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Abstract. In the present work, we consider a one-dimensional swelling porous-heat system with single
time-delay in a bounded domain under Dirichlet-Neumann boundary conditions subject to thermodiffusion
effects and frictional damping to control the delay term. The coupling gives new contributions to the
theory associated with asymptotic behaviors of swelling porous-heat. At first, we state and prove the well-
posedness of the solution of the system by the semigroup approach using Lumer-Philips theorem under
suitable assumption on the weight of the delay. Then, we show that the considered dissipation in which we
depended on are strong enough to guarantee an exponential decay result by using the energy method that
consists to construct an appropriate Lyapunov functional based on the multiplier technique, this result is
obtained without the equal-speed requirement. Our result is new and an extension of many other works
in this area.
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1. Introduction

In this paper, we study well-posedness and exponential stability for a swelling porous-heat
system with thermodiffusion effects and delay. The system is written as

P1ULE — A1 Uzy — A2z = 0,

PPt — 3Pzz — AUy — V102 — Y2 Pr + 1 + pawe(z,t — 1) =0,
ety + dPy — kOpy — y102¢ = 0,

dby +rP; — hPpy — Y202 = 0,

(1)

where (x,t) € (0,1) x (0,400), and we impose the following initial and boundary conditions
(

u(z,0) = up(z), w(x,0) =ui(x), z € (0,1),
¢(2,0) = po(z), @r(z,0) = p1(2), z € (0,1),
9(56’0) = 90(3:), P(x,O) = PO(x)a ( )’ (2)
pr(x, —t) = folz, 1), € (0,7),

u(0,t) = ¢(0,t) = 0(0,¢t) = P(0,t) =0 ( >
uz(1,t) = p(1,8) = 0(1,t) = P(1,t) =0 (V¢ >

0),
0)

)
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where u = u(x,t) is the displacement of the fluid and ¢ = ¢(z,t) is the elastic solid material,
p1 and po are the densities of u and ¢, respectively; 6 = 6(x,t) is the temperature difference
and P = P(xz,t) is the chemical potential; k and h are heat and mass diffusion conductivity
coefficients, respectively. The coefficients a1, ag are positive constants and as # 0 is a real
number such that ajag > a%. The coefficients p; is positive constant and po is a real
number. Here, we prove the well-posedness and stability results for the problem (1)—(2),
under the assumption

1 > |pal. (3)

The physical positive constants 1, ¥2, r, ¢ and d satisfying
A=rc—d?>>0. (4)

Equations (1)12 are results of the basic field equations for the theory of swelling of one-
dimensional porous elastic soils, given by (see [1])
prug =Tz — P+ 1, (5)
P2 = T2z — Po+ Fo,

where T; are the partial tensions, F; are the external forces, and P; are internal body forces
associated with the dependent variables u and ¢, respectively. We assume that the constitutive
equations of partial tensions as follows

() = (0 )(2): 0
M

where M is a positive definite symmetric array, i. e., a% < aqag, and the internal forces of the
body are considered null, that is, P, = P» = 0. We finally chose

Fi =0 and Fy =0, + 2P — pipr — popr(x,t — 7).

Time delay equations have a wide range of applications in the biological, mechanical social
sciences, and many other modelling of the phenomena. It depend not only on the present
state but also on some past occurrences. We know the dynamic systems with delay terms have
become a major research subject in differential equation since the 1970s of the last century
(e. g. [2-8]). It was shown that delay is a source of instability unless additional conditions
or control terms are used (see [9]). On the other hand, it may not only destabilize a system
which is asymptotically stable in the absence of delay, but it may also lead to will posedness
(see [10, 11] and the references therein). Therefore, the stability issue of systems with delay
plays great importance theoretical and practical in most of researches. In [8], the authors
considered (5) by taking

Pr=P,=0, Fy=—pip— pope(r,t —7) and Fp =0,

they proved that the energy associated with the system is dissipative, and established the ex-
ponential stability of the system. Readers can consult [12-20] and the references therein for
some other crucial results on the swelling porous system.

The purpose of this work is to study system (1)—(2), in introducing the delay term and
thermodiffusion effects can make the problem different and crucial among the literature
considered. The main features of this paper are summarized as follows. In Section 2, we
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adopt the semigroup method and Lumer—Philips theorem to obtain the well-posedness of
system (1)—(2). In Section 3, we use the perturbed energy method and construct Lyapunov
functional to prove the exponential stability of system (1)—(2).

2. Well-Posedness

In this section, we prove the existence and uniqueness of solutions for (1)—(2). As in [7],
we introduce the new variable

z2(z,p,t) = pe(z,t —7p), x€(0,1), pe(0,1), t>0. (7)

Therefore, problem (1) takes the form

PLULE — A1Uzg — A2Pzz = 0,

P2Ptt — A3Pxz — A2Uzz — Y10z — Y2 P + p1py + p2z(z,1,t) =0,

T2t(, p, 1) + zp(x, p,t) = 0, (8)
cby + dPy — kOpz — y1p2¢ = 0,

df; + 1Py — hPpy — 200t = 0,

with the following initial and boundary conditions

(w(x,0) = ug(z), u(x,0) = uy(z), x € (0,1),

¢(2,0) = po(z), ¢e(z,0) = p1(), z € (0,1),

0(x,0) = bp(z), P(x,0) = Py(x), x € (0,1),

z(z,p,0) = fo(z, 7p), (z,p) € (0,1) x (0,1), (9)
2(x,0,t) = pi(z, 1), (x,t) € (0,1) x (0,+00),

u(0,t) = ¢(0,t) = 6(0,t) = P(0,t) =0 (Vt > 0),

\ux(l,t) =.(1,t) =0(1,t) = P(1,t) =0 (Vt>=0).

Introducing the vector function U = (u, uy, 2, p, ¢, 0, P)T. Then system (8)—(9) can be written
as

(10)
U(O) = UO = (u07u17@07¢17f07907P0)T7

where the operator &7 is defined by

{U’(t) = dU(t), t >0,

Ut
U p_11 [a1Uze + G202z
Ut Pt
o o [a3rs + a2ues + 7100 + 10 Pe — ppy — poz(x,1,1)]
A || = —% Zp
Z (%) Oz — (%) Ppy + (%) Pta
P

() Peo = (5) 0+ (25) 010
Now, the energy space is defined by

A = H}(0,1) x L*(0,1) x H}(0,1) x L?(0,1) x L*((0,1), L*(0,1)) x L*(0,1) x L*(0,1),
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where

H(0,1) = {f € H'(0,1); f(0) =0}.

Let
U = (uautaq% (pta'Zae?P)T? U - (a7at7@7 @t727 97 p)T

Then, for a positive constant ¢ satisfying

Tlpel < € <7(2pm = |p2l), (11)

we define the inner product in J# as follows

1
(U,0),= / [prustis + arugliy + p20: Pt + A302Px + a2 (UpPr + o) |dx
0

1 11
—i—/c@@—i—d PH—i—HP)—i—rPP dx+§//z z (z, p) dpdz.
0 00

The domain of & is

D(e/) = {U € | u,¢ € HZ(0,1), w, 01 € H.(0,1),
0,P € Hj(0,1), 2,2, € L*((0,1), L*(0,1)) },
where
HZ(0,1) = {f € H*(0,1); f(0) = f.(1) = 0}.
Clearly, D(<7) is dense in 7.

We have the following existence and uniqueness result.

Theorem 1. Assume that Uy € % and (4) holds, then problem (7)—(8) exists a unique
solution U € C(R*; 5#). Moreover, if Uy € D(&), then

UeC(RYD))NC (RY; 7).

< To obtain the above result, we need to prove that & : D (&) — . is a maximal
monotone operator. For this purpose, we need the following two steps: & is dissipative and
Id — & is surjective.

STEP 1. & is dissipative.

For any U = (u,us, 0, ¢, 2,0, P)T € D(<f), by using the inner product and integrating
by parts, we obtain

1
(AU, U :—k/ezdx— /Pfdx—(m—%)/@%dm
0

1

1
,ug/z z,1,t) o do — ;/ (z,1,t)d
0

0

Using Young’s inequality, we obtain

1 1 1
,ug/ (x,1,t) pr dx < MT/ (x,1,t)dx + 'UT/
0 0 0
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Therefore, from the assumption (11), we have

Consequently, o is a dissipative operator.

STEP 2. Id — &/ is surjective.

To prove that the operator Id — &7 is surjective, that is, for any F = (f1,..., f1)T € A,
there exists U = (u, ug, @, @1, 2,0, P)T € D(7) satisfying

(Id— )U = F, (12)
which is equivalent to
U —u = fla
P1LUL — AQUgy — A2Pzy = P1f27
©— ¢t = f3,
P2t — A3Pxy — A2Ugy — '7191 — 7P + Hi1er + ,UQZ(CC, 1, t) = P2f4, (13)

TZ+ 2, =Tfs,
A — rk@mm + hdpxx - (T71 - d72) Ptx = )‘f67
AP — chPyy + kdByy — (cy2 — dy1) pre = Af7.

Suppose that we have found u and ¢ with the appropriate regularity. Therefore, the first and
the third equations in (13) give
{Ut:u—fl, (14)

0y = — f3.

It is clear that u, € H(0,1) and ¢y € HL(0, L).
We note that the fifth equation in (13) with z(x,0,t) = ¢(z,t), has a unique solution

p
z(z, p,t) = p(x)e” TP — f3(x)e” TP + TeTp/eTsfg,(x,s) ds, (15)
0

clearly, z,z, € L*((0,1) x (0,1)).
By using (13), (14) and (15) the functions (u, ¢, 6, P) satisfy the following system

P1U — G Ugy — 2Pz = g1,

NP — A3Pze — AUz — Y10z — V2 Pr = g2,
A0 — 1kOy + hdPry — (ry1 — dy2) 0z = g3,
AP — chPyy + kdfyy — (cy2 — dy1) s = ga,
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where
-

(77:P2+M1 + poe 7,
g1 = p1f1 + p1fe,

1

92 = pafa+nfs — pore™" [ €7 f5(x, 5) ds,
0

g3 = Afs — (ry1 — d2) faa,

g = A7 —(cy2 — dm1) f3e-

We multiply (16); by @, (16)2 by @, (16)3 by )\9 (16)4 by ;\P (16)3 by f\lP and (16)4 by /\9
and integrate their sum over (0, 1) to find the following variational formulation

% ((,,6,P)", (2.%,0,P)") = 4(3,5,0,P)" (17)

where % : [H}(0,1) x H}(0,1) x L?(0,1) x L?(0,1)]> — R is the bilinear form given by

1 1 1
B ((u, 0,0,P)", (i, 3,0, P)T) = /uﬁ dr + a; /ux&x dx + ag/ (aliy + uppy) d
0 0 0

1 1 1
+n /goapdx—ka/ x(pwdx—l—c/%dx—kk/ﬁe dx+r/PPdw+h/PPdw
0 0
1 1 1
+d/(9]3+P§)dx+w1/(9gbm— dx+72/ P&y — @u P ) dz,
0 0 0

and ¢ : [H!(0,1) x H!(0,1) x L?(0,1) x L?(0,1)] —> R is the linear form defined by

1 1 1 1

1
o _ 5 d . d _
%(ﬁ,@,G,P /g /g2<pdx+)\/gg@dx+§/g4de+X/g3Pdm+X/g40dx.
0 0 0 0 0
It is easy to verify that # is continuous and coercive, and ¢ is continuous. So applying the Lax—
Milgram theorem, we deduce that for all (i, @, 0, P) € H}(0,1) x H}(0,1) x L?(0,1) x L%(0,1),
problem (17) admits a unique solution (u, p, 0, P) € HL(0,1) x HL(0,1) x L?(0,1) x L?(0,1).
The application of the classical regularity theory, it follows from (16) that (u,p,0,P) €
H2(0,1) x H2(0,1) x H(0,1) x H}(0,1). Hence, the operator Id — </ is surjective.
Consequently, the result of Theorem 1 follows from Lumer—Phillips theorem (see |21, 22|). >

3. Exponential Stability

In this section, we prove the exponential decay for problem (8)—(9). It will be achieved
by using the energy method to produce a suitable Lyapunov functional. We define the energy
functional E(t) as

l\?l»—\

1
/ plu? + alui + pggpf + aggpi + 2a9u,p, + ch? + 2dOP + ’I“PQ] dx
0

11
// 22(z, p, t) dpdz.
0 0

(18)

_|_

N [y
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Noting (4), we have for 6, P # 0,
A d 2
ch? +2d0P + rP? = 26 + (—94—\/77]3) > 0,
r NG

then we get that the energy E(t) is positive.
The stability result reads as follows.

Theorem 2. Let (u, z,,0, P) be the solution of (8)—(9) and (4) holds. Then there exist
two positive constants kg and k1, such that

E(t) < koe Mt (Yt >0). (19)

Before defining a Lyapunov functional, we need some lemmas as follows.

Lemma 1. Let (u, z,,0, P) be the solution of (7)—(8) and (4) holds. Then, the energy
functional, defined by equation (18), satisfies

1 1

th( /Hde— /Pde—Cl/aptdx—Cg/ 2(x,1,t)dz <0, (20)
0 0

where
bl €,

Cr=pu1 — = U,
1= T o] 27 2

< Multiplying (8)1, (8)s, (8)4 and (8)5 by wu¢, ¢, 6 and P, respectively, and integrating
over (0,1) with respect to x, using integration by parts and the boundary conditions, we
obtain

1
1
— [5 / 1uf + alui + pggpf + aggoi + 2a9u,p, + ch? + 2dOP + T’P2) dx
0

1 1
= k:/92d:6 /P2d:r3—,u1/g0tda:— g/gptlet
0 0

On the other hand, multiplying (8)2 by %z(az,p,t) and integrating over (0,1) x (0,1), and
recalling z(x,0,t) = ¢, we obtain

1 1 1 1
2 £ [ o §
[ T Y Y VPR
0 0 0 0

A combination of (21) and (22) gives

1 1
d
EE(t): k/ﬂgd:ﬂ— /P2d:ﬂ—<,u1 T>/gpfd:ﬂ
0
1

0
1
—%/ 2(m1td:v—,u2/g0tzx1t
0 0

(21)

I
Sl

(23)
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Now, estimate the last term of the right-hand side of (23) as follows

1

1 1
ug/z (x,1,t)ppdr < ,uT/ (x,1,t)dx + ’/;2‘ L,O% dx. (24)
0 0 0

Substituting (24) into (23), and using (11), we obtain (20), which completes the proof. >
Lemma 2. Let (u, z,p,0, P) be the solution of (8)—(9). Then the functional

1
—P1 /uut dm,
0

satisfies, for any €1 > 0, the estimate

1

1
—pl/ufdx—i- <a1+—>/u dx—i—al/apidx. (25)
0

0

< By differentiating L (t) with respect to ¢, using (8); and integrating by parts, we obtain

1 1

1
Li(t) = —pl/u?daz—l—al/ui dm—kag/uxgpmdx,
0 0 0

then, by Young’s inequality, we obtain the result. >
Lemma 3. Let (u, z,p,0, P) be the solution of (8)—(9). Then the functional

1 1
Ly(t) = a1p2 / ppr dr — azpy / puy de,
0 0

satisfies, for any €9 > 0, the estimate

1 1 1
2
/apidw—l—Cl (e2) /<p dm—i—ag/utdm—i- a({yl/ﬁidx
0 0

0

MIQ

1 1
22 2 22 2
+M/P§dx+M/z2(x,1,t)dm,
a

a
0 0

where 5 o
20‘2#1 301

a=ajas — a% >0, Cs(e2) =aips+—=—= e
€2

< By differentiating Lo(t) with respect to ¢, using the equations (8); and (8)2, and
integrating by parts, we obtain

1 1 1 1
—a/goi d:v+a1,02/sof dw—a2p1/90tut dw+71a1/809x dx
0 0 0 0

1 1 1
+W2a1/@Pmdx—ﬂlal/%ﬁtdiﬂ—MM/@Z z,1,t)d
0 0 0
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where a = aza; — a3 > 0. Using Young’s and Poincaré inequalities, estimate (26) is
established. >

Lemma 4. Let (u, 2, ,0, P) be the solution of (8)—(9) and (3) holds. Then the functional

1 1
/gptu dx — l upp de,
0

satisfies, for any €3 > 0, the estimate

1
2 2
_%/ugdxmg/gogdwr “”1/9261 + “”2/1326135
0
1 9 1
2
+ Cs(e3) /god al'u2/2x1td:n+63/utd:c,
0

(27)

0

where

_ 2a1 13 n 1 (aip2 —azp: 2
a5 483 a9

< By differentiating L3 (¢) with respect to t, using the equations (8); and (8)2, and
integrating by parts, we obtain

1
e /%udx_ @/Z(Cﬂ,l,t)udx+ <a1p2 —a3p1> /%ut do.
a9 a9
0 0 0

Using Young’s and Poincaré inequalities, estimate (27) is established. >

Lemma 5. Let (u, 2, ,0, P) be the solution of (8)—(9) and (3) holds. Then the functional

11
://e_Qsz (z,p,t) dpdz,
00

satisfies, for some positive constants nq and no, the estimate

11 1 1
—nl// 2(z, p,t) dpdz —ng/ 2(z,1,t)dx + = /gp? dz. (28)
0 0 0 0
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< By differentiating L4(t) with respect to ¢, and using the equation (7)s, we obtain
11 1
2
Li(t) = 2//6_27% (x, p,t)z¢e(x, p, t) dpdx = ——/ e 2Py (z, p, t )2p(x, p,t) dpdx
T
0 0 0

11
d
//— 22 (x, p,t)) dpdx — 2
dp
00
1

11 1
1
—nl//z2 x,p,t dpduv—ng/z2 (x,1,t)dx + — /got dr,
00 0

0

Al

|
/

1
/e_Qsz x, p,t) dpdx
0

which gives the estimate (28). >

Now, we turn to prove our main result in this section.

< PROOF OF THEOREM 2. We define the Lyapunov functional .Z(¢) b

3
ZL(t) = NE(t)+ >  NiLi(t) + La(t),

=1

where N and Nj; (i = 1,2, 3) are positive constants that will be chosen later.
By differentiating .Z(t), exploiting (20) and (25)—(28), we get

1

1
0 0
1

1
|:01N 03(82)N2—04 83 3— —] /(p dx 2—a3N3—€1N1 /(p dx
0

0

20373 2a173 i 2a373 2a1y i

—[kN—#NQ——QlNg]/egdm—[hN— L2 N, — QN}/P dx

a as; a
0

11 1
2 2
nl// 2:r:p, dpdx—[CgN—l—ng al'MQN — al'MZ Ng]/ 2:6 1,t)d
0 0 0

At this point, taking e; = 1/N;, i = 1,2, 3. We then choose N; large enough so that Ny > 2/p;.
After that, we select N3 so that

2N
%Ng— <a1—|—a24 1>N1 >0.

Then, we choose Ny large enough so that

gNg—a3N3—1>O.
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Finally, we select N large enough so that

1
ClN — Cg(e’:‘z)NQ — C4(€3)N3 — ; > 0,

9 2.2 2 2
EN — S0, - S N s,
a CL2

) 2.2 9 2
hN - 22 N, - 2B s,
a (12

) 2,2 ) 2
CoN + ng — ila> Ny — a12/$2 N3 > 0.
a a2

Consequently, from the above, we deduce that there exist a positive constant o such that
Z'(t) < —aE(t). (29)

On the hand, it is not hard to see that Z(t) ~ E(t), i. e., there exist two positive constants ay
and a9 such that
aE(t) < Z(t) <agB(t) (Vt=0). (30)

Combining (29) and (30), we obtain that

L't < -k L) (Vt=0), (31)
where k1 = §2. A simple integration of (31) over (0,¢) yields

ZL(t) < 20 e Mt (vt >0).

It gives the desired result of Theorem 2 when combined with the equivalence of £(t)
and E(t). >
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BiajmkaBkazckuii MaTeMaTHIECKHH Ky pPHAJT
2023, Tom 25, Beiiyck 2, C. 65-77

SKCIIOHEHIIMAJIBHAY YCTONMYMBOCTD J1J1d HABYXAIOIIIEI ITOPMCTOI1
TEILJIOCUCTEMBI C TEPMOJU®DY3UOHHBIMU SOPEKTAMUI
1 3ATIA3ILIBAHEM

Hyn6 M.', Burynn C.2

! Kadenpa maremaruky BbICIIero mesarorndeckoro Kojuieka Jlaryara,
Asxup, Jlaryar 03000, a/s 4033;
2 Kadenpa maremarukn u undopmaruky, Yunsepcurer Cyk-Axpac,
Asmxup, 41000, Cyk-Axpac, a/a 1553

E-mail: madanidouib@gmail.com, zitsala@yahoo.fr

Awnnoramusi. B macrosimeit pabore paccMaTpuUBaeTCsl OJHOMEPHAs HAOyXaroIasl OPUCTO-TEIIOBasl CH-
creMa B OPPAHMYEHHON OOJIACTH MPU MPAHUYHBIX ycjoBusix Jlupuxsie — Heiimana ¢ Tepmonuddy3noHHBIMEI
adpdexramu u 3anazgpiBanueM. M3BecTHo, 4TO 3ana3piBanue 6€3 JOMOTHUTEILHBIX TPEIIOIOKEHAN CIIy KUT
MCTOYHUKOM HEYyCTOWYIMBOCTHU. BoJiee TOro, BBEIEHNN 3ala3/bIBaAHNs B aCUMTOTHIECKH YCTOWUMBYIO CHCTEMY
MOXKET IIPUBECTU HE TOJIBKO K ITOTEPE YCTONYUBOCTH, HO U K HEKOPPEKTHO MTOCTABJIEHHOM 3aja4e. B 5Toit cBsizn
HCCJIeIOBAHNE CUCTEM C 3ala3bIBAHUEM Ha YCTOWYUBOCTH UMeET GOJIbIIOE TEOPETUIECKOe U IIPUKJIAIHOE 3HA~
yenne. CBSI3aHHOCTb CHUCTEMBI BHOCHT HOBBIN BKJIAJ B TEOPHIO, CBA3AHHYIO C ACHMIITOTUYECKUM OBEIEHUEM
HabyxaHust mopucToro remia. CHadaaa Mbl (POPMYJIUPYEM U JIOKA3BIBAEM KOPPEKTHOCTH PEIIEHUs] CUCTEMBI 10~
JIyTPYTIIIOBBIM IOXOAOM C UCIOJIB30BaHUEM TeopeMbl JIromepa — Puiniica mpu MOAXOIAIIEM IPEAIOIOKEHIT
0 Bece 3ala3jbIBaHUs. 3aTeM ITOJIyYaeM pe3yJIbTaT SKCIOHEHIMAIBHOIO 3aTyXaHUsl, UCIOJb3ysl SHEepreTmye-
CKMIi METOJI, OCHOBAHHBI Ha METO/Ee YMHOXKEHUsl, B KOTOPOM MbI CTPOMM COOTBETCTBYIOIIUN (DyHKIIMOHAJ
JIsoyHOBa, 3TOT pe3yabTaT mosay4daercs 6e3 TpeboBaHus paBHOU ckopocTu. Hamr pe3ynbrar sBIIsieTCsT HOBBIM
U SIBJISIETCS TIPOJIOJIZKEHUEM MHOTHX JIPYTUX paboT B 9TOI 00IaCcTH.

KuroueBnble ciioBa: Ha0yxaHue, IOPUCTOCTb, TepMoanddy3noHubie 3ddEKTHI, 3arma3/abBaOIIMi 1IeH,
9KCIOHEHINAJbHAS YCTONYMBOCTD.
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