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Abstract. In this paper, we are interested in the following inverse problem. We assume that {P,}n>0 is
a monic orthogonal polynomials sequence with respect to a quasi-definite linear functional v and we analyze
the existence of a sequence of orthogonal polynomials {Qn }»>0 such that we have a following decomposition
Qn(z) + 1nQn-1(2) = Pn(z) + snPr-1(z) + tnPr—2(x) + vn Pa—3(z), n > 0, when vorn # 0, for every
n > 4. Moreover, we show that the orthogonality of the sequence {Qn }n>0 can be also characterized by the
existence of sequences depending on the parameters ry,, Sn, tn, v, and the recurrence coefficients which
remain constants. Furthermore, we show that the relation between the corresponding linear functionals is
k(z — c)u = (2* + az® + bz + d)v, where c,a,b,d € C and k € C\ {0}. We also study some subcases in
which the parameters r,, s, t» and v, can be computed more easily. We end by giving an illustration
for a special example of the above type relation.
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1. Introduction

Let & be the linear space of polynomials in one variable with complex coefficients and
let &' be its algebraic dual. We denote by (u, f) the action of u in &’ on f in & and by
(u)n = (u,2™), n > 0, the moments of u with respect to the monomial sequence {z"},>¢.
When (u)p = 1, the linear functional u is said to be normalized. For our work we need to recall
some operations in &’ (see [1, 2|). For any w in &2, any ¢ in & and any complex numbers
a, b, ¢ with a # 0, let Du = v/, qu, hqu, Tpu and ou be respectively the derivative, the left
multiplication, the translation, the homothetic and the pair part of the linear functionals
defined by duality:

/

(. f)=—uf), {quf):=(uaf), (nu f):=(urf)=(uflz+b)),
<haua f> = <u7 haf> - (u,f(am)>, <0u7 f> = <u7 Uf> - <u,f(m2)>, fe.
The linear functional u is called regular (quasi-definite) if the leading principal submatrices .72,

of the Hankel matrix . =(u;1;)i ;>0 related to the moments (u), = (u,z"), n > 0, are
nonsingular, for each n > 0 [1].

© 2022 Ali Khelil, K., Belkebir, A. and Bouras, M. C.



6 Ali Khelil, K., Belkebir, A. and Bouras, M. C.

DEFINITION 1.1 [1]. A sequence of monic polynomials {F, },>0 is called orthogonal with
respect to the linear functional u if the following orthogonality conditions hold

(u, Pp(x)Pp(x)) =0, n#m,
<u’P7%($)> 7& 0, n=0,

where deg P,, = n, for every n > 0.
In this way, {P,}n>0 satisfies the following two order recurrence relation:
Poy1(z) = (x = Bn) Pu(7) — v Pr1(x), n > 1,
Py(z) =1, Pi(z) =z — B,
where v, # 0, for each n > 1.
Let u and v be two regular linear functionals and let {P,},>0 and {Q,}n>0 be the
corresponding sequences of monic orthogonal polynomials. Assume that there exist non-

negative integer numbers M and N, and sequences of complex numbers {7;,}n>0 and
{Sk.n}n=0 such that the structure relation

M N
Qn(z) + Z Tin Qn—i(v) = Pp(x) + Z Sim Pn—i(T)
i=1 i=1

holds for n > 0. Further, assume that ryra4n # 0 and sy v # 0, det [aw]j\/]lijlv # 0,

where the entries «;; of the matrix are defined on the basis of {r; »}n>0 and {sg }n>0. Then
there exist two polynomials ® and ¥ with deg® = M and deg ¥ = N such that

These polynomials ® and ¥ can be constructed in an explicit way [3]. On the other hand, the
converse result is also analyzed. A characterization theorem for the sequence {Q;},>0 to be
orthogonal assuming {P,},>0 is orthogonal is obtained when M =0 and N =1, M =1 and
N=1,M=0and N=2 M=1land N=2, M =0and N=3, M =0 and N =k [4-8|.

In this contribution, the main purpose is to analyze the inverse problem corresponding to
the case M =1 and N =3, 1i. e,

Qn(x) + 1,Qn-1(x) = Py(z) + spPp—1(x) + t Ph—2(z) + v, Pr—3(z), n >0, (1.1)

with the initial conditions Qu(z) = Fy(x) = 1 and Q_1(z) = P_,(z) = 0, for m > 1, and
where {7, }n>0, {Sn}tn>0, {tn}n>0 and {v,},>0 are sequences of complex numbers with the
initial conditions rg = sg =tg =t1 = vg = v1 = v9 = 0 and r,v, # 0 when n > 4.

We provide necessary and sufficient conditions for the orthogonality of the monic po-
lynomials sequence {Q}n>0 assuming the orthogonality of the sequence of monic polyno-
mials {P,},>0. In addition, we establish a relation between the linear functionals u and v,
respectively, corresponding to MOPS’s { P, },,>0 and {Q,, }n>0 as k(z—c)u = (z®+ax®+bz+d)v
with a,b,¢,d € C and k € C\ {0}.

This paper is organized as follows. In Section 2, we develop some basic results and lemmas.
Section 3, is devoted to find the characterizations of the orthogonality of the monic polynomials
sequence {Q, }n>0. Finally, we illustrate a special case of the above type relation.
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2. 2—4 Type Relation

Let { P, }n>0 and {Q;, }n>0 be two sequences of monic orthogonal polynomials with respect
to the regular functionals u and v respectively, where (u, 1) = (v, 1) = 1, let {8 }n>0, {Vn}n>1
and {Bn Y0 , {Fn }n>1 be the corresponding sequences of recurrence coefficients characterizing
{P, }n>0 and {Qy, }rn>0 respectively. Suppose that these sequences are related by relation (1.1).

The initial conditions vs # r3(te — 1r2(s1 — 1)) and vyry # 0 yield a relation between the
linear functionals u and v such as

pu = v,

where ¢ and v are polynomials of degree 1 and 3, respectively.
Firstly, if vg # r3(t2 —r2(s1 — 1)) and rq # 0, then there exists a complex number ¢ such
that

<(3: — ¢)u, Q4($)> = 0.
Moreover, ((z — c)u, Qn(z)) =0, n > 4.
Indeed
((z = Ju,Qo(x)) = Bo —c,
((z = Ju, Q1(x)) =1 + (s1 — 1) (Bo — ©),
((x = u, Q2(x)) = (s2 — r2)m1 + (t2 — r2(s1 — 71))(Bo — ©), (2.1)
((z = Ju,Q3(x)) = (t3 — r3(s2 — r2))71 + (v3 — r3(t2 — r2(s1 — 71)))(Bo — ©),
((z—c)u, Qua(x)) = (va—ralts — r3(s2—r2)))m1 —ra(vs—rs(ta—r2(s1—71)))(Bo—c).
Then there exists ¢ such that
((x — c)u, Qq(x)) = 0.
This implies
Y1 vg — 74(t3 —73(52 —72))

c:= - — . 2.2
07 74 vs — r3(ta — ra(sy — 1)) (22)

Thus,
(& = Ju, @n(2)) = —ra((z = Ju, @na(z)), 1 >5.
On the other hand [2]

3
(@ = cJu, Qi(x))
(@—cu=> Qi(z)v.
= (@)

Therefore, if vy # r3(ta —12(s1 —r1)) and vyry # 0, we see that the relation between u and v is
(z — cJu = q(z)v,

where ¢ is a polynomial of exact degree 3.

Lemma 2.1. Let {P,},>0 and {Qn}n>0 be two MOPSs with respect to the regular
normalized linear functionals u and v respectively, where (u, 1) = (v, 1) = 1. Assume that there
exist sequences of complex numbers {ry,}n>0, {Sn}n>0, {tn}n>0 and {v, }n>0 with the initial
conditions ro = sg = tyg = t1 = vg = v1 = v9 = 0, such that the relation

Qn(x) + rnQn—l(x) = Pn(x) + SnPn—l(x) + tnpn—Z(x) + UnPn—S(x)7 n =0,

with the initial conditions Qo(z) = Py(x) = 1 and Q_1(x) = P_yu(z) =0, form =1, 2, 3,
holds, for every n > 0. Then the following implications hold:
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1. If v # r3(ty — ro(s1 — 1)) and rqy = 0, then v, # ry(tn—1 — Tn—1(Sp—2 — Tn—2)), for
n > 3, and r, = 0, for every n > 4. In this case the relation (1.1) reduce to 14 type relation

Qn(z) = Py(z) + anPr—1(x) + by Pr—a(x) + ¢y Pr—s(z), n =0
with
Ap = Sp —Tp, N =1,
by =ty —n(Sp—1—Th-1), N =2,
Cn = Up — Tp(tn-1 —Tp—1(Spn—2 —Tn—2)), n =3.
2. If vg # r3(te — ro(s1 —r1)) and rq4 # 0, then r, # 0, n > 4.
3. If vg # r3(ta — ro(sy — r1)) and vyrg # 0, then v,ry, # 0, for n > 4.
Thus, in this case the relation (1.1) is a non-degenerate 2—4 type relation.

<1 We have

If vg = r3(ta — ro(s1 — r1)), then we have the following cases:
i) ta =1r9(sy —r1) and s1 = rq.
i1) ta = 1o(s1 —r1) and s1 # 1.
1) ta # ro(s1 —r1) and r3 = 0.
iv) to #1ra(s1 —r1) and 73 # 0, t3 = 0.
v) to # 1r9(s1 —11) and rsts # 0.
See [8], in all these cases v, = 0, for n > 3.

1. If w3 # r3(te — ro(sy — 1)) and r4 = 0, from (2.3), we have
(u,Qi(x)) #0, i =1,2,3, and (u,Qn,(z)) =0, n>4.

So, there exists a polynomial ¢ of degree 3 such that v = g(x)v [9].
Therefore,

Qn(x) = Pn(x) + anPnfl(x) + ann72($) + CnPn73($),

for each n > 0, with ¢, # 0, n > 3. Again, the relation (1.1) leads to

Sp=0p+Tp, n=1,
t, = bn + rplp—1, N P 27
Up = Cn + 7f'nbn—lv n z 37

and rpc,_1 =0, n > 4.
So, r, =0,n >4, and v, # 0, n > 3. Then, this case is the degenerate 1-4 type relation.
2. If vz # r3(ta — ra(sy —r1)) and rq # 0, according to (2.3), we have

(u,@3(x)) #0 and  (u,Qa(x)) # 0,
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and if r, = 0, for each n > 5, we get (u, Q,(x)) =0, n > 5. Assuminig that exists n > 5 such
that r, = 0, putting ng := min{n € N/n > 5, r, = 0}, then

(u,Qn(xz)) =0, n>ng, and (u,Qn(z))#0, 3<n<ny— 1.

So, there exists a polynomial ¢ of degree ng — 1 such that u = g(x)v [9].

Therefore,
no—1

k=1

where oy, po—1 # 0, n > ng — 1.
Taking into account (1.1), this is not possible. Thus r,, # 0, n > 4.

3. If vy # r3(te — ra(s1 — r1)) and rqvg # 0, then there exists a constant ¢ such that

(x — c)u = q(z)v
with ¢ a polynomial of degree 3 and by (1.1), we can write for n > 0

{(z = )u, Qn(x)Qn-a(2)) = ((x — )u, (Po(x) + 55 Pr—1(x) + tnPoa(z) + ...
+vn Pas(2))@n-a(2)) — ra{ (2 — ), Qu-1(2)Qn-4(x))
= v, P2y (2)) = (@ = 01, Qa1 (2) Qs (0)):

Consequently,

v {u, P2_g(2)) = {(z — )u, (Qn(2) + 1Qn—1(2))Qn_a(z))
= <Q(x)v, (Qn(x) + Tnanl(x))anﬁl(x» = Tn<va Q(x)anl(x)Qn74(x)> = kjl""n<va Q%L*l(x)>’

where k; is the leading coefficient of the polynomial ¢. Now, it is enough to apply (2) to obtain
rn # 0, n > 4, and from Definition 1.1, we have v,r, # 0, n > 4. >

In the following proposition, we show that if vg # r3(ta — ro(s; — r1)) and rqvg # 0 this
equivalence to assume that the functional (z — c)u is regular.

Proposition 2.1. Let {P,},>0 and {Qn }n>0 be two MOPS with respect to the regular
normalized linear functionals u and v respectively, such that the relation (1.1) holds and the
initial conditions vs # r3(ta — ro(s1 — r1)) and rq4vg # 0 hold. Then the following statements
are equivalent:

i) The functional (x — c)u is regular.

”) Un 7& 7nn(tn—l - rn—l(sn—Q - T'n—Q))y n = 3.

< Multiplying the relation (1.1) by P,_; and applying u, the same way for P,_o and
P,_3, we get, respectively,

<u, Qn(x)Pn_l(x)> = (sp — rn)<u,Pg_1(ﬂv)>, n>1,
<u, Qn(m)Pn_g(x)> = (tn — rn(Sp—1 — rn_l))<u, Pg_Q(x)>, n>=2,
<u, Qn(x)Pn_g(x)> = (vn — rp(tn—1 — rn—1(Sp—2 — rn_g)))<u,P,3,3(x)>, n > 3.
Thus
Up — Tp(th—1 — Tn—1(Sn—2 — Th—2)) # 0 & (u,Qn(x)Py_3(x)) #0, n >3.

It is well known that (z — c¢)u is regular if and only if P,(c) # 0, for all n > 0 [9].
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Moreover, we need to show that (u,Qni3(x)P.(z)) # 0 < P,(c) # 0, for each n > 0.
Either for

n
P,(z) = Zank(aﬂ —o)f, n>o0,
k=0

with ang = P,(c) and an, = 1.
The relation between the regular functionals v and v is

(z = cJu = gq(x)v,

Hence
(t, Quis(z) Pa(@)) = ((x = c)u, (x = )" ' Quys(x))
n—1
+3 " ank{(@ = ou, (z — )" Qnis(2)) + Pale)(u, Qnis(z))
k=1
n—1
= <v, q(z)(x — c)"_lQn+3(x)> + Z am'<v, q(x)(z — c)k_lQn+3(x)>
k=1
+ Py (e){u, Qnis(z)), mn =0.
Then

(U, Qnis(2)Pr(z)) = Pr(c)(u, Qniz(x)), n =0,

from Lemma 2.1 and the relation (2.3), we get

(u,Qn(x))y #0, n>=3. >

3. Characterization of Orthogonality

Let { P, }n>0 be a MOPS with respect to a regular functional w and let {5, }n>0, {Vn}n>1
be the corresponding sequences of recurrence coefficients, so that

Poyi(z) = (@ = Bp) Pu(a) — mPa-1(z), n 20, (3.1)

with the initial conditions Py(x) =1, P_1(z) = 0 and the condition v, # 0, for each n > 1.

In this section, we give the characterizations of the orthogonality of a sequence {Q, }n>0
of a monic polynomials defined by a non-degenerate type relation (1.1).

From Lemma 2.1, the conditions vs # r3(ty — r2(s1 — 1)) and r4v4 # 0 must hold, in
order to have a non-degenerate 2—4 type relation with { P, },,>0 and {Qp }n>0 MOPS and these
conditions imply v,r, # 0, for each n > 4.

The following if the first characterization of the orthogonality of the sequence {Qp, }n>0-

Proposition 3.1. Let {P,, },>0 be a MOPS satisfies (3.1), and let {Qy, }n>0 be a sequence
of polynomials given by the structure relation (1.1) with vz # r3(t2 —r2(s1 —71)) and v,y # 0
forn = 4. Then, {Qy }n>0 is a MOPS with recurrence coefficients {3y, }n>0 and {7, }n>1, where

gn = Bn —Sp41 T Sn+Tpg1 —Th, n =0, (32)

%n =Yty — tn-l—l + sn(sn—f—l — Sp — /Bn + /Bn—l)

S (3.3)
- Tn(T'n+1 —Tn — ﬂn + ﬂn—l)a n = 17
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if and only if 417273 # 0, and the following relations hold:

QApSn—1 = SpYn—-1+ tn(5n+1 — 8y — Bp + Bn72) —Upg1 + U, N =2, (34)
Qntpn1 =tpYn—2+ Un(sn—i—l — Spn — Bn + /Bn—?))a n =3, (35)
QpUn_1 = UnYn_3, N =4, (3.6)

apTpn—1 = Tn?nfla n =2, (37)

where
Qp = Y + ty — tn+1 + Sn(SnJrl — Sp — Bn + Ianl)a n = 1. (38)

< Substituting (3.1) in (1.1), for all n > 0, we have

QnJrl(x) = xPn(x)_(,Bn_5n+1)Pn(x)_(7n_tn+1)Pn71(x)+vn+lpnf2(x)_TnJrlQn(x)' (3'9)

Applying (1.1) to xP,(x), and substituting the recurrence relation (3.1) into (3.9) for
xP,_1(x), xP,_o(z) and xP,_3(z), we obtain for n > 0

Qni1(z) = (2 = 1p41)Qn(x) + 10 (2Qn—1(2)) — (Bn — Sny1 + 8n) Pru(x)
- (771 +itn —tp1 + Snﬂn—l)Pn—l(x) - (Sn')/n—l + tn/Bn—Q + vy — Un—l—l)Pn—Q(x)
- (Un/Bn—?) + tn’Yn—Z)Pn—B(x) - Un’Yn—3Pn—4(x)-

Using relation (1.1) for P,, and with convention P_,(z) = 0, n > 1, the above relation
becomes, for n > 0

Qn+1(z) = (z — gn)Qn(x) =1 (@n — 2Qn—1) — (Bn + 80 — $n11)Qn-1(z)
- ['Vn +tn — thg1 — Sn(ﬁn — Bn—1+ 8n — 5n+1)]Pn*1($)
— 801 = tn(Bn — Bu—2 + S0 — Snt1) + Vn — Vg1 Pr2(7)
— [tavn—2 — vn(Bn — B3 + 8n — S$n11)|Pa—3(2) — vnyn—3Pn-a(z),

where 3, is given by (3.2). Then using again (1.1) for P,_1, we get for n > 0

Qn+1(z) = (z — /En)Qn(x) — n@n-1(z)
—Tn [Qn(x) —(z— gn—l)Qn—l(x) + %n—lQn—Q(x)] — (anTn—1 = TnYn—1)@n—2()
— [8nYn—1 = tn(Bn — Bu—2 + 80 — Snt1) + Un — Vny1 — Qnsn_1] Poa(x) (3.10)
— [tnyn—2 — vn(Bn — Bn—s + Sn — Sn+1) — Antyp—1] Po—3(x)
— (VnYn—3 — QnUp—1)Pp_a(x),
where 7, and o, are given by (3.3) and (3.8).
Hence from (3.10), {Qn}n>0 be a MOPS if and only if 7,, # 0, for n > 1, and the condi-

tions (3.4)—( 3.7) hold.
Suppose that {Qn }n>0 is a MOPS, then the relation (3.10) is equivalent to

(fn - anrn—l)Qn—Q(x)

- ) + (cn - antn—l)Pn—S(x)
+ (en — anUp—1)Pp_u(x), n =

2

(bn — ansn—1)Poa(x (3.11)

)

where
bn := SnYn—1 + tn(Sn+1 — Sn — Bn + Bn-2) — Unt1 + Upn, n =2, (3.12)



12 Ali Khelil, K., Belkebir, A. and Bouras, M. C.

Cp = tpYn—2 + Un(5n+1 — Sn — 5n + 5n73)a n = 3, (3~13)
€n = UnYn-3, N =4, (3.14)

fn i =ToVYn-1, n=2. (3.15)

Moreover, since vg # ts — r3(sq — r2) and 7, # 0, for n > 4, then by (2.3), we deduce

WV

(u,Qn) #0, n>=3.

Applying u to both sides of (3.11), we get

(fn - Tnflan)<u, Qn72> =0, n=>5.

This leads to
fn =Tp_10y, N = 0.

Multiplying (3.11) by P,_2, P,—3 and P,,_4 and applying u, we obtain for all n > 5
bn = nSpn—1, Cpn=apln_1, € =apUp_1, [fn= QnTn_1
comparing coefficients in both sides of (3.11), for n = 2,3 and 4, we obtain
by — f2 = aa(s1 —11), (3.16)

bs — f3 = as(s2 — ra),
3.18
3.19
3.20

3.21

C3 — b3(81 — 7“1) = Q3 tg SolS1 — )),

cq — ba(sa — r2) = au(ts — s3(s2 —r2)),

~~ I~ I/~
~— ~— ~— ~— ~—

( )
( (
by — fa = au(sz —13),
( (
[ (

eq — ba(te —ro(s1 — 1)) = aafvs — s3(ta — ra(s1 —71))].

Conversely, if (3.11) is satisfied and 7,, # 0, for every n > 1, we have

Qn1(2) = (2= 5n) Qn (%) + Q1 (2) = =7 [Qn(2) = (2= Bn1) Q1 (2) + Fp1 Qnoa(z)], n > 1.
Moreover, from (1.1), we obtain

Qi(x) =Pi(z)+s1—r=ax—Po+s —ri =z — P,
we deduce recursively

Qni1(2) = (& = Bn)Qn(2) = FnQn_1(x), n>1.

Thus, {Qn }ns0 is a MOPS with recurrence coefficients {8y }n>0 and {J, }ns1. &>

Now, we show that the orthogonality of the sequence {@Q,},>0 can be also characterized
by the fact that there are four sequences depending on the parameters r,, sy, t,, v, and the
recurrence coefficients which remain constants.

Theorem 3.1. Let {P,,},>0 be a MOPS and let {Q,}n>0 be a sequence of polynomials
given by (1.1). Then the following statements are equivalent:

(7) {Qn}n>0 is a MOPS with recurrence coefficients {0y, }n>0 and {¥, }n>1 given by (3.2)
and (3.3).
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(79) It holds 717273 # 0 together with initial conditions (3.16)—(3.21) and

vsy2 = va(y5 +t5 — te + s5(s6 — 55 — B5 + 1)) (3.22)

and there exist four complex numbers A, B, C and D such that, for each n > 4

Azﬁﬁ—nwl—%% (3.23)

n

t
B = U_n Yn—2 + Snt1 — /Bn - Bn—l - Bn—27 (3.24)

n

S t
C=-—" Yn—1VYn—2 + <_n Yn—2 + Sn+1 — Bn72) (5n+1 — Bn — anl)

Un Un (3.25)
- 5n+1(5n+2 - BnJrl) + ﬁnflﬁn — Yn41 — Vn — Yn—1+ tn+2;

mTn—-1Tn—-2 | S
= + v_n 7n717n72(5n+1 - /Bn)

Un n

D

t
+ = -2 s (Snt1 = Snv2 + Bt = B = B1) + Babu-1 = Y1 — M+ tar2] (3.06)

n
+ (5n+2 — Sn+1 — IBn+1 + Ianl + ﬁn72)(an+1 - thrl)
+ (5n+1 - Bn)(ﬁn715n72 - r)/nfl) - (5n+1 - Bn72)7n + Up42.

<1 Observe that the conditions (3.4)—(3.7) in the Proposition 3.1 may be written as, for
eachn>>5

Un

Sn—1 m4%%3:&WW4+%®M4_Sn_@f+&hﬁ_vm4+vm (3.27)
b1 :: Yn—3 = tnVn—2 + Vn(Snt1 — Sn — Bn + Bn-3), (3.28)
J:%4=%+m—mﬂ+%wﬂ—%—@+m4% (3.29)

é:%4z%+%WH—%—@+&4% (3.30)

moreover {Qn}n>0 is a MOPS if and only if the conditions 419273 # 0, the initial condi-
tions (3.16)—(3.21) and the above equations ( 3.27), (3.28), (3.29) and (3.30) hold.

Firstly, we show that (3.27)—(3.30) = (3.22)—(3.26).

For n =5 in (3.29), yields (3.22).

From (3.30), dividing the left and the right hand sides by r,, we get

o Tn _ Z Tn—1
5n_7ﬂn+1__—/8n71_7"n_ >
Tn Tn—1

n = b. (3.31)

Hence (3.23) holds.
Now, we will deduce (3.24).
Using (3.28), dividing the left and the right hand sides by v,,, we obtain

tn—1

t
v_n Yn—2 + Sni1 — Bn — Bn-1— Bn72 = Yn—3 + Sn — Brn-1— Bn72 - /Bn73a n = o. (332)

n Un—1

Hence (3.24) holds.
Next, we will deduce (3.25).
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From (3.27), multiplying the left and the right hand sides b

S
Un Yn—27Yn—-3 + r)/n 2( anl _Bn72)
. SR . (3.33)
1
=2 Yn—1VYn—2 + - 7n72(5n+1 - Bn - /anl) + (1 - )71172’
vy, Uy, U

taking into account (3.29) for n 4 1 instead of n, for each n > 5, we have

Sn—

tn
L 9V 3+—’Yn 2(8n = Pn—1 — Bn— 2)——’Yn 1Yn— 2+U_'7n 2(Sp41 — Bn — Bn-1)

Un—1 Un Un n

+ VY2 — Yn+1 — tny1 T tpa2 — Sn+1(5n+2 — Sng1 — Bap1 + IBn),
using (3.24), in the above expression, for each n > 5, we get

S t
U_n Yn—1Vn—2 + (U_n Yn—2 + Sn+1 — Bn—l - Bn—2> (Sn-‘rl - /Bn - /Bn—l)
n

n

—VYn+1 — Yn — Vn-1 T+ tn+2 - 3n+1(3n+2 - Bn—l—l Bn 1) /Bn 1

_— to (3.34)
= Yn—2Yn—-3 + < Yn—3 + Sn — /Bn—Z - /Bn—?)) (sn - Bn—l - Bn—Q)
Un—1 Un—1
—Yn = -1 — Tn—2 t tnt1 — Sn(SnJrl — Bn — /Bn72) - 53—2-
Lastly, we will deduce (3.26).
From (3.29), multiplying the left and the right hand sides by M, we obtain
Un
Tn—1Tn—27n-3
u"i__')/n 1Yn— 2( Bn—l)
Un—l
1Yn—2 In+1
M + _r)/n 1Yn— 2(5n+1 Bn) + <_n —— )7n71’7n72,
Un Un Un n
taking into account (3.28) for n + 1 instead of n, for each n > 5, we have
1Yn—2Yn—3 1Vn—2
In-1n=27n=3 + _’Yn 1Yn— 2( — Bn— 1) Inn=1n=2 + _'Yn 1Yn— 2(Sn+1 /Bn)
Un—1 Un Un Un
t
+ v—n Yn—2(Yn—1 = Vnt1 = tnt1 + tns2 — Snt1(Snt2 — Sns1 — Bns1 + Bn)) (3.35)

n

+ (5n+2_5n+1_5n+1 + Bn72) (’7n+1 +tn1—tnr2 + Snp1(Sn2—Sna1—Brr1 + /Bn)),
using (3.33) and (3.1), we obtain

TnVn—1Tn—2
Un,

+ ( 'Yn 1Yn—2 — 7n71>(5n+1 - Bn)

t
+ v_n 771—2( — Yo — Yn+1 T lnyo — 3n+1(3n+2 — Sp4+1 — Bn-i—l + Bn + /Bn—l) + Bn/Bn—l)
n

+ (3n+2 — Sp41 — /Bn—f—l + Bn—Q - (sn - Bn—l)) (7n+1 + tn—l—l - tn+2 + 3n+1(3n+2 — Sp+1

Tn—1Tn—27n—3 Sn—1
_Bn-l—l"i_ﬂn)) == Un ) = +<vn 1 Yn—2"Yn—-3 — 771—2) (Sn_ﬁn—l)_(sn_ﬂn—fﬂ)’)’n—l
n— n—

tn—l

+ 71173( — Yn—1— Yn ttny1 — Sn(SnJrl — Sp — Bn + anl + ,an2) + anlﬁnf2)

Un—1
+ (_ Sn+1 +3n+/8n_ﬂn—3) [_ ’Yn"i_tn—f—l_Sn(sn—i—l_sn_ﬂn"i_ﬁn—l +/8n—2)+/8n—15n—2]7
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taking into account (3.8) and (3.12) in the above expressions and by straightforward

computation, for each n > 5, we get

nIn—-1Tn—2 S
L - + & 7n717n72(5n+1 - /Bn)
U, U,

t

+ U_n Tn—2 [Sn+1(5n+1 — Sp42 + IBTL+1 - IBn - anl) + ﬁnﬁnfl — Y+l — Yn + tn+2]
n

+ (Snt+2 — Snt+1—Bnt1 + Bn—1 + Bn—2)(@nt1 — tn+1) +(Snt1 — Bn) (Bn-1Bn—2 — Yn—1)

_ Yn—-1"n—-2"Tn-3 + Sn—1

- (SnJrl - /Bn72)'7n + Upyo = (336)

7n727n73(5n - ,anl)

Un—1 Un—1

tr—
+ vn 11 Yn—3 [Sn(sn — Sp+1 + Bn — Bn—1 — Bn72) + ﬁn715n72 —Yn — Yn—1t tn+1]
n—

+ (3n+1 — Sp — Bn + Bn—Q + Bn—fﬂ)(an - tn) + (Sn - /Bn—l)(ﬂn—Q/Bn—?) - 7n—2)
- (Sn - ﬁn—?»)’)’n—l + Upt1-

Secondly, we show that (3.23)—( 3.26) = (3.27)—(3.30).
Notice that, the relations (3.27)-(3.30) are equivalent to (3.4)-(3.7) and the

relations (3.23)-(3.26) are equivalent to (1.1)-(3.36) then, it is enough to show
(1.1)-(3.36) = (3.27)~(3.30).

From (1.1), multiplying the left and the right hand sides by r,, yields (3.30).

From (3.1), multiplying the left and the right hand sides by vy, yields (3.28).

From (3.35), we have

Yn—1Yn—-2| U
. = = Tn—-3 — Tn — tn + tn—l—l + Sn(sn — Sn+1 — /Bn—l + Bn)
Un, n—1
TYn—2
= = [ = thang1 + tap1¥n—1 + Unt1(Snt2 — Snt1 — Bug1 + Bu—2))

Un
Un+1

+ (Sn+2 = Sn41 — Buy1 + Bn—Q) ( — Tn—2 + Vn+1 + tnt1 — 2

n

+ 5n+1(5n+2 — Snp+4+1 — /BnJrl + ﬁn))a
using (3.5), for n + 1 instead of n, we get

Yn—1Tn—2 | U
E = E Tn—3 — Vn — tn + tn—l—l + Sn(sn — Sp4+1 — Bn—l + Bn)
Un Un—1

Un41
Yn—2 — Yn+1 — tn-l—l + tn+2

- (3n+1 — Sp42 — /Bn—Z + /Bn—l—l)

n

+ Sn-l—l(sn—l—l — Sp42 — /Bn + /Bn—f—l)] s

according to (3.22) and as v4 not equal to 0, we have

Vs
Yo — 5 — ts +te + s5(s5 — s¢ — fa+ PB5) =0,

Vg

then
Un

Tn—3 — Vn — tp + tn—l—l + Sn(sn — Sp41 — /Bn—l + Bn) - 07

Un—1

Hence (3.29) holds.
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obtained from (3.1), the relation (3.34)

Taking into account the expression o f}"il
rewrites as
sn tn
1)_ Yn—1"Yn—2 + ?}_ 'Yn—2(3n+1 - /Bn - 571—1) — Yn+l — Yn — VYn—-1 + tn+2
n

n

- 5n+1(5n+2 — Sn+1 — /BnJrl + ,Bn) + (5n + 5n71 - 5n+1)(5n71 + 5n72) - 721_1

Sn—1 t
= Yn—2"Yn—3 + <v_n Yn—2 + Sn4+1 — Sn — 571 + 571—3) (Sn - /Bn—l - /Bn—Q)
n

Un—1
—Yn — Yn—-1— Yn—2+ tn+1 - Sn(SnJrl — Sp — 5n + /anl)
+ (/anl + ,anQ - 5n)(5n72 + /anB) - 57%—2,

hence
Sp—1

S t
Yn—2Vn—-3 = v_n Yn—1Yn—2 + v_n 7n—2(3n+1 — Sp — /Bn + 571—2)

Un—1 n n
+ -2 = (a1 +tnt1 — tnr2 + Snt1(Snt2 — Snt1 — Bat1 + Bn)),
using (3.29) for n + 1 instead of n and simplifying, yield (3.27). >

In the following theorem, we observe that there is a relation between regular linear
functionals when {Q,, }»>0 is a MOPS with respect to a regular linear functional v.

Theorem 3.2. Let {P,},>0 be a MOPS with respect to a regular linear functional u
and the sequence of monic polynomials {Qy, }»>0 be given by the relation (1.1). If {Qy }n>0 Is
a MOPS with respect to a regular linear functional v, then

k(z — c)u = (23 + azx® + bz + d)v (3.37)

with ¢,a,b,d € C and k € C\ {0} and the normalizations for these linear functionals
(u,1) = (v,1) = 1.

< Applying the regular linear functional u corresponding to the MOPS { P, },,>0 in (1.1),
we obtain, for each n > 4

((z = c)u, Qn(x)) = 0.

Then, according to |2] taking into account the relation (1.1), we expand the linear functional u
in terms of the dual basis {ﬁfé%)}i>0 of the MOPS {Qy }n>0 as

3
(x —c)u Z w QQ; Qi) Qjv.

1=0

Since {Qy }ns0 is a MOPS with respect to v, the recurrence coefficients {3, bns0 and {Fn tn>1
are given by (3.2) and (3.3). Moreover

(@Y
Q)

Indeed, making both sides of (3.37) acting on the polynomials Qq, @1, Q2 and @3, and taking
into account (2.1), we get

£0, n>1 (3.38)

k(Bo — ¢) = B3 + (280 + B1)A1 + (G + B3)a + Bob + d, (3.39)

k[vi + (Bo — ©)(s1 — )] = (B2 + B2 + Bob1 + 71 +72)71 + a(Bo + B)71 +F1b,  (3.40)
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k{vi(s2 —r2) + (Bo — o)tz — ra(s1 — 1)} = (go + B4 B+ a)¥172, (3.41)

k{mlts — r3(s2 — r2)] + (Bo — ¢)[vs — r3(ta — r2(s1 — r1))]} = 17273, (3.42)

where 71, 72, 73 are given by (3.2) and (3.3).

Using the relations (3.39)—(3.42) and taking into account (2.2), thus, the values of ¢, a, b,
d and k are given as follows
ANV A ra(ts — r3(s2 — 12))
v o 74 v3 — r3(ta — ro(s1 — 1))’
o= —BO _ Bvl _ gQ n E 7“4?)3(82 — 7“2) + (7)4 — 7“4t3)[t2 — 7“2(81 — 7“1)]
U4 v3 —r3(ta — ra(s1 — 1))

(Bo + 51)53 rav3(s2 — 12) + (v4 — rat3)[ta — r2(s1 —171)]

k:

)

b= BoBr+BoBa+Brfa— A1 — T2 —

V4 vy — r3(ta —ra(s1 —11))
N Yos ra(vs — rata) + (va — ra(ts — r3s2))(s1 — 1)
vy v3 —r3(ta — r2(s1 — 1)) ’

Y273 T4(v3 — T3t2) + (v4 — ra(tz — r382))(s1 —11)
vg —r3(ta — ra(s1 — 1))
(BoB1 — 71)73 ravs(sa — 12) + (va — 7at3)[ta — r2(s1 — 1))
V4 V3 —7“3(t2 —7’2(81 —7“1))
717273 va — Ta(ts — 73(s2 —12))

+ . D
V4 V3 — 7“3(752 — 7’2(81 — 7“1))

d = —BoB1B2 + BoFa + BaA1 — Bo

_|_

REMARK 3.1. The constants A, B, C' and D appearing in the Theorem 3.2 are, res-
pectively, the coefficients ¢, a, b and d of the polynomial which relate the two regular linear
functionals.

4. A Particular Case

In this section, we will discuss a special case of relation (1.1).
Let us consider the symmetric MOPS {P, },,>1, this means that (3, = 0, for each n > 0.
From Proposition 3.1, the equations (3.4), (3.5), (3.6) and (3.7) become, for each n > 5

th—1 t
Spt+1 = Sn + = Yn—-3 — — Tn—2, (41)
n—1 Un,
Un,
thy1 =t + Y0 — V1 Yn—3 + Sn(SnJrl - Sn)a (42)
n—
Untl = Up + SpVn—1 + tn(sn—i—l - Sn) — Sp—1 [’Yn +tn — tn-l—l + sn(sn—f—l - Sn)]a (43)

Un Yn-3 B Un+1 Yn—2
)
Un—1 Tn Un  Tn+l

The equations (3.2) and (3.3) become

Tp+l = Tn + n > 4. (4.4)

5n =Sy —Spr1 T Tnt1 —Tn, N2 0,

in =Y +tn — tn-l—l + sn(sn—f—l - sn) - 7nn(sn—i—l — Sp + ﬂn—l)a n =z 17
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for each n > 5, we have

~ t tp— v _ v _
/Bn:_n'Yn—Q_nl"Yn—{i‘i‘ n ’Yn3_ n+1 Yn—2
Un Un—1 Un—-1 Tn Un Tn+l (4 5)
_ Tn—2 < Un+1> Tn—3 < Un) .
- tn - - tn—l N
Un Tn+1 Un—1 Tn
~ v t —1 t ~
Tn = = Tn—3 — rn( = Tn—-3 — — 771—2) - 7nn/Bn—l- (46)
Un—1 Un—1 Un
In this case, we treat the following three subcases.
i) If s, = s and r,,—; =71, for each n > 5, from (4.1) and (4.4), we obtain
123 _ In—1 _ _ i3
— Tn-2 = -3 = -+ = — 71,
Un, Un—1 U3
Un+1 Un V4
Tn—2 = Tn—3 = .- = —71,
n Un—1 V3
the relation (4.6) yields
~ on
o= —m1, N =D5H. (4.7)
U3
We conclude that En = 0 and 7, are constants, for each n > 5.
From (4.2), we have
V4
tn-l—l =tn+ VYo — E - (48)

1) If s, = s1, rp—1 = r1 and t,, = tg, for each n > 5, from (4.8) and (4.7), we get

Yo =Yns M 25

The coefficients ~, are constants, for each n > 5, then {P,},>0 is the sequence of anti-
associated polynomials of order 5 for the Chebyshev polynomials of the second kind [10].

iii) If rp—q =11, Sp = s1, tp, =t and v, = vs, for each n > 5, from (4.3), we have

Untl = Un + SpVYn-1— Sn—1Yn, 1N =95,
hence
Untl = Up + 51('71171 - r)/n)a n =6,

it is clear that s1(vn—1 — ) =0, for all n > 6.

REMARK 4.1. If r,_ 1 =11, 8, = sy and t,, =ty or r,_1 = 11, Sy = S1, tp, = to and
vy, = w3, for each n > 5, then N

Pn=0, n=5,

Yn="Tn="5 N =5

EXAMPLE 4.1. Let {P,},>0 be the sequence of monic Chebyshev polynomials of the
second kind orthogonal with respect to the weight function # (z) = (1 — 22)%/2 on (-1, 1).

Then B, =0, n > 0, v, = 3, n > 1, and the relations (4.1), (4.2), (4.3) and (4.4), for each
n > 5, become

1 tn—1 t 1 v
Sp+l = Sp + = E - = 5 tn+1 =tp+-(1- r + Sn(SnJrl - Sn),
4 \vp—1 Un 4 Un—1

1 1
Up4+1 = Up + Z Sp + tn(SnJrl - Sn) — Sp—1 |:Z + 1ty — 75n+1 + Sn(5n+1 - Sn):| s

1 Un—1 Un
Tn = Tn—1+ = — .
4 T"n—1Un—2 T'nUn—1
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Assume that r,_1 = r1, 8, = s1 and t,, = t, for each n > 5, we obtain

Unt1 = Vn + 7 (5n — 8p-1), M =5,

in particular,

Untl = Up, N =06.

In this situation, we deduce constant connection coefficients, for n > 6.
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O HOBOM KOMBMHAIIMY ITOCJIEJOBATE/JILHOCTU
OPTOI'OHAJIBHBIX TTOJIMHOMOB
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Amnnoranusi. B Hacrosimast craTbs MOCBAIEHA ClIeayonei ooparHoit 3amade. st mocie10BaTeIbHOCTD
LOJINHOMOB OT OZHOI nepeMeHHO# { P, }n>0, OPTOrOHAIIBHBIX OTHOCUTEIBHO KBA3HOIIPE/IEJEHHOIO JIMHEHHO-
ro (YHKIMOHAJA U, BBISICHATH YCJIOBHS CYIIECTBOBAHUS IIOCJIEIOBATENBHOCTH OPTOTOHAJIHHBIX MOJUHOMOB
{Qn }n>0, A1 KOTOPBIX UMeeT MecTO paznokenue Qn(z) + rnQn-1(x) = Pn(x) + $nPr-1(x) + tn Pn—2(z) +
U Pn_3(z), n > 0, rue varn # 0, qust Bcex n > 4. Iloka3aHo, YTO OPTOrOHAJIBHOCTH I[IOCJIEI0BATEILHOCTH
{Qn }n>0 xapakTepU3yeTcs CyIMECTBOBAHNEM IIOC/IEIOBATEIHLHOCTE, 3aBUCIIAX OT TAPAMETPOB Trn, Sn, tn, Un
M TIOCTOSTHHBIX PEKYPPEeHTHBIX Ko3ddunmentos. Kpome TOro, ycTaHOBIEHO, 9TO COOTHOIIEHUE MEYKJLY COOTBET-
cTByIOIMME JTHHelnbME bynKiuonanamu umeer s k(x — ¢)u = (2® + ax? + bx + d)v, e ¢, a,b,d € C and
k € C\ {0}. PaccmoTpeHBI TaK»Ke TOJKIACCHI U1 KOTOPBIX IAPAMETDBI T'n, Sn, tn U Un JIETKO BBIMUCJISIOTCH.
B KoHIle IPUBOIATCS MILTIOCTPUPYIONIAE TPUMEDHI.

KimroueBble cJjioBa: OpPTOrOHAJILHBIN [TOJTMHOM, JIUHEHHDBIA (DyHKIMOHAJ, 00paTHAs 3aa4a, [MOJIMHOMBI
Jebblesa.

AMS Subject Classification: 33C45, 42C05.
O6pasern; uurupoBanusi: Ali Khelil, K., Belkebir, A. and Bouras, M. C. On a New Combination of

Orthogonal Polynomials Sequences // Buamukask. mar. »xypH.—2022.—T. 24, Ne 3.—C. 5-20 (in English).
DOI: 10.46698/a8091-7203-8279-c.



