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ON GENERALIZATION OF FOURIER AND HARTLEY TRANSFORMS
FOR SOME QUOTIENT CLASS OF SEQUENCES
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In this paper we consider a class of distributions and generate two spaces of Boehmians for certain class of
integral operators. We derive a convolution theorem and generate two spaces of Boehmians. The integral
operator under concern is well-defined, linear and one-to-one in the class of Boehmians. An inverse problem
is also discussed in some details.
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1. Introduction

Integral transforms have been introduced and found their applications in applied
mathematics and diverse fields of science. The Hartley transform is an integral transformation
that maps a real-valued temporal or spacial function into a real-valued frequency function via
the kernel cas(-) = cos(-) +sin(-). Advantages of Hartley transforms comes over that of Fourier
transforms since they avoid the use of complex arithmetic which results in faster algorithms.
Hartley transforms can further be analytically continued into the complex plane, and for real
functions they are Hermitian symmetry or reflection in the real axis. In this article we consider
an integral transform related to Hartley and Fourier transforms defined for functions of two
variables as

gf(( €)= //f z,y)(acos (x + Bsin(x)(pcosy + nsiny) dx dy, (1)

where (¢,€) € R?2, R? = R x R are the transform variables and «, 3, p, n are arbitrary
constants.
A inversion formula of the cited integral be can easily recovered from (1) giving

// gg (awcos Cx + Bsin(z)(pcosy + nsiny) d¢ dE. (2)

In a special case, for « = § =1, p = n = 1, the integral transform (1) and the inversion
formula (2) are respectively reduced to the double Hartley transform A% pair (see [10])

A€ = //f x,y)(cos (x + sin (x)(cos {y + sin &y) dx dy (3)
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and
1
£ = 5 [ [ A%C€)(cos G+ sin Co)(eos €y + siny) d e (@
R R
Further, with simple computations, the kernel function
(cos Cx + sin (x)(cos £y + siny) = cas (z casy (5)
inside the integral signs can be written as
cas (x casvy = cos(Cx — &y) + sin(Cz + &y). (6)

Hence, the integral Equations (3) and (4) can also be rearranged in terms of (6) as

16,6 = o [ [ F@w)leos(Ga - &9) +sinica + &) dwdy ©
R R
and .
£ = 5 [ [ A%CE) cos(Ga — €9) + sinla + &) de de ®
R R
respectively.

By setting a = 1,8 =14,p = 1 and 1 = i, we derive the double Fourier transform F¢ pair,

FUCE) = 52 [ [ £ (cosGa + isinga)(cosCy + isingy) do dy (9)
R R
and
1 J . .
Fo0) = 5 | [ FUC€)cos Co -+ dsinga) cos Gy + dsin€y) e de. (10)
R R
By factoring A%((, &) into even and odd components, A%((, &) = Eq(¢,€) 4+ 04(¢,€), where
BG.&) = 5= [ [ £wwycos(Ga - ew)dody (1)
R R
and 1
0u(6.€) = 5= [ [ fawpsinio — ey dudy (12)
R R
we get

FU(,€) = Eq(¢,€) —i04(¢,€) and A%(C,€) = Re FU(¢,€) + Im F4((, €). (13)

Denote by .#? the Lebesgue space of integrable functions over R?; then the convolution
product of f(x,y) and g(z,y) in £? is defined by

(f 2 g)(z.y) = / / Fltw)gla — ty — w) dt du.
R R

We state and prove the following theorem.
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Theorem 1 (Convolution Theorem). Let f(z,vy),g(x,y) € £2. Then we have

HYL(f % 9)(C,€) = J(C,6)G(S,€),

where J((, &) and G((,§) are given by the integrals
J(C, &) = f(t, w) cos(t() cos(wf) dt dw
[

and

G((,€) ://4,8778111((2) sin(r&)g(z,r) dz dr.
R R

< Let f(z,y),9(z,y) € £?. Then by using the convolution product formula we have

Hﬁ?a (f *° 9) (¢€,¢) = // (f 52 g) (z,y)(acos(x() + Bsin(z())

x (p cos y&) nsin(yg)) dz dy

J (] [romme-s-wase)

x(cveos(aC) + Bsin(wC)) (p cos(yE) + nsin(ye)) da dy.

Change of variables x —t = z and y — w = r imply dx = dz and dy = dr and hence

HQZ (f*zg) (Cvf)://f(t,w)//g(z,r)(acosqz—|—t)+5sjng(z+t))
R R R R

X (pcos((r+w) + nsin(r + w)&) dz dr dt dw.

By aid of the facts cos(a+ ) = cos a cos f—sin asin 3 and sin(a+ ) = sin « cos f—sin [ cos «
and using simple computations we get

(72 9) €9 = [ [ 1w ott.w)duwae, (14)
R R

where

o(t,w) = cos(t() cos(wv //g z,1)(acos(2() + Bsin(zC)) x (pcos(r§) + nsin(rg)) dz dr
R R
— cos(t¢) sin(w§) //g(z,r acos(zC) + Bsin(z(¢)) x (psin(ré) —ncos(rf)) dz dr
R R
— sin(¢) cos wf)/ g(z,7)(asin(z¢) — S cos(2C)) (pcos(rf) + nsin(re)) dz dr

+ sin(t¢) sin(w§) //g z,7)(asin(z¢) — fcos(zC)) x (psin(rg) — ncos(rf)) dz dr.

R R
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Hence, in view of (15), we get
cos (t¢) cos(we) (HLB(C.€)) —

cos(t¢) sin(wé) (Hp’i?7 (€, &) —
HP (42 €)= £ w dt dw
o8 (/% 9) () R/R/f( ) sin(t¢) cos(wé) (Hpngg(C §))+

sin(t€) sin(wg) (Hhg(¢.€))
— ((Hgg — HYQ" - HY 4 Hz:g) g) (C,g)//f(t,w) cos(t¢) cos(wé) dt dw.
R R

This can be put into the form

HYE(f* 9) (¢,€) = ¥(9)(¢, ) x I (C,9), (15)

where ¥ = H’”7 H”B77 Hpnﬁ + HY™ ﬁ To complete the proof of the theorem, it is
sufficiently enough we show that ¥(g)(C, f) J((, ).
By aid of (15) we derive

(g)(¢,€) = ((HEL— HE " = HE 5+ HETY) 9) (G €)
= //(a cos(z¢) + Bsin(z(C))2n sin(ré) g(z,r) dz dr
R R

—//(a cos(z¢) — Bsin(z())2n sin(ré) g(z,r) dz dr.
R R

Hence, it follows that

U(g)(C,€) = / / 48y sin(=C) sin(re) g(z, 1) dz dr = J(C, ).
R R

Hence the theorem is completely proved. >

2. Distributional H/; transforms
Denote by .72 the space of smooth functions over ¢ defined on R? such that
ok, (p) = sup |7*p(x)| < oo,
xeK
where the supremum traverses all compact subsets K of R2. Denote by .7 2 the conjugate
space .72 of distributions of compact supports over R2. Then, due to Pathak [13], .72 defines

a norm and the collection gy, i is separating. Hence it defines a Hausdorff topology on .7 2,
It is easy to notice that the kernel function

K(C,& x,y) = (acos(Cx) + Bsin(¢z))(pcos(Ey) + nsin(gy)) (16)
of (1) is a member of .72 and hence, leads to the generalized definition
HEF(C€) = (f(2,y), K(C & 2,9)) (17)

where f is an arbitrary distribution in .7 2.
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Further simple properties of H” g can be derived from (17) as follows:

Theorem 2. Let f(z,y) € 9/2, then we have
(i) H.', is well-defined;

o
ii) H]s is linear;
/\

(
(iii) H? g is one to one;
(

iv) H)'} is analytic and

—

W
S22 16 = (£ K G )

and /\
HP 57

29
< Proof of Part (i) follows from (16). To prove Part (ii) Let o € R and Hp 5t Hg’gg be

16,6 = (Flon) K& ) ).

the H Zg transforms of f and g € 7 2, respectively. Then we have

o (HZLf + HYBg) = (@ (gla.v) + f.9)) K(C. &)

By the concept of addition of distributions we get
o (HZRS + HEg) (6.6) = (0" Fla), K (G, ,m) + (0”9, y), K (G, €, m)
Hence, scalar multiplication in the space 2 implies
a (@f—i— @g) ¢, 8 = oz*Hpnf + Hg:gg.

This completes the proof of the linearity axiom of H” ’".

To prove that Hp” is one-to-one, we assume H[}f = Hpﬁg Then we have

(f(z,9), K(C,§ z,y)) = <( y), K(¢,& x,y)) . Hence

(f(z,y) —g(x,y), K(, & z,y)) =0

in the distributional sense. Therefore, it follows that f(z,y) = g(x,y). This proves Part (iii).

To prove Part (iv) we refer to [13]. Hence the proof is completed. >

2 can be extended to 72 as

(f(z,y) " g(z,),0(x,9)) = (f(z,9), (g(t,w), o(t + =,y + w))) .

We state without proof the following theorem.
Theorem 3. Let f(z,y),g(x,y) € T 2. Then we have

HEL (f(2,y) #2 g(2,9)) (C,€) = J(C, E)GIC, &),

The operation

where

G(C,€) = 4pn (g(t, w), sin(t¢) sin(we)) ,  J(C,€) = (f (£, w), cos(t() cos(wE)) .

For similar proof see Theorem 1. Hence we delete the details.
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3. The quotient space of Boehmians

The idea of construction of Boehmians was initiated by the concept of regular operators.
Construction of Boehmians is similar to that of field of quotients and in some cases, it gives
just the field of quotients. The construction of Boehmians consists of the following elements:

(i) A set A;

(ii) A commutative semigroup (B, ) ;

(iii) An operation ® : A x B — A such that for each z € A and vy, v9, € B,

TGO (v *xvg) = (T O V1) O v

(iv) A set A C BY satisfying:

(a) f z,y € A, (vy) €A, x ©v, =y O v, for all n, then x = y;

(b) If (vp), (o) € A, then (v, x0,) € A (A is the set of all delta sequences).
Consider

o ={(xp,vn): Ty €A, (Up) €A, T,y © Uy, = Ty @ Uy, Vm,n € N}.

If (xn,vn)y (Yn,on) € A, Ty @0 = Y O Uy, Vm,n € N, then we say (2, vpn) ~ (Yn,0n). The
relation ~ is an equivalence relation in 7. The space of equivalence classes in &/ is denoted
by k(A, (B,x*),®,A). Elements of k(A, (B,*),®,A) are called Boehmians.

Between A and k (A, (B,*),®,A) there is a canonical embedding expressed as

T © Sy

Sn

T —

as n — oQ.

The operation ® can be extended to k (A, (B,x),®,A) x A by

@t:xn@t.
Up, Up,

Tn

In k(A,(B,*),©,A), two types of convergence:

1) A sequence (hy) € k(A, (B,*),®,A) is said to be d convergent to h € k(A, (B,x),®,A),

denoted by h,, 2hasn — 00, if there exists a delta sequence (v,,) such that (h, ©vy),
(h®wv,) € A, Vk,neN, and (h, ®vg) = (h®vg) as n — oo, in A, for every k € N.

2) A sequence (hy,) € kK(A, (B,x),®,A)is said to be A convergent to h € k(A, (B,*),®,A),

denoted by h,, Ahasn— 00, if there exists a (v,) € A such that (h, —h) © v, €
A VneN, and (hy, —h) ®v, - 0asn — oo in A.

For further details we refer to [1-9] and [11-14].
Let 92? be the Schwartz space of test functions of bounded supports over R? and A? be
the subset of 92 of sequences (0, (x,y)) such that

(i) [ [ On(z,y) dedy = 1;
R R

(ii) [ [|0n(z,y)| dvdy < M, M is positive real number;
R R

(iii) supp O,(z,y) — (0,0) as n — oo.
(z,y)ER?
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Then A? is a set of delta sequences which correspond to the delta distribution d(z,y). It is
know from literature that 6(z,y) =0, x # 0, y # 0 and [; [p (2, y)dedy =1 (= 0(z,y) =
0(z)d(y)). It also verified that

//5@: —a,y — B) f(w,y) du dy = f(a, B),
R R

where o and (8 are constants.
Let (6,(x,y)) € A2. Then it is easy to see that

(Hap:gén(x,y)> (¢,&) — % as n — oo.

Let £ (92, 22, A?, *2) be the Boehmian space having .72 as a group, 22 as a subgroup
of 72, 9? as the set of delta sequences and *? being the operation on .72 then we introduce
the following definitions.

Let f(t,w) € T2, 0(t,w) € 2% and (0,,(t,w)) € A% We will usually choose h(¢,€), g(¢, )
and ¢,(¢, &) to denote

0(¢.€) =480 [ [ f(t.w)sin(e¢) sinue) de o, (18)
R R
9(¢, &) ://H(t,w)cos(tg)cos(wf) dt dw, (19)
R R
en(C,8) = //Gn(t,w) cos(t¢) cos(w§) dt dw (20)
R R

provided the integrals exist.
Let J£2((,€) or 742 be the space of all HY; transforms of smooth functions (¢, ) such

that for some f(t,w) € 72 (18) satisfies. By J#2((, &) or #? denote the set of transforms of
9(¢, &) such that 0(t,w) € 2% and (19) satisfies and, similarly, A2(¢,€) or A2 denote the set
of all sequences e, (¢, &) such that for some (0, (¢, w)) € A% where (20) holds.

REMARK 1. Let (6,(t,w)) € A% Then we have

en(C,€) = //Hn(t,w) cos(t() cos(wf) dt dw — 1 as n — oc. (21)
R R

This remark is a straightforward result of (20). Now we are generating the Boehmian space
B (AP, A5 A, xP)
To this aim, we define an operation between %2 and J#? as

h(C. &) x* (¢, €) = (¢, £)a(¢, €)- (22)

We proceed to establish the axioms of the first construction.
Theorem 4. Let h((,€) € H32((,€) and g(¢,€) € H#E((,€). Then we have h((, &) x2
9(¢,€) € (G, 6)-

< Let §(C,€) € ARG, 9), 9(C,€) € HE(C.€). Then b(C,E)alC,€) = HL (f+20) (C,€) for
every f(t,w) € .72 and (t,w) € 22. But since f*>0 € 72 it follows that h(¢, &) x2 g(¢,€) €
2. This completes the proof of the theorem. >
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Theorem 5. Let b1(¢,€),h2(¢,€) € J42(¢,€). Then for a]l a(¢, &) € 2(¢,€) we have
(h1(¢,€) +h2(¢,€)) x*9(¢,€) = hl(( 5) X G(C,§)+62(C €) x* 9(¢.6).
< Let fi(t,w), fo(t,w) € 72 and 0(¢,€) € 9? be such that

bl(C,g):4617//fl(t,w)sin(tg“)sin(wf) dt dw,
R R

h2(¢, &) :4577//fg(t,w)sin(tg)sin(wﬁ)dtdw

and

R R
9(¢, ) ://H(t,w) cos(t¢) cos(w§) dt dw;
R R

then using the definition of x?

(h1(¢,€) +2(C,€)) x* 8(¢, &) = (h1(¢, ) +2(¢,€)) 8(¢,€)
= 01($,9)9(¢, &) +52(¢,£)a(¢,€) = 11(¢, &) x* 8(¢,€) + h2(¢,€) X 8(¢,€).
This completes the proof. >
Theorem 6. Leth;((,€),h2(¢, &) € H2((,€). Then for all g(¢,&) € H#E((, &) we have
(a*hl(g7€)) X2 g(C)é) =a” (hl(g7€) X2 g(C)é))

<1 Proof of this theorem is analogous to the previous proof. Details are omitted. >

Theorem 7. Let b,,(C,€) = §(C,€) in H2(C,€) and g(C,€) € HA(C,€); then by (C,€) x2
9(¢,€) = b(¢, &) x* (¢, €).

< Let (¢, €),0(¢,€) € H7(C,€) and g(¢,€) € H#5°(C, ) satisfy for some f,, f € 72 and
0 € 9?%. Then ofcourse f,, — f as n — oo. Therefore,

(b = 0)(¢,€) x? 8(¢,€) = (hn — H)(¢, )8(¢ )
8(¢,¢) / )(t, w) sin(t¢) sin(w€) dt dw — 0 as n — oo.
R

Hencea (hn - h)(C:g) X g(<7§) — 0 as n — o0.

From which we write,

(b —0)(¢,6)8(C, &) = bn(C,§)a(¢,§) = b(¢,§)a(¢,§) = 0 as n — oo.

Thus
bn(C,€) x*8(¢,€) = (¢, €) x* (¢, €) as n— oo.

This completes the proof of the theorem. >

Theorem 8. Let b, (¢, €) — (¢, €) and (¢e(C,€)) € AF. Then b, (¢, €) x*en(C, ) = h(C, §).

<A Let 5,(C,8€),0(¢,€) € H2(¢,€) and ¢,(¢,€) € A2 satisfy for some f,,, f € 72 and
(0,) € A2. Then employing Remark 1 gives

0(C.€) x? en(C.€) = 0a(C,€)en(C,€) = balC,€) = B((,€) as n— oo,

This completes the proof of the Theorem. >
Theorem 9. Let (¢,((,€)), (va(¢,€)) € A3. Then ¢,(¢,€) x2 v, (¢, €) € A3
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< By (22) we have

en(C,§) x? (€, 6) = en(C, §)tn(C,6) = jaﬁ (9 * en) .

Hence by the fact that 6, *? ¢, € A? it follows that Hgg (Hn 52 en) € A3. Hence the
Theorem 9 is proved. >
The Boehmian space & (%ﬂlQ, HE A2, x 2) is therefore constructed.

A typical element in % (%ﬁl A2 AR ) is of the form [—] Addition, multiplication by
a scalar, convolution and differentation in the space & (e%”f, S, Ag, ) are defined as

b L[] 2 B X%ty 4 0, X% ey
en Ty en X2 1,

K [h—n] = [R—bn] , K being complex number.
en en

o] e [ = [ o 2] - [52]
en L ey X2 Ty (2% Cn

A and d-convergence are defined as usual for Boehmian spaces.

4. H[J; of generalized Boehmians

From previous analysis given in this article we define the H gg transform of [g—:] as

-1

€n

where b, ¢, has the representation of (18) and (20).
It is clear that [h"]e%(%ﬁ,%@,Ag, ) Let [ ]—[ ] then f, *2 €, = gm *2 0.
Applying HJ P " transform and using the convolution theorem yleld

2

2
hnx = Oy X7 g,

(U
L

where b, tp,, O, ¢, have similar representations as in (18) and (20). Therefore 2—: ~
H bu] = [22]. Theref have H?" [{n] = HP" [92]. Therefore (23) is well-defined
ence [Z] = [E] erefore, we have H['} [%] =H. '} [5] erefore (23) is well-defined.
Following two theorem are straightforward proofs. We prefer we omit details.
~ =
Theorem 10. Hgg c B(T2, D%, N «%) — B (AP, A5, A3, x?) s linear.
~ =
Theorem 11. Hsg c B(T?, D%, A% «*) — B (AP, A5, A3, x?) is one-one.

Theorem 12. Hgg L B(T2, D%, A% «%) — B (A2, AP, A3, x?) is continuous with
respect to d convergence.
=
< Let B, — B in B(T? 2% A% %) as n — oo. We show that Hg:gﬁn — Hpgﬁ
in t%’(e%ﬂf,c%’éz,A%,xz) as n — oo. Let 8,,8 € 93(92,@2,A2,*2), then we can find
frges fre € 7?2 such that 8, = [f”—k'“] and § = [g—]’z] and fpr — frasn — oo, Vk € N
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Therefore H. T [f 7 ’“] = [h:—k’“] where b, 1, and ¢;, are the the corresponding integral equations

of fnr and Hk, see (18) and (20). Hence, we have
o [ fnk ]| _ Dok N e | _ 3
o, Qk CL CL

~ =
Theorem 13. Hgg D B(T?,D* N «%) — B(HAP2, A7, A3, x?) is continuous with
respect to A convergence.

< Let 8, A Bin B (T2 9% A% +*), as n — oo. Then there is f, € 72 and (0x(¢,€)) €
A? such that
fn X2‘9k]

O

The proof is completed. >

5u =) 50, = |
and f, — 0 as n — oo. Hence

fn % «91:] _ [f)n x? ¢y,

~
HE((Bn — B) X7 Ok) = H’J"[ }ﬁhn%%”%@-
’ O ek

Hence the theorem is completely proved. >

5. The inverse problem

-1

~ = =
Let [2—:} € B (72, #3?, A3, x?). Then the inverse transform Hgg of Hgg can be defined

by
—1

bn In
HPW — |1
w3 ] - 5
in the space 4 (92, 22, A?, *2) )
-1
~ =
Theorem 14. Hgg D B(AR, AP, NG, xP) — B(T2, 2% A% %) is a well-defined and

linear.

< Let [2—:] = [D—"] S (%”12,%”22,A§, ><2). Then it follows that b, (¢, &) x2 v,,((, &) =

tn

0 (C,€) X2 en(C, ), where
(€, €) = 4B / / Fult, w) sin(t€) sin(uwe) dt du,
R R
en(C,€) = / / B, (1, w) cos(tC) cos(w€) dt duw,
R R

0m(C.€) = 461 / / g () Sn(£C) sin(we) dt du,
R R

and

5) - //En(t,w) COS(tC) COS(wf) dt dw, en,‘gn € A2’ fn’g" € ‘72'
R R
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The meaning of x? then leads to

bn((a g)tm(gyé) = Dm((a g)en(gyé)

Therefore, (22) gives

HL (42 0m) (G,€) = HED (g % €n) (G,6). 2

Since H['} is one-to-one, (24) yields f, %2 0,, = gm *° €,. Thus g—z ~ &2 swhich then confirms

[g—z] = [g—:] This establishes that our transform is well-defined.
To establish linearity, we assume there are aj,a5 € C, field of complex numbers,

(2],

[g—:] € R (92,_@2,A2,*2), then

1 _1
P o1 fn + X9n _grn aifn % €, + a39n % O
@ 917, €n B Gn *2 €n
e oo ) ] ] g o] ]
en X2 Ty en Ty en L%

This completes the proof of the theorem. >

The author would like to express many thanks to the anonymous referee for his/her corrections
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OB OBOBIIEHIU ITPEOBPA3ZOBAHII ®YPHE 1 XAPTJ/IN /19 OJHOT'O

OAKTOP-KJIACCA IOCJIEJOBATE/JIBHOCTEI

Dab-Omapu 1. X.

B pabote paccmaTpuBaeTCss HEKOTOPBIN KJIACC PACIPEIEIEHUI U CTPOSITCS [1Ba IIPOCTPAHCTBA Boaxmuamos
JJ19 OTHOTO KJIACCA NHTETPAIBHBIX OII€PATOPOB. YCTAHABIUBAECTCS KOHBOIIOIIMOHHAS T€OPEMA OTHOCUTEhb-
HO TipocTpaHcTB Bosxmuanos. Bo3uukarommil mpu 3TOM WHTErPAIHHBIN OII€PATOP KOPPEKTHO OIIPEIeIeH,
JIMHEEH ¥ OIHO3HATHO 331ae€TCs COOTBeTCTBYIOmMM Bosxvmanom. B pabore Ttakke moapobHO paccMaTpu-

BaeTCd HEKOTOpad 06paTHa$I 3aJa4a.

KuroueBbie ciioBa: WHTErpaJibHOE TIpeobpa3oBaHme, mpeobpa3oBanne XapTiu, mpeoopa3oBanne Pypbe,

($aKTOp TIPOCTPAHCTBO.



