyclic groups are realized by the 2-twist spins of certain pretzel knots [Yo82]. The corresponding knot groups have presentations \(\langle t, x, y, z \mid z^6 = 1, x = z t z t^{-1}, y = z^2 t z t^{-1} z^{-1}, z y z^{-1} = x y, t x = x t \rangle \) and \(\langle t, w \mid t w^n t^{-1} = w^n t_2 w^n t^{-2}, t^5 w^n = w^n t^5, t w^{10} t^{-1} = w^{-10} \rangle \), respectively. We may easily eliminate the generators \(x \) and \(y \) from the former presentations to obtain 2 generator presentations of deficiency -1. It is not known whether any of these groups (other than those with \(\pi' \equiv T_1^* \) or \(I^* \)) have deficiency 0. Note that when \(P = I^* \) there is an isomorphism \(\pi \equiv I^* \times (\pi/I^*) \).

If \(P = 1 \) or \(Q(8) \) the weight class is unique up to inversion, while \(T_k^* \) and \(I^* \) have 2 and 4 weight orbits, respectively, by Theorem 14.1. If \(\pi' = T_k^* \) or \(I^* \) each weight orbit is realized by a branched twist spin torus knot [PS87].

The group \(\pi_3 \tau_1 \equiv Z \times I^* = Z \times SL(2, \mathbb{F}_3) \) is the common member of two families of high dimensional knot groups which are not otherwise 2-knot groups. If \(p \) is a prime greater than 3 then \(SL(2, \mathbb{F}_p) \) is a finite superperfect group. Let \(e_p = (\frac{1}{0} \frac{1}{1}) \). Then \((1, e_p) \) is a weight element for \(Z \times SL(2, \mathbb{F}_p) \). Similarly, \((I^*)^m \) is superperfect and \((1, e_5, \ldots, e_5) \) is a weight element for \(G = Z \times (I^*)^m \), for any \(m \geq 0 \). However \(SL(2, \mathbb{F}_p) \) has cohomological period \(p - 1 \) (see Corollary 1.27 of [DM85]), while \(\zeta(I^*)^m \equiv (Z/2Z)^m \) and so \((I^*)^m \) does not have periodic cohomology if \(m > 1 \).
Kanenobu has shown that for every $n > 0$ there is a 2-knot group with an element of order exactly n [Kn80].

15.5 The Tits alternative

An HNN extension (such as a knot group) is restrained if and only if it is ascending and the base is restrained. The class of groups considered in the next result probably includes all restrained 2-knot groups.

Theorem 15.13 Let π be a 2-knot group. Then the following are equivalent:

1. π is restrained, locally FP$_3$ and locally virtually indicable;
2. π is an ascending HNN extension $H*_{\phi}$ where H is FP$_3$, restrained and virtually indicable;
3. π is elementary amenable and has an abelian normal subgroup of rank > 0;
4. π is elementary amenable and is an ascending HNN extension $H*_{\phi}$ where H is FP$_2$;
5. π' is finite or $\pi \cong \Phi$ or π is torsion free virtually poly-Z and $h(\pi) = 4$.

Proof Condition (1) implies (2) by Corollary 3.17.1. If (2) holds and H has one end then $\pi' = H$ and is a PD$_3$-group, by Corollary 15.3.1. Since H is virtually indicable and admits a meridional automorphism, it must have a subgroup of finite index which maps onto Z^2. Hence H is virtually poly-Z, by Corollary 2.13.1 (together with the remark following it). Hence (2) implies (5). Conditions (3) and (4) imply (5) by Theorems 15.2 and 15.3, respectively. On the other hand (5) implies (1-4). □

In particular, if K is a 2-knot with a minimal Seifert hypersurface, πK is restrained and the Alexander polynomial of K is nontrivial then either $\pi \cong \Phi$ or π is torsion free virtually poly-Z and $h(\pi) = 4$.

15.6 Abelian HNN bases

We shall complete Yoshikawa’s study of 2-knot groups which are HNN extensions with abelian base. The first four paragraphs of the following proof outline the arguments of [Yo86,92]. (Our contribution is the argument in the final paragraph, eliminating possible torsion when the base has rank 1.)
Theorem 15.14 Let π be a 2-knot group which is an HNN extension with abelian base. Then either π is metabelian or it has a deficiency 1 presentation $\langle t, x \mid tx^n t^{-1} = x^{n+1} \rangle$ for some $n > 1$.

Proof Suppose that $\pi = HNN(A; \phi : B \to C)$, where A is abelian. Let j and j_C be the inclusions of B and C into A, and let $\phi = j_C \phi$. Then $\phi - j : B \to A$ is an isomorphism, by the Mayer-Vietoris sequence for homology with coefficients \mathbb{Z} for the HNN extension. Hence $\text{rank}(A) = \text{rank}(B) = r$, say, and the torsion subgroups TA, TB and TC of A, B and C coincide.

Suppose first that A is not finitely generated. Since π is finitely presentable and $\pi / \pi' \cong \mathbb{Z}$ it is also an HNN extension with finitely generated base and associated subgroups, by the Bieri-Strebel Theorem (1.13). Moreover we may assume the base is a subgroup of A. Considerations of normal forms with respect to the latter HNN structure imply that it must be ascending, and so π is metabelian [Yo92].

Assume now that A is finitely generated. Then the image of TA in π is a finite normal subgroup N, and π / N is a torsion free HNN extension with base $A / TA \cong \mathbb{Z}'$. Let j_F and ϕ_F be the induced inclusions of B / TB into A / TA, and let $M_j = |\text{det}(j_F)|$ and $M_\phi = |\text{det}(\phi_F)|$. Applying the Mayer-Vietoris sequence for homology with coefficients Λ, we find that $t^{\phi} - j$ is injective and $\pi' / \pi'' \cong H_1(\pi; \Lambda)$ has rank r as an abelian group. Now $H_2(A; \mathbb{Z}) \cong A \wedge A$ (see page 334 of [Ro]) and so $H_2(\pi; \Lambda) \cong \text{Cok}(t \wedge_2 \phi - \wedge_2 j)$ has rank $\left(\begin{array}{c} r \\ 2 \end{array}\right)$. Let $\delta_i(t) = \Delta_0(H_i(\pi; \Lambda))$, for $i = 1$ and 2. Then $\delta_1(t) = \text{det}(t^{\phi}F - jF)$ and $\delta_2(t) = \text{det}(t^{\phi}F \wedge \phi_F - jF \wedge jF)$. Moreover $\delta_2(t^{-1})$ divides $\delta_1(t)$, by Theorem 14.3. In particular, $\left(\begin{array}{c} r \\ 2 \end{array}\right) \leq r$, and so $r \leq 3$.

If $r = 0$ then clearly $B = A$ and so π is metabelian. If $r = 2$ then $\left(\begin{array}{c} r \\ 2 \end{array}\right) = 1$ and $\delta_2(t) = \pm(t^2 M_\phi - M_j)$. Comparing coefficients of the terms of highest and lowest degree in $\delta_1(t)$ and $\delta_2(t^{-1})$, we see that $M_j = M_\phi$, so $\delta_2(1) \equiv 0 \mod (2)$, which is impossible since $|\delta_1(1)| = 1$. If $r = 3$ a similar comparison of coefficients in $\delta_1(t)$ and $\delta_2(t^{-1})$ shows that M_j^3 divides M_ϕ and M_ϕ^3 divides M_j, so $M_j = M_\phi = 1$. Hence ϕ is an isomorphism, and so π is metabelian.

There remains the case $r = 1$. Yoshikawa used similar arguments involving coefficients $\mathbb{F}_p \Lambda$ instead to show that in this case $N \cong \mathbb{Z} / \beta Z$ for some odd $\beta \geq 1$. The group π / N then has a presentation $\langle t, x \mid tx^n t^{-1} = x^{n+1} \rangle$ (with $n \geq 1$). Let p be a prime. There is an isomorphism of the subfields $\mathbb{F}_p(X^n)$ and $\mathbb{F}_p(X^{n+1})$ of the rational function field $\mathbb{F}_p(X)$ which carries X^n to X^{n+1}. Therefore $\mathbb{F}_p(X)$ embeds in a skew field L containing an element t such that $tX^n t^{-1} = X^{n+1}$, by Theorem 5.5.1 of [Cn]. It is clear from the argument of
this theorem that the group ring \(\mathbb{F}_p[\pi/N] \) embeds as a subring of \(L \), and so this group ring is weakly finite. Therefore so is the subring \(\mathbb{F}_p[C_\pi(N)/N] \). It now follows from Lemma 3.15 that \(N \) must be trivial. Since \(\pi \) is metabelian if \(n = 1 \) this completes the proof.

15.7 Locally finite normal subgroups

Let \(K \) be a 2-knot such that \(\pi = \pi K \) has an infinite locally finite normal subgroup \(T \), which we may assume maximal. As \(\pi \) has one end and \(\beta_1^{(2)}(\pi) = 0 \), by Gromov’s Theorem (2.3), \(H^2(\pi; \mathbb{Z}[\pi]) \neq 0 \). For otherwise \(M(K) \) would be aspherical and so \(\pi \) would be torsion free, by Theorem 3.5. Moreover \(T < \pi' \) and \(\pi/T \) is not virtually \(\mathbb{Z} \), so \(e(\pi/T) = 1 \) or \(\infty \). (No examples of such 2-knot groups are known, and we expect that there are none with \(e(\pi/T) = 1 \).) If \(H_1(T; R) = 0 \) for some subring \(R \) of \(\mathbb{Q} \) and \(\mathbb{Z}[\pi/T] \) embeds in a weakly finite ring \(S \) with an involution extending that of the group ring, which is flat as a right \(\mathbb{Z}[\pi/T] \)-module and such that \(S \otimes_{\mathbb{Z}[\pi/T]} \mathbb{Z} = 0 \) then either \(\pi/T \) is a \(PD_1^+ \)-group over \(Q \) and \(H_2(\pi/T; R[\pi/T]) \neq 0 \), or \(e(\pi/T) = \infty \), by the Addendum to Theorem 2.7 of [H2]. This applies in particular if \(\pi/T \) has a nontrivial locally nilpotent normal subgroup \(U=T \), for then \(U/T \) is torsion free. (See Proposition 5.2.7 of [Ro].) Moreover \(e(\pi/T) = 1 \). An iterated LHSSS argument shows that if \(h(U/T) > 1 \) or if \(U/T \cong \mathbb{Z} \) and \(e(\pi/U) = 1 \) then \(H^2(\pi/T; \mathbb{Q}[\pi/T]) = 0 \). (This is also the case if \(h(U/T) = 1 \), \(e(\pi/U) = 1 \) and \(\pi/T \) is finitely presentable, by Theorem 1 of [Mi87] with [GM86].) Thus if \(H^2(\pi/T; \mathbb{Q}[\pi/T]) \neq 0 \) then \(U/T \) is abelian of rank 1 and either \(e(\pi/U) = 2 \) (in which case \(\pi/T \cong \Phi \), by Theorem 15.2), \(e(\pi/U) = 1 \) (and \(U/T \) not finitely generated and \(\pi/U \) not finitely presentable) or \(e(\pi/U) = \infty \). As \(\text{Aut}(U/T) \) is then abelian \(U/T \) is central in \(\pi'/T \). Moreover \(\pi/U \) can have no nontrivial locally finite normal subgroups, for otherwise \(T \) would not be maximal in \(\pi \), by an easy extension of Schur’s Theorem (Proposition 10.1.4 of [Ro]).

Hence if \(\pi \) has an ascending series whose factors are either locally finite or locally nilpotent then either \(\pi/T \cong \Phi \) or \(h(\sqrt{\pi/T}) \geq 2 \) and so \(\pi/T \) is a \(PD_1^+ \)-group over \(Q \). Since \(J = \pi/T \) is elementary amenable and has no nontrivial locally finite normal subgroup it is virtually solvable and \(h(J) = 4 \), by Theorem 1.11. It can be shown that \(J \) is virtually poly-\(Z \) and \(J \cap \sqrt{J} \cong Z^3 \) or \(\Gamma_q \) for some \(q \geq 1 \). (See Theorem VI.2 of [H1].) The possibilities for \(J' \) are examined in Theorems VI.3-5 and VI.9 of [H1]. We shall not repeat this discussion here as we expect that if \(G \) is finitely presentable and \(T \) is an infinite locally finite normal subgroup such that \(e(G/T) = 1 \) then \(H^2(G; \mathbb{Z}[G]) = 0 \).
The following lemma suggests that there may be a homological route to showing that solvable 2-knot groups are virtually torsion free.

Lemma 15.15 Let G be an FP_2 group with a torsion normal subgroup T such that either $G/T \cong \mathbb{Z}^*_m$ for some $m \neq 0$ or G/T is virtually poly-\mathbb{Z}. Then T/π has finite exponent as an abelian group. In particular, if π is solvable then $T = 1$ if and only if $H_1(T; \mathbb{F}_p) = 0$ for all primes p.

Proof Let C_* be a free $\mathbb{Z}[G]$-resolution of the augmentation module \mathbb{Z} which is finitely generated in degrees ≤ 2. Since $\mathbb{Z}[G/T]$ is coherent [BS79], $T/T' = H_1(\mathbb{Z}[G/T] \otimes_G C_*)$ is finitely presentable as a $\mathbb{Z}[G/T]$-module. If T/T' is generated by elements t_i of order e_i then Πe_i is a finite exponent for T/T'.

If π is solvable then so is T, and $T = 1$ if and only if $T/T' = 1$. Since T/T' has finite exponent $T/T' = 1$ if and only if $H_1(T; \mathbb{F}_p) = 0$ for all primes p. □

Note also that $\mathbb{F}_p[\mathbb{Z}^*_m]$ is a coherent Ore domain of global dimension 2, while if J is a torsion free virtually poly-\mathbb{Z} group then $\mathbb{F}_p[J]$ is a noetherian Ore domain of global dimension $h(J)$. (See §4.4 and §13.3 of [Pa].)
Chapter 16

Abelian normal subgroups of rank \(\geq 2 \)

If \(K \) is a 2-knot such that \(h(\sqrt{\pi K}) = 2 \) then \(\sqrt{\pi K} \cong \mathbb{Z}^2 \), by Corollary 15.5.1. The main examples are the branched twist spins of torus knots, whose groups usually have centre of rank 2. (There are however examples in which \(\sqrt{\pi} \) is not central.) Although we have not been able to show that all 2-knot groups with centre of rank 2 are realized by such knots, we have a number of partial results that suggest strongly that this may be so. Moreover we can characterize the groups which arise in this way (obvious exceptions aside) as being the 3-knot groups which are \(PD_4 \)-groups and have centre of rank 2, with some power of a weight element being central. The strategy applies to other twist spins of prime 1-knots; however in general we do not have satisfactory algebraic characterizations of the 3-manifold groups involved. If \(h(\sqrt{\pi K}) > 2 \) then \(M(K) \) is homeomorphic to an infrasolvmanifold. We shall determine the groups of such knots and give optimal presentations for them in §4 of this chapter. Two of these groups are virtually \(\mathbb{Z}^4 \); in all other cases \(h(\sqrt{\pi K}) = 3 \).

16.1 The Brieskorn manifolds \(M(p, q, r) \)

Let \(M(p, q, r) = \{ (u, v, w) \in \mathbb{C}^3 \mid u^p + v^q + w^r = 0 \} \cap S^5 \). Thus \(M(p, q, r) \) is a Brieskorn 3-manifold (the link of an isolated singularity of the intersection of \(n \) algebraic hypersurfaces in \(\mathbb{C}^{n+2} \), for some \(n \geq 1 \)). It is clear that \(M(p, q, r) \) is unchanged by a permutation of \(\{ p, q, r \} \).

Let \(s = hcf\{pq, pr, qr\} \). Then \(M(p, q, r) \) admits an effective \(S^1 \)-action given by \(z(u, v, w) = (z^{qr/s}u, z^{pr/s}v, z^{pq/s}w) \) for \(z \in S^1 \) and \((u, v, w) \in M(p, q, r) \), and so is Seifert fibred. More precisely, let \(\ell = lcm\{p, q, r\} \), \(p' = lcm\{q, r\} \), \(q' = lcm\{p, r\} \) and \(r' = lcm\{p, q\} \), \(s_1 = qr/p' \), \(s_2 = pr/q' \) and \(s_3 = pq/r' \) and \(t_1 = \ell/p' \), \(t_2 = \ell/q' \) and \(t_3 = \ell/r' \). Let \(g = (2 + (pqr/\ell) - s_1 - s_2 - s_3)/2 \). Then \(M(p, q, r) = M(g; s_1(t_1, \beta_1), s_2(t_2, \beta_2), s_3(t_3, \beta_3)) \), in the notation of [NR78], where the coefficients \(\beta_i \) are determined modulo \(t_i \) by the equation

\[
e = -(qr/\beta_1 + pr/\beta_2 + pq/\beta_3)/\ell = -pqr/\ell^2
\]
for the generalized Euler number. (See [NR78].) If \(p^{-1} + q^{-1} + r^{-1} \leq 1 \) the Seifert fibration is essentially unique. (See Theorem 3.8 of [Sc83].) In most cases the triple \((p, q, r)\) is determined by the Seifert structure of \(M(p, q, r) \). (Note however that, for example, \(M(2, 9, 18) \cong M(3, 5, 15) \) [Mi75].)

The map \(f : M(p, q, r) \to \mathbb{CP}^1 \) given by \(f(u, v, w) = [u^p : v^q : w^r] \) is constant on the orbits of the \(S^1 \)-action, and the exceptional fibres are those above 0, \(-1\) and \(\infty \) in \(\mathbb{CP}^1 \). In particular, if \(p, q \) and \(r \) are pairwise relatively prime \(f \) is the orbit map and \(M(p, q, r) \) is Seifert fibred over the orbifold \(S^2(p, q, r) \). The involution \(c \) of \(M(p, q, r) \) induced by complex conjugation in \(\mathbb{C} \) is orientation preserving and is compatible with \(f \) and complex conjugation in \(\mathbb{CP}^1 \).

The 3-manifold \(M(p, q, r) \) is a \(S^3 \)-manifold if and only if \(p^{-1} + q^{-1} + r^{-1} > 1 \). The triples \((2, 2, r)\) give lens spaces. The other triples with \(p^{-1} + q^{-1} + r^{-1} > 1 \) are permutations of \((2, 3, 3), (2, 3, 4) \) or \((2, 3, 5)\), and give the three CK 3-manifolds with fundamental groups \(\mathbb{Q}(8) \), \(\mathbb{T}_1 \) and \(\mathbb{I} \). The manifolds \(M(2, 3, 6) \), \(M(3, 3, 3) \) and \(M(2, 4, 4) \) are \(\mathbb{Nil}^3 \)-manifolds; in all other cases \(M(p, q, r) \) is a \(\mathbb{S}^2 \)-manifold (in fact, a coset space of \(SL \) [Mi75]), and \(\sqrt{\pi_1}(M(p, q, r)) \cong \mathbb{Z} \).

Let \(A(u, v, w) = (u, v, e^{2\pi i/r} w) \) and \(g(u, v, w) = (u, v)/(|u|^2 + |v|^2) \), for \((u, v, w) \in M(p, q, r)\). Then \(A \) generates a \(Z/rZ \)-action which commutes with the above \(S^1 \)-action, and these actions agree on their subgroups of order \(r/s \). The projection to the orbit space \(M(p, q, r)/(\langle A \rangle) \) may be identified with the map \(g : M(p, q, r) \to S^3 \), which is an \(r \)-fold cyclic branched covering, branched over the \((p, q)\)-torus link. (See Lemma 1.1 of [Mi75].)

16.2 Rank 2 subgroups

In this section we shall show that an abelian normal subgroup of rank 2 in a 2-knot group is free abelian and not contained in the commutator subgroup.

Lemma 16.1 Let \(\nu \) be the fundamental group of a closed \(\mathbb{H}^2 \times \mathbb{E}^1 \)-, \(\text{Sol}^3 \)- or \(\mathbb{S}^2 \times \mathbb{E}^1 \)-manifold. Then \(\nu \) admits no meridional automorphism.

Proof The fundamental group of a closed \(\text{Sol}^3 \)- or \(\mathbb{S}^2 \times \mathbb{E}^1 \)-manifold has a characteristic subgroup with quotient having two ends. If \(\nu \) is a lattice in \(\text{Isom}^+(\mathbb{H}^2 \times \mathbb{E}^1) \) then \(\sqrt{\nu} \cong Z \) and either \(\sqrt{\nu} = \zeta \nu \) and is not contained in \(\nu \) or \(C_\nu(\sqrt{\nu}) \) is a characteristic subgroup of index 2 in \(\nu \). In none of these cases can \(\nu \) admit a meridional automorphism.

Geometry & Topology Monographs, Volume 5 (2002)

308
Theorem 16.2 Let K be a 2-knot whose group $\pi = \pi K$ has an abelian normal subgroup A of rank 2. Then π is a PD_2^+-group, $A \cong \mathbb{Z}^2$, $\pi' \cap A \cong \mathbb{Z}$, $\pi' \cap A \leq \zeta \pi' \cap I(\pi')$, $[\pi : C_\pi(A)] \leq 2$ and $\pi' = \pi_1(N)$, where N is a \Nil^3- or $\mathbb{S}L$-manifold. If π is virtually solvable then $M(K)$ is homeomorphic to a $\Nil^3 \times \mathbb{E}^1$-manifold. If π is not virtually solvable then $M(K)$ is s-cobordant to the mapping torus $M(\Theta)$ of a self homeomorphism Θ of a $\mathbb{S}L$-manifold; $M(\Theta)$ is a $\mathbb{S}L \times \mathbb{E}^1$-manifold if $\zeta \pi \cong \mathbb{Z}^2$.

Proof The first two assertions follow from Theorem 9.2, where it is also shown that π/A is virtually a PD_{2}-group. If $A < \pi'$ then π/A has infinite abelianization and so maps onto some planar discontinuous group, with finite kernel [EM82]. As the planar discontinuous group is virtually a surface group it has a compact fundamental region. But no such group has abelianization \mathbb{Z}. (This follows for instance from consideration of the presentations given in Theorem 4.5.6 of [ZVC].) Therefore $\pi' \cap A \cong \mathbb{Z}$. If τ is the meridianal automorphism of $\pi'/I(\pi')$ then $\tau - 1$ is invertible, and so cannot have ± 1 as an eigenvalue. Hence $\pi' \cap A \leq I(\pi')$. In particular, π' is not abelian.

The image of $\pi/C_\pi(A)$ in $\text{Aut}(A) \cong GL(2, \mathbb{Z})$ is triangular, since $\pi' \cap A \cong \mathbb{Z}$ is normal in π. Therefore as $\pi/C_\pi(A)$ has finite cyclic abelianization it must have order at most 2. Thus $[\pi : C_\pi(A)] \leq 2$, so $\pi' < C_\pi(A)$ and $\pi' \cap A \leq \zeta \pi'$. The subgroup H generated by $\pi' \cup A$ has finite index in π and so is also a PD_2^+-group. Since A is central in H and maps onto H/π' we have $H \cong \pi' \times \mathbb{Z}$. Hence π' is a PD_2^+-group with nontrivial centre. As the nonabelian flat 3-manifold groups either admit no meridianal automorphism or have trivial centre, $\pi' = \pi_1(N)$ for some \Nil^3- or $\mathbb{S}L$-manifold N, by Theorem 2.14 and Lemma 16.1.

The manifold $M(K)$ is s-cobordant to the mapping torus $M(\Theta)$ of a self homeomorphism of N, by Theorem 13.2. If N is a \Nil^3-manifold $M(K)$ is homeomorphic to $M(\Theta)$, by Theorem 8.1, and $M(K)$ must be a $\Nil^3 \times \mathbb{E}^1$-manifold, since the groups of \Sol^3-manifolds do not have rank 2 abelian normal subgroups, while the groups of \Nil^4-manifolds cannot have abelianization \mathbb{Z}, as they have characteristic rank 2 subgroups contained in their commutator subgroups.

We may assume also that $M(\Theta)$ is Seifert fibred over a 2-orbifold B. If moreover $\zeta \pi \cong \mathbb{Z}^2$ then B must be orientable, and the monodromy representation of $\pi_1^{orb}(B)$ in $\text{Aut}(\zeta \pi) \cong GL(2, \mathbb{Z})$ is trivial. Therefore if N is an $\mathbb{S}L$-manifold and $\zeta \pi \cong \mathbb{Z}^2$ then $M(\Theta)$ is a $\mathbb{S}L \times \mathbb{E}^1$-manifold, by Theorem B of [Ue91] and Lemma 16.1.
If \(p, q \) and \(r \) are pairwise relatively prime \(M(p,q,r) \) is a \(\mathbb{Z} \)-homology 3-sphere and \(\pi_1(M(p,q,r)) \) has a presentation
\[
(a_1, a_2, a_3, h \mid a_1^p = a_2^q = a_3^r = a_1 a_2 a_3 = h)
\]
(see [Mi75]). The automorphism \(c \) of \(\pi_1(M(p,q,r)) \) induced by the involution \(c \) is determined by
\[
c(a_1) = a_1^{-1}, \quad c(a_2) = a_2^{-1} \quad \text{and} \quad c(h) = h^{-1},
\]
and hence \(c(a_3) = a_2 a_3^{-1} a_2^{-1} \). If one of \(p, q \) and \(r \) is even \(c \) is meridianal. Surgery on the mapping torus of \(c \) gives rise to a 2-knot whose group \(\pi \) has an abelian normal subgroup \(A = \langle t^2, h \rangle \). If moreover \(p^{-1} + q^{-1} + r^{-1} < 1 \) then \(A \cong \mathbb{Z}^2 \), but is not central.

The only virtually poly-\(\mathbb{Z} \) groups with noncentral rank 2 abelian normal subgroups are the groups \(\pi(b, \epsilon) \) discussed in §4 below.

Theorem 16.3 Let \(\pi \) be a 2-knot group such that \(\zeta \pi \) has rank greater than 1. Then \(\zeta \pi \cong \mathbb{Z}^2 \), \(\zeta \pi' = \pi' \cap \zeta \pi \cong \mathbb{Z} \), and \(\zeta \pi' \leq \pi'' \).

Proof If \(\zeta \pi \) had rank greater than 2 then \(\pi' \cap \zeta \pi \) would contain an abelian normal subgroup of rank 2, contrary to Theorem 16.2. Therefore \(\zeta \pi \cong \mathbb{Z}^2 \) and \(\pi' \cap \zeta \pi \cong \mathbb{Z} \). Moreover \(\pi' \cap \zeta \pi \leq \pi'' \), since \(\pi / \pi' \cong \mathbb{Z} \). In particular \(\pi' \) is nonabelian and \(\pi'' \) has nontrivial centre. Hence \(\pi' \) is the fundamental group of a Nil\(3 \) or \(\text{SL} \)-manifold, by Theorem 16.2, and so \(\zeta \pi' \cong \mathbb{Z} \). It follows easily that \(\pi' \cap \zeta \pi = \zeta \pi' \).

The proof of this result in [H1] relied on the theorems of Bieri and Strebel, rather than Bowditch’s Theorem.

16.3 Twist spins of torus knots

The commutator subgroup of the group of the \(r \)-twist spin of a classical knot \(K \) is the fundamental group of the \(r \)-fold cyclic branched cover of \(S^3 \), branched over \(K \) [Ze65]. The \(r \)-fold cyclic branched cover of a sum of knots is the connected sum of the \(r \)-fold cyclic branched covers of the factors, and is irreducible if and only if the knot is prime. Moreover the cyclic branched covers of a prime knot are either aspherical or finitely covered by \(S^3 \); in particular no summand has free fundamental group [Pl84]. The cyclic branched covers of prime knots with nontrivial companions are Haken 3-manifolds [GL84]. The cyclic branched covers of a simple non-torus knot is a hyperbolic 3-manifold if \(r \geq 3 \), excepting only the 3-fold cyclic branched cover of the figure-eight knot, which is the Hantzsche-Wendt flat 3-manifold [Du83]. The \(r \)-fold cyclic branched cover...
of the \((p,q)\)-torus knot \(k_{p,q}\) is the Brieskorn manifold \(M(p,q,r)\) [Mi75]. (In particular, there are only four \(r\)-fold cyclic branched covers of nontrivial knots for any \(r > 2\) which have finite fundamental group.)

Theorem 16.4 Let \(M\) be the \(r\)-fold cyclic branched cover of \(S^3\), branched over a knot \(K\), and suppose that \(r > 2\) and that \(\sqrt{\pi_1(M)} \neq 1\). Then \(K\) is uniquely determined by \(M\) and \(r\), and either \(K\) is a torus knot or \(K \cong 4_1\) and \(r = 3\).

Proof As the connected summands of \(M\) are the cyclic branched covers of the factors of \(K\), any homotopy sphere summand must be standard, by the proof of the Smith conjecture. Therefore \(M\) is aspherical, and is either Seifert fibred or is a \(SO(3)\)-manifold, by Theorem 2.14. It must in fact be a \(E^3\), \(Nil^3\), or \(SL\)-manifold, by Lemma 16.1. If there is a Seifert fibration which is preserved by the automorphisms of the branched cover the fixed circle (the branch set of \(M\)) must be a fibre of the fibration (since \(r > 2\)) which therefore passes to a Seifert fibration of \(X(K)\). Thus \(K\) must be a \((p,q)\)-torus knot, for some relatively prime integers \(p\) and \(q\) [BZ]. These integers may be determined arithmetically from \(r\) and the formulae for the Seifert invariants of \(M(p,q,r)\) given in \(\S 1\). Otherwise \(M\) is flat [MS86] and so \(K \cong 4_1\) and \(r = 3\), by [Du83].

All the knots whose 2-fold branched covers are Seifert fibred are torus knots or Montesinos knots. (This class includes the 2-bridge knots and pretzel knots, and was first described in [Mo73].) The number of distinct knots whose 2-fold branched cover is a given Seifert fibred 3-manifold can be arbitrarily large [Be84]. Moreover for each \(r \geq 2\) there are distinct simple 1-knots whose \(r\)-fold cyclic branched covers are homeomorphic [Sa81, Ko86].

If \(K\) is a fibred 2-knot with monodromy of finite order \(r\) and if \((r,s) = 1\) then the \(s\)-fold cyclic branched cover of \(S^4\), branched over \(K\) is again a 4-sphere and so the branch set gives a new 2-knot, which we shall call the \(s\)-fold cyclic branched cover of \(K\). This new knot is again fibred, with the same fibre and monodromy the \(s^{th}\) power of that of \(K\) [Pa78, Pl86]. If \(K\) is a classical knot we shall let \(\tau_{r,s}K\) denote the \(s\)-fold cyclic branched cover of the \(r\)-twist spin of \(K\). We shall call such knots **branched twist spins**, for brevity.

Using properties of \(S^1\)-actions on smooth homotopy 4-spheres, Plotnick obtains the following result [Pl86].

Theorem (Plotnick) A 2-knot is fibred with periodic monodromy if and only if it is a branched twist spin of a knot in a homotopy 3-sphere.
Chapter 16: Abelian normal subgroups of rank \(\geq 2\)

Here “periodic monodromy” means that the fibration of the exterior of the knot has a characteristic map of finite order. It is not in general sufficient that the closed monodromy be represented by a map of finite order. (For instance, if \(K\) is a fibred 2-knot with \(\pi' \cong \mathbb{Q}(8) \times (\mathbb{Z}/n\mathbb{Z})\) for some \(n > 1\) then the meridional automorphism of \(\pi'\) has order 6, and so it follows from the observations above that \(K\) is not a twist spin.)

In our application in the next theorem we are able to show directly that the homotopy 3-sphere arising there may be assumed to be standard.

Theorem 16.5 A group \(G\) which is not virtually solvable is the group of a branched twist spin of a torus knot if and only if it is a 3-knot group and a \(PD^+_4\)-group with centre of rank 2, some nonzero power of a weight element being central.

Proof If \(K\) is a cyclic branched cover of the \(r\)-twist spin of the \((p, q)\)-torus knot then \(M(K)\) fibres over \(S^1\) with fibre \(M(p, q, r)\) and monodromy of order \(r\), and so the \(r^{th}\) power of a meridian is central. Moreover the monodromy commutes with the natural \(S^1\)-action on \(M(p, q, r)\) (see Lemma 1.1 of [Mi75]) and hence preserves a Seifert fibration. Hence the meridian commutes with \(\zeta_1(M(p, q, r))\), which is therefore also central in \(G\). Since (with the above exceptions) \(\pi_1(M(p, q, r))\) is a \(PD^+_4\)-group with infinite centre and which is virtually representable onto \(\mathbb{Z}\), the necessity of the conditions is evident.

Conversely, if \(G\) is such a group then \(G'\) is the fundamental group of a Seifert fibred 3-manifold, \(N\) say, by Theorem 2.14. Moreover \(N\) is “sufficiently complicated” in the sense of [Zi79], since \(G'\) is not virtually solvable. Let \(t\) be an element of \(G\) whose normal closure is the whole group, and such that \(t^n\) is central for some \(n > 0\). Let \(\theta\) be the automorphism of \(G'\) determined by \(t\), and let \(m\) be the order of the outer automorphism class \([\theta] \in Out(G')\). By Corollary 3.3 of [Zi79] there is a fibre preserving self homeomorphism \(\tau\) of \(N\) inducing \([\theta]\) such that the group of homeomorphisms of \(\tilde{N} \cong R^3\) generated by the covering group \(G'\) together with the lifts of \(\tau\) is an extension of \(\mathbb{Z}/m\mathbb{Z}\) by \(G'\), and which is a quotient of the semidirect product \(\hat{G} = G/\langle(t^n)\rangle \cong G' \rtimes_\theta (\mathbb{Z}/n\mathbb{Z})\).

Since the self homeomorphism of \(\tilde{N}\) corresponding to the image of \(t\) has finite order it has a connected 1-dimensional fixed point set, by Smith theory. The image \(P\) of a fixed point in \(N\) determines a cross-section \(\gamma = \{P\} \times S^1\) of the mapping torus \(M(\tau)\). Surgery on \(\gamma\) in \(M(\tau)\) gives a 2-knot with group \(G\) which is fibred with monodromy (of the fibration of the exterior \(X\)) of finite order. We may then apply Plotnick’s Theorem to conclude that the 2-knot is a branched twist spin of a knot in a homotopy 3-sphere. Since the monodromy
16.3 Twist spins of torus knots

respects the Seifert fibration and leaves the centre of G' invariant, the branch set must be a fibre, and the orbit manifold a Seifert fibred homotopy 3-sphere. Therefore the orbit knot is a torus knot in S^3, and the 2-knot is a branched twist spin of a torus knot.

Can we avoid the appeal to Plotnick’s Theorem in the above argument?

If p, q and r are pairwise relatively prime then $M(p,q,r)$ is an homology sphere and the group π of the r-twist spin of the (p,q)-torus knot has a central element which maps to a generator of π/π'. Hence $\pi \cong \pi' \times Z$ and π' has weight 1. Moreover if t is a generator for the Z summand then an element h of π' is a weight element for π' if and only if ht is a weight element for π. This correspondance also gives a bijection between conjugacy classes of such weight elements. If we exclude the case $(2,3,5)$ then π' has infinitely many distinct weight orbits, and moreover there are weight elements such that no power is central [Pl83]. Therefore we may obtain many 2-knots whose groups are as in Theorem 16.5 but which are not themselves branched twist spins by surgery on weight elements in $M(p,q,r) \times S^1$.

If K is a 2-knot with group as in Theorem 16.5 then $M(K)$ is aspherical, and so is homotopy equivalent to $M(K_1)$ for some K_1 which is a branched twist spin of a torus knot. If we assume that K is fibred, with irreducible fibre, we get a stronger result. The next theorem is a version of Proposition 6.1 of [Pl86], starting from more algebraic hypotheses.

Theorem 16.6 Let K be a fibred 2-knot whose group π has centre of rank 2, some power of a weight element being central. Suppose that the fibre is irreducible. Then $M(K)$ is homeomorphic to $M(K_1)$, where K_1 is some branched twist spin of a torus knot.

Proof Let F be the closed fibre and $\phi : F \to F$ the characteristic map. Then F is a Seifert fibred manifold, as above. Now the automorphism of F constructed as in Theorem 16.5 induces the same outer automorphism of $\pi_1(F)$ as ϕ, and so these maps must be homotopic. Therefore they are in fact isotopic [Sc85, BO91]. The theorem now follows.

We may apply Plotnick’s theorem in attempting to understand twist spins of other knots. As the arguments are similar to those of Theorems 16.5 and 16.6, except in that the existence of homeomorphisms of finite order and “homotopy implies isotopy” require different justifications, while the conclusions are less satisfactory, we shall not give proofs for the following assertions.
Let \(G \) be a 3-knot group such that \(G' \) is the fundamental group of a hyperbolic 3-manifold and in which some nonzero power of a weight element is central. If the 3-dimensional Poincaré conjecture is true then we may use Mostow rigidity to show that \(G \) is the group of some branched twist spin \(K \) of a simple non-torus knot. Moreover if \(K_1 \) is any other fibred 2-knot with group \(G \) and hyperbolic fibre then \(M(K_1) \) is homeomorphic to \(M(K) \). In particular the simple knot and the order of the twist are uniquely determined by \(G \).

Similarly if \(G' \) is the fundamental group of a Haken 3-manifold which is not Seifert fibred and the 3-dimensional Poincaré conjecture is true then we may use [Zi82] to show that \(G \) is the group of some branched twist spin of a prime non-torus knot. If moreover all finite group actions on the fibre are geometric the prime knot and the order of the twist are uniquely determined by \(G \) [Zi86].

16.4 Solvable \(PD_4 \)-groups

If \(\pi \) is a 2-knot group such that \(h(\sqrt{\pi}) > 2 \) then \(\pi \) is virtually poly-\(Z \) and \(h(\pi) = 4 \), by Theorem 8.1. In this section we shall determine all such 2-knot groups.

Lemma 16.7 Let \(G \) be torsion free and virtually poly-\(Z \) with \(h(G) = 4 \) and \(G/G' \cong Z \). Then \(G' \cong Z^3 \) or \(G_6 \) or \(\sqrt{G'} \cong \Gamma_q \) (for some \(q > 0 \)) and \(G'/\sqrt{G'} \cong Z/3Z \) or 1.

Proof Let \(H = G/\sqrt{G'} \). Then \(H/H' \cong Z \) and \(h(H') \leq 1 \), since \(\sqrt{G'} = G' \cap \sqrt{G} \) and \(h(G' \cap \sqrt{G}) \geq h(G) - 1 \geq 2 \). Hence \(H' = G'/\sqrt{G'} \) is finite.

If \(\sqrt{G'} \cong Z^3 \) then \(G' \cong Z^3 \) or \(G_6 \), since these are the only flat 3-manifold groups which admit meridional automorphisms.

If \(\sqrt{G'} \cong \Gamma_q \) for some \(q > 0 \) then \(\zeta\sqrt{G'} \cong Z \) is normal in \(G \) and so is central in \(G' \). Using the known structure of automorphisms of \(\Gamma_q \), it follows that the finite group \(G'/\sqrt{G'} \) must act on \(\sqrt{G'}/\zeta\sqrt{G'} \cong Z^2 \) via \(SL(2, Z) \) and so must be cyclic. Moreover it must be of odd order, and hence 1 or \(Z/3Z \), since \(G/\sqrt{G'} \) has infinite cyclic abelianization.

Such a group \(G \) is the group of a fibred 2-knot if and only if it is orientable, by Theorems 14.4 and 14.7.
Theorem 16.8 Let \(\pi \) be a 2-knot group with \(\pi' \cong \mathbb{Z}^3 \), and let \(C \) be the image of the meridional automorphism in \(SL(3, \mathbb{Z}) \). Then \(\Delta_C(t) = \det(tI - C) \) is irreducible, \(|\Delta_C(1)| = 1 \) and \(\pi' \) is isomorphic to an ideal in the domain \(R = \Lambda/\langle \Delta_C(t) \rangle \). Two such groups are isomorphic if and only if the polynomials are equal (after inverting \(t \), if necessary) and the ideal classes then agree. There are finitely many ideal classes for each such polynomial and each class (equivalently, each such matrix) is realized by some 2-knot group. Moreover \(\sqrt{\pi} = \pi' \) and \(\zeta \pi = 1 \). Each such group \(\pi \) has two strict weight orbits.

Proof Let \(t \) be a weight element for \(\pi \) and let \(C \) be the matrix of the action of \(t \) by conjugation on \(\pi' \), with respect to some basis. Then \(\det(C - I) = \pm 1 \), since \(t - 1 \) acts invertibly. Moreover if \(K \) is a 2-knot with group \(\pi \) then \(M(K) \) is orientable and aspherical, so \(\det(C) = +1 \). Conversely, surgery on the mapping torus of the self homeomorphism of \(S^1 \times S^1 \times S^1 \) determined by such a matrix \(C \) gives a 2-knot with group \(\mathbb{Z}^3 \times \mathbb{Z} \).

The Alexander polynomial of \(K \) is the characteristic polynomial \(\Delta_K(t) = \det(tI - C) \) which has the form \(t^3 - at^2 + bt - 1 \), for some \(a \) and \(b = a \pm 1 \). It is irreducible, since it does not vanish at \(\pm 1 \). Since \(\pi' \) is annihilated by \(\Delta_K(t) \) it is an \(R \)-module; moreover as it is torsion free it embeds in \(\mathbb{Q} \otimes \pi' \), which is a vector space over the field of fractions \(\mathbb{Q} \otimes R \). Since \(\pi' \) is finitely generated and \(\pi' \) and \(R \) each have rank 3 as abelian groups it follows that \(\pi' \) is isomorphic to an ideal in \(R \). Moreover the characteristic polynomial of \(C \) cannot be cyclotomic and so no power of \(t \) can commute with any nontrivial element of \(\pi' \). Hence \(\sqrt{\pi} = \pi' \) and \(\zeta \pi = 1 \).

By Lemma 1.1 two such semidirect products are isomorphic if and only if the matrices are conjugate up to inversion. The conjugacy classes of matrices in \(SL(3, \mathbb{Z}) \) with given irreducible characteristic polynomial \(\Delta(t) \) correspond to the ideal classes of \(\Lambda/\langle \Delta(t) \rangle \), by Theorem 1.4. Therefore \(\pi \) is determined by the ideal class of \(\pi' \), and there are finitely many such 2-knot groups with given Alexander polynomial.

Since \(\pi'' = 1 \) the final observation follows from Theorem 14.1.

We shall call 2-knots with such groups “Cappell-Shaneson” 2-knots.

Lemma 16.9 Let \(\Delta_a(t) = t^3 - at^2 + (a - 1)t - 1 \) for some \(a \in \mathbb{Z} \). Then every ideal in the domain \(R = \Lambda/\langle \Delta_a(t) \rangle \) can be generated by 2 elements as an \(R \)-module.

Geometry & Topology Monographs, Volume 5 (2002)
Proof In this lemma “cyclic” shall mean “cyclic as an R-module” or equivalently “cyclic as a Λ-module”. Let M be an ideal in R. We shall show that we can choose a nonzero element $x \in M$ such that $M/(Rx + pM)$ is cyclic, for all primes p. The result will then follow via Nakayama’s Lemma and the Chinese Remainder Theorem.

Let D be the discriminant of $\Delta_a(t)$. Then $D = a(a-2)(a-3)(a-5)-23$. If p does not divide D then $\Delta_a(t)$ has no repeated roots modulo p. If p divides D choose integers α_p, β_p such that $\Delta_a(t) \equiv (t-\alpha_p)^2(t-\beta_p)$ modulo (p), and let $K_p = \{m \in M \mid (t-\beta_p)m \in pM\}$. If $\beta_p \neq \alpha_p$ modulo (p) then $K_p = (p,t-\alpha_p)M$ and has index p^2 in M.

If $\beta_p \equiv \alpha_p$ modulo (p) then $\alpha_p^2 \equiv 1$ and $(1-\alpha_p)^2 \equiv -1$ modulo (p). Together these congruences imply that $3\alpha_p \equiv -1$ modulo (p), and hence that $p = 7$ and $\alpha_p \equiv 2$ modulo (7). If $M/7M \cong (\Lambda/(7,t-2))^3$ then the automorphism τ of $M/49M$ induced by t is congruent to multiplication by 2 modulo (7). But $M/49M \cong (\mathbb{Z}/49\mathbb{Z})^3$ as an abelian group, and so $det(\tau) = 8$ in $\mathbb{Z}/49\mathbb{Z}$, contrary to t being an automorphism of M. Therefore

$$M/7M \cong (\Lambda/(7,t-2)) \oplus (\Lambda/(7,(t-2)^2))$$

and K_7 has index 7 in M, in this case.

The set $M - \bigcup_{p|D}K_p$ is nonempty, since

$$\frac{1}{7} + \sum_{p|D,p \neq \pi} \frac{1}{p^2} < \frac{1}{7} + \int_2^\infty \frac{1}{t^2} dt < 1.$$

Let x be an element of $M - \bigcup_{p|D}K_p$ which is not \mathbb{Z}-divisible in M. Then $N = M/Rx$ is finite, and is generated by at most two elements as an abelian group, since $M \cong \mathbb{Z}^3$ as an abelian group. For each prime p the $\Lambda/p\Lambda$-module M/pM is an extension of N/pN by the submodule X_p generated by the image of x and its order ideal is generated by the image of $\Delta_a(t)$ in the P.I.D. $\Lambda/p\Lambda \cong \mathbb{F}_p[t,t^{-1}]$.

If p does not divide D the image of $\Delta_a(t)$ in $\Lambda/p\Lambda$ is square free. If $p|D$ and $\beta_p \neq \alpha_p$ the order ideal of X_p is divisible by $t-\alpha_p$. If $\beta_7 = \alpha_7 = 2$ the order ideal of X_7 is $(t-2)^2$. In all cases the order ideal of N/pN is square free and so N/pN is cyclic. By the Chinese Remainder Theorem there is an element $y \in M$ whose image is a generator of N/pN, for each prime p dividing the order of N. The image of y in N generates N, by Nakayama’s Lemma.

In [AR84] matrix calculations are used to show that any matrix C as in Theorem 16.8 is conjugate to one with first row $(0,0,1)$. (The prime 7 also needs special

16.4 Solvable PD$_4$-groups

consideration in their argument.) This is equivalent to showing that M has an element x such that the image of tx in M/Zx is indivisible, from which it follows that M is generated as an abelian group by x, tx and some third element y. Given this, it is easy to see that the corresponding Cappell-Shaneson 2-knot group has a presentation

$$(t, x, y, z | xy = yx, xz = zx, txt^{-1} = z, tgyt^{-1} = x^my^n z^p, tztx^{-1} = x^q y^r z^s).$$

Since p and s must be relatively prime these relations imply $yz = zy$. We may reduce the number of generators and relations on setting $z = txt^{-1}$.

Lemma 16.10 Let π be a finitely presentable group such that $\pi/\pi' \cong Z$, and let $R = \Lambda$ or $\Lambda/p\Lambda$ for some prime $p \geq 2$. Then

1. if π can be generated by 2 elements $H_1(\pi; R)$ is cyclic as an R-module;
2. if $\text{def}(\pi) = 0$ then $H_2(\pi; R)$ is cyclic as an R-module.

Proof If π is generated by two elements t and x, say, we may assume that the image of t generates π/π' and that $x \in \pi'$. Then π' is generated by the conjugates of x under powers of t, and so $H_1(\pi; R) = R \otimes \Lambda (\pi'/\pi'')$ is generated by the image of x.

If X is the finite 2-complex determined by a deficiency 0 presentation for π then $H_0(X; R) = R/(t-1)$ and $H_1(X; R)$ are R-torsion modules, and $H_2(X; R)$ is a submodule of a finitely generated free R-module. Hence $H_2(X; R) \cong R$, as it has rank 1 and R is an UFD. Therefore $H_2(\pi; R)$ is cyclic as an R-module, since it is a quotient of $H_2(X; R)$, by Hopf’s Theorem.

Theorem 16.11 Let $\pi = Z^3 \times_C Z$ be the group of a Cappell-Shaneson 2-knot, and let $\Delta(t) = \text{det}(tI - C)$. Then π has a 3 generator presentation of deficiency -2. Moreover the following are equivalent.

1. π has a 2 generator presentation of deficiency 0;
2. π is generated by 2 elements;
3. $\text{def}(\pi) = 0$;
4. π' is cyclic as a Λ-module.

Proof The first assertion follows immediately from Lemma 16.9. Condition (1) implies (2) and (3), since $\text{def}(\pi) \leq 0$, by Theorem 2.5, while (2) implies (4), by Lemma 16.10. If $\text{def}(\pi) = 0$ then $H_2(\pi; \Lambda)$ is cyclic as a Λ-module, by Lemma 16.10. Since $\pi' = H_1(\pi; \Lambda) \cong H^3(\pi; \Lambda) \cong \text{Ext}_1^1(H_2(\pi; \Lambda), \Lambda)$, by
Poincaré duality and the UCSS, it is also cyclic and so (3) also implies (4). If \(\pi' \) is generated as a \(\Lambda \)-module by \(x \) then it is easy to see that \(\pi \) has a presentation of the form
\[
\langle t, x \mid xtxt^{-1} = txt^{-1}x, t^3xt^{-3} = t^2x^at^{-2}tx^b t^{-1}x \rangle,
\]
for some integers \(a, b \), and so (1) holds. \(\square \)

In fact Theorem A.3 of [AR84] implies that any such group has a 3 generator presentation of deficiency -1, as remarked before Lemma 16.10.

The isomorphism class of the \(\Lambda \)-module \(\pi' \) is that of its Steinitz-Fox-Smythe row invariant, which is the ideal \((r, t-n)\) in the domain \(\Lambda/\Delta(t) \) (see Chapter 3 of [H3]). Thus \(\pi' \) is cyclic if and only if this ideal is principal. In particular, this is not so for the concluding example of [AR84], which gives rise to the group with presentation
\[
\langle t, x, y, z \mid xz = zx, yz = zy, txt^{-1} = y^{-5}z^{-8}, tyt^{-1} = y^2z^3, tzt^{-1} = xz^{-7} \rangle.
\]

Let \(G(+) \) and \(G(-) \) be the extensions of \(Z \) by \(G_6 \) with presentations
\[
\langle t, x, y \mid xy^2x^{-1}y^{-2} = 1, txt^{-1} = (xy)^{-1}, tyt^{-1} = x^{\pm 1} \rangle.
\]
(These presentations have optimal deficiency, by Theorem 2.5.) The group \(G(+) \) is the group of the 3-twist spin of the figure eight knot \(G(+) \cong \pi_3^4 \).

Theorem 16.12 Let \(\pi \) be a 2-knot group with \(\pi' \cong G_6 \). Then \(\pi \cong G(+) \) or \(G(-) \). In each case \(\pi \) is virtually \(Z^4 \), \(\pi' \cap \zeta \pi = 1 \) and \(\zeta \pi \cong Z \).

Proof Since \(\text{Out}(G_6) \) is finite \(\pi \) is virtually \(G_6 \times Z \) and hence is virtually \(Z^4 \). The groups \(G(+) \) and \(G(-) \) are the only orientable flat 4-manifold groups with \(\pi/\pi' \cong Z \). The next assertion \(\pi' \cap \zeta \pi = 1 \) follows as \(\zeta G_6 = 1 \). It is easily seen that \(\zeta G(+) \) and \(\zeta G(-) \) are generated by the images of \(t^3 \) and \(t^6x^{-2}y^2(xy)^{-2} \), respectively, and so in each case \(\zeta \pi \cong Z \). \(\square \)

Although \(G(-) \) is the group of a fibred 2-knot, by Theorem 14.4, it can be shown that no power of any weight element is central and so it is not the group of any twist spin. (This also follows from Theorem 16.4 above.)

Theorem 16.13 Let \(\pi \) be a 2-knot group with \(\pi' \cong \Gamma_q \) for some \(q > 0 \), and let \(\theta \) be the image of the meridional automorphism in \(\text{Out}(\Gamma_q) \). Then either \(q = 1 \) and \(\theta \) is conjugate to \([([1, 1], 0)] \) or \([([1, 2]), 0)] \), or \(q \) is odd and \(\theta \) is conjugate to \([([1, 1]), 0)] \) or its inverse. Each such group \(\pi \) has two strict weight orbits.
Theorem 1.4. Now
\[[A,\mu][A,0][A,\mu]^{-1} = [A,\mu(I - det(A)A)^{-1}] \]
in \text{Out}(\Gamma_q). (See §7 of Chapter 8.) As in each case \(I - det(A)A\) is invertible, it follows that \(\theta\) is conjugate to \([A,0]\) or to \([A^{-1},0] = [A,0]^{-1}\). Since \(\pi'' \leq \zeta\pi'\) the final observation follows from Theorem 14.1.

The groups \(\Gamma_q\) are discrete cocompact subgroups of the Lie group \(\mathrm{Nil}^3\) and the coset spaces are \(S^1\)-bundles over the torus. Every automorphism of \(\Gamma_q\) is orientation preserving and each of the groups allowed by Theorem 16.13 is the group of some Seifert fibred 2-knot, by Theorem 14.4. The group of the 6-twist spin of the trefoil has commutator subgroup \(\Gamma_I\) and monodromy \([(\begin{smallmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}),0]\). In all the other cases the meridional automorphism has infinite order and the group is not the group of any twist spin.

The groups with commutator subgroup \(\Gamma_1\) have presentations
\[\langle t,x,y \mid xyx^{-1} = yxy^{-1}x, txt^{-1} = xy, txyt^{-1} = w \rangle, \]
where \(w = x^{-1}, xy^2\) or \(x\) (respectively), while those with commutator subgroup \(\Gamma_q\) with \(q > 1\) have presentations
\[\langle t,u,v,z \mid uvu^{-1}v^{-1} = z^q, tut^{-1} = v, tvt^{-1} = zuv, tzv^{-1} = z^{-1} \rangle. \]
(Note that as \([v, u] = t[u, v]t^{-1} = [v, zuv] = [v, z][v, u]z^{-1} = [v, z][v, u]\), we have \(vz = zv\) and hence \(uz = zu\) also.) These are easily seen to have 2 generator presentations of deficiency 0 also.

The other \(\mathrm{Nil}^3\)-manifolds which arise as the closed fibres of fibred 2-knots are Seifert fibred over \(S^2\) with 3 exceptional fibres of type \((3, \beta_i)\), with \(\beta_i = \pm 1\). Hence they are 2-fold branched covers of \(S^3\), branched over a Montesinos link \(K(0|e; (3, \beta_1), (3, \beta_2), (3, \beta_3))\) [Mo73]. If \(e\) is even this link is a knot, and is invertible, but not amphicheiral (see §12E of [BZ]). (This class includes the knots \(9_{35}, 9_{37}, 9_{46}, 9_{48}, 10_{74}\) and \(10_{75}\).)

Let \(\pi(e, \eta)\) be the group of the 2-twist spin of \(K(0|e; (3, 1), (3, 1), (3, \eta))\).

\textit{Geometry \\& Topology Monographs, Volume 5 (2002)}
Theorem 16.14 Let \(\pi \) be a 2-knot group such that \(\sqrt{\pi} \cong \Gamma_q \) (for some \(q \geq 1 \)) and \(\pi'/\sqrt{\pi'} \cong \mathbb{Z}/3\mathbb{Z} \). Then \(q \) is odd and \(\pi \cong \pi(e, \eta) \), for some \(e \in 2\mathbb{Z} \) and \(\eta = 1 \) or \(-1\).

Proof It follows easily from Lemma 16.7 that \(\zeta\sqrt{\pi'} = \zeta\pi' \) and \(G = \pi'/\zeta\pi' \) is isomorphic to \(\mathbb{Z}^2 \times B(\mathbb{Z}/3\mathbb{Z}) \), where \(B = \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix} \right) \). Thus \(G \) may be identified with the orbifold fundamental group of the flat 2-orbifold \(S(3,3) \), and so is a discrete subgroup of \(Isom(\mathbb{E}^2) \). As remarked above, \(\pi' \) is the fundamental group of the 2-fold branched cover of \(K(0|e;(3,1),(3,1),(3,3)) \), for some \(e \) and \(\eta = \pm 1 \). Hence it has a presentation

\[
\langle h, x, y, z | x^{3\eta} = y^3 = z^3 = h, xyz = he \rangle.
\]

(This can also be seen algebraically as \(\pi' \) is a torsion free central extension of \(G \) by \(\mathbb{Z} \).) The image of \(h \) in \(\pi' \) generates \(\zeta\pi' \), and the images of \(x^{-1}y \) and \(xy^{-1} \) in \(G = \pi'/\langle h \rangle \) form a basis for the translation subgroup \(T(G) \cong \mathbb{Z}^2 \) of \(G \). Since \(\pi'/\langle \pi' \rangle^2 \cong \mathbb{Z}/(2, e - 1) \) and \(\pi' \) admits a meridianal automorphism \(e \) must be even.

The isometry group \(E(2) = Isom(\mathbb{E}^2) = R^2 \times O(2) \) embeds in the affine group \(Aff(2) = R^2 \times GL(2, \mathbb{R}) \). The normalizer of \(G \) in \(Aff(2) \) is the semidirect product of the dihedral subgroup of \(GL(2, \mathbb{Z}) \) generated by \(B \) and \(R = \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix} \right) \) with the normal subgroup \((I + B)^{-1}\mathbb{Z}^2 \), and its centralizer there is trivial. It follows from the Bieberbach theorems (and is easily verified directly) that \(Aut(G) \cong N_{Aff(2)}(G) \). Let \(b, r, k \) represent the classes of \((0, B), (0, R) \) and \(((-\frac{1}{3}, \frac{1}{3}), I) \) in \(Out(G) \). Then \(Out(G) \cong S_3 \times (\mathbb{Z}/2\mathbb{Z}) \), and has a presentation

\[
\langle b, r, k | b^2 = k^3 = 1, br = rb, bkb = rkr = k^{-1} \rangle
\]

Since \(\pi'/\pi'' \) is finite \(Hom(\pi', \zeta\pi') = 1 \) and so the natural homomorphism from \(Out(\pi') \) to \(Out(G) \) is injective. As each of the automorphisms \(b, r \) and \(k \) lifts to an automorphism of \(\pi' \) this homomorphism is an isomorphism. On considering the effect of an automorphism of \(\pi' \) on its characteristic quotients \(\pi'/\sqrt{\pi'} = G/T(G) \cong \mathbb{Z}/3\mathbb{Z} \) and \(G/G' = (\mathbb{Z}/3\mathbb{Z})^2 \), we see that the only outer automorphism classes which contain meridianal automorphisms are \(rb, rkb \) and \(rkbk \). Since these are conjugate in \(Out(G) \) and \(\pi' \cong \pi(e, \eta)' \) the theorem now follows from Lemma 1.1.

The subgroup \(A = \langle t^2, x^3 \rangle < \pi(e, \eta \rangle \) is abelian of rank 2 and normal but is not central. As \(H_1(\pi; \Lambda/3\Lambda) \cong H_2(\pi; \Lambda/3\Lambda) \cong (\Lambda/(3, t + 1))^2 \) in all cases the presentations

\[
\langle t, x, y | x^3 = y^3 = (x^{1-3}\eta)^{-3\eta}, txt^{-1} = x^{-1}, t(yt)^{-1} = xy^{-1}x^{-1} \rangle
\]
are optimal, by Lemma 16.10.

We may refine the conclusions of Theorem 15.7 as follows. If \(K \) is a 2-knot whose group \(\pi \) has an abelian normal subgroup of rank \(\geq 3 \) then either \(K \) is a Cappell-Shaneson 2-knot or \(\pi K \cong G(+) \) or \(G(−) \).
Chapter 17

Knot manifolds and geometries

In this chapter we shall attempt to characterize certain 2-knots in terms of algebraic invariants. As every 2-knot \(K \) may be recovered (up to orientations and Gluck reconstruction) from \(M(K) \) together with the orbit of a weight class in \(\pi = \pi K \) under the action of self homeomorphisms of \(M \), we need to characterize \(M(K) \) up to homeomorphism. After some general remarks on the algebraic 2-type in \(\pi_1 \), and on surgery in \(\pi_2 \), we shall concentrate on three special cases: when \(M(K) \) is aspherical, when \(\pi' \) is finite and when \(g.d. \pi = 2 \).

When \(\pi \) is torsion free and virtually poly-\(Z \) the surgery obstructions vanish, and when it is poly-\(Z \) the weight class is unique. When \(\pi \) has torsion the surgery obstruction groups are notoriously difficult to compute. However we can show that there are infinitely many distinct 2-knots \(K \) such that \(M(K) \) is simple homotopy equivalent to \(M(\tau_3\beta_1) \); if the 3-dimensional Poincaré conjecture is true then among these knots only \(\tau_3\beta_1 \) has a minimal Seifert hypersurface. In the case of \(\Phi \) the homotopy type of \(M(K) \) determines the exterior of the knot. The difficulty here is in finding a homotopy equivalence from \(M(K) \) to a standard model.

In the final sections we shall consider which knot manifolds are homeomorphic to geometric 4-manifolds or complex surfaces. If \(M(K) \) is geometric then either \(K \) is a Cappell-Shaneson knot or the geometry must be one of \(E^4 \), \(\text{Nil}^3 \times \mathbb{E}^1 \), \(\text{Sol}^4 \), \(\mathbb{S}L \times \mathbb{E}^1 \), \(\mathbb{H}^3 \times \mathbb{E}^1 \) or \(S^3 \times \mathbb{E}^1 \). If \(M(K) \) is homeomorphic to a complex surface then either \(K \) is a branched twist spin of a torus knot or \(M(K) \) admits one of the geometries \(\text{Nil}^3 \times \mathbb{E}^1 \), \(\text{Sol}^4_0 \) or \(\mathbb{S}L \times \mathbb{E}^1 \).

17.1 Homotopy classification of \(M(K) \)

Let \(K \) and \(K_1 \) be 2-knots and suppose that \(\alpha : \pi = \pi K \rightarrow \pi K_1 \) and \(\beta : \pi_2(M) \rightarrow \pi_2(M_1) \) determine an isomorphism of the algebraic 2-types of \(M = M(K) \) and \(M_1 = M(K_1) \). Since the infinite cyclic covers \(M' \) and \(M'_1 \) are homotopy equivalent to 3-complexes there is a map \(h : M' \rightarrow M'_1 \) such that \(\pi_1(h) = \alpha|_\pi \) and \(\pi_2(h) = \beta \). If \(\pi = \pi K \) has one end then \(\pi_3(M) \cong \Gamma(\pi_2(M)) \) and so \(h \) is a homotopy equivalence. Let \(t \) and \(t_1 = \alpha(t) \) be corresponding
Chapter 17: Knot manifolds and geometries

generators of $\text{Aut}(M'/M)$ and $\text{Aut}(M_1'/M_1)$, respectively. Then $h^{-1}t_1^{-1}ht$ is a self homotopy equivalence of M' which fixes the algebraic 2-type. If this is homotopic to $id_{M'}$ then M and M_1 are homotopy equivalent, since up to homotopy they are the mapping tori of t and t_1, respectively. Thus the homotopy classification of such knot manifolds may be largely reduced to determining the obstructions to homotoping a self-map of a 3-complex to the identity.

We may use a similar idea to approach this problem in another way. Under the same hypotheses on K and K_1 there is a map $f_o : M \to \text{int}D^4 \to M_1$ inducing isomorphisms of the algebraic 2-types. If π has one end then f_o is an epimorphism, and so f_o is 3-connected. If there is an extension $f : M \to M_1$ then it is a homotopy equivalence, as it induces isomorphisms on the homology of the universal covering spaces.

If $g.d.\pi \leq 2$ the algebraic 2-type is determined by π, for then $\pi_2(M) = H^2(\pi; \mathbb{Z}[\pi])$, by Theorem 3.12, and the k-invariant is 0. In particular, if π' is free of rank r then $M(K)$ is homotopy equivalent to the mapping torus of a self-homeomorphism of $\mathbb{R}S^1 \times S^2$, by Corollary 4.5.1. On the other hand, the group Φ has resisted attack thus far.

The related problem of determining the homotopy type of the exterior of a 2-knot has been considered in [Lo81], [Pl83] and [PS85]. In each of the examples considered in [Pl83] either π' is finite or $M(K)$ is aspherical, so they do not test the adequacy of the algebraic 2-type for the present problem. The examples of [PS85] probably show that in general $M(K)$ is not determined by π and $\pi_2(M(K))$ alone.

17.2 Surgery

Recall from Chapter 6 that we may define natural transformations $I_G : G \to L_5^\alpha(G)$ for any group G, which clearly factor through G/G'. If $\alpha : G \to Z$ induces an isomorphism on abelianization the homomorphism $I_G = I_G\alpha^{-1}I_Z^{-1}$ is a canonical splitting for $L_5(\alpha)$.

Theorem 17.1 Let K be a 2-knot with group π. If $L_5^\alpha(\pi) \cong Z$ and N is simple homotopy equivalent to $M(K)$ then N is s-cobordant to $M(K)$.

Proof Since $M = M(K)$ is orientable and $[M, G/TOP] \cong H^4(M; \mathbb{Z}) \cong Z$ the surgery obstruction map $\sigma_4 : [M(K), G/TOP] \to L_5^\alpha(\pi)$ is injective, by Theorem 6.6. The image of $L_5(Z)$ under I_5 acts trivially on $S_{TOP}(M(K))$, by Theorem 6.7. Hence there is a normal cobordism with obstruction 0 from any simple homotopy equivalence $f : N \to M$ to id_M.

This theorem applies if π is square root closed accessible [Ca73], or if π is a classical knot group [AFR97].

Corollary 17.1.1 (Freedman) A 2-knot K is trivial if and only if $\pi K \cong \mathbb{Z}$.

Proof The condition is clearly necessary. Conversely, if $\pi K \cong \mathbb{Z}$ then $M(K)$ is homeomorphic to $S^3 \times S^1$, by Theorem 6.11. Since the meridian is unique up to inversion and the unknot is clearly reflexive the result follows.

Surgery on an s-concordance \mathcal{K} from K_0 to K_1 gives an s-cobordism from $M(K_0)$ to $M(K_1)$ in which the meridians are conjugate. Conversely, if $M(K)$ and $M(K_1)$ are s-cobordant via such an s-cobordism then K_1 is s-concordant to K or K^*. In particular, if K is reflexive then K and K_1 are s-concordant.

Lemma 17.2 Let K be a 2-knot. Then K has a Seifert hypersurface which contains no fake 3-cells.

Proof Every 2-knot has a Seifert hypersurface, by the standard obstruction theoretical argument and TOP transversality. Thus K bounds a locally flat 3-submanifold V which has trivial normal bundle in S^4. If Δ is a homotopy 3-cell in V then $\Delta \times R \cong D^3 \times R$, by simply connected surgery, and the submanifold $\partial \Delta$ of $\partial (\Delta \times R) = \partial (D^3 \times R)$ is isotopic there to the boundary of a standard 3-cell in $D^3 \times R$ which we may use instead of Δ.

The modification in this lemma clearly preserves minimality. (Every 2-knot has a closed Seifert hypersurface which is a hyperbolic 3-manifold [Ru90], and so contains no fake 3-cells, but these are rarely minimal).

17.3 The aspherical cases

Whenever the group of a 2-knot K contains a sufficiently large abelian normal subgroup then $M(K)$ is aspherical. This is notably the case for most twist spins of prime knots.

Theorem 17.3 Let K be a 2-knot with group π and suppose that either $\sqrt{\pi}$ is torsion free abelian of rank 1 and $\pi/\sqrt{\pi}$ has one end or $h(\sqrt{\pi}) \geq 2$. Then the universal cover $\tilde{M}(K)$ is homeomorphic to \mathbb{R}^4.

Geometry & Topology Monographs, Volume 5 (2002)
Proof If \(\sqrt{\pi} \) is torsion free abelian of rank 1 and \(\pi/\sqrt{\pi} \) has one end \(M \) is aspherical, by Theorem 15.5, and \(\pi \) is 1-connected at \(\infty \), by Theorem 1 of [Mi87]. If \(h(\sqrt{\pi}) = 2 \) then \(\sqrt{\pi} \cong \mathbb{Z}^2 \) and \(M \) is s-cobordant to the mapping torus of a self homeomorphism of a \(\tilde{\mathbb{SL}} \)-manifold, by Theorem 16.2. If \(h(\sqrt{\pi}) \geq 3 \) then \(M \) is homeomorphic to an infrasolvmanifold, by Theorem 8.1. In all cases, \(\tilde{M} \) is contractible and 1-connected at \(\infty \), and so is homeomorphic to \(\mathbb{R}^4 \) by [Fr82].

Is there a 2-knot \(K \) with \(\tilde{M}(K) \) contractible but not 1-connected at \(\infty \)?

Theorem 17.4 Let \(K \) be a 2-knot such that \(\pi = \pi K \) is torsion free and virtually poly-\(\mathbb{Z} \). Then \(K \) is determined up to Gluck reconstruction by \(\pi \) together with a generator of \(H_4(\pi; \mathbb{Z}) \) and the strict weight orbit of a meridian.

Proof If \(\pi \cong \mathbb{Z} \) then \(K \) must be trivial, and so we may assume that \(\pi \) is torsion free and virtually poly-\(\mathbb{Z} \) of Hirsch length 4. Hence \(M(K) \) is aspherical and is determined up to homeomorphism by \(\pi \), and every automorphism of \(\pi \) may be realized by a self homeomorphism of \(M(K) \), by Theorem 6.11. Since \(M(K) \) is aspherical orientations of \(M(K) \) correspond to generators of \(H_4(\pi; \mathbb{Z}) \).

This theorem applies in particular to the Cappell-Shaneson 2-knots, which have an unique strict weight orbit, up to inversion. (A similar argument applies to Cappell-Shaneson \(n \)-knots with \(n > 2 \), provided we assume also that \(\pi_i(X(K)) = 0 \) for \(2 \leq i \leq (n+1)/2 \).

Theorem 17.5 Let \(K \) be a 2-knot with group \(\pi \). Then \(K \) is s-concordant to a fibred knot with closed fibre a \(\tilde{\mathbb{SL}} \)-manifold if and only if \(\pi \) is not virtually solvable, \(\pi' \) is \(\text{FP}_2 \) and \(\zeta \pi' \cong \mathbb{Z} \). The fibred knot is determined up to Gluck reconstruction by \(\pi \) together with a generator of \(H_4(\pi; \mathbb{Z}) \) and the strict weight orbit of a meridian.

Proof The conditions are clearly necessary. Suppose that they hold. The manifold \(M(K) \) is aspherical, by Theorem 15.7, so every automorphism of \(\pi \) is induced by a self homotopy equivalence of \(M(K) \). Moreover as \(\pi \) is not virtually solvable \(\pi' \) is the fundamental group of a \(\tilde{\mathbb{SL}} \)-manifold. Therefore \(M(K) \) is determined up to s-cobordism by \(\pi \), by Theorem 13.2. The rest is standard.
Branched twist spins of torus knots are perhaps the most important examples of such knots, but there are others. (See Chapter 16).

Is every 2-knot K such that $\pi = \pi K$ is a PD_4^+-group determined up to s-concordance and Gluck reconstruction by π together with a generator of $H_4(\pi; \mathbb{Z})$ and a strict weight orbit? Is K s-concordant to a fibred knot with aspherical closed fibre if and only if π' is FP_2 and has one end? (This is surely true if $\pi' \cong \pi_1(N)$ for some virtually Haken 3-manifold N).

17.4 Quasifibres and minimal Seifert hypersurfaces

Let M be a closed 4-manifold with fundamental group π. If $f : M \to S^1$ is a map which is transverse to $p \in S^1$ then $\hat{V} = f^{-1}(p)$ is a codimension 1 submanifold with a product neighbourhood $N \cong \hat{V} \times [-1, 1]$. If moreover the induced homomorphism $f_* : \pi \to Z$ is an epimorphism and each of the inclusions $j_{\pm} : \hat{V} \cong \hat{V} \times \{\pm 1\} \subset W = M\setminus V \times (-1, 1)$ induces monomorphisms on fundamental groups then we shall say that \hat{V} is a quasifibre for f. The group π is then an HNN extension with base $\pi_1(W)$ and associated subgroups $j_{\pm}(\pi_1(\hat{V}))$, by Van Kampen’s Theorem. Every fibre of a bundle projection is a quasifibre. We may use the notion of quasifibre to interpolate between the homotopy fibration theorem of Chapter 4 and a TOP fibration theorem. (See also Theorem 6.12 and Theorem 17.7).

Theorem 17.6 Let M be a closed 4-manifold with $\chi(M) = 0$ and such that $\pi = \pi_1(M)$ is an extension of Z by a finitely generated normal subgroup ν. If there is a map $f : M \to S^1$ inducing an epimorphism with kernel ν and which has a quasifibre \hat{V} then the infinite cyclic covering space M_ν associated with ν is homotopy equivalent to \hat{V}.

Proof As ν is finitely generated the monomorphisms $j_{\pm,}$ must be isomorphisms. Therefore ν is finitely presentable, and so M_ν is a PD_3-complex, by Theorem 4.5. Now $M_\nu \cong W \times Z/\sim$, where $(j_{+}(v), n) \sim (j_{-}(v), n + 1)$ for all $v \in \hat{V}$ and $n \in Z$. Let $\tilde{j}(v)$ be the image of $(j_{+}(v), 0)$ in M_ν. Then $\pi_1(\tilde{j})$ is an isomorphism. A Mayer-Vietoris argument shows that \tilde{j} has degree 1, and so \tilde{j} is a homotopy equivalence. \qed

One could use duality instead to show that $H_s = H_s(W, \partial \hat{W}; \mathbb{Z}[\pi]) = 0$ for $s \neq 2$, while H_2 is a stably free $\mathbb{Z}[\pi]$-module, of rank $\chi(W, \partial \hat{W}) = 0$. Since $\mathbb{Z}[\pi]$ is weakly finite this module is 0, and so W is an h-cobordism.

Geometry & Topology Monographs, Volume 5 (2002)
Corollary 17.6.1 Let K be a 2-knot such that π' is finitely generated, and
which has a minimal Seifert hypersurface V. If every self homotopy equivalence
of \hat{V} is homotopic to a homeomorphism then $M(K)$ is homotopy equivalent to
$M(K_1)$, where $M(K_1)$ is a fibred 2-knot with fibre V.

Proof Let $j_+^{-1} : M(K) \to \hat{V}$ be a homotopy inverse to the homotopy equiva-
lence j_+, and let θ be a self homeomorphism of \hat{V} homotopic to $j_+^{-1} j_-$. Then
$j_+ \theta j_+^{-1}$ is homotopic to a generator of $\text{Aut}(M(K)/M(K))$, and so the mapping
torus of θ is homotopy equivalent to $M(K)$. Surgery on this mapping torus
gives such a knot K_1.

If a Seifert hypersurface V for a 2-knot has fundamental group Z then the
Mayer-Vietoris sequence for $H_* (M(K); \Lambda)$ gives $H_1 (X_0) \cong\Lambda/(a_+ - a_-)$, where
$a_+ : H_1 (V) \to H_1 (S^2 - V)$. Since $H_1 (X) = Z$ we must have $a_+ - a_- = \pm 1$. If
$a_+ a_- \neq 0$ then V is minimal. However one of a_+ or a_- could be 0, in which
case V may not be minimal. The group Φ is realized by ribbon knots with
such minimal Seifert hypersurfaces (homeomorphic to $S^2 \times S^1 - \text{int}D^3$) [Fo62].
Thus minimality does not imply that π' is finitely generated.

It remains an open question whether every 2-knot has a minimal Seifert hyper-
surface, or indeed whether every 2-knot group is an HNN extension with finitely
presentable base and associated subgroups. (There are high dimensional knot
groups which are not of this type [Si91, 96]). Yoshikawa has shown that there
are ribbon 2-knots whose groups are HNN extensions with base a torus knot
group and associated subgroups Z but which cannot be expressed as HNN
extensions with base a free group [Yo88].

17.5 The spherical cases

Let π be a 2-knot group with commutator subgroup $\pi' \cong P \times (Z/(2r + 1)Z)$,
where $P = 1, Q(8), T_k^r$ or I^r. The meridional automorphism induces the
identity on the set of irreducible real representations of π', except when $P = Q(8)$.
(It permutes the three nontrivial 1-dimensional representations when $\pi' \cong Q(8)$, and similarly when $\pi' \cong Q(8) \times (Z/nZ)$). It then follows as in
Chapter 11 that $L^0_5 (\pi)$ has rank $r + 1, 3(r + 1), 3^{k-1}(5 + 7r)$ or $9(r + 1)$,
respectively. Hence if $\pi' \neq 1$ then there are infinitely many distinct 2-knots
with group π, since the group of self homotopy equivalences of $M(K)$ is finite.

The simplest nontrivial such group is $\pi = (Z/3Z) \times 1 Z$. If K is any 2-
knot with this group then $M(K)$ is homotopy equivalent to $M(\tau_3 Z_1)$. Since
$\text{Wh}(Z/3Z) = 0$ [Hi40] and $L_5(Z/3Z) = 0$ [Ba75] we have $L^0_5 (\pi') \cong L_4 (\pi') \cong Z^2$,
but we do not know whether $\text{Wh}(\pi) = 0$.

Geometry & Topology Monographs, Volume 5 (2002)
Theorem 17.7 Let K be a 2-knot with group $\pi = \pi K$ such that $\pi' \cong \mathbb{Z}/3\mathbb{Z}$, and which has a minimal Seifert hypersurface. Then K is fibred.

Proof Let V be a minimal Seifert hypersurface for K. Then we may assume V is irreducible. Let $\hat{V} = V \cup D^3$ and $W = M(K) \setminus V \times (-1,1)$. Then W is an h-cobordism from \hat{V} to itself (see the remark following Theorem 6). Therefore $W \cong \hat{V} \times I$, by surgery over $\mathbb{Z}/3\mathbb{Z}$. (Note that $Wh(\mathbb{Z}/3\mathbb{Z}) = L_5(\mathbb{Z}/3\mathbb{Z}) = 0$). Hence M fibres over S^1 and so K is fibred also.

Free actions of $\mathbb{Z}/3\mathbb{Z}$ on S^3 are conjugate to the standard orthogonal action, by a result of Rubinstein (see [Th]). If the 3-dimensional Poincaré conjecture is true then the closed fibre must be the lens space $L(3,1)$, and so K must be 7231. None of the other 2-knots with this group could have a minimal Seifert surface, and so we would have (infinitely many) further counter-examples to the most natural 4-dimensional analogue of Farrell’s fibration theorem. We do not know whether any of these knots (other than 7231) is PL in some PL structure on S^4.

Let F be an S^3-group, and let $W = (W; j_\pm)$ be an h-cobordism with homeomorphisms $j_\pm : N \to \partial_\pm W$, where $N = S^3/F$. Then W is an s-cobordism [KS92]. The set of such s-cobordisms from N to itself is a finite abelian group with respect to stacking of cobordisms. All such s-cobordisms are products if F is cyclic, but there are nontrivial examples if $F \cong Q(8) \times (\mathbb{Z}/p\mathbb{Z})$, for any odd prime p [KS95]. If ϕ is a self-homeomorphism of N the closed 4-manifold Z_ϕ obtained by identifying the ends of W via $j_+ \phi j_-^{-1}$ is homotopy equivalent to $M(\phi)$. However if Z_ϕ is a mapping torus of a self-homeomorphism of N then W is trivial. In particular, if ϕ induces a meridianal automorphism of F then $Z_\phi \cong M(K)$ for an exotic 2-knot K with $\pi' \cong F$ and which has a minimal Seifert hypersurface, but which is not fibred with geometric fibre.

17.6 Finite geometric dimension 2

Knot groups with finite 2-dimensional Eilenberg-Mac Lane complexes have deficiency 1, by Theorem 2.8, and so are 2-knot groups. This class includes all classical knot groups, all knot groups with free commutator subgroup and all knot groups in the class \mathcal{X}. (The latter class includes all those as in Theorem 15.1).

Theorem 17.8 Let K be a 2-knot with group π. If π is a 1-knot group or a \mathcal{X}-group then $M(K)$ is determined up to s-cobordism by its homotopy type.
Chapter 17: Knot manifolds and geometries

Proof This is an immediate consequence of Lemma 6.9, if \(\pi \) is a \(\mathcal{X} \)-group. If \(\pi \) is a nontrivial classical knot group it follows from Theorem 17.1, since \(Wh(\pi) = 0 \) [Wd78] and \(L_5(\pi) \cong Z \) [AFR97].

Does the conclusion of this theorem hold for every knot whose group has geometric dimension 2?

Corollary 17.8.1 A ribbon 2-knot \(K \) with group \(\Phi \) is determined by the oriented homotopy type of \(M(K) \).

Proof Since \(\Phi \) is metabelian \(s \)-cobordism implies homeomorphism and there is an unique weight class up to inversion, so the knot exterior is determined by the homotopy type of \(M(K) \), and since \(K \) is a ribbon knot it is \(\text{h} \)-amphicheiral and is determined by its exterior.

Examples 10 and 11 of [Fo62] are ribbon knots with group \(\Phi \), and are mirror images of each other. Although they are \(\text{h} \)-amphicheiral they are not invertible, since their Alexander polynomials are asymmetric. Thus they are not isotopic. Are there any other 2-knots with this group? In particular, is there one which is not a ribbon knot?

Theorem 17.9 A 2-knot \(K \) with group \(\pi \) is \(s \)-concordant to a fibred knot with closed fibre \(\mathcal{g}(S^1 \times S^2) \) if and only if \(\text{def}(\pi) = 1 \) and \(\pi' \) is \(FP_2 \). Moreover any such fibred 2-knot is reflexive and homotopy ribbon.

Proof The conditions are clearly necessary. If they hold then \(\pi' \cong F(r) \), for some \(r \geq 0 \), by Corollary 2.5.1. Then \(M(K) \) is homotopy equivalent to a PL 4-manifold \(N \) which fibres over \(S^1 \) with fibre \(\mathcal{g}(S^1 \times S^2) \), by Corollary 4.5.1. Moreover \(Wh(\pi) = 0 \), by Lemma 6.3, and \(\pi \) is square root closed accessible, so \(I_\pi \) is an isomorphism, by Lemma 6.9, so there is an \(s \)-cobordism \(W \) from \(M \) to \(N \), by Theorem 17.1. We may embed an annulus \(A = S^1 \times [0,1] \) in \(W \) so that \(M \cap A = S^1 \times \{0\} \) is a meridian for \(K \) and \(N \cap A = S^1 \times \{1\} \). Surgery on \(A \) in \(W \) then gives an \(s \)-concordance from \(K \) to such a fibred knot \(K_1 \), which is reflexive [Gl62] and homotopy ribbon [Co83].

The group of isotopy classes of self homeomorphisms of \(\mathcal{g}(S^1 \times S^2) \) which induce the identity in \(Out(F(r)) \) is generated by twists about nonseparating 2-spheres, and is isomorphic to \((Z/2Z)^r \). Thus given a 2-knot group \(\pi \cong F(r) \times_\alpha Z \) there are \(2^r \) corresponding homotopy types of knot manifolds \(M(K) \).
Is every automorphism of π induced by a self-homeomorphism of each such fibred manifold? If so, the knot is determined (among such fibred knots) up to finite ambiguity by its group together with the weight orbit of a meridian. (However, the group $\pi_3 \mathbb{I}$ has infinitely many weight orbits [Su85]).

The theorem implies there is a slice disc Δ for K such that the inclusion of $M(K)$ into $D^5 - \Delta$ is 2-connected. Is K itself homotopy ribbon? (This would follow from “homotopy connectivity implies geometric connectivity”, but our situation is just beyond the range of known results). Is every such group the group of a ribbon knot? Which are the groups of classical fibred knots? If $K = \sigma k$ is the Artin spin of a fibred 1-knot then $M(K)$ fibres over S^1 with fibre $\varphi(S^2 \times S^1)$. However not all such fibred 2-knots arise in this way. (For instance, the Alexander polynomial need not be symmetric [AY81]). There are just three groups G with $G/G' \cong \mathbb{Z}$ and G' free of rank 2, namely $\pi_3 \mathbb{I}$ (the trefoil knot group), $\pi_4 \mathbb{I}$ (the figure eight knot group) and the group with presentation

$$\langle x, y, t \mid txt^{-1} = y, tyt^{-1} = xy \rangle.$$

(Two of the four presentations given in [Rp60] present isomorphic groups). The group with presentation

$$\langle x, y \mid x^2 y^2 x^2 = y \rangle$$

is the group of a fibred knot in the homology 3-sphere $M(2, 3, 11)$, but is not a classical knot group [Rt83].

Part of Theorem 17.9 also follows from an argument of Trace [Tr86]. The embedding of a Seifert hypersurface V for an n-knot K in X extends to an embedding of $\hat{V} = V \cup D^{n+1}$ in M, which lifts to an embedding in M'. Since the image of $[\hat{V}]$ in $H_{n+1}(M; \mathbb{Z})$ is Poincaré dual to a generator of $H^1(M; \mathbb{Z}) = Hom(\pi, \mathbb{Z}) = [M, S^1]$ its image in $H_{n+1}(M'; \mathbb{Z}) \cong \mathbb{Z}$ is a generator. Thus if K is fibred, so M' is homotopy equivalent to the closed fibre \hat{F}, there is a degree 1 map from \hat{V} to \hat{F}, and hence to any factor of \hat{F}. In particular, if \hat{F} has a summand which is aspherical or whose fundamental group is a nontrivial finite group then $\pi_1(V)$ cannot be free. (In particular, K cannot be a ribbon knot). Similarly, as the Gromov norm of a 3-manifold does not increase under degree 1 maps, if \hat{F} is a \mathbb{H}^3-manifold then \hat{V} cannot be a graph manifold [Ru90]. Rubermann observes also that the “Seifert volume” of [BG84] may be used instead to show that if \hat{F} is a \mathbb{SL}-manifold then \hat{V} must have nonzero Seifert volume. (Connected sums of \mathbb{E}^3, \mathbb{S}^3, Nil^3, Sol^3, $\mathbb{S}^2 \times \mathbb{E}^1$ or $\mathbb{H}^2 \times \mathbb{E}^1$-manifolds all have Seifert volume 0 [BG84]).

We conclude this section by showing that π_1-slice fibred 2-knots have groups with free commutator subgroup.
Chapter 17: Knot manifolds and geometries

Theorem 17.10 Let K be a 2-knot with group $\pi = \pi K$. If K is π_1-slice then the homomorphism from $H_3(M';\mathbb{Z}) = H_3(M(K);\Lambda)$ to $H_3(\pi;\mathbb{Z}) = H_3(\pi;\Lambda)$ induced by c_M is trivial. If moreover M' is a PD$_3$-complex and π is torsion free then π' is a free group.

Proof Let Δ and R be chosen as above. Since c_M factors through $D^5 - R$ the first assertion follows from the exact sequence of homology (with coefficients Λ) for the pair $(D^5 - R, M)$. If M' is a PD$_3$-complex with torsion free fundamental group then it is a connected sum of aspherical PD$_3$-complexes with handles $S^2 \times S^1$, by Turaev’s theorem. It is easily seen that if $H_3(c_M;\Lambda) = 0$ there is no aspherical summand, and so π' is free.

We may broaden the question raised earlier to ask whether every π_1-slice 2-knot is a homotopy ribbon knot. (Every homotopy ribbon n-knot with $n > 1$ is clearly π_1-slice).

17.7 Geometric 2-knot manifolds

The 2-knots K for which $M(K)$ is homeomorphic to an infrasolvmanifold are essentially known. There are three other geometries which may be realized by such knot manifolds. All known examples are fibred, and most are derived from twist spins of classical knots. However there are examples (for instance, those with $\pi' \cong Q(8) \times (Z/nZ)$ for some $n > 1$) which cannot be constructed from twist spins. The remaining geometries may be eliminated very easily; only $\mathbb{H}^2 \times \mathbb{E}^2$ and $S^2 \times \mathbb{E}^2$ require a little argument.

Theorem 17.11 Let K be a 2-knot with group $\pi = \pi K$. If $M(K)$ admits a geometry then the geometry is one of \mathbb{E}^4, $Nil^3 \times \mathbb{E}^1$, Sol^4_0, Sol^4, $Sol^4_{m,n}$ (for certain $m \neq n$ only), $S^3 \times \mathbb{E}^1$, $\mathbb{H}^2 \times \mathbb{E}^1$ or $\mathbb{S}L \times \mathbb{E}^1$. All these geometries occur.

Proof The knot manifold $M(K)$ is homeomorphic to an infrasolvmanifold if and only if $h(\sqrt{\pi}) \geq 3$, by Theorem 8.1. It is then determined up to homeomorphism by π. We may then use the observations of §10 of Chapter 8 to show that $M(K)$ admits a geometry of solvable Lie type. By Lemma 16.7 and Theorems 16.12 and 16.14 π must be either $G(+) \text{ or } G(-)$, $\pi(e, \eta)$ for some even b and $e = \pm 1$ or $\pi' \cong Z^3 \text{ or } \Gamma_q$ for some odd q. We may identify the geometry on looking more closely at the meridianal automorphism.

If $\pi \cong G(+) \text{ or } G(-)$ then $M(K)$ admits the geometry \mathbb{E}^4. If $\pi \cong \pi(e, \eta)$ then $M(K)$ is the mapping torus of an involution of a Nil^3-manifold, and so
admits the geometry $Nil^3 \times \mathbb{E}^1$. If $\pi' \cong \mathbb{Z}^3$ then $M(K)$ is homeomorphic to a $Sol^4_{m,n}$- or Sol^4_{m}-manifold. More precisely, we may assume (up to change of orientations) that the Alexander polynomial of K is $X^3 - (m-1)X^2 + mX - 1$ for some integer m. If $m \geq 6$ all the roots of this cubic are positive and the geometry is $Sol^4_{m-1,m}$. If $0 \leq m \leq 5$ two of the roots are complex conjugates and the geometry is Sol^4_{3}. If $m < 0$ two of the roots are negative and π has a subgroup of index 2 which is a discrete cocompact subgroup of $Sol^4_{m',n'}$, where $m' = m^2 - 2m + 2$ and $n' = m^2 - 4m + 1$, so the geometry is $Sol^4_{m',n'}$.

If $\pi' \cong \Gamma_q$ and the image of the meridional automorphism in $Out(\Gamma_q)$ has finite order then $q = 1$ and $K = \tau_6 3_1$ or $(\tau_6 3_1)^* = \tau_{6,5} 3_1$. In this case $M(K)$ admits the geometry $Nil^3 \times \mathbb{E}^1$. Otherwise (if $\pi' \cong \Gamma_q$ and the order of the image of the meridional automorphism in $Out(\Gamma_q)$ is infinite) $M(K)$ admits the geometry Sol^4_{1}.

If K is a branched r-twist spin of the (p,q)-torus knot then $M(K)$ is a $S^3 \times \mathbb{E}^1$-manifold if $p^{-1} + q^{-1} + r^{-1} > 1$, and is a $\tilde{S}L \times \mathbb{E}^1$-manifold if $p^{-1} + q^{-1} + r^{-1} < 1$. (The case $p^{-1} + q^{-1} + r^{-1} = 1$ gives the $Nil^3 \times \mathbb{E}^1$-manifold $M(\tau_3 3_1)$). The manifolds obtained from 2-twist spins of 2-bridge knots and certain other “small” simple knots also have geometry $S^3 \times \mathbb{E}^1$. Branched r-twist spins of simple (nontorus) knots with $r > 2$ give $H^3 \times \mathbb{E}^1$-manifolds, excepting $M(\tau_3 4_1) \cong M(\tau_{3,2} 4_1)$, which is the \mathbb{E}^4-manifold with group $G(\cdot)$.

Every orientable $H^2 \times \mathbb{E}^2$-manifold is double covered by a Kähler surface [Wi86]. Since the unique double cover of a 2-knot manifold $M(K)$ has first Betti number 1 no such manifold can be an $H^2 \times \mathbb{E}^2$-manifold. (If K is fibred we could use Lemma 16.1 instead to exclude this geometry). Since π is infinite and $\chi(M(K)) = 0$ we may exclude the geometries S^4, CP^2 and $S^2 \times S^2$, and H^4, $H^2(C)$, $H^2 \times H^2$ and $S^2 \times H^2$, respectively. The geometry $S^2 \times \mathbb{E}^2$ may be excluded by Theorem 10.10 or Lemma 16.1 (no group with two ends admits a meridional automorphism), while \mathbb{E}^4 is not realized by any closed 4-manifold.

In particular, no knot manifold is a Nil^4-manifold or a $Sol^3 \times \mathbb{E}^1$-manifold, and many of the other $Sol^4_{m,n}$-geometries do not arise in this way. The knot manifolds which are infrasolvmanifolds or have geometry $S^3 \times \mathbb{E}^1$ are essentially known, by Theorems 8.1, 11.1, 15.12 and §4 of Chapter 16. The knot is uniquely determined up to Gluck reconstruction and change of orientations if $\pi' \cong \mathbb{Z}^3$ (see Theorem 17.4 and the subsequent remarks above), Γ_q (see §3 of Chapter 18) or $Q(8) \times (Z/nZ)$ (since the weight class is then unique up to inversion). If it is fibred with closed fibre a lens space it is a 2-twist spin of a 2-bridge
The other knot groups corresponding to infrasolvmanifolds have infinitely many weight orbits.

Corollary 17.11.1 If $M(K)$ admits a geometry then it fibres over S^1.

Proof This is clear if $M(K)$ is an infrasolvmanifold or if the geometry is $S^3 \times E^1$. If the geometry is $H^3 \times E^1$ then $\sqrt{\pi} = \pi \cap \{1\} \times R$, by Proposition 8.27 of [Rg]. Let $\sigma = \pi \cap (Isom(H^3) \times R)$. Then $|\pi : \sigma| \leq 2$. Since $\pi/\pi' \cong Z$ it follows that $\beta_1(\sigma) = 1$ and hence that $\sqrt{\pi}$ maps injectively to $\sigma/I(\sigma) \leq \pi/\pi'$. Hence π has a subgroup of finite index which is isomorphic to $\pi' \times Z$, and so π' is the fundamental group of a closed E^3-manifold. If the geometry is $SL \times E^1$ then π' is the fundamental group of a closed $S\tilde{L}$-manifold, by Theorem 16.2. In each case $M(K)$ fibres over S^1, by Corollary 13.1.1.

If the geometry is $H^3 \times E^1$ is $M(K) \cong M(K_1)$ for some branched twist spin of a simple non-torus knot? (See §3 of Chapter 16).

If $M(K)$ is Seifert fibred must it be geometric? If so it is a $S\tilde{L} \times E^1$, $Nil \times E^1$- or $S^3 \times E^1$-manifold. (See §4 of Chapter 7).

17.8 Complex surfaces and 2-knot manifolds

If a complex surface S is homeomorphic to a 2-knot manifold $M(K)$ then S is minimal, since $\beta_2(S) = 0$, and has Kodaira dimension $\kappa(S) = 1$, 0 or $-\infty$, since $\beta_1(S) = 1$ is odd. If $\kappa(S) = 1$ or 0 then S is elliptic and admits a compatible geometric structure, of type $S\tilde{L} \times E^1$ or $Nil \times E^1$, respectively [Ue90,91, Wi86]. The only complex surfaces with $\kappa(S) = -\infty$, $\beta_1(S) = 1$ and $\beta_2(S) = 0$ are Inoue surfaces, which are not elliptic, but admit compatible geometries of type Sol^3_0, Sol^4_0, and Hopf surfaces [Tl94]. An elliptic surface with Euler characteristic 0 has no exceptional fibres other than multiple tori.

If $M(K)$ has a complex structure compatible with a geometry then the geometry is one of Sol^3_0, Sol^4_0, $Nil^3 \times E^1$, $S^3 \times E^1$ or $S\tilde{L} \times E^1$, by Theorem 4.5 of [Wi86]. Conversely, if $M(K)$ admits one of the first three of these geometries then it is homeomorphic to an Inoue surface of type S_M, an Inoue surface of type $S^3_{N,p.q,r.t}$ or $S^4_{N,p,q,r}$ or an elliptic surface of Kodaira dimension 0, respectively. (See [In74], [EO94] and Chapter V of [BPV]).

Lemma 17.12 Let K be a branched r-twist spin of the (p,q)-torus knot. Then $M(K)$ is homeomorphic to an elliptic surface.
17.8 Complex surfaces and 2-knot manifolds

Proof. We shall adapt the argument of Lemma 1.1 of [Mi75]. (See also [Ne83]). Let \(V_0 = \{(z_1, z_2, z_3) \in \mathbb{C}^3 \setminus \{0\} : z_1^p + z_2^q + z_3^r = 0\} \), and define an action of \(\mathbb{C}^\times \) on \(V_0 \) by \(u.v = (u^pz_1, u^{pq}z_2, u^{qr}z_3) \) for all \(u \) in \(\mathbb{C}^\times \) and \(v = (z_1, z_2, z_3) \) in \(V_0 \). Define functions \(m : V_0 \to R^+ \) and \(n : V_0 \to m^{-1}(1) \) by \(m(v) = (|z_1|^p + |z_2|^q + |z_3|^r)^{1/pqr} \) and \(n(v) = m(v)^{-1}v \) for all \(v \) in \(V_0 \). Then the map \((m, n) : V_0 \to m^{-1}(1) \times R^+ \) is an \(R^+ \)-equivariant homeomorphism, and so \(m^{-1}(1) \) is homeomorphic to \(V_0/R^+ \). Therefore there is a homeomorphism from \(m^{-1}(1) \) to the Brieskorn manifold \(M(p, q, r) \), under which the action of the group of \(r^{th} \) roots of unity on \(m^{-1}(1) = V_0/R^+ \) corresponds to the group of covering homeomorphisms of \(M(p, q, r) \) as the branched cyclic cover of \(S^3 \), branched over the \((p, q)\)-torus knot [Mi75]. The manifold \(M(K) \) is the mapping torus of some generator of this group of self homeomorphisms of \(M(p, q, r) \). Let \(\omega \) be the corresponding primitive \(r^{th} \) root of unity. If \(t > 1 \) then \(t\omega \) generates a subgroup \(\Omega \) of \(\mathbb{C}^\times \) which acts freely and holomorphically on \(V_0 \), and the quotient \(V_0/\Omega \) is an elliptic surface over the curve \(V_0/\Omega \). Moreover \(V_0/\Omega \) is homeomorphic to the mapping torus of the self homeomorphism of \(m^{-1}(1) \) which maps \(v \) to \(m(t\omega.v)^{-1}t\omega.v = \omega m(t.v)^{-1}t.v \). Since this map is isotopic to the map sending \(v \) to \(\omega.v \) this mapping torus is homeomorphic to \(M(K) \). This proves the Lemma.

The Kodaira dimension of the elliptic surface in the above lemma is 1, 0 or \(-\infty\) according as \(p^{-1} + q^{-1} + r^{-1} \) is \(< 1 \), 1 or \(> 1 \). In the next theorem we shall settle the case of elliptic surfaces with \(\kappa = -\infty \).

Theorem 17.13 Let \(K \) be a 2-knot. Then \(M(K) \) is homeomorphic to a Hopf surface if and only if \(K \) or its Gluck reconstruction is a branched \(r^{th} \) twist spin of the \((p, q)\)-torus knot for some \(p, q \) and \(r \) such that \(p^{-1} + q^{-1} + r^{-1} > 1 \).

Proof. If \(K = \tau_s k_{p, q} \) then \(M(K) \) is homeomorphic to an elliptic surface, by Lemma 17.13, and the surface must be a Hopf surface if \(p^{-1} + q^{-1} + r^{-1} > 1 \).

If \(M(K) \) is homeomorphic to a Hopf surface then \(\pi \) has two ends, and there is a monomorphism \(h : \pi = \pi K \to GL(2, \mathbb{C}) \) onto a subgroup which contains a contraction \(c \) (Kodaira - see [Kt75]). Hence \(\pi' \) is finite and \(h(\pi') = h(\pi) \cap SL(2, \mathbb{C}) \), since \(\det(c) \neq 1 \) and \(\pi/\pi' \cong Z \). Finite subgroups of \(SL(2, \mathbb{C}) \) are conjugate to subgroups of \(SU(2) = S^3 \), and so are cyclic, binary dihedral or isomorphic to \(T^*_p \), \(O^*_q \) or \(I^* \). Therefore \(\pi \cong \pi_{(p, q, r)} \), \(\pi_{(p, q, r)} \), \(\pi_{(p, q, r)} \) or \(\pi_{(p, q, r)} \), by Theorem 15.12 and the subsequent remarks. Hopf surfaces with \(\pi \cong Z \) or \(\pi \) nonabelian are determined up to diffeomorphism by their fundamental groups, by Theorem 12 of [Kt75]. Therefore \(M(K) \) is homeomorphic to the manifold of
the corresponding torus knot. If π' is cyclic there is an unique weight orbit. The weight orbits of $\tau_4 3_1$ are realized by $\tau_2 3_{k,4}$ and $\tau_4 3_1$, while the weight orbits of T'_1 are realized by $\tau_2 3_{k,5}$, $\tau_3 3_{k,2}$, $\tau_3 3_1$ and $\tau_3 2 3_1$ [PS87]. Therefore K agrees up to Gluck reconstruction with a branched twist spin of a torus knot.

The Gluck reconstruction of a branched twist spin of a classical knot is another branched twist spin of that knot, by §6 of [Pl84].

Elliptic surfaces with $\beta_1 = 1$ and $\kappa = 0$ are $Nil^3 \times E^1$-manifolds, and so a knot manifold $M(K)$ is homeomorphic to such an elliptic surface if and only if πK is virtually poly-Z and $\zeta \pi K \cong Z^2$. For minimal properly elliptic surfaces (those with $\kappa = 1$) we must settle for a characterization up to s-cobordism.

Theorem 17.14 Let K be a 2-knot with group $\pi = \pi K$. Then $M(K)$ is s-cobordant to a minimal properly elliptic surface if and only if $\zeta \pi \cong Z^2$ and π' is not virtually poly-Z.

Proof If $M(K)$ is a minimal properly elliptic surface then it admits a compatible geometry of type $\widetilde{SL} \times E^1$ and π is isomorphic to a discrete cocompact subgroup of $\text{Isom}_0(\widetilde{SL}) \times R$, the maximal connected subgroup of $\text{Isom}_0(\widetilde{SL} \times E^1)$, for the other components consist of orientation reversing or antiholomorphic isometries (see Theorem 3.3 of [Wl86]). Since π meets $\zeta(\text{Isom}_0(\widetilde{SL}) \times R)) \cong R^2$ in a lattice subgroup $\zeta \pi \cong Z^2$ and projects nontrivially onto the second factor $\pi' = \pi \cap \text{Isom}_0(\widetilde{SL})$ and is the fundamental group of a \widetilde{SL}-manifold. Thus the conditions are necessary.

Suppose that they hold. Then $M(K)$ is s-cobordant to a $\widetilde{SL} \times E^1$-manifold which is the mapping torus $M(\Theta)$ of a self homeomorphism of a \widetilde{SL}-manifold, by Theorem 16.2. As Θ must be orientation preserving and induce the identity on $\zeta \pi' \cong Z$ the group π is contained in $\text{Isom}_0(\widetilde{SL}) \times R$. Hence $M(\Theta)$ has a compatible structure as an elliptic surface, by Theorem 3.3 of [Wl86].

An elliptic surface with Euler characteristic 0 is a Seifert fibred 4-manifold, and so is determined up to diffeomorphism by its fundamental group if the base orbifold is euclidean or hyperbolic [Ue90,91]. Using this result (instead of [Kt75]) together with Theorem 16.6 and Lemma 17.12 it may be shown that if $M(K)$ is homeomorphic to a minimal properly elliptic surface and some power of a weight element is central in πK then $M(K)$ is homeomorphic to $M(K_1)$, where K_1 is some branched twist spin of a torus knot. However in general there may be infinitely many algebraically distinct weight classes in πK and we cannot conclude that K is itself such a branched twist spin.
Chapter 18

Reflexivity

The most familiar invariants of knots are derived from the knot complements, and so it is natural to ask whether every knot is determined by its complement. This has been confirmed for classical knots [GL89]. Given a higher dimensional knot there is at most one other knot (up to change of orientations) with homeomorphic exterior. The first examples of non-reflexive 2-knots were given by Cappell and Shaneson [CS76]; these are fibred with closed fibre R^3/Z^3. Gordon gave a different family of examples [Go76], and Plotnick extended his work to show that no fibred 2-knot with monodromy of odd order is reflexive. It is plausible that this may be so whenever the order is greater than 2, but this is at present unknown.

We shall consider 2-knots which are fibred with closed fibre a geometric 3-manifold. A nontrivial cyclic branched cover of S^3, branched over a knot, admits a geometry if and only if the knot is a prime simple knot. The geometry is then \mathbb{H}^3, S^3, E^3 or Nil^3. We shall show that no branched r-twist spin of such a knot is ever reflexive, if $r > 2$. (Our argument also explains why fibred knots with monodromy of order 2 are reflexive). If the 3-dimensional Poincaré conjecture is true then all fibred 2-knots with monodromy of finite order are branched twist spins, by Plotnick’s theorem (see Chapter 16). The remaining three geometries may be excluded without reference to this conjecture, by Lemma 15.7.

This chapter is based on joint work with Plotnick and Wilson (in [HP88] and [HW89], respectively).

18.1 Reflexivity for fibred 2-knots

Let N be a closed oriented 3-manifold and θ an orientation preserving self diffeomorphism of N which fixes a basepoint P and induces a meridional automorphism of $\nu = \pi_1(N)$. Let

$$M = M(\theta) = N \times_\theta S^1 = N \times [0,1]/((n,0) \sim (\theta(n),1)),$$

and let t be the weight element of $\pi = \pi_1(M) = \nu \times_{\theta_*} Z$ represented by the loop sending $[u] = e^{2\pi i u}$ to $[* , u]$ in the mapping torus, for all $0 \leq u \leq 1$. The image
$C = \{ P \} \times S^1$ of this loop is the canonical cross-section of the mapping torus. Let N be the universal covering space of N, and let θ be the lift of θ which fixes some chosen basepoint. Let $\tilde{M} = \tilde{N} \times_\theta S^1$ be the (irregular) covering space corresponding to the subgroup of π generated by t. This covering space shall serve as a natural model for a regular neighbourhood of C in our geometric arguments below.

Choose an embedding $J : D^3 \times S^1 \to M$ onto a regular neighbourhood R of C. Let $M_o = M - \text{int}R$ and let $j = J|_{\partial D^3 \times S^1}$. Then $\Sigma = M_o \cup_j S^2 \times D^2$ and $\Sigma_r = M_o \cup_r S^2 \times D^2$ are homotopy 4-spheres and the images of $S^2 \times \{0\}$ represent 2-knots K and K^* with group π.

If K is reflexive there is a homeomorphism f of $X = X(K)$ which (up to changes of orientations) restricts to the nontrivial twist τ on $\partial X \cong S^2 \times S^1$. (See §1 of Chapter 14). This extends to a homeomorphism of (M, C) via the “radial” extension of τ to $D^3 \times S^1$. If f preserves the homology class of the meridians (i.e., if it induces the identity on π/π') then we may assume this extension fixes C pointwise. Now $\partial X \cong S^2 \times_A S^1$, where A is the restriction of the monodromy to $\partial(N - \text{int}D^3) \cong S^2$. Roughly speaking, the local situation - the behaviour of f and A on $D^3 \times S^1$ - determines the global situation. Assume that f is a fibre preserving self homeomorphism of $D^3 \times_A S^1$ which induces a linear map B on each fibre D^3. If A has infinite order, the question as to when f “changes the framing”, i.e., induces τ on $\partial D^3 \times_A S^1$ is delicate. (See §2 and §3 below). But if A has finite order we have the following easy result.

Lemma 18.1 Let A in $SO(3)$ be a rotation of order $r \geq 2$ and let B in $O(3)$ be such that $BAB^{-1} = A^{\pm 1}$, so that B induces a diffeomorphism f_B of $D^3 \times_A S^1$. If f_B changes the framing then $r = 2$.

Proof We may choose coordinates for R^3 so that $A = \rho_{s/r}$, where ρ_u is the matrix of rotation through $2\pi u$ radians about the z-axis in R^3, and $0 < s < r$. Let $\rho : D^3 \times_A S^1 \to D^3 \times S^1$ be the diffeomorphism given by $\rho([x, u]) = ([\rho_{s/u}, \theta]),$ for all $x \in D^3$ and $0 \leq u \leq 1$.

If $BA = AB$ then $f_B([x, u]) = [Bx, u]$ and $\rho f_B \rho^{-1}(x, u) = ([\rho_{s/u} \rho \rho_{s/u}], x, u)$. If $r \geq 3$ then $B = \rho_v$ for some v, and so $\rho f_B \rho^{-1}(x, u) = (Bx, u)$ does not change the framing. But if $r = 2$ then $A = \text{diag}[1, -1, 1]$ and there is more choice for B. In particular, $B = \text{diag}[1, -1, 1]$ acts dihedrally: $\rho_{-u} B \rho_{u} = \rho_{-2u} B$, and so $\rho_{-u} f_B \rho u(x, u) = (\rho_{-u} x, u)$, i.e. $\rho_{-u} f_B \rho u$ is the twist τ.

If $BAB^{-1} = B^{-1}$ then $f_B([x, u]) = [Bx, 1 - u]$. In this case $\rho f_B \rho^{-1}(x, u) = ([\rho_{s(1 - u)} \rho \rho_{s(1 - u)}], x, 1 - u)$. If $r \geq 3$ then B must act as a reflection in the
first two coordinates, so \(\rho_B \rho^{-1}(x,u) = (\rho_{-s/r} Bx, 1 - u) \) does not change the framing. But if \(r = 2 \) we may take \(B = I \), and then \(\rho_B \rho^{-1}(x,u) = (\rho_{(u-1)/2} \rho_{u/2} x, 1 - u) = (\rho_{(u-1/2)} x, 1 - u) \), which after reversing the \(S^1 \) factor is just \(\tau \).

Note this explains why \(r = 2 \) is special. If \(\alpha^2 = id \) the diffeomorphism of \(N \times_\alpha S^1 \) sending \([x,\theta]\) to \([x,1-\theta]\) which “turns the bundle upside down” also changes the framing. This explains why 2-twist spins (in any dimension) are reflexive.

Lemma 18.2 Let \(\tau \) be the nontrivial twist map of \(S^3 \times S^1 \). Then \(\tau \) is not homotopic to the identity.

Proof Let \(p \) be the projection of \(S^3 \times S^1 \) onto \(S^3 \). The suspension of \(p \), restricted to the top cell of \(\Sigma(S^3 \times S^1) = S^2 \vee S^4 \vee S^5 \) is the nontrivial element of \(\pi_5(S^3) \), whereas the corresponding restriction of the suspension of \(p \) is trivial. (See [CS76], [Go76]).

The hypotheses in the next lemma seem very stringent, but are satisfied by most aspherical geometric 3-manifolds.

Lemma 18.3 Suppose that \(\tilde{N} \cong \mathbb{R}^3 \) and that every automorphism of \(\nu \) which commutes with \(\theta_* \) is induced by a diffeomorphism of \(N \) which commutes with \(\theta \). Suppose also that for any homeomorphism \(\omega \) of \(N \) which commutes with \(\theta \) there is an isotopy \(\gamma \) from \(id_{\tilde{N}} \) to \(\tilde{\theta} \) which commutes with the lift \(\tilde{\omega} \). Then no orientation preserving self homeomorphism of \(M \) which fixes \(C \) pointwise changes the framing.

Proof Let \(h \) be an orientation preserving self homeomorphism of \(M \) which fixes \(C \) pointwise. Suppose that \(h \) changes the framing. We may assume that \(h|_R \) is a bundle automorphism and hence that it agrees with the radial extension of \(\tau \) from \(\partial R = S^2 \times S^1 \) to \(R \). Since \(h_* (t) = t \) we have \(h_* \theta_* = \theta_* h_* \). Let \(\omega \) be a basepoint preserving self diffeomorphism of \(N \) which induces \(h_* \) and commutes with \(\theta \). Then we may define a self diffeomorphism \(h_\omega \) of \(M \) by \(h_\omega ([n,s]) = [\omega(n),s] \) for all \([n,s]\) in \(M = \tilde{N} \times_{\theta} S^1 \).

Since \(h_\omega = h_* \) and \(M \) is aspherical, \(h \) and \(h_\omega \) are homotopic. Therefore the lifts \(\tilde{h} \) and \(\tilde{h}_\omega \) to basepoint preserving maps of \(\tilde{M} \) are properly homotopic. Let \(\tilde{\omega} \) be the lift of \(\omega \) to a basepoint preserving map of \(\tilde{N} \). Note that \(\tilde{\omega} \) is orientation preserving, and so is isotopic to \(id_{\tilde{N}} \).

Geometry & Topology Monographs, Volume 5 (2002)
Chapter 18: Reflexivity

Given an isotopy γ from $\gamma(0) = id_N$ to $\gamma(1) = \tilde{\theta}$ we may define a diffeomorphism $\rho_\gamma : \tilde{N} \times S^1 \to \tilde{M}$ by $\rho_\gamma(x, t) = [\gamma(t)(x), t]$. Now $\rho_\gamma^{-1} h_t \rho_\gamma(l, [u]) = (\gamma(u)^{-1}\tilde{\omega}\gamma(u)(l), [u])$. Thus if $\gamma(t)\tilde{\omega} = \tilde{\omega}\gamma(t)$ for all t then $\rho_\gamma^{-1} h_t \rho_\gamma = \tilde{\omega} \times id_{S^1}$, and so \tilde{h} is properly homotopic to id_{S^1}.

Since the radial extension of τ and $\rho_\gamma^{-1} h_t \rho_\gamma$ agree on $D^3 \times S^1$ they are properly homotopic on $R^3 \times S^1$ and so τ is properly homotopic to the identity. Now τ extends uniquely to a self diffeomorphism τ of $S^3 \times S^1$, and any such proper homotopy extends to a homotopy from τ to the identity. But this is impossible, by Lemma 18.2. Therefore h cannot change the framing.

Note that in general there is no isotopy from id_N to θ.

We may use a similar argument to give a sufficient condition for knots constructed from mapping tori to be -amphicheiral. As we shall not use this result below we shall only sketch a proof.

Lemma 18.4 Let N be a closed orientable 3-manifold with universal cover $\tilde{N} \cong R^3$. Suppose now that there is an orientation reversing self diffeomorphism $\psi : N \to N$ which commutes with θ and which fixes P. If there is a path γ from I to $\Theta = D\theta(P)$ which commutes with $\Psi = D\psi(P)$ then each of K and K^\ast is -amphicheiral.

Proof The map ψ induces an orientation reversing self diffeomorphism of M which fixes C pointwise. We may use such a path γ to define a diffeomorphism $\rho_\gamma : \tilde{N} \times S^1 \to \tilde{M}$. We may then verify that $\rho_\gamma^{-1} h_t \rho_\gamma$ is isotopic to $\Psi \times id_{S^1}$, and so $\rho_\gamma^{-1} h_t \rho_\gamma|_{D^3 \times S^1}$ extends across $S^2 \times D^2$.

18.2 Cappell-Shaneson knots

Let $A \in SL(3, \mathbb{Z})$ be such that $det(A - I) = \pm 1$. Then A determines an orientation preserving self homeomorphism of R^3/\mathbb{Z}, and the mapping torus $M = (R^3/\mathbb{Z}) \times_A S^1$ is a 2-knot manifold. All such knots are -amphicheiral, since inversion in each fibre gives an involution of $M(K)$ fixing a circle, which readily passes to orientation reversing fixed point free involutions of (Σ, K) and (Σ^*, K^*). However such knots are not invertible, for the Alexander polynomial is $det(XI - A)$, which has odd degree and does not vanish at ± 1, and so cannot be symmetric.

Cappell and Shaneson showed that if none of the eigenvalues of the monodromy of such a knot are negative then it is not reflexive. In a footnote they observed
that the two knots obtained from a matrix A in $SL(3,\mathbb{Z})$ such that $\det(A - I) = \pm 1$ and with negative eigenvalues are equivalent if and only if there is a matrix B in $GL(3,\mathbb{Z})$ such that $AB = BA$ and the restriction of B to the negative eigenspace of A has negative determinant. We shall translate this matrix criterion into one involving algebraic numbers and settle the issue by showing that up to change of orientations there is just one reflexive Cappell-Shaneson 2-knot.

We note first that on replacing A by A^{-1} if necessary (which corresponds to changing the orientation of the knot) we may assume that $\det(A - I) = +1$.

Theorem 18.5 Let $A \in SL(3,\mathbb{Z})$ satisfy $\det(A - I) = 1$. If A has trace -1 then the corresponding Cappell-Shaneson knot is reflexive, and is determined up to change of orientations among all 2-knots with metabelian group by its Alexander polynomial $X^3 + X^2 - 2X - 1$. If the trace of A is not -1 then the corresponding Cappell-Shaneson knots are not reflexive.

Proof Let a be the trace of A. Then the characteristic polynomial of A is $f_a(X) = X^3 - aX^2 + (a - 1)X - 1 = X(X - 1)(X - a + 1) - 1$. It is easy to see that f_a is irreducible; indeed, it is irreducible modulo (2). Since the leading coefficient of f_a is positive and $f_a(1) < 0$ there is at least one positive eigenvalue. If $a > 5$ all three eigenvalues are positive (since $f_a(0) = -1, f_a(\frac{1}{2}) = (2a - 11)/8 > 0$ and $f_a(1) = -1$). If $0 \leq a \leq 5$ there is a pair of complex eigenvalues.

Thus if $a \geq 0$ there are no negative eigenvalues, and so $\gamma(t) = t A + (1 - t)I$ (for $0 \leq t \leq 1$) defines an isotopy from I to A in $GL(3,\mathbb{R})$. Let h be a self homeomorphism of (M, C) such that $h(*) = *$. We may assume that h is orientation preserving and that $h_\ast(t) = t$. Since M is aspherical h is homotopic to a map h_B, where $B \in SL(3,\mathbb{Z})$ commutes with A. Hence K is not reflexive, by Lemma 18.3.

We may assume henceforth that $a < 0$. There are then three real roots λ_i, for $1 \leq i \leq 3$, such that $a - 1 < \lambda_3 < a < \lambda_2 < 0 < 1 < \lambda_1 < 2$. Note that the products $\lambda_i(\lambda_i - 1)$ are all positive, for $1 \leq i \leq 3$.

Since the eigenvalues of A are real and distinct there is a matrix P in $GL(3,\mathbb{R})$ such that $\tilde{A} = PAP^{-1}$ is the diagonal matrix $\text{diag}[\lambda_1, \lambda_2, \lambda_3]$. If B in $GL(3,\mathbb{Z})$ commutes with A then $\tilde{B} = PBP^{-1}$ commutes with \tilde{A} and hence is also diagonal (as the λ_i are distinct). Suppose that $\tilde{B} = \text{diag} [\beta_1, \beta_2, \beta_3]$. We may isotope PAP^{-1} linearly to $\text{diag}[1, -1, -1]$. If $\beta_2\beta_3 > 0$ for all such B then PBP^{-1} is isotopic to I through block diagonal matrices and we may again
conclude that the knot is not reflexive. On the other hand if there is such a B with $\beta_2 \beta_3 < 0$ then the knot is reflexive. On replacing B by $-B$ if necessary we may assume that $\det(B) = +1$ and the criterion for reflexivity then becomes $\beta_1 < 0$.

If $a = -1$ the ring $\mathbb{Z}[X]/(f_1(X))$ is integrally closed. (For the discriminant D of the integral closure \hat{R} of $R = \mathbb{Z}[X]/(f_1(X))$ divides 49, the discriminant of $f_1(X)$, and $49/D = [\hat{R} : R]^2$. As the discriminant must be greater than 1, by a classical result of Minkowski, this index must be 1). As this ring has class number 1 (see the tables of [AR84]) it is a PID. Hence any two matrices in $\text{SL}(3, \mathbb{Z})$ with this characteristic polynomial are conjugate, by Theorem 1.4. Therefore the knot group is unique and determines K up to Gluck reconstruction and change of orientations, by Theorem 17.5. Since $B = -A - I$ has determinant 1 and $\beta_1 = -\lambda_1 - 1 < 0$, the corresponding knot is reflexive.

Suppose now that $a < -1$. Let F be the field $\mathbb{Q}[X]/(f_a(X))$ and let λ be the image of X in F. We may view \mathbb{Q}^3 as a $\mathbb{Q}[X]$-module and hence as a 1-dimensional F-vector space via the action of A. If B commutes with A then it induces an automorphism of this vector space which preserves a lattice and so determines a unit $u(B)$ in O_F, the ring of integers in F. Moreover $\det(B) = N_{F/\mathbb{Q}} u(B)$. If σ is the embedding of F in R which sends λ to λ_1 and P and B are as above we must have $\sigma(u(B)) = \beta_1$.

Let $U = O_F^\times$ be the group of all units in O_F, and let U^ν, U^σ, U^+ and U^2 be the subgroups of units of norm 1, units whose image under σ is positive, totally positive units and squares, respectively. Then $U \cong \mathbb{Z}^2 \times \{\pm 1\}$, since F is a totally real cubic number field, and so $[U : U^2] = 8$. The unit -1 has norm -1, and λ is a unit of norm 1 in U^σ which is not totally positive. Hence $[U : U^\nu] = [U^\nu \cap U^\sigma : U^+] = 2$. It is now easy to see that there is a unit of norm 1 that is not in U^ν (i.e., $U^\nu \neq U^\nu \cap U^\sigma$) if and only if every totally positive unit is a square (i.e., $U^+ = U^2$).

The image of $X(X - 1)$ in F is $\lambda(\lambda - 1)$, which is totally positive and is a unit (since $X(X - 1)(X - a + 1) = 1 + f_a(X)$). Suppose that it is a square in F. Then $\phi = \lambda - (a - 1)$ is a square (since $\lambda(\lambda - 1)(\lambda - (a - 1)) = 1$). The minimal polynomial of ϕ is $q(Y) = Y^3 + (2a - 3)Y^2 + (a^2 - 3a + 2)Y - 1$. If $\phi = \psi^2$ for some ψ in F then ψ is a root of $h(Z) = g(Z^2)$ and so the minimal polynomial of ψ divides h. This polynomial has degree 3 also, since $Q(\psi) = F$, and so $h(Z) = p(Z)q(Z)$ for some polynomials $p(Z) = Z^3 + rZ^2 + sZ + 1$ and $q(Z) = Z^3 + r'Z^2 + s'Z - 1$ with integer coefficients. Since the coefficients of Z and Z^5 in h are 0 we must have $r' = -r$ and $s' = -s$. Comparing the coefficients of Z^2 and Z^4 then gives the equations $2s - r^2 = 2a - 3$ and
The other fibred 2-knots with closed fibre a flat 3-manifold have group \(G(+) \) or \(G(-) \). We shall show below that one of these (\(\tau_34_1 \)) is not reflexive. The question remains open for the other knots with these groups.

18.3 \(\text{Nil}^3 \)-fibred knots

The group \(\text{Nil} = \text{Nil}^3 \) is a subgroup of \(SL(3, \mathbb{R}) \) and is diffeomorphic to \(R^3 \), with multiplication given by \([r, s, t][r', s', t'] = [r + r', s + s', rs' + t + t']\). (See Chapter 7). The kernel of the natural homomorphism from \(\text{Aut}_{\text{Lie}}(\text{Nil}) \) to \(\text{Aut}_{\text{Lie}}(R^2) = GL(2, \mathbb{R}) \) induced by abelianization (\(\text{Nil}/\text{Nil}' \cong R^2 \)) is isomorphic to \(\text{Hom}_{\text{Lie}}(\text{Nil}, \mathbb{R}^2) \cong R^2 \). The set underlying the group \(\text{Aut}_{\text{Lie}}(\text{Nil}) \) is the cartesian product \(GL(2, \mathbb{R}) \times R^2 \), with \((A, \mu) = ((a,b,c,d), (m_1, m_2))\) acting via \((A, \mu)([r, s, t]) = [ar + cs, br + ds, m_1 r + m_2 s + (ad - bc)t + bcrs + ab(r^2 2) + cd(s^2 2)]\).

The Jacobian of such an automorphism is \((ad - bc)^2\), and so it is orientation preserving. Let \((B, \nu) = ((g, h), (n_1, n_2))\) be another automorphism, and let \(\eta(A, B) = (ab(g(1 - g) + cdh(1 - h) - 2bgh, abj(1 - j) + cdh(1 - h) - 2bghj))\).

Then \((A, \mu) \circ (B, \nu) = (AB, \mu B + det(A)\nu + \frac{1}{2}\eta(A, B))\). In particular, \(\text{Aut}_{\text{Lie}}(\text{Nil})\) is not a semidirect product of \(GL(2, \mathbb{R})\) with \(R^2\). For each \(q > 0\) in \(Z\) the stabilizer of \(\Gamma_q\) in \(\text{Aut}_{\text{Lie}}(\text{Nil})\) is the subgroup \(GL(2, \mathbb{Z}) \times (q^{-1}Z^2)\), and this is easily verified to be \(Aut(\Gamma_q)\). (See \S7 of Chapter 8). Thus every automorphism of \(\Gamma_q\) extends to an automorphism of \(\text{Nil}\). (This is a special case of a theorem of Malcev on embeddings of torsion free nilpotent groups in 1-connected nilpotent Lie groups - see [Rg]).

Let the identity element \([0, 0, 0]\) and its images in \(N_q = \text{Nil}/\Gamma_q\) be the basepoints for \(\text{Nil}\) and for these coset spaces. The extension of each automorphism of \(\Gamma_q\) to \(\text{Nil}\) induces a basepoint and orientation preserving self homeomorphism of \(N_q\).

If \(K\) is a 2-knot with group \(\pi = \pi K\) and \(\pi' \cong \Gamma_q\) then \(M = M(K)\) is homeomorphic to the mapping torus of such a self homeomorphism of \(N_q\). (In fact,
such mapping tori are determined up to diffeomorphism by their fundamental groups). Up to conjugacy and involution there are just three classes of meridional automorphisms of Γ_1 and one of Γ_q, for each odd $q > 1$. (See Theorem 16.13). Since $\pi'' \leq \zeta \pi'$ it is easily seen that π has just two strict weight orbits. Hence K is determined up to Gluck reconstruction and changes of orientation by π alone, by Theorem 17.5. (Instead of appealing to 4-dimensional surgery to realize automorphisms of π by basepoint and orientation preserving self homeomorphisms of M we may use the S^1-action on N_q to construct such a self homeomorphism which in addition preserves the fibration over S^1).

We shall show that the knots with $\pi' \cong \Gamma_1$ and whose characteristic polynomials are $X^2 - X + 1$ and $X^2 - 3X + 1$ are not reflexive, while for all other groups the corresponding knots are reflexive.

The polynomial $X^2 - X + 1$ is realized by τ_63_1 and its Gluck reconstruction. Since the trefoil knot 3_1 is strongly invertible τ_63_1 is strongly +amphicheiral [Li85]. The involution of $X(\tau_63_1)$ extends to an involution of $M(\tau_63_1)$ which fixes the canonical section C pointwise and does not change the framing of the normal bundle, and hence $(\tau_63_1)^*$ is also +amphicheiral. (We shall see below that these knots are distinct).

Lemma 18.6 Let K be a fibred 2-knot with closed fibre N_1 and Alexander polynomial $X^2 - 3X + 1$. Then K is +amphicheiral.

Proof Let $\Theta = (A, (0,0))$ be the automorphism of Γ_1 with $A = (1 \frac{1}{2})$. Then Θ induces a basepoint and orientation preserving self diffeomorphism θ of N_1. Let $M = N_1 \times_\theta S^1$ and let C be the canonical section. A basepoint and orientation preserving self diffeomorphism ψ of N_1 such that $\psi\theta\psi^{-1} = \theta^{-1}$ induces a self diffeomorphism of M which reverses the orientations of M and C. If moreover it does not twist the normal bundle of C then each of the 2-knots K and K^* obtained by surgery on C is +amphicheiral. We may check the normal bundle condition by using an isotopy from Θ to id_{Nil} to identify M with $Nil \times S^1$.

Thus we seek an automorphism $\Psi = (B, \mu)$ of Γ_1 such that $\Psi\Theta_i\Psi^{-1} = \Theta_i^{-1}$, or equivalently $\Theta_i\Psi\Theta_i = \Psi$, for some isotopy Θ_i from $\Theta_0 = id_{Nil}$ to $\Theta_1 = \Theta$.

Let $P = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$. Then $PAP^{-1} = A^{-1}$, or $APA = P$. It may be checked that the equation $\Theta(P, \mu)\Theta = (P, \mu)$ reduces to a linear equation for μ with unique solution $\mu = -(2, 3)$. Let $\Psi = (P, -(2, 3))$ and let h be the induced diffeomorphism of M.

Geometry & Topology Monographs, Volume 5 (2002)
As the eigenvalues of A are both positive it lies on a 1-parameter subgroup, determined by $L = \ln(A) = m \left(\frac{1}{2}, -\frac{3}{2} \right)$, where $m = (\ln((3 + \sqrt{13})/2))/\sqrt{13}$. Now $PLP^{-1} = -L$ and so $P \exp(tL)P^{-1} = \exp(-tL) = (\exp(tL)^{-1}$, for all t. We seek an isotopy $\Theta_t = (\exp(tL), v_t)$ from id_{Nil} to Θ such that $\Theta_t \Psi \Theta_t = \Psi$ for all t. It is easily seen that this imposes a linear condition on v_t which has an unique solution, and moreover $v_0 = v_1 = (0, 0).

Now $\rho^{-1} h \rho(x, u) = (\Theta_{1-u} \Psi \Theta_u(x), 1 - u) = (\Psi \Theta_{1-u} \Theta_u, 1 - u)$. Since $\exp((1 - u)L) \exp(uL) = \exp(L)$ the loop $u \mapsto \Theta_{1-u} \Theta_u$ is freely contractible in the group $\text{Aut}_{\text{Lie}}(Nil)$. It follows easily that h does not change the framing of C. \hfill \Box

Instead of using the one-parameter subgroup determined by $L = \ln(A)$ we may use the polynomial isotopy given by $A_t = \left(\frac{1}{t}, \frac{t}{1+t^2} \right)$, for $0 \leq t \leq 1$. A similar argument could be used for the polynomial $X^2 - X + 1$.

On the other hand, the polynomial $X^2 + X - 1$ is not symmetric and so the corresponding knots are not +amphicheiral. Since every automorphism of Γ_q is orientation preserving no such knot is -amphicheiral or invertible.

Theorem 18.7 Let K be a fibred 2-knot with closed fibre N_q.

1. If the fibre is N_1 and the monodromy has characteristic polynomial $X^2 - X + 1$ or $X^2 - 3X + 1$ then K is not reflexive;
2. If the fibre is N_q (q odd) and the monodromy has characteristic polynomial $X^2 \pm X - 1$ then K is reflexive.

Proof As τ_63_1 is shown to be not reflexive in §4 below, we shall concentrate on the knots with polynomial $X^2 - 3X + 1$, and then comment on how our argument may be modified to handle the other cases.

Let Θ, θ and $M = N_1 \times_\theta S^1$ be as in Lemma 18.6, and let $\widehat{M} = Nil \times_\Theta S^1$ be as in §1. We shall take $[0, 0, 0, 0]$ as the basepoint of \widehat{M} and its image in M as the basepoint there.

Suppose that $\Omega = (B, \nu)$ is an automorphism of Γ_1 which commutes with Θ. Since the eigenvalues of A are both positive the matrix $A(u) = uA + (1 - u)I$ is invertible and $A(u)B = BA(u)$, for all $0 \leq u \leq 1$. We seek a path of the form $\gamma(u) = (A(u), \mu(u))$ with commutes with Ω. On equating the second elements of the ordered pairs $\gamma(u)\Omega$ and $\Omega\gamma(u)$ we find that $\mu(u)(B - det(B)I)$ is uniquely determined. If $det(B)$ is an eigenvalue of B then there is a corresponding eigenvector ξ in Z^2. Then $BA \xi = AB \xi = det(B)A \xi$, so $A \xi$ is also an eigenvector of B. Since the eigenvalues of A are irrational we must
have \(B = \text{det}(B)I \) and so \(B = I \). But then \(\Omega \Theta = (A, \nu A) \) and \(\Theta \Omega = (A, \nu) \), so \(\nu(A - I) = 0 \) and hence \(\nu = 0 \). Therefore \(\Omega = \text{id}_{Nil} \) and there is no difficulty in finding such a path. Thus we may assume that \(B - \text{det}(B)I \) is invertible, and then \(\mu(u) \) is uniquely determined. Moreover, by the uniqueness, when \(A(u) = A \) or \(I \) we must have \(\mu(u) = (0,0) \). Thus \(\gamma \) is an isotopy from \(\gamma(0) = \text{id}_{Nil} \) to \(\gamma(1) = \Theta \) (through diffeomorphisms of \(Nil \)) and so determines a diffeomorphism \(\rho_{\gamma} \) from \(R^3 \times S^1 \) to \(\tilde{M} \) via \(\rho_{\gamma}(r,s,t,u) = [\gamma(u)([r,s,t],u)] \).

A homeomorphism \(f \) from \(\Sigma \) to \(\Sigma_{\tau} \) carrying \(K \) to \(K_{\tau} \) (as unoriented submanifolds) extends to a self-homeomorphism \(h \) of \(M \) which leaves \(C \) invariant, but changes the framing. We may assume that \(h \) preserves the orientations of \(M \) and \(C \), by Lemma 18.6. But then \(h \) must preserve the framing, by Lemma 18.3. Hence there is no such homeomorphism and such knots are not reflexive.

If \(\pi \cong \pi_{\tau} \cong 3_1 \) then we may assume that the meridional automorphism is \(\Theta = ((1\ 0\ -1), (0,0)) \). As an automorphism of \(Nil \), \(\Theta \) fixes the centre pointwise, and it has order 6. Moreover \(((1\ 0\ 1), (0,0)) \) is an involution of \(Nil \) which conjugates \(\Theta \) to its inverse, and so \(M \) admits an orientation reversing involution. It can easily be seen that any automorphism of \(\Gamma_1 \) which commutes with \(\Theta \) is a power of \(\Theta \), and the rest of the argument is similar.

If the monodromy has characteristic polynomial \(X^2 \pm X - 1 \) we may assume that the meridional automorphism is \(\Theta = (D, (0,0)) \), where \(D = (1\ 0\ 0) \) or its inverse. As \(\Omega = (-I, (-1,1)) \) commutes with \(\Theta \) (in either case) it determines a self-homeomorphism \(h_{\omega} \) of \(M = N_{\theta} \times_{\theta} S^1 \) which leaves the meridinal circle \(\{0\} \times S^1 \) pointwise fixed. The action of \(h_{\omega} \) on the normal bundle may be detected by the induced action on \(\tilde{M} \). In each case there is an isotopy from \(\Theta \) to \(\Upsilon = (1\ 0\ 0) \) which commutes with \(\Omega \), and so we may replace \(M \) by the mapping torus \(Nil \times_{\Upsilon} S^1 \). (Note also that \(\Upsilon \) and \(\Omega \) act linearly under the standard identification of \(Nil \) with \(R^3 \).

Let \(R(u) \in SO(2) \) be rotation through \(\pi u \) radians, and let \(v(u) = (0,u) \), for \(0 \leq u \leq 1 \). Then \(\gamma(u) = \left(\begin{array}{cc} 1 & v(u) \\ 0 & R(u) \end{array} \right) \) defines a path \(\gamma \) in \(SL(3,\mathbb{R}) \) from \(\gamma(0) = \text{id}_{Nil} \) to \(\gamma(1) = \Upsilon \) which we may use to identify the mapping torus of \(\Upsilon \) with \(R^3 \times S^1 \). In the “new coordinates” \(h_{\omega} \) acts by sending \((r,s,t,e^{2\pi i u}) \) to \((\gamma(u)^{-1}\Omega\gamma(u)(r,s,t),e^{2\pi i u}) \). The loop sending \(e^{2\pi i u} \in S^1 \) to \(\gamma(u)^{-1}\Omega\gamma(u) \) in \(SL(3,\mathbb{R}) \) is freely homotopic to the loop \(\gamma_1(u)^{-1}\Omega_1\gamma_1(u) \), where \(\gamma_1(u) = \left(\begin{array}{cc} 1 & 0 \\ 0 & R(u) \end{array} \right) \) and \(\Omega_1 = \text{diag}[1,-1,1] \). These loops are essential in \(SL(3,\mathbb{R}) \), since on multiplying the latter matrix product on the left by \(\text{diag}[-1,1,-1] \) we obtain \(\left(\begin{array}{cc} 1 & 0 \\ 0 & R(2u) \end{array} \right) \). Thus \(h_{\omega} \) induces the twist \(\tau \) on the normal bundle of the meridian, and so the knot is equivalent to its Gluck reconstruction. \(\square \)
The other fibred 2-knots with closed fibre a Nil^3-manifold have group $\pi(b, \epsilon)$, for some even b and $\epsilon = \pm 1$. The 2-twist spins of Montesinos knots are reflexive (by Lemma 18.1). Are the other knots with these groups also reflexive?

It has been shown that for many of the Cappell-Shaneson knots at least one of the (possibly two) corresponding smooth homotopy 4-spheres is the standard S^4 [AR84]. Can a similar study be made in the Nil cases?

18.4 Other geometrically fibred knots

We shall assume henceforth throughout this section that k is a prime simple 1-knot, i.e., that k is either a torus knot or a hyperbolic knot.

Lemma 18.8 Let A and B be automorphisms of a group π such that $AB = BA$, $A(h) = h$ for all h in $\zeta \pi$ and the images of A^i and B in $\text{Aut}(\pi/\zeta \pi)$ are equal. Let $[A]$ denote the induced automorphism of π/π'. If $I - [A]$ is invertible in $\text{End}(\pi/\pi')$ then $B = A^i$ in $\text{Aut}(\pi)$.

Proof There is a homomorphism $\epsilon : \pi \to \zeta \pi$ such that $BA^{-1}(x) = x\epsilon(x)$ for all x in π. Moreover $\epsilon A = \epsilon$, since $BA = AB$. Equivalently, $[\epsilon](I - [A]) = 0$, where $[\epsilon] : \pi/\pi' \to \zeta \pi$ is induced by ϵ. If $I - [A]$ is invertible in $\text{End}(\pi/\pi')$ then $[\epsilon] = 0$ and so $B = A^i$.

Let $p = ap'$, $q = bq'$ and $r = p'q'c$, where $(a, qc) = (b, pc) = 1$. Let A denote both the canonical generator of the Z/rZ action on $M(p, q, r) = \{(u, v, w) \in \mathbb{C}^3 \mid u^p + v^q + w^r = 0\} \cap S^5$ given by $A(u, v, w) = (u, v, e^{2\pi i/r}w)$ and its effect on $\pi_1(M(p, q, r))$. Then the image of the Seifert fibration of $M(p, q, r)$ under the projection to the orbit space $M(p, q, r)/\langle A \rangle \cong S^3$ is the Seifert fibration of S^3 with one fibre of multiplicity p and one of multiplicity q. The quotient of $M(p, q, r)$ by the subgroup generated by $A^{p'q'}$ may be identified with $M(p, q, p'q')$. (Note that $S^2(p, q, r) \cong S^2(p, q, p'q')$). Sitting above the fibre in S^3 of multiplicity p in both M’s we find q' fibres of multiplicity a, and above the fibre of multiplicity q we find p' fibres of multiplicity b. But above the branch set, a principal fibre in S^3, we have one fibre of multiplicity c in $M(p, q, r)$, but a principal fibre in $M(p, q, p'q')$.

Geometry & Topology Monographs, Volume 5 (2002)
We may display the factorization of these actions as follows:

\[
\begin{align*}
M(p, q, r) &\xrightarrow{\pi_1} S^2(p, q, r) \\
M(p, q, p' q') &\xrightarrow{\pi_1} S^2(p, q, p' q') \\
(S^3, (p, q)) &\xrightarrow{\pi_1} S^2
\end{align*}
\]

We have the following characterization of the centralizer of \(A \) in \(Aut(\pi) \).

Theorem 18.9 Assume that \(p^{-1} + q^{-1} + r^{-1} \leq 1 \), and let \(A \) be the automorphism of \(\pi = \pi_1(M(p, q, r)) \) of order \(r \) induced by the canonical generator of the branched covering transformations. If \(B \) in \(Aut(\pi) \) commutes with \(A \) then \(B = A^i \) for some \(0 \leq i < r \).

Proof The 3-manifold \(M = M(p, q, r) \) is aspherical, with universal cover \(R^3 \), and \(\pi \) is a central extension of \(Q(p, q, r) \) by an infinite cyclic normal subgroup. Here \(Q = Q(p, q, r) \) is a discrete planar group with signature \(((1 - p')(1 - q')/2; a \ldots a, b \ldots b, c) \) (where there are \(q' \) entries \(a \) and \(p' \) entries \(b \)). Note that \(Q \) is Fuchsian except for \(Q(2, 3, 6) \cong Z^2 \). (In general, \(Q(p, q, pq) \) is a \(PD_2^+ \)-group of genus \((1-p)(1-q)/2 \).

There is a natural homomorphism from \(Aut(\pi) \) to \(Aut(Q) = Aut(\pi/\zeta \pi) \). The strategy shall be to show first that \(B = A^i \) in \(Aut(Q) \) and then lift to \(Aut(\pi) \). The proof in \(Aut(Q) \) falls naturally into three cases.

Case 1. \(r = c \). In this case \(M \) is a homology 3-sphere, fibre over \(S^2 \) with three exceptional fibres of multiplicity \(p, q \) and \(r \). Thus \(Q \cong \Delta(p, q, r) = \langle q_1, q_2, q_3 | q_1^p = q_2^q = q_3^r = q_1 q_2 q_3 = 1 \rangle \), the group of orientation preserving symmetries of a tesselation of \(H^2 \) by triangles with angles \(\pi/p, \pi/q \) and \(\pi/r \). Since \(Z_r \) is contained in \(S^1 \), \(A \) is inner. (In fact it is not hard to see that the image of \(A \) in \(Aut(Q) \) is conjugation by \(q_3^{-1} \). See §3 of [Pl83]).

It is well known that the automorphisms of a triangle group correspond to symmetries of the tessellation (see Chapters V and VI of [ZVC]). Since \(p, q \) and \(r \) are pairwise relatively prime there are no self symmetries of the \((p, q, r)\) triangle. So, fixing a triangle \(T \), all symmetries take \(T \) to another triangle. Those that preserve orientation correspond to elements of \(Q \) acting by inner

Geometry \\& Topology Monographs, Volume 5 (2002)
automorphisms, and there is one nontrivial outer automorphism, \(R \) say, given by reflection in one of the sides of \(T \). We can assume \(R(q_3) = q_3^{-1} \).

Let \(B \) in \(\text{Aut}(Q) \) commute with \(A \). If \(B \) is conjugation by \(b \) in \(Q \) then \(BA = AB \) is equivalent to \(bq_3 = q_3b \), since \(Q \) is centreless. If \(B \) is \(R \) followed by conjugation by \(b \) then \(bq_3 = q_3^{-1}b \). But since \(\langle q_3 \rangle = Z_r \) in \(Q \) is generated by an elliptic element, the normalizer of \(\langle q_3 \rangle \) in \(\text{PSL}(2, \mathbb{R}) \) consists of elliptic elements with the same fixed point as \(q_3 \). Hence the normalizer of \(\langle q_3 \rangle \) in \(Q \) is just \(\langle q_3 \rangle \). Since \(r > 2 \) \(q_3 \neq q_3^{-1} \) and so we must have \(bq_3 = q_3b \), \(b = q_3^2 \) and \(B = A^i \). (Note that if \(r = 2 \) then \(R \) commutes with \(A \) in \(\text{Aut}(Q) \)).

Case 2. \(r = p^i q^j \) so that \(Z_r \cap S^1 = 1 \). The map from \(S^2(p, q, p^i q^j) \) to \(S^2 \) is branched over three points in \(S^2 \). Over the point corresponding to the fibre of multiplicity \(p \) in \(S^3 \) the map is \(p^i \)-fold branched; it is \(q^j \)-fold branched over the point corresponding to the fibre of multiplicity \(q \) in \(S^3 \), and it is \(p^i q^j \)-fold branched over the point \(* \) corresponding to the branching locus of \(M \) over \(S^3 \).

Represent \(S^2 \) as a hyperbolic orbifold \(H^2/\Delta(p, q, p^i q^j) \). (If \((p, q, r) = (2, 3, 6) \) we use instead the flat orbifold \(E^2/\Delta(2, 3, 6) \)). Lift this to an orbifold structure on \(S^2(p, q, p^i q^j) \), thereby representing \(Q = Q(p, q, p^i q^j) \) into \(\text{PSL}(2, \mathbb{R}) \). Lifting the \(Z_{p^i q^j} \)-action to \(H^2 \) gives an action of the semidirect product \(Q \times Z_{p^i q^j} \) on \(H^2 \), with \(Z_{p^i q^j} \) acting as rotations about a point \(* \) of \(H^2 \) lying above \(* \). Since the map from \(H^2 \) to \(S^2(p, q, p^i q^j) \) is unbranched at \(* \) (equivalently, \(Z_r \cap S^1 = 1 \)), \(Q \cap Z_{p^i q^j} = 1 \). Thus \(\tilde{Q} \times Z_{p^i q^j} \) acts effectively on \(H^2 \), with quotient \(S^2 \) and three branch points, of orders \(p, q \) and \(p^i q^j \).

In other words, \(\tilde{Q} \times Z_{p^i q^j} \) is isomorphic to \(\Delta(p, q, p^i q^j) \). The automorphism \(A \) extends naturally to an automorphism of \(\Delta \), namely conjugation by an element of order \(p^i q^j \), and \(B \) also extends to \(\text{Aut}(\Delta) \), since \(BA = AB \).

We claim \(B = A^i \) in \(\text{Aut}(\Delta) \). We cannot directly apply the argument in Case 1, since \(p^i q^j \) is not prime to \(pq \). We argue as follows. In the notation of Case 1, \(A \) is conjugation by \(q_3^{-1} \). Since \(BA = AB \), \(B(q_3) = q_3^{-1}B(q_3)q_3 \), which forces \(B(q_3) = q_3^j \). Now \(q_3^{-1}B(q_2)q_3 = AB(q_2) = B(q_3^{-1})B(q_2)B(q_3) = q_3^{-j}B(q_2)q_3^j \), or \(B(q_2) = q_3^{1-j}B(q_3)^{-1} \). But \(B(q_2) \) is not a power of \(q_3 \), so \(q_3^{1-j} = 1 \), or \(j \equiv 1 \) modulo \((r) \). Thus \(B(q_3) = q_3 \). This means that the symmetry of the tessellation that realizes \(B \) shares the same fixed point as \(A \), so \(B \) is in the dihedral group fixing that point, and now the proof is as before.

Case 3. \(r = p^i q^j c \) (the general case). We have \(Z_{p^i q^j c} \) contained in \(\text{Aut}(\pi) \), but \(Z_{p^i q^j c} \cap S^1 = Z_c \), so that \(Z_c \) is the kernel of the composition

\[Z_c \to \text{Out}(\pi) \to \text{Out}(Q). \]
Let \hat{Q} be the extension corresponding to the abstract kernel $Z_{p'q'} \to \text{Out}(Q)$. (The extension is unique since $Q = 1$). Then \hat{Q} is a quotient of the semidirect product $Q(p,q,r) \rtimes (\mathbb{Z}/r\mathbb{Z})$ by a cyclic normal subgroup of order c.

Geometrically, this corresponds to the following. The map from S on G is conjugation by $p'q'$. This time, represent S as $H^2/\Delta(p,q,p'q')$. Lift to an orbifold structure on $S^2(p,q,r)$ with one cone point of order c. Lifting an elliptic element of order r in $\Delta(p,q,r)$ to the universal orbifold cover of $S^2(p,q,r)$ gives Z_r contained in $\text{Aut}(Q(p,q,r))$ defining the semidirect product. But $Q(p,q,r) \cap Z_r = Z_c$, so the action is ineffective. Projecting to $Z_{p'q'}$ and taking the extension \hat{Q} kills the ineffective part of the action. Note that $Q(p,q,r)$ and Z_r inject into \hat{Q}.

As in Case 2, $\hat{Q} \cong \Delta(p,q,r)$, A extends to conjugation by an element of order r in \hat{Q}, and B extends to an automorphism of $Q(p,q,r) \rtimes Z_r$, since $BA = AB$. Now $(q_3,p'q')$ in $Q(p,q,r) \rtimes Z_r$ normally generates the kernel of $Q(p,q,r) \rtimes Z_r \to \hat{Q}$, where q_3 is a rotation of order c with the same fixed point as the generator of Z_r. In other words, A in $\text{Aut}(Q(p,q,r))$ is such that $A^{p'q'}$ is conjugation by q_3. Since $BA^{p'q'} = A^{p'q'}B$ the argument in Case 2 shows that $B(q_3) = q_3$. So B also gives an automorphism of \hat{Q}, and now the argument of Case 2 finishes the proof.

We have shown that $B = A^t$ in $\text{Aut}(Q)$. Since A in $\text{Aut}(\pi)$ is the monodromy of a fibred knot in S^4 (or, more directly, since A is induced by a branched cover of a knot in a homology sphere), $I - [A]$ is invertible. Thus the Theorem now follows from Lemma 18.8.

Theorem 18.10 Let k be a prime simple knot in S^3. Let $0 < s < r$, $(r,s) = 1$ and $r > 2$. Then $\tau_{r,s,k}$ is not reflexive.

Proof We shall consider separately the three cases (a) k a torus knot and the branched cover aspherical; (b) k a torus knot and the branched cover spherical; and (c) k a hyperbolic knot.

Aspherical branched covers of torus knots Let $K = \tau_{r,s}(k_{p,q})$ where $r > 2$ and $M(p,q,r)$ is aspherical. Then $X(K) = (M(p,q,r) - \text{int}D^3) \times_A S^1$, $M = M(K) = M(p,q,r) \times_A S^1$ and $\pi = \pi_K \cong \pi_1(M(p,q,r)) \times_A \mathbb{Z}$.

If K is reflexive there is a homeomorphism f of X which changes the framing on ∂X. Now $k_{p,q}$ is strongly invertible - there is an involution of $(S^3,k_{p,q})$ fixing two points of the knot and reversing the meridian. This lifts to an involution of $M(p,q,r)$ fixing two points of the branch set and conjugating A^t to A^{-s}, thus...
inducing a diffeomorphism of \(X(K)\) which reverses the meridian. By Lemma 18.1 this preserves the framing, so we can assume that \(f\) preserves the meridian of \(K\). Since \(M(p, q, r)\) is an aspherical Seifert fibred 3-manifold \(M(p, q, r) \cong \mathbb{R}^3\) and all automorphisms of \(\pi_1(M(p, q, r))\) are induced by self-diffeomorphisms [Hm]. Hence \(f\) must be orientation preserving also, as all self homeomorphisms of \(\widehat{\mathbb{S}}\mathbb{L}\)-manifolds are orientation preserving [NR78]. The remaining hypothesis of Lemma 18.3 is satisfied, by Theorem 18.9. Therefore there is no such self homeomorphism \(f\), and \(K\) is not reflexive.

Spherical branched covers of torus knots We now adapt the previous argument to the spherical cases. The analogue of Theorem 18.9 is valid, except for \((2, 5, 3)\). We sketch the proofs.

\((2, 3, 3)\): \(M(2, 3, 3) = S^3/Q(8)\). The image in \(\text{Aut}(Q(8)/\zeta Q(8)) \cong S_3\) of the automorphism \(A\) induced by the 3-fold cover of the trefoil knot has order 3 and so generates its own centralizer.

\((2, 3, 4)\): \(M(2, 3, 4) = S^3/T^*_1\). In this case the image of \(A\) in \(\text{Aut}(T^*_1) \cong S_4\) must be a 4-cycle, and generates its own centralizer.

\((2, 3, 5)\): \(M(2, 3, 5) = S^3/I^*\). In this case the image of \(A\) in \(\text{Aut}(I^*) \cong S_5\) must be a 5-cycle, and generates its own centralizer.

\((2, 5, 3)\): We again have \(I^*\), but in this case \(A^3 = I\), say \(A = (123)(4)(5)\). Suppose \(BA = AB\). If \(B\) fixes 4 and 5 then it is a power of \(A\). But \(B\) may transpose 4 and 5, and then \(B = A^iC\), where \(C = (1)(2)(3)(45)\) represents the nontrivial outer automorphism class of \(I^*\).

Now let \(K = \tau_{s,k}(p,q,r)\) as usual, with \((p, q, r)\) one of the above four triples, and let \(\widehat{M} = M(p, q, r) \times_A S^1\). As earlier, if \(K\) is reflexive we have a homeomorphism \(f\) which preserves the meridian \(t\) and changes the framing on \(D^3 \times_A S^1\).

Let \(\widehat{M}\) be the cover of \(M\) corresponding to the meridian subgroup, so \(\widehat{M} = S^3 \times A \cdot S^1\), where \(A\) is a rotation about an axis. Let \(f\) be a basepoint preserving self homotopy equivalence of \(M\) such that \(f_*(t) = t\) in \(\pi\). Let \(B\) in \(\text{Aut}(\pi_1(M(p, q, r)))\) be induced by \(f_*, \) so \(BA^s = A^sB\). The discussion above shows that \(B = A^i\) except possibly for \((2, 5, 3)\). But if \(B\) represented the outer automorphism of \(I^*\) then after lifting to infinite cyclic covers we would have a homotopy equivalence of \(S^3/I^*\) inducing \(C\), contradicting Lemma 11.5. So we have an obvious fibre preserving diffeomorphism \(f_B\) of \(M\).

The proof that \(\hat{f}_B\) is homotopic to \(id_{\widehat{M}}\) is exactly as in the aspherical case. To see that \(\hat{f}_B\) is homotopic to \(\hat{f}\) (the lift of \(f\) to a basepoint preserving proper self homotopy equivalence of \(\widehat{M}\)) we investigate whether \(f_B\) is homotopic to
f. Since \(\pi_2(M) = 0 \) we can homotope \(f_B \) to \(f \) on the 2-skeleton of \(M \). On the 3-skeleton we meet an obstruction in \(H^3(M; \pi_3) \cong H^3(M; \mathbb{Z}) = \mathbb{Z} \), since \(M \) has the homology of \(S^3 \times S^1 \). But this obstruction is detected on the top cell of \(M(p, q, r) \) and just measures the difference of the degrees of \(f \) and \(f_B \) on the infinite cyclic covers [Ol53]. Since both \(f \) and \(f_B \) are orientation preserving homotopy equivalences this obstruction vanishes. On the 4-skeleton we have an obstruction in \(H^4(M; \pi_4) = \mathbb{Z}/2\mathbb{Z} \), which may not vanish. But this obstruction is killed when we lift to \(\tilde{M} \), since the map from \(\tilde{M} \) to \(M \) has even degree, proving that \(\tilde{f}_B \simeq \hat{f} \).

We now use radial homotopies on \(S^3 \times S^1 \) to finish, as before.

Branched covers of hyperbolic knots Let \(k \) be hyperbolic. Excluding \(N_3(41) \) (the 3-fold cyclic branched cover of the figure eight knot), \(N = N_r(k) \) is a closed hyperbolic 3-manifold, with \(\langle \alpha \rangle \cong \mathbb{Z}/r\mathbb{Z} \) acting by isometries. As usual, we assume there is a homeomorphism \(f \) of \(M = M(\tau, s(k)) \) which changes the framing on \(D^3 \times_A S^1 \). As in the aspherical torus knot case, it shall suffice to show that the lift \(\hat{f} \) on \(\tilde{M} \) is properly homotopic to a map of \((R^3 \times S^1, D^3 \times S^1) \) that does not change the framing on \(D^3 \times S^1 \).

Letting \(B = f_* \) on \(\nu = \pi_1(N) \), we have \(BA^*B^{-1} = A^{\pm s} \), depending on whether \(f_*(t) = t^{\pm 1} \) in \(\pi = \nu \times_{A^*} \mathbb{Z} \). There is an unique isometry \(\beta \) of \(N \) realizing the class of \(B \) in \(\text{Out(\nu)} \), by Mostow rigidity, and \(\beta \alpha \beta^{-1} = \alpha^{\pm s} \). Hence there is an induced self diffeomorphism \(f_{\beta} \) of \(M = N \times_{\alpha^*} S^1 \). Note that \(f_* = (f_{\beta})_* \) in \(\text{Out(\pi)} \), so \(f \) is homotopic to \(f_{\beta} \). We cannot claim that \(\beta \) fixes the basepoint of \(N \), but \(\beta \) preserves the closed geodesic fixed by \(\alpha^s \).

Now \(\tilde{M} = H^3 \times_{\alpha^s} S^1 \) where \(\alpha^s \) is an elliptic rotation about an axis \(L \), and \(\hat{f}_{\beta} \) is fibrewise an isometry \(\beta \) preserving \(L \). We can write \(H^3 = R^3 \times L \) (non-metrically!) by considering the family of hyperplanes perpendicular to \(L \), and then \(\beta \) is just an element of \(O(2) \times E(1) \) and \(\alpha^s \) is an element of \(SO(2) \times \{1\} \).

The proof of Lemma 18.1, with trivial modifications, shows that, after picking coordinates and ignoring orientations, \(\hat{f}_{\beta} \) is the identity. This completes the proof of the theorem.

The manifolds \(M(p, q, r) \) with \(p^{-1} + q^{-1} + r^{-1} < 1 \) are coset spaces of \(\widehat{SL} \) [Mi75]. Conversely, let \(K \) be a 2-knot obtained by surgery on the canonical cross-section of \(N \times_{\theta} S^1 \), where \(N \) is such a coset space. If \(\theta \) is induced by an automorphism of \(\text{SL} \) which normalizes \(\nu = \pi_1(N) \) then it has finite order, since \(\text{N}_{\text{SL}}(\nu)/\nu \cong \text{N}_{\text{PSL}(2,\mathbb{R})}(\nu/\zeta\nu)/(\nu/\zeta\nu) \). Thus if \(\theta \) has infinite order we cannot expect to use such geometric arguments to analyze the question of reflexivity.
Bibliography

Books

Geometry & Topology Monographs, Volume 5 (2002)

Geometry & Topology Monographs, Volume 5 (2002)
Bibliography

Journal articles

Geometry & Topology Monographs, Volume 5 (2002)

Bibliography

[Gr98] Grigorchuk, R.I. An example of a finitely presentable amenable group which is not in the class EG, Mat. Sbornik 198 (1998), 79-100.

[Hi97'] Hillman, J.A. On the homotopy types of closed 4-manifolds covered by $S^2 \times R^2$, Topology Appl. 75 (1997), 287-295.

Geometry & Topology Monographs, Volume 5 (2002)

[Kn83'] Kanenobu, T. Fox’s 2-spheres are twist spun knots, Mem. Fac. Sci. Kyushu University (Ser. A) 37 (1983), 81-86.

Bibliography

[Kr90’] Kropholler, P.H. Baumslag-Solitar groups and some groups of cohomological dimension two, Comment. Math. Helvetici 65 (1990), 547-558.

Bibliography

[Mi87] Mihalik, M.L. Solvable groups that are simply connected at \(\infty \), Math. Z. 195 (1987), 79-87.

[Pl84'] Plotnick, S.P. Fibered knots in S^4 - twisting, spinning, rolling, surgery, and branching, in [GK], 437-459.

[Qi93] Qin, Z. Complex structures on certain differentiable 4-manifolds, Topology 32 (1993), 551-566.

[Ro75] Robinson, D.J.S. On the cohomology of soluble groups of finite rank, J. Pure Appl. Alg. 6 (1975), 155-164.

[Ro77] Romanovskii, N.S. Free subgroups of finitely presentable groups, Algebra i Logika 16 (1977), 88-97.

[Sc83] Scott, G.P. There are no fake Seifert fibre spaces with infinite π_1, Ann. Math. 117 (1983), 35-70.

[St77] Strebel, R. A remark on subgroups of infinite index in Poincaré duality groups, Comment. Math. Helvetici 52 (1977), 317-324.

[Sw75] Swarup, G.A. An unknotting criterion, J. Pure Appl. Alg. 6 (1975), 191-296.

Index

Expressions beginning with Greek characters and non-alphabetic symbols are listed at the end of this index.

\((A, \beta, C) \) (isometry of \(S^2 \times \mathbb{E}^2 \)), 203

\(A(m, e) \) (metacyclic group of order \(2^m e \)), 222

\(A(\pi) \) (augmentation ideal of \(\mathbb{Z}[\pi] \)), 36

\(A_G(\pi) \) (augmentation ideal of \(\mathbb{Q}[\pi] \)), 59

admits a geometry, 132

almost coherent, 16

almost complex structure, 148

almost finitely presentable \((FP_2) \), 14

amenable group, 8

amphichiral knot, 267

Artin spin of a knot \((\sigma K) \), 272

artin automorphisms of \(\Gamma_q \), 167

\(B_1 - B_4 \) (nonorientable flat 3-manifold groups), 154

Bieri’s Theorem (Theorem 8.8 of [Bi]), 17

Bieri-Strebel Theorem [BS78], 14

boundary link, 282

Bowditch’s Theorem, 20

branched twist spin, 311

Brieskorn manifold \((M(p,q,r)) \), 307

Brown-Geoghegan Theorem [BG85], 18

\(\chi(\hat{g}) \) (Kervaire-Arf invariant of \(\hat{g} : M \to G/TOP \)), 117

\(c_M : M \to K(\pi_1(M), 1) \) (classifying map), 26

\(\mathbb{CP}^2 \) (geometry of complex projective plane), 234

\(\text{Ch} = *\mathbb{CP}^2 \) (the fake complex projective plane), 235

\(C_G(H) \) (centralizer of a subgroup), 3

\(Cl \) (Waldhausen’s class of groups), 112

canonical cross-section, 338

Cappell-Shaneson knot, 315

Cartan-Leray spectral sequence, 26

centre of a group \(G \) \((\zeta G) \), 3

characteristic subgroup, 3

classifying map \((c_M : M \to K(\pi_1(M), 1)) \), 26

closed fibre, 269

closed manifold, 26

codimension-2 Kervaire invariant, 117

cohomogeneous group, 15

cohomogeneous ring, 15

commutator subgroup of a group \(G \) \((G') \), 3

companion, 271

conjugate surface, 146

conjugate torus, 148

conjugate \(M \) of a module \(M \), 13

connecting homomorphism \(\partial : \pi_1(B) \to \pi_1(F) \), 89

Crisp’s Theorem [Cr00], 34

cusp, 138

\(D \) (infinite dihedral group \((\mathbb{Z}/2\mathbb{Z}) * (\mathbb{Z}/2\mathbb{Z}))\), 16

deficiency \((\text{def}(P), \text{def}(\pi)) \), 28

\(\text{dim}_{\text{Neu}}(M) \) (von Neumann dimension of \(M \)), 22

doubly slice knot, 272

\(e(G) \) (number of ends of the group \(G \)), 0, 1, 2 or \(\infty \), 16

\(\mathbb{E}^n \) (flat geometry), 134

Index

376

E(n) (isometry group of \(\mathbb{E}^n \)), 134
E(X), \(E_0(X) \) (space of self
homotopy equivalences), 89
EA (class of elementary amenable
groups), 9
ev^{(2)} (evaluation into \(\ell^2(\pi) \)), 49
euclidean surface, 148, 259, 334
ends (and \(H^1(G; \mathbb{Z}[G]) \)), 16
equivariant (co)homology, 25
extension of groups, 4
extension of a knot \((X(K), X) \),
267
f \(\cdot \) (self homotopy equivalence
of a closed 4-manifold), 117
f_\text{M} : M \to P_3(M) (second map
of Postnikov tower), 26
FF, FP, FP_n (finiteness
conditions), 14
F(r) (free group), 3
\(\mathbb{F}^4 \) (geometry of \(T_{\mathbb{F}^2} \)), 133, 256
Farrell’s Theorem [Fa74], 18
fibration theorem, 123
fibre knot, 269
finite P\(D_\infty \)-complex, 33
flat manifold, 134
flat \(n \)-manifold group, 134
foliation by circles, 262
Følner exhaustion, 8
g.d. (geometric dimension), 28
\(G_1 = G_6 \) (orientable flat
3-manifold groups), 153
G(\(\pm \)) (flat 2-knot groups), 318
gometric decomposition, 138
gometric dimension
of a group (g.d.), 28
gometry, 132
Gluck reconstruction of a knot \(K \)
(\(K^* \)), 269
graph manifold, 114
Gromov’s Theorem
(\(\S 8.A \) of [Gr]), 28
\(\mathbb{H}^4 \times \mathbb{H}^2 \) (semisimple product
gometry), 188
\(\mathbb{H}^4 \times \mathbb{H}^2(\mathbb{C}) \) (rank 1 geometries),
192
\(\mathbb{H}^2 \times \mathbb{E}^2 \) (product geometry), 182
\(\mathbb{H}^3 \times \mathbb{E}^1 \) (product geometry), 185
\(H_t(X; R[G/H]) \), \(H^t(X; R[G/H]) \)
(equivariant (co)homology), 25
h(G) (Hirsch length
of a group \(G \)), 10
h_{\pi}, 73
Haken 3-manifold, 114
Hantzsche-Wendt flat 3-manifold
group (\(G_6 \)), 154
Hendrik’s Theorem [Hn], 34
Hilbert \(\mathcal{N}(\pi) \)-module, 22
Hilbert \(\mathcal{N}(\pi) \)-complex, 23
Hirsch length of a group
(\(h(G) \)), 4, 10
Hirsch-Plotkin radical of a group \(G \)
(\(\sqrt{G} \)), 6
homology 4-sphere, 288
holonomy group, 134
homotopy ribbon knot, 273
Hopf surface, 147, 335
hyperelliptic surface, 148
I\((G) = \{ g \in G \mid \exists n > 0, g^n \in G \} \), 3
I^* (binary icosahedral group), 222
I_\pi (homomorphism
from \(H_1(\pi; \mathbb{Z}) \) to \(L^*_\pi(\pi) \)), 118
I^\pm_\pi (homomorphism
from \(\ker(w) \) to \(L^*_\pi(\pi, w) \)), 119
indicable group, 3
infinite cyclic covering space
(\(E_{\nu}, X'(K), M'(K) \)), 69, 269
infinite dihedral group
(\(D = (\mathbb{Z}/2\mathbb{Z}) \ast (\mathbb{Z}/2\mathbb{Z}) \)), 16
infranilmanifold, 134
infrasolvmanifold, 135, 176
Inoue surface, 147, 245
invertible knot, 267
irreducible knot, 271
Isom(\(\mathbb{X} \)), 132
J(F), J_+(F) (automorphisms of \(F \)
inducing \(\pm 1 \) on \(H_3(F; \mathbb{Z}) \)), 220

Index

Johnson’s trichotomy
(surface bundle groups), 92

$k_1(M)$ (first k-invariant), 26
Kaplansky rank ($\kappa(P)$), 14
Kb (Klein bottle), 89
$k_{p,q}$ ((p,q)-torus knot), 311
$kerv(\hat{g})$ (codimension-2 Kervaire invariant of \hat{g}), 117
Kervaire-Arf invariant, 117
Knot, 267
Knot group (K), 268
Knot-like group, 280
Kodaira surface, 148

ℓP (locally P), 3
$\ell^2(\pi)$ (L^2-completion of $\mathbb{C}[\pi]$), 22
L^2-Betti number, 26
lattice, 132
$Lexp(f,a)$ (Laurent expansion), 74
link, 282
link group, 282

LHSSS (Lyndon-Hochschild-Serre spectral sequence), 17
locally P (ℓP), 3
Lück’s Theorem [Lück94], 27

Mb (Möbius band), 105
$M(K)$ (closed manifold arising from a knot K), 268
$M(\phi)$ (mapping torus of a self homotopy equivalence ϕ), 69
$M(p,q,r)$ (Brieskorn manifold), 307
mapping torus, 69
Max-c (increasing chains of centralizers are finite), 43
maximal finite normal subgroup (of a group with two ends), 16

Mayer-Vietoris sequence of Waldhausen, 112
Melvin’s Theorem, 99
meridian, 268
meridional automorphism, 276
minimal complex surface, 147
minimal Seifert hypersurface, 269
monodromy, 269
Mostow orbifold bundle, 142
Mostow rigidity, 193

n-dimensional geometry, 132
$Nil^3 \times \mathbb{E}^1$ (nilpotent Lie geometry), 134, 164
Nil^4 (nilpotent Lie geometry), 135, 164
$N(\pi)$ (von Neumann algebra of π), 22
n-knot, 267
$N_G(H)$ (normalizer of a subgroup), 3

normal closure of S in G ($(\langle S \rangle)_G$), 3
$Out(G)$ (group of outer automorphism classes), 3
O^+_1 (binary octahedral group), 222
O^+_2 (extended binary octahedral group), 222
orbifold bundle, 141

orientable PD$_n$-group (PD^+_n-group), 20

P (= $PSL(2,\mathbb{R})$), 188
$P_2(M)$ (second stage of Postnikov tower), 26
PD_3-complex (3-dimensional Poincaré duality complex), 33
PD_n-complex (Poincaré duality complex), 33
$PD_n^{(1)}$-group, 20
PD_3-group, 37
PD_4-polarization, 198

piece (of a geometric decomposition), 138
Plotnick’s Theorem [Plot86], 311
Poincaré duality, 32
poly-, 4

proper geometric decomposition, 138
$q(\pi)$, $q^{SG}(\pi)$ (minimal Euler characteristic), 57
$Q(2^n,a,b,c)$ (generalized
quaternionic group), 223
$Q(2^nk)$ (quaternionic group of order 2^nk), 221
quadratic 2-type
$([\pi, \pi_2(M), k_1(M), S(M)])$, 241
quasifibre, 327
quaternion group ($Q(8)$), 221
rational surface, 148
reduced L^2-homology, 23
reducible ($\mathbb{H}^2 \times \mathbb{H}^2$-manifold), 188
reflexive knot, 269
regular coherent ring, 15
regular noetherian ring, 15
restrained (group), 9
ribbon knot, 273
ruled surface, 148

SA (class of groups of subexponential growth), 9
S^1-actions, 261
S^3-group, 225
$S^3_{PD}(P)$ (polarized PD_4-complexes), 198
$S^3_{TOP}(M)$ (s-cobordism structure set), 116
S^4 (spherical geometry), 234
$S^2 \times S^2$ (compact product geometry), 235
$Solv^4_{m,n}$, $Solv^3 \times E^1$, (solvable Lie geometries), 136, 164
$Solv^4_0$ (solvable Lie geometry), 137, 164
$Solv^4_1$ (solvable Lie geometry), 137, 164
$S^1 \times E^1$ (2-ended spherical-euclidean product geometry), 224
$S^2 \times E^2$ (1-ended spherical-euclidean product geometry), 201, 206
$S^2 \times \mathbb{H}^2$ (spherical-hyperbolic product geometry), 201
$SL \times E^1$, 182
safe extension, 23
satellite, 271
s-concordant, 273

Seifert fibred (4-manifold), 144
Seifert hypersurface, 269
semidirect product ($G \times Z$), 4
slice knot, 272
solvable Lie type, 132, 176
spin (Artin) of a knot (σK), 272
split link, 282
stably homeomorphic, 121
strict weight orbit, 275
Strebel’s Theorem [St77], 21
sum of knots ($K_1 \sharp K_2$), 270
surface bundles, 89, 252
surgery exact sequence, 116
Swan complex, 219
symplectic structure, 149, 263

T^r (torus), 89
T^r_k (binary tetrahedral group), 221
T^r_k (extended binary tetrahedral group), 221
$T(\pi)$ (translation subgroup), 134, 136
Tits alternative, 29, 38, 302
translation subgroup ($T(\pi)$), 134, 136
triangular (solvable Lie group), 135
trivial knot, 267
trivial link, 282
Turaev’s Theorem [Tu90], 34
twist spin of a knot (τK), 272
type I, II, III (Johnson’s trichotomy for surface bundle groups), 92
type R (solvable Lie group), 136
UCSS (universal coefficient spectral sequence), 26
unreduced L^2-homology, 23
vP (virtually P), 4
virtually (qualifying a property of a group or space), 4
von Neumann dimension of a Hilbert module ($\dim_M(\pi)M$), 22
Waldhausen’s Mayer-Vietoris sequence for K-theory, 112

Index

Weak Bass Conjecture
(\kappa(P) = \text{dim}_Q Q \otimes_Q P), 14
weakly exact, 23
weakly finite (ring), 15
weight (class, element), 273
weight orbit, 275
Whitehead quadratic functor
(\Gamma(\cdot)), 241
Whitehead’s question, 279
X-group, 31
X(K) (knot exterior), 267
X_H (covering space with
fundamental group H), 25
X-manifold, 132
Z_w (w-twisted integers), 13
Z_m (group with presentation
\langle a, t \mid tat^{-1} = a^{m} \rangle), 29
Z \times \mathbb{Z} (fundamental group
of Klein bottle, \cong \mathbb{Z}^s_{-1}), 29

Greek characters

\beta_i^{[2]} (L^2-Betti number), 26
\beta^u (u-twisted Bockstein), 197
\eta (cohomology class,
generating Ext^1_\Lambda(Z, \Lambda)), 73
\Phi (\cong \mathbb{Z} \times \mathbb{Z}, 2-knot group, 291
\Gamma(\cdot) (Whitehead quadratic
functor), 241
\Gamma_q (nilpotent group), 7
\kappa(P) (Kaplansky rank), 14
\Lambda = \mathbb{Z}[Z] \cong \mathbb{Z}[t, t^{-1}]
Laurent polynomial ring), 6
\pi K (knot group), 268
\pi_1 \text{-slice}, 273
\pi(e, \eta) (group of 2-twist spin
of Montesinos knot), 319
[\pi, m]_f-complex, 32
\sigma K (Artin spin of K), 272
\tau (the twist of S^2 \times S^1), 83
\tau_r K (r-twist spin
of a knot K), 272
\tau_{r,s} K (branched twist spin
of a knot K), 311
\chi(\pi) (Euler characteristic
of \nu FP group \pi), 14
\zeta G (centre of a group), 3
\zeta_2 G (\zeta_2 G/G = \zeta(G/\zeta G)), 8

Non-alphabetic symbols
boundary \partial: \pi_2(B) \to \pi_1(F)
(connecting homomorphism), 89
double angle brackets \langle \cdot \rangle:
\langle S \rangle_G
(normal closure of S in G), 3
overbar \cdot: anti-involution \overline{g} = w(g)g^{-1},
conjuate module \overline{M}, 13
prime \cdot: commutator subgroup G',
maximal abelian cover X', 3, 269
semidirect product: G \times_Z Z, 4
sharp \#: sum of knots K_1 \sharp K_2, 270
surd \sqrt{\cdot}: \sqrt{G}
(Hirsch-Plotkin radical of G), 6
tilde \sim: \tilde{X} (universal cover
of X), 25