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Various convergences in vector lattices were historically a subject of deep investigation which stems from
the begining of the 20th century in works of Riesz, Kantorovich, Nakano, Vulikh, Zanen, and many
other mathematicians. The study of the unbounded order convergence had been initiated by Nakano in
late 40th in connection with Birkhoff’s ergodic theorem. The idea of Nakano was to define the almost
everywhere convergence in terms of lattice operations without the direct use of measure theory. Many
years later it was recognised that the unbounded order convergence is also rathe useful in probability
theory. Since then, the idea of investigating of convergences by using their unbounded versions, have
been exploited in several papers. For instance, unbounded convergences in vector lattices have attracted
attention of many researchers in order to find new approaches to various problems of functional analysis,
operator theory, variational calculus, theory of risk measures in mathematical finance, stochastic processes,
etc. Some of those unbounded convergences, like unbounded norm convergence, unbounded multi-norm
convergence, unbounded 7-convergence are topological. Others are not topological in general, for example:
the unbounded order convergence, the unbounded relative uniform convergence, various unbounded
convergences in lattice-normed lattices, etc. Topological convergences are, as usual, more flexible for
an investigation due to the compactness arguments, etc. The non-topological convergences are more
complicated in genelal, as it can be seen on an example of the a.e-convergence. In the present paper
we present recent developments in convergence vector lattices with emphasis on related unbounded
convergences. Special attention is paid to the case of convergence in lattice multi pseudo normed vector
lattices that generalizes most of cases which were discussed in the literature in the last 5 years.
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1. Introduction

A convergence [s-convergence| ¢ for nets [resp., for sequences| in a set X is defined by the

following two conditions:

(a) o = T = To —> 2 [resp., T, = T = T, — 2];
(b) o —z = zg —= 2 for every subnet xg of x4 [resp., z, = T, —s x for every

subsequence x,, of z,].

A convergence set is a pair (X, c) where ¢ is a convergence in a set X. A mapping f from

. . . . . C
a convergence set (X7,€1) into a convergence set (Xo,C2) is said to be continuous, if zo — x

implies f(zq) — f(z). s-Continuity of f is defined by replacing nets with sequences.
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A subset A of (X, c) is called: c-closed if A > z, 51 = x € A; c-compact if any net
aq in A possesses a subnet ag such that ag —5 a for some a € A. sc-Closedness and sc-com-
pactness are defined by using sequences. If the set {x} is c-closed for every z € X then c is
called Ti-convergence. It is immediate to see that ¢ € T3 if every constant net x, = x does
not c-converge to any y # x. For further information on convergences we refer to [1, 2|.

In the present paper, we investigate several special convergences in real vector lattices.

Under convergence in a vector lattice X we always understand a convergence € in the set X,
which agrees with the linear and lattice operations in the following way:

X3z0—>2, X3ys—y, Ror, —r

imply
rv-xa—i—yglw'-x—i-y (1)

and

Ty Ta ANYs—T T AY. (2)

In other words, the linear and lattice operations in X are continuous with respect to the
c-convergence in X and to the usual convergence in R. In this case, we say that X = (X,c) is
a convergence vector lattice. s-Convergence vector lattices are defined by using in (1) and (2)
sequences instead of nets.

A net z,, [resp., a sequence z,,| in (X, c) is called a ¢-Cauchy, whenever

(o —28) —0 [resp., (zm —zn) —0 (m,n — o0)]. (3)

A convergence vector lattice (X,c) is said to be c-complete [resp., sc-complete], if every c-
Cauchy net [resp., c-Cauchy sequence| in X is c-convergent.
A Tj-convergence €1 in a vector lattice X is said to be minimal [s-minimal], if for any other
Ti-convergence ¢ in X satisfying o —= 0 = x4 — 0 for all nets z, in X [resp., z, 0=
[} . .
x, — 0 for all sequences x,, in X], it follows that ¢ = ¢;.
A convergence ¢ in a vector lattice X is said to be Lebesgue [resp., s-Lebesgue], if for every
net x, [resp., for every sequence x,| in X

[respectively,
Ty~ 0 =, —0)]. (5)

It follows from (4), (5) that every Lebesgue convergence is s-Lebesgue.

Basic examples of convergence vector lattices are: a locally solid vector lattice X = (X, 1)
with its 7-convergence [3]; a space of Lebesgue measurable functions on [0, 1] with the almost
everywhere convergence, that is a sc-Lebesgue convergence; a vector lattice X with the o-con-
vergence |RU-convergence| [4]; a lattice normed vector lattice (X, p, E') with the P-convergence
[5, 6]. For more details, see [3—10].Recently, o- and vo-convergence were investigated in [7;
11-16] with some further applications in [17-19].

In the present paper, we introduce several further convergence lattices and investigate
corresponding unbounded convergences.

The second author expresses deep gratitude to Prof. Anatoly Kusraev for his decisive
impact on the author’s choice of the functional analysis as his research area 29 years ago.
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2. Examples of convergence vector lattices

In this section, we collect and shortly discuss several examples of convergence vector
lattices. The convergences in Examples 2, 3, and 4 below are topological in the sense that
there is locally solid topology 7 such that the 7-convergence coincided with the corresponding
c-convergence.

EXAMPLE 1. Let X be a vector lattice. Clearly, (X, —2) is a T}-convergence vector lattice.
Furthermore, (X, ~%) is a convergence vector lattice, where “—>” is T} iff X is Archimedean
(cf. 3, 4, 8, 9, 10]).

In a Lebesgue and complete metrizable locally solid vector lattice, x4 piff zy Sz
[20, Proposition 3]. It was also shown in [20, Proposition 4] that, in R?, =57 is equivalent
to “—=” for nets iff Q is countable. Furthermore, it was proved that the o-convergence in X
is topological iff dim(X) < oo [11, Theorem 1|, and that the rRu-convergence is topological
iff X has a strong order unit [20, Theorem 5]. It is worth to notice that the so-convergence
in a Banach lattice X of countable type coincides with the norm convergence iff X is lattice

isomorphic to ¢y |21, Theorem 1].

EXAMPLE 2. Let .# = {m¢}¢c= be a family of Riesz seminorms on a vector lattice X.
If, for any 0 # = € X, there is m¢ € .# such that me(x) > 0, (X, .#) is said to be a multi-
normed lattice (cf. |10, Definition 5.1.6]), abbreviated by MNL, with the Riesz multi-norm # .
Convergence in a Riesz multi-norm (1-convergence) was studied recently in [7].

MNLs are also known as Hausdorff locally convex-solid vector lattices (cf. |3, p.59]).
Note that now-days the name “multi-normed space” is also used for quite different class
of spaces [22].

EXAMPLE 3. Given a vector lattice X, a function 7 : X — R is called a Riesz pseudos-
eminorm (cf. [3, Definition 2.27]), whenever:

(a) r(z+y) <r(x)+r(y) for all z,y € X;

(b) limy,—y00 7(apx) =0 for all z € X and for all R > o, — 0;

(©) Iyl > J2| implies r(y) > r(z).

If r(x) # 0 for any 0 # = € X, r is called a Riesz pseudonorm and (X,r) is said to be
a pseudonormed lattice (abbreviated by PNL).

The convergence in a PNL is rather similar to the norm convergence in a normed lattice
except of possible lack of a locally convex base for the corresponding topology.

The next example presents a convergence which generalizes convergences from Examples 2
and 3.

ExAMPLE 4. We say that a collection # = {r¢}¢cz of Riesz pseudoseminorms on X is
a Riesz multi-pseudonorm, if for any 0 # x € X, there is r¢ € #Z with 7¢(x) > 0. In this case,
(X, Z) is said to be a multi-pseudonormed lattice (abbreviated by MPNL).

Notice that, by the Fremlin theorem (cf. [3, Theorem 2.28]), MPNLs are exactly the locally
solid vector lattices.

The Riesz multi-pseudonorm convergence (Mp-convergence) in (X, %),

To By = (Vre € R) re(z —x4) = 0, (6)

coincides with 7-convergence, where 7 is the corresponding locally solid topology in (X, Z).
ExXAMPLE 5. Given vector lattices X and E, a function p: X — E_ is called an E-valued
Riesz seminorm (cf. [4, 9]), whenever:
(a) p(x +y) < p(z) + p(y) for all z,y € X;
(b) plax) = |af - p(z) for all z € X, a € R;
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(¢) |yl = |=| implies p(y) > p(z).

If, additionally, p(x) # 0 for any 0 # x € X, we say that p is an E-valued Riesz norm.

A vector lattice (X,p, F) equipped with an FE-valued Riesz norm p is called a lattice
normed lattice (abbreviated by LNL).

Several types of convergences in lattice normed lattices were studied recently in [5, 6, 23].
One of the most interesting convergences here is the P-convergence:

Lo -1 <= pla—z4)—=0. (7)

Notice that, the P-convergence in (X, |- |, X) coincides with the o-convergence in X which is
not topological if dim(X) = occ.

EXAMPLE 6. A vector lattice X = (X,.#,FE) equipped with a separating family
M = {p¢}eez of E-valued Riesz seminorms is said to be a lattice multi-normed lattice (ab-
breviated by LMNL). The corresponding convergence:

To By = (Vpe € M) pe(x —x40) —0 (8)

is called the Lr-convergence. Clearly, any LNL is an LMNL.

EXAMPLE 7. Given two vector lattices X and E. A function p : X — FE, is called an
FE-valued Riesz pseudonorm, whenever:

(a) plz +y) < p(x) + p(y) for all z,y € X;

(b) plapz) 230 forall 2z € X and R 3 o, — 0;

(c) |yl > |z| implies p(y) = p(z);

(d) x # 0 implies p(z) # 0.

If condition (d) is dropped, p is said to be an E-valued Riesz pseudoseminorm.

A vector lattice X equipped with an FE-valued Riesz pseudonorm p is called a lattice
pseudonormed lattice (abbreviated by LPNL and denoted by (X, p, E)). The corresponding
convergence:

Lo =2 <= p@—1x4)—0 (9)

is called, as in Example 5, the p-convergence in (X, p, E). Clearly, any LNL is an LPNL.
Our last example presents a convergence which generalizes convergences from all previous
examples except the RU-convergence from Example 1.

EXAMPLE 8. A family #Z = {p¢}eez of E-valued Riesz pseudoseminorms is said to be
separating whenever, for any 0 # = € X, there is p¢ € % such that pe(z) > 0. If Z is
separating, we call it an E-valued Riesz multi-pseudonorm.

A vector lattice (X, %, E) equipped with an E-valued Riesz multi-pseudonorm % is said
to be a lattice multi-pseudonormed lattice (abbreviated by LMPNL). The corresponding

convergence:

:calm—p>m = (Vpe €R) pe(x —10) -0 (10)

is called the LmP-convergence.

3. Unbounded convergences

Various unbounded convergences have been investigated recently in |5, 7, 11-16, 18, 20, 24—
29, 30-32]. This section is focused on the unification of approaches for unbounded convergences
in different settings. After this, we discuss several types of unbounded convergences related
to examples in Section 2.
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3.1. General facts. Let I be an ideal in a convergence vector lattice (X, ¢). The following
definition is motivated by the definition of wun-convergence with respect to an ideal I of
a normed lattice (X, || - ) [14].

DEFINITION 1. The wunbounded c-convergence w.r. to I (shortly, ujic-convergence)
is defined by
To =Sz if 2o —z|Au——z forall wel,. (11)

It follows directly from (1) and (2), that (X,u;c) is a convergence vector lattice, where
uice Ty <= ceT; and [ is order dense.

Furthermore, the ujc-convergence is coarser than ¢ and uyuyc = uye. Thus, if I is order dense
and ¢ is 77 and minimal, then uv;c = c. If ¢ is topological, then u;cC is topological as well
(cf. [20, 30]). Unbounded c-convergence w.r. to I = X is denoted by uc.

The vo-convergence was studied recently in |11, 13, 16, 18, 27, 28, 31]. The un-convergence
was introduced and investigated in [12] (see also [14, 15, 29, 32]). We refer to [5, 6] for the
UP-convergence; to [7] for the ur-convergence; and to [20, 29, 30, 31, 33] for the uT-convergence.

It may happened that a c-convergence is not topological, yet the uc-convergence is topolo-
gical. For example, if X is an atomic order continuous Banach lattice, then the vo-convergence
in X is topological [12, Theorem 5.3], whereas the o-convergence in X is not topological except
dim(X) < oo [11, Theorem 1].

The following proposition is a uc-version of [13, Proposition 3.15] (cf. also [5, Propositi-
on 3.11] and [30, Proposition 2.12|). Since its proof is similar, we omit it.

Proposition 1. Let ¢ be a Lebesgue Tj-convergence in a vector lattice X and Y a sub-
lattice of X. Y is uc-closed iff it is c-closed.

It was shown in [30, Theorem 6.4] that in a Hausdorff locally solid vector lattice (X, )
the T-convergence minimal iff it is Lebesgue and ur = 7. The question, whether or not any
Ti-convergence in a vector lattice is minimal iff it is Lebesgue and uc = ¢, remains open.

Two further questions arise in the case of topological uc-convergence (i. e. UC is a T-conver-
gence for some locally solid 7 in X). Under which conditions the topology 7 is locally convex?
Metrizable? In the case of N-convergence (norm convergence) in a Banach lattice X, it was
proved that: (1) un-topology is metrizable iff X has a quasi-interior point [15, Theorem 3.2];
(2) if X is order continuous, then (X, un) is locally convex iff X is atomic [15, Theorem 5.2].
In the general case, no investigation was conducted yet.

3.2. vo-Convergence and URU-convergence. The vo-convergence was studied deeply
in many recent papers (cf. [11-14, 26-28, 31]), whereas the URU-convergence was investigated
in [5, 7, 11, 20]. It was proved [20, Proposition 3] that in a Lebesgue and complete metrizable
locally sohd vector lattice X, x4 — & <= x4 —> x for every net x,. In [20, Proposition 4],
it was shown that, in X = R®, “25 is equivalent to “—2” for nets iff Q is countable.
Furthermore, it was proved in [11], that the o-convergence is topological iff dim(X) < oo [11,
Theorem 1|, and that the RuU-convergence is topological iff X has a strong order unit [11,
Theorem 5].

3.3. un-Convergence and uT-convergence. Recently, ur-Convergence was studied
in [7], whereas uT-convergence in [7, 29, 30, 33]. Among other things, it was shown that in
a metrizable m-complete MNL (X, .#) the ur-convergence is metrizable iff X has a quasi-
interior point [7, Proposition 4]. In [20, Proposition 5] it was shown that in a complete
metrizable locally solid vector lattice (X, 7) with a countable topological orthogonal system,
the uT-convergence is metrizable.
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Notice that, in the case of the m-convergence in an MNL (X,.#) with the Riesz multi-
norm .# = {mg¢}¢ecz, the ur-convergence in X is the mpP-convergence in the MPNL (X, %),
where # = {m¢ ., }¢ezuex, is given by

meu(x) =me(jz| Au) (E€E, ue Xy). (12)

In the case of a locally solid vector lattice (X, 7), in order to describe the ur-convergence,
we consider a Riesz multi-pseudonorm on X, say & = {p¢}ecz, generating topology 7 (such
a Riesz multi-pseudonorm exists by the Fremlin theorem). Now, the ur-convergence in X
is the mP-convergence in the MPNL (X, %), where #Z = {p¢.u}ec=uex, is given by:

peal®) = pellal Aw) (€ €Z, ue X,), (13)

3.4. Unbounded p-, 11-, and LrP-convergences. The up-convergence was introduced
and investigated in [5]. As in (12) above, it can be seen that the uP-convergence in X is the
LiP-convergence in the LMPNL (X, 2, F), where & = {m, }uex, is given by

mu(2) = plz| Au)  (ue Xy). (14)

In the case of an LMNL X = (X, .#, E) with the E-valued Riesz multi-norm .# = {p¢}¢c=,
the vLv-convergence in X is the LvP-convergence in the LMPNL (X, 2, F), where & =
{Wg,u}geaue x, consists of E-valued Riesz pseudoseminorms 7¢ ,, defined by

Teu(®) = pelfz| Au) - (z € X). (15)

Furthermore, in the most general case of the LMP-convergence from Example 8, we have the
following proposition, whose straightforward proof is omitted.

Proposition 2. Let X = (X, %, E) be an LMPNL with the E-valued Riesz multi-pseu-
donorm % = {p¢}ec=. Then the uLmp-convergence in X is the LvP-convergence in the LMPNL
(X, Z,E), where & consists of E-valued Riesz pseudoseminorms ¢ ,,

Teu(®) = pe(|z] Au)  (z € X) (16)

forall ¢ e Z,u e X,.

For more results on uUP-convergence we refer to [5, 6, 24, 25].
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HEOI'PAHUYEHHBIE CXOANMOCTU
B KOHBEPTEHTHBIX BEKTOPHBIX PEIITETKAX

Habypacan FO., Emenssinos 9. FO.

Wcropuwecku, pa3zHooOpasHble CXOAUMOCTH B BEKTODHBIX DENMIETKAX SBJISAJINCH MIPEIMETOM TIyOOKUX WC-
CJTeJIOBAHUI BOCXOIAMNX K Hadaay XX Beka. V3ydeHne HeOrpaHWYIEHHON MOPSIKOBON CXOAMMOCTH OBLIO
nannmrpoBano Hakano B komre 40-X romoB, B CBSI3M € 3proamdeckoit Teopemoit Bupkroda. Uaes Haka-
HO 3aKJ/I09aaCh B TOM, YTOOBI OMPEIETUTh CXOAUMOCTD TOYTH BCIOAY B TEPMHUHAX PEMIETOYHBIX OIlepa-
it 6€3 TPSAMOTO WCIOJIb30BAHUs TeOPUU MePbl. MHOTO JieT CIyCTsl BBISICHUJIOCH, 9TO HEOTPAHWYEHHAS
TIOPSAIKOBasi CXOAWMOCTh BEChMa TIOJIE3HA B Teopwu BeposTHOCTel. C Tex Mmop uies WCC/IeI0BAHUS Pa3-
JIMIHBIX CXOJIMMOCTEH C TIOMOIIBIO X HEOTPAHUIEHHBIX BEPCUIN MCITOIB3YeTCS B PAIUIHBIX KOHTEKCTAX.
Hanpumep, HeorpanndeHHbIE CXOAMMOCTA B BEKTOPHBIX PEIIETKAX HPUBJIEK/IN BHUMAHUE MHOTUX KCCJIe-
J0BaTeJIei [jIs TOTO YTOOBl HANTH HOBBIE TIOAXOABI K PA3JIUYHBIM MpobIeMaM (PyHKIIMOHAJIHFHOTO aHAJIU-
3a, TEOPHUHU OIEPATOPOB, BAPUAIMOHHOIO UCYKUCJIEHNS, TEOPUH PUCKOB B (DUHAHCOBON MaTeMaTUKE U T. JI.
HexkoTopbie HEOTpaHWYEHHBIE CXOMMOCTH, TAKWe KAK HEOTPAHWYEHHAs] CXOJAMMOCTH M0 HOPME WJIU MYJIb-
TUHOPME, HEOTPAHUYEHHAS T-CXOAUMOCTD, SIBJSIOTCS TOMOJOTUYEeCKUMU. /Ipyrue mpuBeIeHHbIe CXOTUMO-
CTH He SBJSIOTCH TOIMOJIOTUIECKUMH B OOIIEM Ciiydae, HAIPUMeD: HEOTPAHWYEHHAs! MOPSIIKOBAS CXOIU-
MOCTh, HEOTPAHUYEHHAs OTHOCUTEJIbHAsI PABHOMEPHAS CXOINMOCTH, PA3IUYHBIE HEOTPAHUIEHHBIE CXOIU-
MOCTH B PENI€TOYHO-HOPMUPOBAHHBIX PEIIeTKaX, W T. 1. B HacTosIel paboTe mpeacTaBIeHbl TOC/IETHIE
HanboJIee JaCTO WCIOJIb3yeMble CXOAUMOCTHA B BEKTOPHBIX PeINIeTKaX, ¢ aKIEHTOM HA COOTBETCTBYIOMINX
HEOTPAHWYEHHBIX CcXoauMocTax. Ocoboe BHUMAHUME YIE/ISeTCS CAYyYar CXOAUMOCTH B PEIETOYHO MYJIh-
THUTICEBIOHOPMUPOBAHHBIX BEKTOPHBIX PEIIeTKaX, 0600Ma0mux GOTHITHHCTBO CJIYYAeB, 00CYKIABITUXCS
B JIUTEPAType 33 IOCJIeIHUE 5 JIeT.

Kuarouesbie cjioBa: KOHBEPTE€HTHadA BEKTOPHAd PENIETKa, PEMEeTOYHO-HOPMUPOBAHHOE TIPOCTPAHCTBO,
HeOrpaHu4YeHHad CXOAUMOCTbD.



