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1. Introduction

Throughout the paper unless otherwise stated, H denotes a real Hilbert space, we denote
the norm and inner product of H by (.,.) and norm |.||, respectively. The set C' (C' being
a nonempty closed convex subset of H) is called proximinal if for each x € H, there exists
an element y € C such that ||z — y|| = d(x,C), where d(z,C) = inf{||z — 2|| : z € C}.
Let CB(D), K(C) and P(C) be the families of nonempty closed bounded subsets, nonempty
compact subsets, and nonempty proximinal bounded subsets of C', respectively. The Hausdorff
metric on CB(C) is defined by

H(A, B) = max { supd(z, B), sup d(y,A)}, A,B e CB(C).
€A yeB

A multi-valued mapping T : C' — 2 is said to be nonexpansive if H(Tz,Ty) < ||z — y|| for
all z,y € C. An element p € C is called a fixed point of T : C — 2¢ if p € Tp. The fixed
points set of T is denoted by Fix(T).

The problem of finding a common element of the set of solutions of equilibrium problems
and the set of fixed points for single-valued mappings in the framework of Hilbert spaces

(© 2021 Sahebi, H. R.



Nonlinear Viscosity Algorithm with Perturbation for Nonexpansive Multi-Valued Mappings 61

has been intensively studied by many authors, for instance, see [1-5] and the references cited
therein.

Ceng et al. [6], introduced the following generalized equilibrium problem with pertur-
bation: Find z* € C such that

f*y) +{(A+B)z*,y —2*) >0 (VyeO), (1.1)

where A,B : C — H are nonlinear mappings and f : C x C — R is a bifunc-
tion. The problem (1.1) is very general in the sense that it includes, as special cases,
optimization problems, variational inequalities, minimax problems, Nash equilibrium problems
in noncooperative games and others |1, 4, 5, 7, 8|.

In 2016, Azhini and Taherian [9], motivated by [6, 10|, proposed the following iteration
process for finding a common element of the set of solutions of variational inequality (1.1)
and the set of common fixed points of infinitely many nonexpansive mappings {S, } of C' into

itself and proved the strong convergence of the sequence generated by this iteration process
to an element of F(PcS) = (o, F(PcSy).

1

n

Tn+l = 6nPCf(xn) + TYnTn + )\nPCSn[anz + (1 - an)un] (Vn € N)7

where B, + Vn + Ap = 1.

In 2019, Sahebi et al. [11] by intuition from [12-15| considered a general viscosity iterative
algorithm for finding a common element of the set general equilibrium problem system and
the set of fixed points of a nonexpansive semigroup in a Hilbert space as follows:

Un,i = TT};}Z (xn - Tn,iwixn)v
k
1 ;
Wn = % Z; Un, i (1.2)

Tnt1 = anYf(xn) + BnBry + ((1 —ep)] — BB — anA)i fnT(s)wn ds.
0

They proved that, the sequence generated by this algorithm under the certain conditions
imposed on parameters strongly convergence to a common solution of general equilibrium
problem system.

Many authors have shown the existence of fixed points of multi-valued mappings in Hilbert
spaces (see [16-19]). The study of multi-valued mappings is much more complicated and
difficult than that of single-valued mappings.

In this paper, motivated by the research going on in this direction, we introduce the
iterative algorithm for finding a common element of the set of fixed point of a nonexpansive
multi-valued mapping in a real Hilbert space. Some strong convergence theorems and lemmas
of the proposed algorithm are proven under new techniques and some mild assumption
on the control conditions. Finally, some numerical examples that show the efficiency and
implementation of our algorithm are presented.

The paper is structured as follows. In Section 2, we collect some lemmas, which are essential
to prove our main results. In Section 3, we introduce a new algorithm for finding a common
element of the set of fixed point of a nonexpansive set-valued mapping in a real Hilbert space.
Then, we establish and prove the strong convergence theorem under some proper conditions.
In Section 4, we also give some numerical examples to support our main theorem.
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2. Preliminaries

Let H be a Hilbert space and C' be a nonempty closed and convex subset of H. For each
point x € H, there exists a unique nearest point of C, denote by Prx, such that ||z — Poz|| <
lx — y|| for all y € C. Pc is called the metric projection of H onto C. It is well known that
P is nonexpansive mapping. Also, a mapping M : C' — H is said to be monotone, if

(Mz—My,z—y) 20 (Vz,y€C).
M is called a-inverse-strongly-monotone if there exist a positive real number « such that
(Mz — My,z —y) > a|Mz — My||*> (Vz,y€C).

It is obvious that any a-inverse-strongly-monotone mapping M is monotone and Lipschitz
continuous.
Recall that a mapping 7' : H — H is said to be firmly nonexpansive if

(Tw —Ty,x—y) > Tz — Tyl|* (Va,y € H).

It is also known that H satisfies Opial’s condition [20], i.e., for any sequence {x,} with
T, — x, the inequality
liminf ||z, — z| < liminf ||z, — y|| (2.1)

holds for every y € H with y # x. The following lemmas will be used for proving

the convergence result of this paper in the sequel.

Lemma 2.1 |21]. Let C' be a nonempty and weakly compact subset of a Banach space E
with the Opial condition and T : C — K(F) a nonexpansive mapping. Then I — T
is demiclosed.

Lemma 2.2 [22]. The following inequality holds in real space H :
lz +y)1? < l|z[* + 2{y, 2 +y) (Va,y € H).

Lemma 2.3 [23]. Let C be a closed and convex subset of a real Hilbert space H. Let
T :C — CB(C) be a nonexpansive multi-valued map with Fix(T) # @, and Tp = {p} for
each p € Fix(T'). Then Fix(T) is a closed and convex subset of C'.

Lemma 2.4 [24]|. Let F : C x C — R be a bifunction satisfying Assumption 2.1 and let
Tf be defined as in Lemma 2.5, for r > 0. Let z,y € H and t,s > 0. Then,

s—1
Iy =Tl < = ol + [ iy -

Lemma 2.5 [25]. Let C' be a nonempty, closed convex subset of H and let F': C x C — R
be a bifunction satisfying Assumption 2.1. Then for r > 0 and x € H, there exists z € C such
that F(z,y) + Yy — 2,2 —x) > 0 for all y € C. Further define

TrFx:{zeC: F(z,y)—l—%(y—z,z—@}@} VyeC)

for all ¥ > 0 and x € H. Then, the following hold:
(i) TF is single-valued.
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(ii) TF is firmly nonexpansive, i. e.,

(iii) Fix(TF) = EP(F).
(iv) EP(F) is compact and convex.

(@) - 1 )| < (TP @)~ TF @) ) (Vay e ).

Lemma 2.6 [26]. Assume that B is a strong positive linear bounded self adjoint operator
on a Hilbert space H with coefficient 4 > 0 and 0 < p < |B||~!. Then ||[I — pB|| < 1 — p7.

Lemma 2.7 |27, 28]. Let C be a closed and convex subset of a real Hilbert space H and
let Pc be the metric projection from H onto C. Given x € H and z € C. Then z = Pox
if and only if

(x —z,y—2) <0 (Vyel).

Lemma 2.8 [29]. Let {z,,} and {y,} be bounded sequences in a Banach space X and
{Bn} be a sequence in [0,1] with 0 < liminf, ,~ 8, < limsup,,_,., B, < 1. Suppose x, 1 =
(1 — Bn)Yn + Bnxy for all integers n > 0 and limsup,,_, o (|yn+1 — Ynl| — [|Zn+1 — znl]) < 0.
Then limp, o0 [y — @nl = 0.

Lemma 2.9 [10]. Let F' : C x C — R be a bifunction satisfying Assumption 2.1 and let
TF be defined as in Lemma 2.5, for r > 0. Let x € H and s,t > 0. Then,

|

Lemma 2.10 [30]. Let {a,} be a sequence of nonnegative real numbers such that a,41 <
(1 — ap)ay + 0p, n > 0, where «, is a sequence in (0,1) and 9, is a sequence in R such that
(1) 252 1 = 00;
(ii) limsup,,_,~ 2—:‘1 <0 or X920, < 00.
Then lim,,_, a, = 0.

e~ 1Fa|| < 2N 1E @) - 17 (@), T (@) - ),

Assumption 2.1. Let F' : C'’xC — R be a bifunction satisfying the following assumptions:
1. F(z,z) > 0 (Vz € O);
2. F is monotone, i.e., F(x,y) + F(y,z) <0 (Vz € C);

3. F is upper hemicontinuouse, i.e., for each x,y,z € C,

limsup F(tz + (1 —t)z,y) < F(x,y).
t—0

For each z € C fixed, the function x — F(x,y) is convex and lower semicontinuous.

3. A Nonlinear Iterative Algorithm

Let C be a nonempty closed convex subset of real Hilbert space H. Let F': C'x C — R be
a bifunction satisfying Assumption 2.1. Let M, N be two a-inverse strongly monotone and
[-inverse strongly monotone mappings from C into H, respectively. Recall that the set of all
solutions of problem (1.1) is denoted by GEPP, i.e.

GEPP = {gz €C: Fz,y)+(M+N)z,y—z) >0 (Vye C)}.

Let T' be a nonexpansive multi-valued mapping on C into K(H) such that © = Fix(T) N
GEPP # @. Also f : C — H be a a-contraction mapping and A, B be a strongly positive
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bounded linear self adjoint operators on H with coefficient ;3 > 0 and 72 > 0 respectively
such that 0 < v < 2L <+ é, 7 < ||A|l €1 and || B|| = 72.

Algorithm 3.1. For given x¢ € C arbitrary, let the sequence {x,} be generated by:

{un = T (wn — rn(M + N)zy); (3.1)

Tnt1 = Y f(xn) + BnBry + (1 —€y) — BB — anA)zy,

where z, € Tu, such that ||zp+1 — zn|| < H(Tunt1,Tuy).

Let {an}, {Bn}, {en} are sequences in (0, 1), {r,} C [r,00) withr > 0 satisfied the following
conditions:

(C1) limyyo0 py = 0, 0% 0ty = 005

(C3) limy, 00 [Tyt — 70| = 0, liminf, oo 7, > 0,0 < b < 71, < a < 2min{a, 3}.

Lemma 3.1. Let p € ©. Then the sequence {x, } generated by Algorithm 3.1 is bounded.
<1 We may assume without loss of generality that a,, < (1 — e, — B,/ B]|)||Al| 7. Since A

and B are linear bounded self adjoint operators, we have

[A]l = sup{[(Az, )| : = € H, ||z[| = 1},
IBll = sup{[(Bz, z)| : # € H, [lx] = 1}

observe that

(1= eI = BB — anA)z,x) = (1 — €,)(x, ) — Bp(Bx,x) — o (Az, z)
21— én = ful| Bl — | A]| = 0.

Therefore, (1 —€,)I — 3,B — a, A is positive. Then, by strong positivity of A and B, we get

(1 = )] — BuB — anAl| = sup {(((1 — )] — BuB — apA)z, )z € H, ||z = 1}
= sup {(1 —e)(z,x) — Bp(Bx,x) — an(Az,z) : x € H, ||z| = 1} (32)

Sl—€n—BuYe —anV1 < 1= BnY2 — anm.
Let p € © := Fix(T) N GEPP. Since p € GEPP, from [4, Theorem 3.1] we have

lun = pl* < llzn = plI? + (s — 28) || Mz, — Mpl|?

_ 9 5 (3.3)
+rn(rn = 2B)[|Nap — Np||” < [lzn —p|".
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Then ||u, — p|| < ||zn — pl|. We obtain

|lzn1 —pll = Han'Yf(xn) + BnBan + (1 — en)I — BnB — aA)zy — p”
< anl[vf(@n) — Apll + Bull Bxn — Bpll + enllpll + ||(1 — €x)I — Bn B — anA)||[[ 20 — pl|
< an(Ivf(@n) = vf DI + 7S (p) — Apll) + Bull Ban — Bpl| + enllpll

+(1 = BnY2 — an¥1)d(2n, T'p)

< apyallzn, — pll + anlvf(p) — Apll + BuYellzn — pll + axllpll

+(1 = BuAy2 — any1)H (Tuy, Tp)

< anyallzn = pll + ol f(p) = Apll + BuFallzn — pll + anllp] (3-4)

+(1 = B2 — 1) |lun — pl|
< (1= —ya)an)l|zn — pll + an(llpl + 1vf(p) — Apl)
’ lvf(p) — Apll + lel}

<nmx@mn—pn ]

7T
vf(p) — Ap|| + |lp
.<max{ux0—pu,” ({ | + | H}.
T a

Hence {x,} is bounded. This implies that the sequences {u,}, {z,} and {f(x,)} are
bounded. >

Lemma 3.2. The following properties are satisfying for the Algorithm 3.1.

P1. lim, 00 [|[Zn41 — x| = 0.

P2. limy, 00 |25 — tn] = 0.

P3. lim,, o0 [|[Mxy, — Mpl|| = 0 and lim,,_,« || Nz, — Np|| = 0.
P4. limy, 00 |2 — un|| = 0.

< P1: We have

[un+1 — unll = HTrnH(xn—I—l —rni1(M + N)zpi1) — T, (@0 — 70 (M + N)xn)H
< H(wn-l—l - rn—i—l(M + N)xn+1) - (xn - rn(M + N)xn)H

T - T
+ %HTHHA (@n41 = Tt (M 4+ N)apg1) = (@n41 — ragp (M + N)xn—i—l)H
n+
T —T
< ltmsr = aull + s =l [ + M(zps =)l + =0l a5
n+

where o1 = suppen | Tr, 41 (Tng1 — Pt (M + N)ang1) = (@1 = Tt (M 4 N)anga) |-
Setting Tp4+1 = €,y + (1 — €,)en, then we have

an-{—l’)/f(xn—l—l)+/8n+1an+1+((1 - En-l—l)I_/Bn—i—lB - an—l—lA)zn—l—l_en—i—lxn—i—l

€n+l — En=

1—énta
. an’Yf(xn) + Bp By + ((1 - En)I — BB — anA)Zn — €Epdnp
1—¢,
Oy Qn
= T (3 f (@ne1) = Aznsr) + 7 (A — 1f ()
— €n+1 1—e€,

1 —e€41 1—¢,

+ < /Bn 6n+1 >B(Zn+1 _ Zn) 4 ( €n €n+1 >(xn _ xn-i—l)-

l1—€¢, 1—e€p41 1—¢, 1—€p41

. ( Buvr B > B(Tns1 — Tn) + (sn1 — 2n)
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Using (3.5), we have

An+1

[ent1 — enll < ﬁ“’)’f Tn41) — - Aan
Bn+1 B
| — | Blll|#ns1 —
1-— €n+1 1-— €n
p ﬁ 1 €ntl €
+lzn+1 — 2l +‘ — - T o ||B\|||Zn+1 Znll + | —— = ——|[[Znt1 — T
— €n —€nt1 1 —e¢y
On+41
< 1n7||7f $n+1) Az || + 7 HVf (2n) — Az
Br+1 Bn
_ B _
2 1_@J|m%ﬂ |

/Bn ,BnJrl

l—€, 1—¢€p41

+ H(Tupsr, Tuy) + | BI|H (Tt 1, T

€n+1 €n
e 1_%H%H ol
(6
< T )~ A .
Br+1 B
_ B _
e 1_%HHWm1wM

| Bl[l[tn+1 = unll

B Brt1
Hltnt1 — unll + 1 - L |
n €En+1

€nt1 €n
+‘ = enpn  1-

(e

< On+t1

1-—

n Brt1  Dn
l—€ep41 1—¢,

H’Yf Tni1) — Azpia || + 1 inen |7f (2n) — Az|

|lZni1 — ol + 12041 — 2ol + |rog1 — 7l H(M + N)(@py1 — xn)”

IBTL N BnJrl

+ |Tn+1 - Tn|

it 2 (I2m1 = 2l + s =
Tn+1 1—e€, 1—enp
T 1—T € 1 €
<O+ W) e = )|+ Tl ) | L O ),
T'n+1 1-— €En+1 1-— €n
which implies
Apt1
len+1 — enll = [Zn41 — Tl < 1_7“’Yf Tpt1) — Aznp |
a Bn+1 p
A" |V () — Aza| + | — ([[zn41 — @n
1—¢, l—€epp1 1—¢,
|Tn+1 - Tn|
+|Tn+1 - Tn|H(M + N)(anrl - xn)H + ———0On+1
T'n+1
Bn IBTLJrl

+ 1—en_1—en+1

Thn+1 — T €En+1 €
+M0n+l> + n+t _ n
T'n+1 I —ént1 1—en

W(Wml—%m+Vm1—%mm4+NN%H—$MH

[Zn+1 — Znl|-
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Hence, it follows by conditions (C1)-(C4) that

limsup ([lens1 — enll = [n41 — 2all) <O. (3.6)
n—oo
From (3.6) and Lemma 2.8, we get lim,,_,~ ||e, — 2| = 0, and then
nh_)rgo [Znt1 — 2nl| = nli_)rréo(l —€n)llen —an| = 0. (3.7)

P2: We can write
Hxn - ZnH < Hxn-i-l - .%'nH + Han’)/f(xn) + /BnB«Tn + ((1 - en)I - 6713 - OénA)zn - Zn”
< Tng1 — 2ol + anllvf(2n) — Azl + Bul| Bxn — Bzp|| + €nll2nl|
< lznt1 — zoll + anllvf(@n) — Azl + Buyellzn — 2ull + €nllzall-

Then
(1= B )lzn — 2ol < lTna1 — zoll + anllvf(2n) — Aza|l + €nllznll-
Therefore
1 an e’l’L
Tn — 2n|| L ———||Tnt1 —xn| + = Tp) — Aty + ———||z
o = 2all < T W =l + Tl o) = At + 7=l
1 Qnp
< — — _ — A .
1— Bo7o [Znt1 — 20|l + 1— Bz (H'Yf(zﬂn) | + HZnH)

Since ay, — 0, ||[Tp4+1 — xn|| — 0 and (C2) we obtain

lim ||z, — z,]| = 0. (3.8)

n—o0

P3: From (3.3), we have

|zns1 = pI? = [|anyf (@) + BuBan + (1 = )] — BB — and)z, — p||”
= [|an (v (n) — Ap) + Bu(By — Bp) + (1 — €n)I — BB — 4y A) (20 — p) — €np||”
< (1= )] = BB = anA)(zn — p) + Bu( By — Bp) — enp’
+2(an(vf(xn) — Ap), Zpi1 — p)
< (1= Buro — 0w} d(zn To) + BallBll 7 — 2l + enllpl)

+ 200 (vf () — Ap, Ty — p) < ((1 — B2 — a1 ) H(Tuy, Tp)
2 (3.9)
+BalBllln = zall + eallpll) + 200 (3f(20) = Ap.zns1 = p)
2
< (1= Bu%2 = 1) ln = Pl + Bul Bllllen = 2l + el
+ 204n<'7f(xn) — Ap,py1 — p>
_ —\2
= (1= Bu%2 = ) wn = pI + (B2 BIPln = zal + (e0)? P
+2(1 = Bu¥2 — an$1) Ball Bl [ = pllen = 2l
+2(1 = Bu¥ = 1) nllpll [ = pll + 280eall Bl [lll2 = 2
+200 (7 f (20) = Ap, Tni1 — p)
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_ —\2 _
< (1= B2 = aw) (llzn = I + ralra - 28)|Ma, — Mp]?
+7(rn = 2B)|Nen = NpIP) + (B2 BIPllzn — 2l + (en)? oI
+ 2(1 - /Bn’_)? - an’?l)ﬁnHBHHun - pHHxn - zn”
+2(1 = B2 — anhr)ealplllun — pll + 2Bucal BllIpllen — 2
_ _\2
+ 200 (7 f (@n) = A, @nr1 = p) <l = pl* + (B2 + @) llzn —
_ —\2 _ =
+(1 = Bz — an1)* (ra(ra — 26) [ Mo — Mp|® + ra(r — 28) [ Nan — Np|?)
+(Bu)?1BIP 1z = zal? + (en)[IPI2 + 2(1 = B2 = ) Bull Bl wn = Pl = zul
+2(1 = 8% — awTa)enllpllllun — pll + 2Bueall Bl Pl ln = 20l
+ 200 (v f (zn) — Ap, Tny1 — p)-

By (C3), we can write

_ _\2 _ =
(1 — Buy2 — Ofn'Yl) (Tn(Qa — ) ||[Mxy, — MPH2 + 70 (28 — 1) [ Nwyy — Np||2)

< lwn =PI = lenss = Pl + (BuT2 + o) *lon — Pl + (B2 BI n — 201 + ()2 ]|
+2(1 = Bu¥2 — 1) Bul Bllllun — pllllzn — 2l +2(1 = Ba2 — an1) anllpllun — pl]
+2Bnenl| Bllllpllzn — 2]l + 200 (v f (20) — Ap, 241 — p)
< (len — 2l + lns1 = pl) l2n — 2nsrll + (BaT2 + o) llzn — pI? + (B2) 2 BI2 |20 — a2
+(an)?Ipll” +2(1 = Ba2 — anh1) Bul Blllun — pllll2n — 2nll
+2(1 = B2 — an1) an|pllllun — pll + 2Bnenl|Bll[Ipll 20 — 2nl|
+2an<7f(xn) — Ap, Ty _p>'

By a, = 0, ||2pt1 — zn|| = 0 and |2, — 2,|| — 0, then we obtain | Mz, — Mp| — 0 and
|INz,, — Np|| — 0 as n — oc.
P4: Since p € ©, we can obtain

lun = plI? < llzn = ol = llun = zall® + 2rnllun — 2| (| M2y — Mpl| + | Nan — Npl)).

It follows from (3.9) that

lzn1 —plI? < (1= Buz — an®1) “llun — pIP + Ba) 21 BIP 10 — 2all® + (n)? (2]
+2(1 = Ba2 — an1) Bl Blll[un — pllllzn — 2l
+2(1 = B2 — an1) eallpllllun — pll + 2BnenlBlllIpll |20 — 2nll
+ 2an<7f(xn) — Ap, Tpg1 — p>

_ —\2
< (1= 832 = )’ (llzn = pI? = lfun = 2
+2n||un — x| ([ M2n — Mpl| + [ N, — NPH)) + (B2)* | Bl ln — 2n?

+(€n)?IplI” + 2(1 = Bu2 — an¥1) Bull Bllllun — plll|n — 20l
+2(1 = Bz — anh1)enllplllun — pll + 2Bnenl Blll|pll[|2n — 2ul
+20 (v f (Tn) — Ap, Zpy1 — p)-
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Therefore

(1= Bu72 = ) lln = 2l < llzn = plI* = llenss = plI* + (B2 + anh) ln — ol
+ 2 (1= B2 — an1) *[ltn — 0| (| M0 — Mp]| + [Ny — Np) + (82)*| Bl [n — 20|
+(en)?[I1? +2(1 = Bu¥2 — 1) BullBllllun — plll|zn — 20l
+2(1 = Bu¥2 — an¥1) &bl [lun — pll + 2Bnenl Bllplllzn — 2
+ 200, (v f (20) — Ap, Tny1 — p)
< (Hxn —pll + [[Tn41 — pH) |Zn — Tpy1 |l + (Ba¥e + Oén’_Yl)QHxn - pH2
+2r (1= B2 — an¥1) [lun — | (| M — M| + [Nz — Np||) + (Ba) 2| BIP [ 2n — 20
+Hen)? [Pl + 2(1 = Bu2 — an¥1) Bal| Bl un — plll|n — 2]
+2(1 = Ba2 — an¥1) enllpllllun — pll + 2Bnenl Blllplll|lzn — 2
+ 20, (v f(xn) — Ap, Zns1 — D).

Since ay, — 0, ||xp41 — 20|l = 0, | Mz, — Mp|| — 0, |Nzy, — Np|| — 0 and ||z, — 2,]| — 0 as

n — oo and we obtain
lim ||z, — uy,|| = 0. (3.10)

n—oo

Using (3.8) and (3.10), we obtain ||z, — up|| < ||zn — znl| + ||Zn — un|| = 0, as n — co. Then
limy, 00 |20 — upl| = 0. >

4. Strong Convergence Algorithm

Theorem 4.1. The Algorithm defined by (3.1) convergence strongly to z € Fix(T) N
GEPP, which is a unique solution in of the variational inequality ((vf — A)z,y — z) < 0 for
ally € ©.

< Let s = Pg. We get

[s(I = A+~f)(x) —s(I = A+ )W < T = A+~f)(z) =T - A+~vf )W)l
< = Allllz =yl + 911 f (@) = fFW)l < A =F)llz —yl| +vellz =yl
= (1= —va)lz —yl.

Then s(I — A + ~f) is a contraction mapping from H into itself. Therefore by Banach
contraction principle, there exists z € H such that z = s(I — A+f)z = Prixr)nepp(l — A+
1)z

We show that ((vf — A)z,x, — 2z) < 0. To show this inequality, we choose a subsequence
{zp,} of {x,,} such that

limsup ((vf — A)z, @, — z) = lim ((vf — A)z, 2y, — 2). (4.1)
n—oo 11— 00

Since {zy, } is bounded, there exists a subsequence {xm]} of {z, } which converges weakly

to some w € C. Without loss of generality, we can assume that x,,, — w. Now, we prove that

w € Fix(S) N GEPP. Let us first show that w € Fix(S). From ||z, — uy| — 0, we obtain

Up, — w. On the other hand lim,,_, ||z, —uy, || = 0 and by Lemma 2.1, I—T is demiclosed at 0.

Thus, we obtain w € Fix(T"). We show that w € GEPP. Since u,, = T, (v, — rn(M + N)x,,).
we have

1
F(unvy)+<(M+N)xnay_un> +_<y_unvun_xn> 20 (Vy S C)

Tn
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It follows from the monotonicity of F' that
(M + N)an,y — up) + %(y — Uny Uy — ) 2 Fy,u,) (VyeC)
which implies that
<(M + N)xy,,y — unz> + Tinz@ — U, Un, — :cm> > F(y,un,) (VyeC).

Let uy =ty + (1 —t)w for all t € (0,1]. Since y € C and w € C, we get u; € C. It follows that

<ut —uni,(M+N)ut> > <ut —uni,(M+N)ut> — <ut —uni,(M+N)xni>

Up, — Tn,
_<Ut _Unia%> +F(ut’um) = <ut _uni’(M+N)ut - (M+N)unz>
n;

Up, — T,
+<ut — Up,;, (M + N)uy,, — (M +N)xm> — <ut — Up,, %> + F(ug, un,)
n;

= <ut — Up,;, Mus — Munz> + <ut — Up,;, Nup — Nuni>
+<ut — Up,;, My, — M$n2> + <ut — Up,, Ny, —N:Cm>

Up; — T,
_<ut — Up,;, — + F(ut, up,).
n;

Since [|un, — Zp,|| — 0, we have | Mu,, — Mz,,|| — 0 and ||[Nu,, — Nx,,| — 0.

Further from monotonically of M and N, we obtain

<ut — Up,, Muy — Munz>
<ut — Up,;, Nug — Num>

so as i — oo from Assumption 2.1, we have (u; —w, (M + N)u) = F(ug, w).

Therefore

0= Flug,u) <tF(ug,y) + (1 —t)F(ug, w)
S tF(ug,y) + (1= t)(ur — w, (M + N)ug) < tF(ug, y) + (1= 1)ty — w, (M + N)uy),

then 0 < F(ug,y) + (1 — ¢)(y — w, (M + N)uy).
Letting ¢t — 0, we obtain 0 < F(w,y) + <y —w, (M +N)w>. This implies that w € GEPP.

Now from Lemma 2.7, we have

limsup ((vf — A)z,zn, — 2) < limsup ((vf — A)z, @y, — 2) = ((vf — A)z,w — 2) < 0. (4.2)

n—oo 1—00

Now we prove that x,, is strongly convergence to z.
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It follows from (3.3) that
|Tnst1 — z||2 = an<7f(:cn) Az, kg — z> + Bn<B:cn — Bz, xpy1 — z>
— BnB — ay, )(zn )y Tpt1 — z>
)

—en(zmni1 = 2) + (1= )]

S an(V(f(@n) = f(2), g1 — 2) + (W (2) — Az, 2041 — 2)) + Bul| Bllllzn — 2[l[|@ne1 — 2||
—enllzlllzns1 — 2l + [[(1 = en)I = BB — anAllllzn — 2|ll|[2ns1 — 2|l

S an(V(f(@n) = [(2), g1 — 2) + (7 (2) — Az, 2041 — 2)) + Bl Bllllzn — 2[l[|zn1 — 2||

—enllzllllznir — 2l + [|(1 — en)I = BnB — anAl|d(zn, T2)||xni1 — 2||
< an(V(f(@n) = f(2),2nt1 = 2) + (7 (2) = Az, znt1 — 2)) + Bl Blll|lzn — 2|l 241 — 2|
—enllzll[lzni1 — 2l + [|(1 — en)I = BnB — anAl[H(Tun, Tz)||xni1 — 2||
< an@ylon — 2lans1 — 2l + an(1f(2) = Az,nir — 2+ BuBllen — 2l lwns1 — I
—enllzllllznts — 2l + (1 = B2 — an1)lzn — 2[[[|#n41 — 2]
= (1= a3 = am)foen = 2lllzass = 2l = enlzlzs = 21+ an(37() = Az, 2asr — )
< 1 —an(hn _Oé')’)(
2
1—anp(d—ay)
2
This implies that

e — 22+ l2ns1 — 212) —eall2ll2nss — 2ll+an(vF(2)— Az, 2ni1 — 2)

N

1
ln = 2I17 + 5 llznsr = 2l = enllllllons — 2ll+an{vf(2) = Az, 2ni1 = 2).
2

20|zpi1 — 2l]” < (1= (1 — ) lan — 211 + lzpsr — 2
=20 ||z)||nt1 — 2| + 2an<'yf(z) — Az, xpyq — z>
Then ) )
[@ny1 — 27 < (1= an(h1 — o)) |2n — 2]1* = 2am]l2]||2n11 — 2]

, (4.3)
+ 2an<fyf(z) — Az, paq — z> = (1 = kp)|lxn — 2| + 20nln,

where k, = an (71 — ay) and I, = (vf(2) — Az, zpi1 — 2) — ||2]|[|@ng1 — 2])-

Since lim,, o0 v, = 0 and X902 jov,, = 00, it is easy to see that lim,, o kp = 0, X702 oky, = 00
and lim sup,, ,~ I, < 0. Hence, from (4.2) and (4.3) and Lemma 2.10, we deduce that z,, — z,
where z = Po(I — A+ ~vf)z. >

REMARK 4.1. Putting A = B =M = N =0, v = 1, we obtain methods introduced
in [31, Theorem 3.1].

5. Numerical Examples

In this section, we give some examples and numerical results for supporting our main
theorem.

All the numerical results have been produced in Matlab 2017 on a Linux workstation with
a 3.8 GHZ Intel annex processor and 8 Gb of memory.

EXAMPLE 5.1. Let H = R, the set of all real numbers, with the inner product defined by
(r,y) = xy for all z,y € R, and induced usual norm | . |. Let C =[0,2]; let FF: C x C — R
be defined by F(z,y) = (z — 4)(y — z) for all z,y € C; let M,N : C — H be defined by
M(z) =z and N(z) = 2z for all z € C, such that @ = § and 8 = 1 respectively, and let for

each z € R, we define f(z) = %:c, A(z) =2z, B(z) = 356 and

<z <
T — {z}, 0<z<
l<ax<

{3},

)

1
2.
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Then there exist unique sequences {z,} C R and {u,} C C generated by the iterative schemes

Up = TTI:: (zn — (M + N):cn); (4.4)

1 1 1 1
where a, = 1, 8, = nQ, = 2n2 5 and r, = 1. Then {:Cn} converges to {1} € Fix(T)NGEPP.
It is easy to prove that the bifunction F' satisfy the Assumption 2.1. Further, f is
contraction mapping with constant o = % and A is a strongly positive bounded linear
operator with constant 3 = 1 on R. Therefore, we can choose v = 1 which satisfies
0 <7y <2 <y+1 Furthermore, it is easy to observe that Fix(T) = [0, 1] and GEPP = {1}.

Hence Fix(T) N GEPP = {1} # @. After simplification, schemes (4.6) and (4.7) reduce
to up =2 — xp,.

2—x,}, 0<u
Tu, = {1 nl "
If z, =2 — =z, for z,, € [1,2], we have

o2 of 1 1 2
T = - — 4 —4+ —|x - — —— |.
ntl Sn ' 3n2 ' omZ_3)" m2—3 3n2 n
Ifzn:%for xn € [0,1), we have
1,1 1 1 1 2
T =l—4+— |z |1l - ——].
ntl Sn | 3n2) " 3 m2—3 3n2 n

Following the proof of Theorem 4.1, we obtain that {z,}, {u,} converges strongly to w =
{1} € Fix(T') N GEPP as n — oc.

2

|

150 |

n

sequence x
-

05 \ I."I

0 5 10 15 20 25 30 35
lteration steps=30

Fig. 1. The graph of {z,} with initial value z1 = 1.

ExXAMPLE 5.2. Let H = R, the set of all real numbers, with the inner product defined by
(xz,y) = xy for all z,y € R, and induced usual norm | . |. Let C' = [-1,3];let F: C x C — R
be defined by F(z,y) = z(y—=) for all z,y € C; let M, N : C — H be defined by M (z) = 2z
and N(z) = 3z for all x € C, such that a = é and 3 = i respectively, and let for each z € R,

we define f(z) = gz, A(z) = £, B(z) = {5z and

Ty = {%}’ 0<.’E<
X

{0}’ -1<

)

3
<0.
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Then there exist unique sequences {z,} C R and {u,} C C generated by the iterative schemes

Up = Tri (xn — (M + N)xn)v (4'6)
1 1 2 1 1
= l1-—=)|[-——=B—-—A 4.7
e (3ﬁ+ 10(n+1)2>9€”+ (( nQ) 17 Va >z” e
where «,, = %, Bn = m, €n = % and r, = 1+ 1. Then {z,} converges to {0} €

Fix(T) N GEPP.

It is easy to prove that the bifunction F satisfy the Assumption 2.1. Further, f is
contraction mapping with constant a = % and A is a strongly positive bounded linear
operator with constant 47 = 1 on R. Therefore, we can choose v = 2 which satisfies
0 <y <2 <+ 21 Furthermore, it is easy to observe that Fix(T) = {0} and GEPP = {0}.
Hence Fix(T') N GEPP = {0} # @. After simplification, schemes (4.6) and (4.7) reduce to

_[(—4n-5
Up = o+ 1 Tn,
{0}, —15<u, <0 or (0<x, <3);
Tu, =

{(—li’lé"’)wn}, 0<u, <2 or (=1 <y <0).

If 2, = 4 5 2, for z, € [~1,0], we have

1 n 1 4 (1 2 1 1 —4n -5
x = x - — - — Ty
T A3ye 10+ 1)2)7" n? 10n+12 2vn)\ 4n+2 )"
If z, = 0 for x,, € (0, 3], we have

1 1
ot = (3\/5 T om+ 1)2>x”'
Following the proof of Theorem 4.1, we obtain that {z,}, {u,} converges strongly to w =
{0} € Fix(T) N GEPP as n — cc.

Squence value

i 4 3 |
] 5 10 15 20 25 30 35
Iteration steps

Fig. 2. The graph of {z,} with initial value z1 = 1.
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AHHOTaI_lI/ISI. MTepaHI/IOHHBIe AJITOPUTMBbI BA3KOCTU JIJI51 IIOUCKA 061_1_161"0 JIEMEHTa MHOXKeCTBa HEeIIOABUXK-
HBIX TOYEeK HEJIMHENHBIX orepaTopoB U MHOXKECTBa peIlIeHI/II‘/II BapHUAIMOHHBIX HEPABEHCTB HCCJIEJOBAaJINCH
MHOTMMHA aBTOpaMHU. COOTBeTCTByIOH_I;aH TEeXHUKa ITO3BOJIAECT IIPUMEHUTDH 3TOT METO/ K BbIHyKIIOﬁ OIITUMHU-
3aluu, JIHHeﬁHOMy IporpaMMUpPOBaHUI0O 1 MOHOTOHHBIM BKJIIOYCHUAM. B sToit craTthe Ha ocHOBe MeToda
BA3KOCTHU C BO3MYIIEHHEM, MblI BBOJIUM HOBBII aJITOPUTM HeJIUHEHHOI BA3KOCTU JJId HaXOXKICHUA SJie-
MeHTa MHO2KECTBa HEIIOABU2KHBIX TOYEK HEPACHINPIONINX MHOI'O3HaYHBIX OTO6pa)KeHHI71 B FI/IIII)6epTOBOM
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MIPOCTPAHCTBE. YCTAHOBJIEHBI TEOPEMBI O CHJIBHOM CXOAUMOCTH STOTO AJITOPUTMA IIPHU MOIXOAINX IPE-
MOJIOZKEHUSIX OTHOCUTEJIBHO MapaMeTpoB. Halu pe3ynbTaThl MOXKHO pacCMATpPUBATh Kak 0600IeHue u
yCUJIEHHE UMEIOIIUXCA B TEKYIell uTeparype pe3yabTaToB. [IpencraBiennl TakKe HEKOTOPhIE YUCJIOBBIE
MPUMeEPHI, MOKa3bIBaonne 3(pHEKTUBHOCTD U TPUMEHUTOCTD IPEJIOZKEHHOTO aJITOPUTMA.

Kuaro4deBbie cjioBa: 1mpobjieMa HEeloJIBUXKHON TOYKHU, 0OOOIIEHHOIO MMpodJieMa pPaBHOBECHS, HEPACIITHPSI-
olI[ee MHOTO3HAYHOE 0TOOparkeHne, rmjIboepTOBO IIPOCTPAHCTBO.
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