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Abstract. The aim of this paper is to establish the existence of weak solutions, in W
1,p(x)
0 (Ω), for

a Dirichlet boundary value problem involving the p(x)-Laplacian operator. Our technical approach is
based on the Berkovits topological degree theory for a class of demicontinuous operators of generalized
(S+) type. We also use as a necessary tool the properties of variable Lebesgue and Sobolev spaces, and
specially properties of p(x)-Laplacian operator. In order to use this theory, we will transform our problem

into an abstract Hammerstein equation of the form v+S◦Tv = 0 in the reflexive Banach space W−1,p′(x)(Ω)

which is the dual space of W
1,p(x)
0 (Ω). Note also that the problem can be seen as a nonlinear eigenvalue

problem of the formAu = λu, where Au := −div(|∇u|p(x)−2∇u) − f(x, u). When this problem admits
a non-zero weak solution u, λ is an eigenvalue of it and u is an associated eigenfunction.
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1. Introduction

Topological degree is an effective tool in the study of nonlinear equations. Brouwer had
published a degree theory in 1912 for continuous maps defined in finite dimensional Euclidean
space [1]. Leray and Schauder generalized in 1934 the degree theory in infinite-dimensional
Banach spaces [2]. Since 1934 various extension and generalizations of degree theory have
been defined. The theory was constructed later by Berkovits and Mustonen [3–6].

In this paper, we prove the existence of weak solutions for the Dirichlet problem

{

− div
(

|∇u|p(x)−2∇u
)

= λu+ f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1)

where λ ∈ R, Ω ⊂ R
N is a bounded domain, 2 6 p(x) and p(x) ∈ C(Ω̄) by using the

topological degree theory for a class of bounded and demicontinuous operators of generalized
(S+) type.
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For λ = 0, Fan and Zhang (in [7]) presents several sufficient conditions for the existence
of solutions for the problem (1), at first when f is independent of u [7, Theorem 4.2], then
when f satisfies a growth condition of the form

|f(x, t)| 6 C1 + C2|t|
β−1

(here the exponent β − 1 is constante) [7, Theorem 4.3] and finally, in [7, Theorem 4.7],
they also come from the existences of solution when f satisfies Carathéodory condition and
a growth condition with a variable exponent but with other additional conditions. The same
problem is studied after by P. S. Iliaş (in [8]) who gives sufficient conditions which allow to
use variational and topological methods to prove the existence of weak solutions.

With another approach (theory of topological degree), we prove in this paper the existence
of a weak solution for (1) when f is a Carathéodory function satisfying only a growth condition
and with an additional term λu. Note that with this term, the problem (1) can be seen as a
nonlinear eigenvalue problem of the form

Au = λu, (2)

where Au := − div(|∇u|p(x)−2∇u) − f(x, u). When (2) admits a non-zero weak solution u,
λ is an eigenvalue of (2) and u is an associated eigenfunction. So, proving that (2) admits a
weak solution, we prove at the same time that each real λ can be chosen as a eigenvalue of
the problem (2).

This paper is divided into four sections. In the second section, we introduce some classes of
mappings of generalized (S+) type and the recent Berkovits degree. In the third section, some
basic properties of variable Lebesgue and Sobolev spaces and several important properties of
p(x)-Laplacian operator are presented. Finally, in the fourth section, we give the assumptions
and our main results concerning the weak solutions of problem (1).

2. Classes of Mapping and Topological Degree

Let X be a real separable reflexive Banach space with dual X∗ and with continuous pairing
〈 · , · 〉 and let Ω be a nonempty subset of X. The symbol → (⇀) stands for strong (weak)
convergence.

Let Y be a real Banach space. We recall that a mapping F : Ω ⊂ X → Y is bounded, if it
takes any bounded set into a bounded set. F is said to be demicontinuous, if for any (un) ⊂ Ω,
un → u implies F (un) ⇀ F (u). F is said to be compact if it is continuous and the image of
any bounded set is relatively compact.

A mapping F : Ω ⊂ X → X∗ is said to be of class (S+), if for any (un) ⊂ Ω with un ⇀ u
and lim sup〈Fun, un − u〉 6 0, it follows that un → u. F is said to be quasimonotone, if for
any (un) ⊂ Ω with un ⇀ u, it follows that lim sup〈Fun, un − u〉 > 0.

For any operator F : Ω ⊂ X → X and any bounded operator T : Ω1 ⊂ X → X∗

such that Ω ⊂ Ω1, we say that F satisfies condition (S+)T , if for any (un) ⊂ Ω with un ⇀ u,
yn := Tun ⇀ y and lim sup〈Fun, yn−y〉 6 0, we have un → u. We say that F has the property
(QM)T , if for any (un) ⊂ Ω with un ⇀ u, yn := Tun ⇀ y, we have lim sup〈Fun, y − yn〉 > 0.

Let O be the collection of all bounded open set in X. For any Ω ⊂ X, we consider the
following classes of operators:

F1(Ω) :=
{

F : Ω → X∗ | F is bounded, demicontinuous and satisfies condition (S+)
}

,

FT,B(Ω) :=
{

F : Ω → X | F is bounded, demicontinuous and satisfies condition (S+)T
}

,

FT (Ω) :=
{

F : Ω → X | F is demicontinuous and satisfies condition (S+)T
}

,

FB(X) :=
{

F ∈ FT,B(Ḡ) | G ∈ O,T ∈ F1(Ḡ)
}

.
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Here, T ∈ F1(Ḡ) is called an essential inner map to F .

Lemma 2.1 [4, Lemma 2.2 and Lemma 2.4]. Suppose that T ∈ F1(Ḡ) is continuous and
S : DS ⊂ X∗ → X is demicontinuous such that T (Ḡ) ⊂ Ds, where G is a bounded open set
in a real reflexive Banach space X. Then the following statement are true:

(i) If S is quasimonotone, then I+S ◦T ∈ FT (Ḡ), where I denotes the identity operator.
(ii) If S is of class (S+), then S ◦ T ∈ FT (Ḡ).

Definition 2.1. Let G be a bounded open subset of a real reflexive Banach space X,
T ∈ F1(Ḡ) be continuous and let F, S ∈ FT (Ḡ). The affine homotopy H : [0, 1] × Ḡ → X
defined by

H(t, u) := (1− t)Fu+ tSu for (t, u) ∈ [0, 1] × Ḡ

is called an admissible affine homotopy with the common continuous essential inner map T .

Remark 2.1 [4]. The above affine homotopy satisfies condition (S+)T .

We introduce the topological degree for the class FB(X) due to Berkovits [4].

Theorem 2.1. There exists a unique degree function

d :
{

(F,G, h) | G ∈ O, T ∈ F1(Ḡ), F ∈ FT,B(Ḡ), h /∈ F (∂G)
}

→ Z

that satisfies the following properties:
1. (Existence) If d(F,G, h) 6= 0, then the equation Fu = h has a solution in G.
2. (Additivity) Let F ∈ FT,B(Ḡ). If G1 and G2 are two disjoint open subset of G such

that h 6∈ F (Ḡ \ (G1 ∪G2)), then we have

d(F,G, h) = d(F,G1, h) + d(F,G2, h).

3. (Homotopy invariance) If H : [0, 1] × Ḡ → X is a bounded admissible affine homotopy
with a common continuous essential inner map and h : [0, 1] → X is a continuous path in X
such that h(t) /∈ H(t, ∂G) for all t ∈ [0, 1], then the value of d(H(t, · ), G, h(t)) is constant for
all t ∈ [0, 1].

4. (Normalization) For any h ∈ G, we have d(I,G, h) = 1.

3. Variable Lebesgue and Sobolev Spaces

and Prpoperty of p(x)-Laplacian Operator

In the sequel, we consider a naturel number N and a bounded domain Ω ⊂ R
N with a

Lipschitz boundary ∂Ω.
We introduce the setting of our problem with some auxiliary results of the variable

exponent Lebesgue and Sobolev spaces Lp(x)(Ω) and W
1,p(x)
0 (Ω). For convenience, we only

recall some basic facts with will be used later, we refer to [9–11] for more details.
Let Ω be an open bounded subset of R

N , N > 2, with a Lipschitz boundary denoted
by ∂Ω. Denote

C+(Ω̄) =
{

h ∈ C(Ω̄)
∣

∣ inf
x∈Ω̄

h(x) > 1
}

.

For any h ∈ C+(Ω̄) we define

h+ := max
{

h(x), x ∈ Ω̄
}

, h− := min
{

h(x), x ∈ Ω̄
}

.

For any p ∈ C+(Ω̄) we define the variable exponent Lebesgue space

Lp(x)(Ω) =

{

u; u : Ω → R is measurable and
∫

Ω

|u(x)|p(x) dx < +∞

}
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endowed with Luxemburg norm

|u|p(x) = inf
{

λ > 0/ρp(x)

(u

λ

)

6 1
}

,

where

ρp(x)(u) =

∫

Ω

|u(x)|p(x) dx (∀u ∈ Lp(x)(Ω)),

(Lp(x)(Ω), | · |p(x)) is a Banach space [10, Theorem 2.5], separable and reflexive

[10, Corollary 2.7]. Its conjugate space is Lp′(x)(Ω), where 1/p(x) + 1/p′(x) = 1 for all x ∈ Ω.
For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), the Hölder inequality holds [10, Theorem 2.1]

∣

∣

∣

∣

∣

∫

Ω

uv dx

∣

∣

∣

∣

∣

6

(

1

p−
+

1

p′−

)

|u|p(x)|v|p′(x) 6 2|u|p(x)|v|p′(x). (3)

Notice that if (un) and u ∈ Lp(.)(Ω) then the following relations hold true (see [9])

|u|p(x) < 1 (= 1; > 1) ⇐⇒ ρp(x)(u) < 1 (= 1; > 1),

|u|p(x) > 1 =⇒ |u|p
−

p(x) 6 ρp(x)(u) 6 |u|p
+

p(x), (4)

|u|p(x) < 1 =⇒ |u|p
+

p(x) 6 ρp(x)(u) 6 |u|p
−

p(x), (5)

lim
n→∞

|un − u|p(x) = 0 ⇐⇒ lim
n→∞

ρp(x)(un − u) = 0. (6)

From (4) and (5), we can deduce the inequalities

|u|p(x) 6 ρp(x)(u) + 1, (7)

ρp(x)(u) 6 |u|p
−

p(x) + |u|p
+

p(x). (8)

If p1, p2 ∈ C+(Ω̄), p1(x) 6 p2(x) for any x ∈ Ω̄, then there exists the continuous embedding
Lp2(x)(Ω) →֒ Lp1(x)(Ω).

Next, we define the variable exponent Sobolev space W 1,p(x)(Ω) as

W 1,p(x)(Ω) =
{

u ∈ Lp(x)(Ω)/|∇u| ∈ Lp(x)(Ω)
}

.

It is a Banach space under the norm

‖u‖ = |u|p(x) + |∇u|p(x).

We also define W
1,p(·)
0 (Ω) as the subspace of W 1,p(·)(Ω) which is the closure of C∞

0 (Ω) with
respect to the norm ‖ · ‖. If the exponent p(·) satisfies the log-Hölder continuity condition,
i. e., there is a constant α > 0 such that for every x, y ∈ Ω, x 6= y with |x− y| 6 1

2 one has

|p(x)− p(y)| 6
α

− log |x− y|
, (9)

then we have the Poincaré inequality (see [12]), i. e., the exists a constant C > 0 depending
only on Ω and the function p such that

|u|p(x) 6 C |∇u|p(x) (∀u ∈ W
1,p(·)
0 (Ω)). (10)
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In particular, the space W
1,p(·)
0 (Ω) has a norm | · | given by

|u|1,p(x) = |∇u|p(·) (∀u ∈ W
1,p(x)
0 (Ω)),

which is equivalent to ‖·‖. In addition, we have the compact embedding W
1,p(·)
0 (Ω) →֒ Lp(·)(Ω)

(see [10]). The space (W
1,p(x)
0 (Ω), | · |1,p(x)) is a Banach space, separable and reflexive

(see [9, 10]). The dual space of W 1,p(x)
0 (Ω), denoted W−1,p′(x)(Ω), is equipped with the norm

|v|−1,p′(x) = inf

{

|v0|p′(x) +

N
∑

i=1

|vi|p′(x)

}

,

where the infinimum is taken on all possible decompositions v = v0−divF with v0 ∈ Lp′(x)(Ω)
and F = (v1, . . . , vN ) ∈ (Lp′(x)(Ω))N .

Next, we discuss the p(x)-Laplacian operator

−∆p(x)u := − div
(

|∇u|p(x)−2∇u
)

.

Consider the following functional:

J(u) =

∫

Ω

1

p(x)
|∇u|p(x) dx, u ∈ W

1,p(x)
0 (Ω).

We know that (see [13]), J ∈ C1(W
1,p(x)
0 (Ω),R), and the p(x)-Laplacian operator is the

derivative operator of J in the weak sense.
We denote L = J ′ : W

1,p(x)
0 (Ω) → W−1,p′(x)(Ω), then

〈Lu, v〉 =

∫

Ω

|∇u|p(x)−2 ∇u∇vdx (∀u, v ∈ W
1,p(x)
0 (Ω)).

Theorem 3.1 [13, Theorem 3.1]. (i) L : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω) is a continuous,

bounded and strictly monotone operator;
(ii) L is a mapping of class (S+);
(iii) L is a homeomorphism.

4. Assumption and Main Results

In this section, we study the Dirichlet boundary value problem (1) based on the degree
theory in Section 2, where Ω ⊂ R

N , N > 2, is a bounded domain with a Lipschitz boundary
∂Ω, p ∈ C+(Ω̄) satisfy the log-Hölder continuity condition (9), 2 6 p− 6 p(x) 6 p+ < ∞ and
f : Ω× R → R is a real-valued function such that:

(f1) f satisfies the Carathéodory condition, that is, f(·, η) is measurable on Ω for all η ∈ R

and f(x, ·) is continuous on R for a. e. x ∈ Ω.
(f2) f has the growth condition

|f(x, η)| 6 c
(

k(x) + |η|q(x)−1
)

for a. e. x ∈ Ω and all η ∈ R, where c is a positive constant, k ∈ Lp′(x)(Ω) and q ∈ C+(Ω̄)
with q+ < p−.
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Definition 4.1. We call that u ∈ W
1,p(x)
0 (Ω) is a weak solution of (1) if

∫

Ω

|∇u|p(x)−2 ∇u∇v dx =

∫

Ω

(λu+ f(x, u))v dx (∀ v ∈ W
1,p(x)
0 (Ω)).

Lemma 4.1. Under assumptions (f1) and (f2), the operator S : W
1,p(x)
0 (Ω) →

W−1,p′(x)(Ω) setting by

〈Su, v〉 = −

∫

Ω

(λu+ f(x, u))v dx (∀u, v ∈ W
1,p(x)
0 (Ω))

is compact.

⊳ Let φ : W
1,p(x)
0 (Ω) → Lp′(x)(Ω) be an operator defined by

φu(x) := −f(x, u) for u ∈ W
1,p(x)
0 (Ω) and x ∈ Ω.

We first show that φ is bounded and continuous.
For each u ∈ W

1,p(x)
0 (Ω), we have by the growth condition (f2), the inequalities (7) and (8)

that

|φu|p′(x) 6 ρp′(x)(φu) + 1 =

∫

Ω

∣

∣f(x, u(x))
∣

∣

p′(x)
+ 1

6 const
(

ρp′(x)(k) + ρr(x)(u)
)

+ 1 6 const
(

|k|p
′+

p′(x) + |u|r
+

r(x) + |u|r
−

r(x)

)

+ 1,

where r(x) = (q(x)− 1)p′(x) ∈ C+(Ω̄) with r(x) < p(x). Then, by the continuous embedding
Lp(x) →֒ Lr(x) and the Poincaré inequality (10), we have

|φu|p′(x) 6 const
(

|k|p
′+

p′(x) + |u|r
+

1,p(x) + |u|r
−

1,p(x)

)

+ 1.

This implies that φ is bounded on W
1,p(x)
0 (Ω).

To show that φ is continuous, let un → u in W
1,p(x)
0 (Ω). Then un → u in Lp(x)(Ω). Hence

there exist a subsequence (uk) of (un) and measurable functions h in Lp(x)(Ω) such that

uk(x) → u(x) and |uk(x)| 6 h(x)

for a. e. x ∈ Ω and all k ∈ N. Since f satisfies the Carathodory condition, we obtain that

f(x, uk(x)) → f(x, u(x)) a. e. x ∈ Ω,

it follows from (f2) that
∣

∣f(x, uk(x))
∣

∣ 6 c
(

k(x) + |h(x)|q(x)−1
)

for a. e. x ∈ Ω and for all k ∈ N.
Since

k + |h|q(x)−1 ∈ Lp′(x)(Ω),

and taking into account the equality

ρp′(x)(φuk − φu) =

∫

Ω

∣

∣f(x, uk(x)) − f(x, u(x))
∣

∣

p′(x)
dx,
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the dominated convergence theorem and the equivalence (6) implies that

φuk → φu in Lp′(x)(Ω).

Thus the entire sequence (φun) converges to φu in Lp′(x)(Ω).

Since the embedding I : W
1,p(x)
0 (Ω) → Lp(x)(Ω) is compact, it is known that

the adjoint operator I∗ : Lp′(x)(Ω) → W−1,p′(x)(Ω) is also compact. Therefore,

the composition I∗ ◦ φ : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω) is compact. Moreover, considering the

operator K : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω) given by

〈Ku, v〉 = −

∫

Ω

λuv dx for u, v ∈ W
1,p(x)
0 (Ω),

it can be seen that K is compact, by nothing that the embedding i : Lp(x) →֒ Lp′(x) is
continuous and K = −λI∗ ◦ i◦I. We conclude that S = K+I∗ ◦φ is compact. This completes
the proof. ⊲

Theorem 4.1. Under assumptions (f1) and (f2), problem (1) has a weak solution u

in W
1,p(x)
0 (Ω).

⊳ Let S : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω) be as in Lemma 4.1 and L : W

1,p(x)
0 (Ω) →

W−1,p′(x)(Ω), as in subsection 3.2, setting by

〈Lu, v〉 =

∫

Ω

|∇u|p(x)−2 ∇u∇v dx, ∀u, v ∈ W
1,p(x)
0 (Ω).

Then u ∈ W
1,p(x)
0 (Ω) is a weak solution of (1) if and only if

Lu = −Su. (11)

Thanks to the properties of the operator L seen in Theorem 3.1 and in view of Minty–Browder
Theorem (see [14, Theorem 26A]), the inverse operator T := L−1 : W−1,p′(x)(Ω) → W

1,p(x)
0 (Ω)

is bounded, continuous and satisfies condition (S+). Moreover, note by Lemma 4.1 that the
operator S is bounded, continuous and quasimonotone.

Consequently, equation (2) is equivalent to

u = Tv and v + S ◦ Tv = 0. (12)

Following the terminology of [14], the equation v + S ◦ Tv = 0 is an abstract Hammerstein

equation in the reflexive Banach space W−1,p′(x)(Ω).
To solve equation (3), we will apply the degree theory introducing in Section 2. To do this,

we first claim that the set

B :=
{

v ∈ W−1,p′(x)(Ω) | v + tS ◦ Tv = 0 for some t ∈ [0, 1]
}

is bounded. Indeed, let v ∈ B. Set u := Tv, then |Tv|1,p(x) = |∇u|p(x).
If |∇u|p(x) 6 1, then |Tv|1,p(x) is bounded.
If |∇u|p(x) > 1, then we get by the implication (4), the growth condition (f2), the Hölder

inequality (3) and the inequality (8) the estimate

|Tv|p
−

1,p(x) = |∇u|p−
p(x) 6 ρp(x)(∇u) = 〈Lu, u〉 = 〈v, Tv〉 = −t〈S ◦ Tv, Tv〉

= t

∫

Ω

(λu+ f(x, u))u dx 6 const

(

∫

Ω

λ|u(x)|2 dx+

∫

Ω

|k(x)u(x)| dx + ρq(x)(u)

)

6 const
(

λ|u|2L2 + |k|p′(x)|u|p(x) + |u|q
+

q(x) + |u|q
−

q(x)

)

6 const
(

|u|2L2 + |u|p(x) + |u|q
+

q(x) + |u|q
−

q(x)

)

.
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From the Poincaré inequality (10) and the continuous embedding Lp(x) →֒ L2 and
Lp(x) →֒ Lq(x), we can deduct the estimate

∣

∣Tv
∣

∣

p−

1,p(x)
6 const

(

|Tv|21,p(x) + |Tv|1,p(x) + |Tv|q
+

1,p(x)

)

.

It follows that {Tv|v ∈ B} is bounded.
Since the operator S is bounded, it is obvious from (3) that the set B is bounded in

W−1,p′(x)(Ω). Consequently, there exists R > 0 such that

|v|−1,p′(x) < R for all v ∈ B.

This says that

v + tS ◦ Tv 6= 0 for all v ∈ ∂BR(0) and all t ∈ [0, 1].

From Lemma 2.1 it follows that

I + S ◦ T ∈ FT

(

BR(0)
)

and I = L ◦ T ∈ FT

(

BR(0)
)

.

Since the operators I, S and T are bounded, I + S ◦ T is also bounded. We conclude that

I + S ◦ T ∈ FT,B

(

BR(0)
)

and I ∈ FT,B

(

BR(0)
)

.

Consider a homotopy H : [0, 1] ×BR(0) → W−1,p′(x)(Ω) given by

H(t, v) := v + tS ◦ Tv for (t, v) ∈ [0, 1] ×BR(0).

Applying the homotopy invariance and normalization property of the degree d stated in
Theorem 2.1, we get

d(I + S ◦ T,BR(0), 0) = d(I,BR(0), 0) = 1,

and hence there exists a point v ∈ BR(0) such that

v + S ◦ Tv = 0.

We conclude that u = Tv is a weak solution of (1). This completes the proof. ⊲
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СУЩЕСТВОВАНИЕ РЕШЕНИЯ КРАЕВОЙ ЗАДАЧИ ДИРИХЛЕ
ДЛЯ p(x)-ЛАПЛАСИАНА

Мустафа Айт Хамму1
1 Университет Сиди Мохамеда бен Абделла, Фес, Марокко

E-mail: mustapha.aithammou@usmba.ac.ma

Аннотация. Цель настоящей статьи — установить существование слабого решения в пространстве
W

1,p(x)
0 (Ω) краевой задачи Дирихле для p(x)-лапласиана. Наш подход основан на теории топологиче-

ской степени Берковича для класса деминепрерывных операторов обобщенного (S+) типа. Используют-
ся также свойства лебеговых и соболевских пространство с переменными показателями и специальные
свойства p(x)-лапласиана. Для того, чтобы использовать упомянутую теорию, задача преобразуется
в абстрактное уравнение Гаммерштейна вида v + S ◦ Tv = 0 в рефлексивном банаховом пространстве
W−1,p′(x)(Ω), которое является двойственным к W

1,p(x)
0 (Ω) пространством. Заметим также, что изуча-

емую проблему можно рассматривать как нелинейную задачу на собственные значения вида Au = λu,

где Au := − div(|∇u|p(x)−2∇u) − f(x, u). Если исходная задача имеет слабое решение u, то u является
собственной функцией, ассоциированной с собственным значением λ.

Ключевые слова: задача Дирихле, топологическая степень, p(x)-лапласиан.
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