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A purely algebraic characterization of universally complete vector lattices in which all separately band
preserving bilinear operators are symmetric is obtained: this class consists of universally complete vector
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The aim of this note is to give an algebraic characterization of those universally complete
vector lattice in which all band preserving bilinear operators are symmetric. We start with
recalling some definitions and auxiliary facts about bilinear operators on vector lattices. For
the theory of vector lattices and positive operators we refer to the books [1] and [7].

Let E and F be vector lattices. A bilinear operator b : E×E → G is called orthosymmetric

if x ∧ y = 0 implies b(x, y) = 0 for arbitrary x, y ∈ E, see [3]. Recall also that b is said to
be symmetric (or antisymmetric) if b(x, y) = b(y, x) (respectively b(x, y) = −b(y, x)) for all
x, y ∈ E. Finally, b is said to be positive if b(x, y) > 0 for all 0 6 x, y ∈ E and orthoregular if
it can be represented as the difference of two positive orthosymmetric bilinear operators [2].
The vector space of all orthoregular bilinear operators and its subspaces are always considered
with the ordering determined by the cone of positive operators.

The following important property of orthosymmetric bilinear operators is due to G. Buskes
and A. van Rooij (see [3, Corollary 2]):

Proposition 1. If E and F are arbitrary Archimedean vector lattices, then any positive

orthosymmetric (and hence any orthoregular) bilinear operator from E×E to F is symmetric.

A bilinear operator b : E×E → E is said to be separately band preserving if the mappings
b(·, e) and b(e, ·) are band preserving for all e ∈ E or, equivalently, if b(L × E) ⊂ L and
b(E × L) ⊂ L for any band L in E. For linear band preserving operators see [1, 5, 7].

Proposition 2. Let E be an Archimedean vector lattice and b is a bilinear operator in E
(i. e. b acts from E × E into E). Then the following assertions are equivalent:

(1) b is separately band preserving;

(2) b(x, y) ∈ {x}⊥⊥ ∩ {y}⊥⊥ for all x, y ∈ E;

(3) b(x, y) ⊥ z for any z ∈ E provided that x ⊥ z or y ⊥ z;
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If E has the principal projection property, then (1)–(3) are equivalent to (4) and (5):

(4) πb(x, y) = b(πx, πy) for any band projection π in E and all x, y ∈ E;

(5) πb(x, y) = b(πx, y) = b(x, πy) for any band projection π in E and all x, y ∈ E.

C We omit the routine arguments, cf. [1, Theorem 8.2]. B

It was proved in [4, Theorem 4] that for each Archimedean vector lattice E there exists a
unique (up to lattice isomorphism) square, i. e. a pair (E¯,¯), where E¯ is an Archimedean
vector lattice and ¯ is a symmetric bimorphism from E×E to E¯, with the following universal
property: if b is a symmetric lattice bimorphism from E×E to some Archimedean vector lattice
F , then there is a unique lattice homomorphism Φb : E

¯ → F with b = Φb¯. The bimorphism
¯ is an example of a separately band preserving bilinear operator, see [12, Theorem 6.4].

Proposition 3. Let E be a relatively uniformly complete vector lattice with the square

E¯. The correspondence S 7→ S¯ is an isomorphism of the vector lattice Orth(E¯) onto the

ordered vector space of all order bounded separately band preserving bilinear operators in E.

C Follows from [12, Theorems 6.2 (2) and 6.4] and [4, Theorem 9]. B

Evidently, a separately band preserving bilinear operator is orthosymmetric. Hence, all
orthoregular separately band preserving operators are symmetric by Proposition 1. This brings
up the question, which can be considered as a version of Wickstead’s problem (see [7, 10, 11]):

Problem. Under what conditions all separately band preserving bilinear operators in

a vector lattice are symmetric? order bounded?

A Boolean σ-algebra
�

is called σ-distributive if

∨

n∈ �

∧

m∈ �
bn,m =

∧

ϕ∈ ���

∨

n∈ �
bn,ϕ(n)

for any double sequence (bn,m)n,m∈ � in
�

. Other equivalent definitions are collected in [15],
see also [7]. Now, we are able to state the main result of the note, cf. [10, 11].

Theorem. Let G be a universally complete vector lattice and
�

:= B(G) denotes the

complete Boolean algebra of all bands in G. Then the following are equivalent:

(1)
�

is σ-distributive;

(2) there is no nonzero separately band preserving antisymmetric bilinear operator in G;

(3) all separately band preserving bilinear operators in G are symmetric;

(4) all separately band preserving bilinear operators in G are order bounded.

Our proof of the stated theorem uses the Boolean valued approach which consists primarily
in comparison of the instances of a mathematical object in two different Boolean valued
models, most commonly the classical von Neumann universe V and the Boolean valued

universe V(B). All necessary information from Boolean values analysis can be found in [13].
Fix a complete Boolean algebra B and consider the corresponding Boolean valued model

of set theory V(B). Let R be the field of reals inside V(B). Then R↓ (with the descended
operations and order, see [13]), is a universally complete vector lattice. Recall that X 7→ X∧

denotes the standard name mapping which embeds V into V(B). It is well known that if R is
the field of reals in V, then R∧ can be considered as a dense subfield of R inside V(B).

Lemma 1. A Boolean algebra B is σ-distributive if and only if V(B) |=R = R∧.

C This fact was obtained by A. E. Gutman [5, 6], see also [7]. B

Let BLN (G) stands for the set of all separately band preserving bilinear operators in
G := R↓. Clearly, BLN (G) becomes a faithful unitary module over the ring G if we define gT
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as gT : x 7→ g · Tx for all x ∈ G. Denote by BLR∧(R) the element of V(B) representing the
space of all internal R∧-bilinear mappings from R×R to R. Then BLR∧(R) is a vector space
over R∧ inside V(B), and BLR∧(R)↓ is an external (= in V) faithful unitary module over G.

Lemma 2. The modules BLN (G) and BLR∧(R)↓ are isomorphic by sending each separa-

tely band preserving bilinear operator b to its ascent b↑.

C We make use of the same arguments as in [8, Proposition 3.3]. Denote by [e] the order
projection onto the band {e}⊥⊥. Proposition 2 implies that every b ∈ BLN (G) is extensional:

[b(x, y)− b(u, v)] 6 [x− u] ∨ [y − v] (x, y, u, v ∈ G).

Therefore, (since every extensional mapping has the ascent) there exists a unique internal
function β := b↑ from R ×R to R such that V(B) |= β(x, y) = b(x, y) (x, y ∈ G). With this
in mind we deduce (⊕ and ¯ stand for internal operations in R):

β(x⊕ y, z) = b(x+ y, z) = b(x, z) + b(y, z) = β(x, z)⊕ β(y, z) (x, y, z ∈ G)

β(λ∧ ¯ x, z) = b(λ · x, z) = λ · b(x, z) = λ∧ ¯ β(x, z) (x, z ∈ G,λ ∈ R).

Thus, [[β : R → R is a R∧-bilinear function ]] = � , i. e. [[β ∈ BLR∧(R)]] = � . Conversely, if
β ∈ BLR∧(R)↓, then the descent β↓ : G × G → G is extensional, since the descent of any
mapping is extensional, and bilinear, since β is R∧-bilinear inside V(B). Moreover, we have

(∀ s, t ∈ R) st = 0 → β(s, t) = 0.

Interpreting this in V(B) we obtain that b = β↓ is orthosymmetric. Now it remains to observe
that an orthosymmetric extensional bilinear operator is separately order preserving. B

Lemma 3. Let P be a subfield of R and let E be a Hamel basis of the vector space R

over the field P. The general form of a P-bilinear function β : R× R → R is given by

β(x, y) =
∑

e1,e2∈E
xe1ye2φ(e1, e2), x =

∑
e∈E

xee, y =
∑

e∈E
yee,

where φ : E × E → P is an arbitrary function with finite number of nonzero values.

C Follows easily from the definition of bilinear operator and the properties Hamel basis. B

C Proof of the Theorem. Suppose that an order unit � is fixed in G and G is endowed
with the multiplication that makes G an f -algebra having � as its unit element.

(1) → (4): Let b : G×G→ G be a band preserving bilinear operator and put c := b( � , � ).
We may assume that G is locally one-dimensional, since this property is equivalent to the
assertion (1) as was shown by A. E. Gutman [5]. In that event for arbitrary x, y ∈ G there
exists a partition of unity (πξ)ξ∈Ξ in P(G) and two families of reals (sξ)ξ∈Ξ and (tξ)ξ∈Ξ such
that πξx = sξπξ � and πξy = tξπξ � for all ξ ∈ Ξ. Proposition 2 implies that πξb(x, y) = sξtξπξc
for all ξ ∈ Ξ and hence b(x, y) = cxy. Now it evident that b is order bounded.

(4) → (3): A separately band preserving bilinear operator in G is order bounded by (4)
and hence orthosymmetric; therefore, it is symmetric by Proposition 1.

(3)→ (2): Any separately band preserving bilinear operator is symmetric by (3) and hence
it is equal to zero, provided that it is also antisymmetric.

(2)→ (1): Assume that B is not σ-distributive. Then R∧ 6= R by Lemma 1 and a separately
band preserving antisymmetric bilinear operator can be constructed on using Lemma 3.
Indeed, a Hamel bases E of R over R∧ contains at least two different elements e1 6= e2.
Define a function φ : E × E → R so that 1 = φ(e1, e2) = −φ(e2, e1), and φ(e′1, e

′
2) = 0 for all
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other pairs (e′1, e
′
2) ∈ E × E (in particular, 0 = φ(e1, e1) = φ(e2, e2). By Lemma 3 β0 can be

extended to an R∧-bilinear function β : R ×R → R. The descent b of β is a separately band
preserving bilinear operator in G by Lemma 2. Moreover, b is nonzero and antisymmetric,
since β is nonzero and antisymmetric by construction. This contradiction proves that R∧ = R

and B is σ-distributive. B

Corollary 1. There exists a nonatomic universally complete vector lattice in which all

separately band preserving bilinear operators are order bounded and hence symmetric.

C It follows from the above Theorem and the following result by A. E. Gutman [5, 6]: there
exists a nonatomic locally one-dimensional universally complete vector lattice. B

A bilinear operator b : G×G→ G is called essentially nontrivial if πb = 0 implies π = 0 for
any band projection π ∈ P(G). The definition of a locally separable measure space see in [9].

Corollary 2. Let (Ω,Σ, µ) be a nonatomic locally separable measure space and let

L0� (Ω,Σ, µ) be the vector space of all equivalence classes of (almost everywhere equal) real

measurable functions. Then there exists an essentially nontrivial separately band preserving

antisymmetric bilinear operator in L0� (Ω,Σ, µ).

C The proof goes in much the same way as in [9]. B
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