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Abstract. Let B be a complete Boolean algebra, Q(B) the Stone compact of B, and let Coo(Q(B))
be the commutative unital algebra of all continuous functions z : Q(B) — [—o0,+00], assuming
possibly the values +0o on nowhere-dense subsets of Q(B). We consider the Orlicz—Kantorovich spaces
(La(B,m), | - lo) C Co(Q(B)) with the Luxembourg norm associated with an Orlicz function ® and
a vector-valued measure m, with values in the algebra of real-valued measurable functions. It is shown, that
in the case when ® satisfies the (As)-condition, the norm || - ||¢ is order continuous, that is, ||z ||e J O for
every sequence {z,} C Ls(B,m) with =, | 0. Moreover, in this case, the norm || - ||¢ is strictly monotone,
that is, the conditions |z| < |y|, z,y € Ls(B,m), imply ||z]le < ||ylle. In addition, for positive elements
z,y € Lo(B,m), the equality ||z +y|le = ||z —y|le is valid if and only if 2-y = 0. Using these properties
of the Luxembourg norm, we prove that for any positive linear isometry V : Le(B,m) — L& (B, m)
there exists an injective normal homomorphisms 7T : Co(Q(B)) — Co(Q(B)) and a positive element
y € Lg(B,m) such that V(z) =y-T(z) for all = € Ls(B,m).
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1. Introduction

The development of the theory of integration for vector measures with values in complete
vector lattices made it possible to construct useful examples of Banach—Kantorovich spaces.
Important examples of such spaces include the “vector-valued” analogues of the L,-spaces
Ly,(B,m), 1 < p < oo (see [1, 2|), and the Orlicz spaces Lo(B,m) [3-5] associated with
a complete Boolean algebra B and the L°(Q)-valued measure m, where L°(€2) is the algebra of
real measurable functions on the measure space (2, ¥, ) with a o-finite numerical measure p.
If © is a singleton, then the class of Banach—Kantorovich spaces coincides with the class of real
Banach spaces, important examples of which are symmetric spaces Egr(€2, «7, 1) of real-valued
measurable functions on (2, %, ). The study of the geometric and topological properties of
the spaces Er(Q, <7, p) is firmly related to the problem of describing linear isometries of
such spaces. The work on this problem began with the results of S. Banach [6], who gave
a description of linear isometries for the spaces L,[0, 1], p # 2. Later, Lamperti [7] described
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all linear isometries of the spaces L, (€2, X, i), p # 2, for any o-finite measure spaces (£2, 3, u).
The approach in their proofs was to establish the property of preservation of disjointness for
such isometries [8, Chapter 3].

To study surjective linear isometries on the broader class of functional symmetric spaces
E(Q, o, ), different approaches are required, that depend on a scalar field. If Ec(Q, o7, ) is
symmetric space of complex measurable functions on (2,3, ), then G. Lumer’s method [9]
based on the theory of Hermitian operators can be effectively applied. For example,
M. G. Zaidenberg [10, 11] used this method for description of all surjective linear isometries
on the complex symmetric space Ec(f2, <7, p), where p is a continuous measure. For the real
symmetric space £ = Eg([0, 1], o7, ) of real-valued measurable functions on the segment [0, 1]
with a Lebesgue measure g, in the case when E is a separable space or has the Fatou
property, a description of all surjective linear isometries on E was given by N. J. Kalton and
B. Randrianantoanina [12]. They used methods of the theory of positive numerical operators.
For real symmetric sequence spaces, a general form of surjective linear isometries was described
by M. Sh. Braverman and E. M. Semenov [13, 14]. For complex separable symmetric sequence
spaces (symmetric sequence spaces with the Fatou property), a general form of surjective
linear isometries was described in [15] (respectively, in [16]).

However, the situation is more complicated in the case when isometries are not necessarily
surjective. In this case, Y. Abramovich [17, Remark 2, p.78| emphasizes that, even positive
isometries from a symmetric function space E into symmetric function space F' may not
necessarily have the “disjointness preserving” property. Still, in the commutative case, there
exists an interesting and important special case when the latter property can be guaranteed
for positive isometries “into”. This special case was first considered in [18] and later reviewed
and strengthened in [17, Corollary 6| (see also the proof of [19, Proposition 8|). The extra
condition used in [17-19] is the requirement that the norm || - || on the Banach lattice F is
strictly monotone, that is, 0 < z < y, z,y € F, implies that ||z||r < |ly|/F. For the Orlicz
function space Lg (2, X, 1) with an Orlicz function ® satisfying the (Ag)-condition, the strict
monotonicity of the norm allows to obtain a description of its positive isometries [20]. We
also note that F. A. Sukochev and A. S. Veksler [21]| introduced the property of K-strict
monotonicity of the norm for non-commutative symmetric spaces, and used this property to
give a description of positive isometries of non-commutative symmetric spaces.

In this paper, we show that for an Orlicz function ® with the (Ag)-condition the norm
on the Banach—Kantorovich space Lg(B,m) is strictly monotone. Using this property, we
describe all positive isometries in Lg (B, m).

We use the terminology and notation of the theory of Boolean algebras from [22], the theory
of vector lattices from [23], the theory of vector integration and the theory of Banach—Kan-
torovich spaces from [1].

2. Preliminaries

Let X be a real vector space, and let F be a complete vector lattice. Denote
Fy ={feF:f>0}. The mapping || - || : X — Fy is called an F-valued norm if for
any z,y € X, A € R, the following properties hold: ||z|| = 0 & x = 0; ||Az] = |A|||=];
[+ yll < llz]l + [yl

An F-valued norm || - || is said to be decomposable if for any fi, fo € Fy and z € X with
llz|| = f1 + f2, there exist x1, 29 € X such that x = x1 + z9 and ||z;|| = fi, i = 1,2.

A pair (X, | -||) with an F-valued norm is called a lattice normed space. If, in addition,
the norm || - || is decomposable, then (X, || - ||) is called decomposable.
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We say that the net {z,}aca from a lattice normed space (X, | - ||) (bo)-converges to
an element z € X (writing = (bo)-lim z,,) if the net (|| — z4]||)aca (0)-converges to zero in
the lattice F, that is, there exists a net {fq}aca C Fy such that f, | 0, and ||z — z4|| < fa
for all & € A. A net (v4)aca C X is called (bo)-fundamental if the net (vo — 25)(,8)cAxA
(bo)-converges to zero.

A lattice normed space is called (bo)-complete if every (bo)-fundamental net in it (bo)-
converges to an element of this space. A decomposable (bo)-complete lattice normed space is
called a Banach—Kantorovich space.

An F-valued norm || - || on a vector lattice X is said to be monotonic if condition |z| < |y|,
z,y € X, implies that ||z|| < ||y||. If a Banach-Kantorovich space (X, ||| x) is a vector lattice
and the norm || - ||x is monotonic, then it is called a Banach-Kantorovich lattice.

Let B be a complete Boolean algebra with zero 0 and unit 1. The exact upper and lower
bounds of a set {e,q} C B are denoted by e V ¢ and e A ¢q. A Boolean subalgebra A in B is
called a regular if sup E € A, and inf £ € A for any subset £ C A. Every regular Boolean
subalgebra in B is a complete Boolean algebra.

A non-empty set E of nonzero elements from B is said to be disjoint if e A ¢ = 0 for any
e,q € E, e # q. A partition of unity in Boolean algebra is a disjoint family F in B such that
supFE = 1.

Let Q(B) be the Stone compact of B, and let L(B) := O (Q(B)) be the commutative
unital algebra over the field real numbers R of all continuous functions z : Q(B) — [—00, +00],
assuming possibly the values +oco on nowhere-dense subsets of Q(B) (see, for example,
[1, Chapter 1, Section 1.4.2], [23, Chapter V]). With respect to the partial order z < y <
y(t) — x(t) = 0 for all t € Q(B) \ (v~ (fo00) Uy (4£o0)), the algebra L°(B) is a complete
vector lattice, and the set V of all idempotents in L(B) is a complete Boolean algebra with
respect to the partial order induced by L°(B). In addition, V is isomorphic to the Boolean
algebra B. It is known that the set C(B) := C(Q(B)) of all continuous real-valued functions
on Q(B) is a subalgebra in L°(B), and C(B) is a Banach space with respect to the uniform
norm |12 = suprcqs) (1)

We denote by s(z) := sup,>; {|z| > n~'}, the support of an element z € L%(B), where
XE, = {|z| > A} € B is the characteristic function of the set E\ which is the closure in Q(B)
of the set {t € Q(B) : |z(t)| > A}, A > 0.

For any nonzero x € L°(B) define i(x) as the inverse element to x on its support, i. e.,

! if z(t) #0
W? e ( ) 7é ’

i@ ={ 7
0, if z(t) = 0.

It is clear that i(z) € LY(B) and i(z) - © = s(z).

Let (2,3, 1) be a o-finite measure space, and let L°(€)) be the algebra of equivalence
classes of almost everywhere finite real-valued measurable functions on 2. With respect to
the partial order f < g & g — f > 0 (almost everywhere), the algebra L°(Q) is a complete
vector lattice, and the set B(2) of all idempotents in L°({2) is a complete Boolean algebra
with respect to the partial order induced by L°(Q). Since p is a o-finite measure, it follows
that B(€2) is a Boolean algebra of countable type, that is, any subset £ C B(2) of non-zero
pairwise disjoint elements is at most countable. Thus, for any increasing net z,, T = € L°(Q),
{2a}aca C LY(R), there exists a sequence a1 < ag < ... < ay, < ... such that x,, 1 2 (see,
for example, [23, Chapter VI, §2]).

A mapping m : B — L°(Q) is called a L°(Q)-valued measure if it satisfies the following
conditions:
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1) m(e) >0 for all e € B;

2) m(eV g) = m(e) + m(g) for any e, g € B with e A g = 0;

3) m(eq) | 0 for any net ey | 0, {en} C B.

A measure m is said to be strictly positive if m(e) = 0 implies e = 0. In this case, B
is a Boolean algebra of countable type, thus, in condition 3) above, instead of the net e, | 0,
one can take a sequence e, | 0, {e,}>°, C B.

A strictly positive L°(2)-valued measure m is said to be decomposable if for any e € B and
a decomposition m(e) = f1+ f2, f1, f2 € L%(Q) 4, there exist ey, es € B, such that e = e1 Ve,
and m(e;) = fi, i = 1,2. A measure m is decomposable if and only if it is a Maharam
measure, that is, for any e € B, 0 < f < m(e), f € L°(Q), there exists ¢ € B, q < e, such
that m(q) = f [24]. Maharam measures have the following important property.

Proposition 1 [24, Proposition 3.2]. For each L°(f))-valued Maharam measure m :
B — L°(Q) there exists a unique injective completely additive homomorphism ¢ : B(2) — B
such that ¢(B(Q)) is a regular Boolean subalgebra of B, and m(p(q)e) = gm(e) for all
q € B(Q), ec B.

Let m : B — L°(Q) be a Maharam measure. We identify B with the Boolean algebra
of idempotents in L°(B), i. e., we assume that B C L°(B). By Proposition 1, there exists
a regular Boolean subalgebra V(m) in B and an isomorphism ¢ from B(2) onto V(m) such
that m(p(q)e) = gm(e) for all ¢ € B(Q), e € B. In this case, the algebra L°(f2) is identified
with the algebra LY(V(m)) = Cuo(Q(V(m))) (the corresponding isomorphism will also be
denoted by ). Thus, the algebra C(Q ( (m))) can be considered as a subalgebra and as
a regular vector sublattice of L°(B) = Cu(Q(B)) (this means that the exact upper and
lower bounds for bounded subsets of L°(V(m)) are the same in L°(B) and in L°(V(m))).
In particular, L°(B) is an L°(V(m))-module.

Consider the vector sublattice S(B) in LY(B) of all simple elements x = > | a;e;, where
a;€R, e; € B,ei-ej=0,1,75=1,...,n. The formula

I, (z) = /xdm = Zaim(ei), x € S(B),
i=1

correctly defines the linear operator I,,, : S(B) — L°(€).

A positive element z € L°(B), is called m-integrable, if there exists a sequence
{zn}oz, € S(B), 0 < x, T x, such that there is a supremum sup,-; In(z,) in the
lattice L°(2). In this case, the integral of the element x with respect to the measure m
is defined by

n—o0

In(z) == / zdm = (0)- lim [ z,dm.

It is known that the definition of the integral I,,(z) does not depend on the choice of
the sequence {z,};2, C S(B), 0 < x, T x, for which there exists sup,~1 Irn(zn) (see, for
example, [1, 6.1.3]).

An element x € LY(B) is called m-integrable if its positive and negative parts z, and z_
are m-integrable. The set of all m-integrable elements is denoted by L!(B,m), and for every

x € L'(B,m) we have
/xdm ::/x+dm —/m_dm.

If |z||1m = [ |z|dm, z € L*(B,m), then the pair (L'(B,m),||z||1,m) is a lattice normed space
over L°(2) [1, 6.1.3]. Moreover, in the case when m : B — L°(2) is a Maharam measure,
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the pair (LY(B,m), ||z||1.m) is a Banach-Kantorovich space. In addition,

L%V (m)) - LY(B,m) c L' (B, m), /(go(oz)x) dm :a/xdm, ‘/xdm' < /|x|dm

for all z € LY(B,m), a € L°(Q) [1, Theorem 6.1.10].
Let p € [1,00), and let

LP(B,m) = {x € L°(B) : [z’ € L'(B,m)},

1
el = [/]m\pdmr, v € LP(B,m).

It is known that for the Maharam measure m the pair (LP(B,m), ||z||,m) is a Banach-Kan-
torovich space [2, 4.2.2]. In addition,

o(a)r € LP(B,m) Yz € LP(B,m), a € L°(Q), 1 < p < oo,

and [[(a)z{lpm = [of[]pm-

3. Orlicz—Kantorovich Lattices for L°-Valued Measures

Let B be a complete Boolean algebra, and let m : B — L°(2) be a Maharam measure
for which m(1p) = 1p(q). The algebra L°(2) is identified with the algebra L°(V(m)) =
Coo(Q(V(m))), which is a subalgebra and a regular vector sublattice of L°(B) = Cx(Q(B)).

Recall that a function ® : [0, 00) — [0, 00) is called an Orlicz function if ® is left continuous,
convex, increasing function such that ®(0) = 0, ®(¢) > 0 for all ¢ > 0. It is known that
the derivative @ exists almost everywhere on (0,00), and there is a unique increasing left-
continuous function ¢ : [0,00) — [0,00), such that ¢ = ® almost everywhere on [0, 0)
and

<I>(t):/¢(u)du (¥t > 0).
0

In particular, ®(t) < ®(s) for all 0 <t < s (see, for example, [25, Chapter 13, §13.1]).

For each function z € L%(B) the set G = {t € Q(B) : —0o < x(t) < +o0} is everywhere
dense and open in Q(B). Therefore, for a continuous function ®(z(t)), t € G, there is a unique
continuous extension y(t) to Q(B) (see [23] , Lemma V.2.1), i. e., ®(z) := y € L°(B). It is
clear that

O(ex) = ed(z) (Vee B).

Moreover, since ® is a convex function on [0,00) and ®(0) = 0, it follows that
y-@(zl) > @y -zf) (YoeL)(B), ye L(B)) with 0<y < 1. (1)

In addition, as the function ® is increasing and left continuity, we obtain the following

Lemma 1. If v,z € L°(B) and w, | =, then ®(z,) | ®(z).

Following the traditional scheme (see, for example, [26, Chapter 2|), we introduce the
Orlicz classes and Orlicz spaces associated with an L%(2)-valued measure m and an Orlicz
function ®. Let LY(Q)44 be the set of all positive elements A € LY () such that s(\) = 1. It
is clear that for any A € L°(Q), | there exists A™' € L°(Q), | such that A - \™1 = 1.
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As in [26, Chapter 2|) we define the Young class
Yo = Yo(B,m) = {z € 1°(B) : ®(a]) € L'(B,m)}
and the Orlicz space
Lo = Lo(B,m) = {z € L°(B) : ®(A'|z|) € L'(B,m) for some X € L°(Q);4 }.
Let
He == Ho(B,m) = {z € L°(B) : ®(A\ '|z|) € L}(B,m) for all A € L°(Q)44}.

If Q is a singleton, then the above definitions coincide with the well-known definitions of the
Young class and the Orlicz space of measurable functions (see, for example, [26, Chapter 2|).
It is clear that

H¢(B,m) - Y¢(B,m) C L@(B,m)

In addition, Hg is a linear subspace of the linear space L, and Yg is an L°-convex subset
of Lg, that is, \Yg + (1 — \)Ye C Yg for all A € L%(2), 0 < A < 1 (see (1)); however, Yo
may not be the same as Lg. As in the case of classical Orlicz spaces, it is established that
Hg = Lg if and only if Yo = 2Y5 (see, for example, |26, Chapter 2, Proposition 2.1.15]). Note
also that if ®(¢) =t?/p, t > 0, 1 < p < oo, we have Lg(B,m) = LP(B,m).
Let
Fo(x) = /<I>(|a:|)dm, where x € Yo (B, m).
It is clear that
Fp(ex) = eIp(x) (Vee B).
In addition, using (1), we obtain for any 1 < A € L°(Q)

A g (x /A "o (|z)) d / (A" 2]) dm = So (X 2). (2)
Define an L°(£2)-valued Luxembourg norm on Lg(B,m), setting
|z]|o :=inf {\ € LY(Q)1+ : Fo(\'2) <1}, 2 € Lo(B,m).

It is known that the pair (Lg(B,m), ||-||s) is a Banach-Kantorovich lattice, called the Orlicz—
Kantorovich lattice associated with L°(§))-valued measure [3, 4]. Moreover, the norm || - ||¢ has
the following important property

lazlle = lalllz]e (Yo € Lo(B,m), a € L%(Q)

(see |3, Proposition 2.7]). We also note that it follows from m(1) =1 that 1 € Ly (B, m), and
therefore C(B) C Lg(B,m). In addition, for any x € C(B) we get that

Izle < [Hzlloe - 1lg = lzlloc - 11]la,

in particular, ||z, — z||cc = 0, 2p, 2z € C(B) = ||zn, — z|jle — 0.
We need the following inequalities.
Proposition 2. If 0 # = € Ly(B,m), then s(x) < s(||z]le) and o (i(||z|le)z) < s(||z||s).
< Since
l2(1 = s(llzlle))[| = (1 = s(llle))llz]le = O,
it follows that (1 — s(||z||e)) = 0. Thus s(z) < s(||z||s)-
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Let’s show now that %4 (i(||z|ls)z) < s(||z||e). Denote
Az)={Ne L2Q)4s : Fo(N '2) <1}
and let Aj, A2 € A(x). Then
g={M <X} eB() and v=XAX =g+ (1 —q)€ L))+,
in addition,
Io(v'2) = Jo (A g+ A (1= 9)2) = ¢Fa (A 2) + (1-9)Fe(N'e) <g+(1-q) =1,
that is, v € A(x). Using mathematical induction, we get that

inf A\, € A(z) for any finite subset {A1,...,A\,} C A(x).

1<in

Since B(f2) is a Boolean algebra of countable type, it follows that there exists a sequence
{A\n} € A(x) such that
An b Inf A(z) = ||z)|o.

If e = s(||x]|3), then e € L(Q2) and
e lelzlle = Nlete-i(||lz]e)

Since Sp(M\;'z) < 1, it follows that Zg(()\,'e)r) < e. Using now the theorem of monotone
convergence |1, Chapter VI, Theorem 6.1.4], we obtain that

Fo(i([|zlle)z) <e=s([zle). >

In the following proposition, we use the inequality o < 3, o, 3 € L%(Q), which means that
a < B and a # B.

Proposition 3. Let x € Ly(B,m) and 0 # e € B(Q2). Then

(i) the inequality ||ex|e < e (resp., ||ex||le < €) implies the inequality Y3 (ex) < e (resp.,
Tp(er) 5 e);

(79) the inequality ||ex|le = e implies the inequality Y3(ex) = e;

(¢it) if x € Hg, then |lex|e = e if and only if Fgp(ex) = e.

< (i) Let © € Lo(B,m), e € B(2), 0 # |lex|le < e and g = s(||ex||¢). Then g < e,
g < i(]|lex||s) and, using Proposition 2, we obtain that

Fo(ger) < Fo(i(|lex]|s)er) < g.
Moreover, from the equality |ex — egzx|le = (e — eg)|lex||le = 0, we get that ez = egx. Thus
Ip(ex) = Ip(egr) < g < e.

Let now |lex|le S e, that is, e # |ex|e < e. If s(|lex|la) = p < e, then |lez||s < p and
s(ex) < s(|lex||s) = p, in particular, pxr = pex. From what was proved above, we get

Iy (ex) = Ip(pex) = Ip(px) < p <e.
If s(|lex||e) = e, then there exist

€ (0.1), 0#q < sllexlls) = g, q € B(), such that glezlls < (1 - e)g.



110 Zakirov, B. S. and Chilin, V. I.

Thus, ¢i(|lex|le) > 2. Using Proposition 2, we get

S5 (gex . ;
P < Salaillenlia)en) = 050 (i (lexla)en) < a9 = 0.

1—
If Sg(ex) = e, then qI3(ex) = q and

> Ip(qer) ¢
N 1—¢

)

which is wrong. Thus Zg(ex) S e.

(73) Let = € Lo(B,m), e € B(Q2) and |lex|ls = e. Let us show that for any 0 # p < e,
p € B(Q) there exists 0 # ¢ < p, ¢ € B(Q) such that Z5(qz) = q.

Choose o € L%(Q)4 such that p S o S ||pz|le. It is clear that s(a) = p and p = i(«).
Since a < ||px||e and

Ipzlle = pllefe = inf {pA: A € L%Q) 1y, Ja(A"'pz) <1}
=inf{y: v €pLQ)4+, Fo(i(v)pr) < p},

it follows that % (i(a)pz) % p. Thus, there exists 0 # ¢ < p, ¢ € B(Q) such that

Jo(i(a)qr) = qIs(i()pz) Z ¢

(3)

Using the inequalities i(a) < p and (2), we obtain
(o) o (qr) > Ip(i(a)qx) = q, e.a., Fp(qr) = aq 2 q.

Using now the “Principle of Exhaustion” for complete Boolean algebras |22, Chapter 111, § 2|,
we get that there exists a disjoint set {g; }ier C B(f2) such that

supg; = e and Io(qix) = q (Viel).
iel

Consequently, Zg(ex) = e.
(7i1) Let x € Hg, 0 # e € B(Q), and let ||ex||l¢ = e. Then by the part (i), we get that
Iy (ex) < e. If Sp(ex) # e, then there exist € € (0,1) and 0 # p <e, p € B(Q2) such that

1
Ip(pr) < (l—e)p = fq><1 _epx> Sop.

Using (3), we get that |[pz|e <1 —e. Thus

p = pe = pllezlle = [[prlle < (1 —¢)p,

which is impossible. Consequently, .Zg(ex) = e.
Let now g (ex) = e. Suppose that |lex||¢ % e. Since s(|lex|ls) < e, it follows that there
exist 6 € (0,1) and 0 # ¢ < e, ¢ € B(Q2) such that

lgzlle = gqllexlle = (1 +0)q 2 ¢.

Thus, Zs(qx) = q (see (ii)). Therefore, ¢ = ge = qIp(ex) = Fp(qr) = q. From this
contradiction it follows that [lex|s < e. If |ex|le S e, then by the part (i), we get that
e = Ip(ex) < e, which is impossible. Thus ||ez||¢ = e. >
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DEFINITION 1. An Orlicz function @ is said to satisfy the (Ag)-condition if 0 < ®(t) < oo
for all £ > 0 and supg.;<qo % < 00

Repeating the proof of Theorem 2.1.17 (1) |26, Chapter 2|, we obtain the following version
of it for the Orlicz-Kantorovich modules Lg (B, m).

Proposition 4. If an Orlicz function ® satisfies the (Ag)-condition, then Ly = Hg.
Using now Propositions 3 (iii) and 4, we get the following

Proposition 5. If an Orlicz function ® satisfies the (Ag)-condition and x € Lg(B,m),
0 # e € B(Q), then ||ex||¢ = e if and only if Ig(ex) = e.

We say that the Luxembourg norm || - ||¢ is order continuous if ||z,||¢ | O for every
sequence {x,} C Lg¢ with =, | 0. It is clear that in this case, for any sequence {z,} C Lg
with x,, T = € Lg we have that ||z — z,|le 4 0.

Proposition 6. If an Orlicz function ® satisfies the (Ay)-condition, then the Luxembourg
norm || - ||¢ is order continuous.

< Let {x,} C Lg and z,, | 0. By Lemma 1, we have ®(x,) | 0. Since 0 < z,, € Ly = Hp
(see Proposition 4), it follows that z,, € L'(B,m) for all n, and using the convergence z, | 0,
we obtain that g (x,) | 0.

Let’s show that ||z,|ls | 0. Suppose that ||z,||¢ | a # 0. Then there exist € > 0 and
0 # e € B(Q) such that |lex,|le = e||znlle = ea = ee, that is, |e(e™! - z,)||e = e for all

n = 1,2,... Using now Proposition 3 (ii), we obtain e~ g (ex,)) = Fo(e(c™ - z,)) 2 e,
that is, eZp(x,)) = o(exy)) = €-e, n = 1,2,..., which contradicts the convergence
jcp(.%'n) 0. >

4. Positive Linear Isometries in Orlicz—Kantorovich Spaces

We say that the norm ||-||¢ is strictly monotone if the conditions |z| < |y| z,y € Lo (B, m)

imply [[zfle = [lylle-
Using Proposition 5 we obtain the following

Proposition 7. If an Orlicz function ® satisfies the (Ay)-condition, then the Luxembourg
norm || - ||g is strictly monotone.

< Let 2,y € Lo(B,m), 0 # || < |y|, and let o = ||y|le. Since s(y) < s(|lylle) (see
Proposition 2), it follows that

[s(lylle)i(@)y|| = i(a)llylle = s(lylls) € B().

Using Proposition 5, we get that s(|ly[ls) = Ho(i(a)y). Since the function ® is strictly
increasing and |z| < |y|, it follows that

o ila)a) = [ @((i()lal dm 5 [ @ (i(@)ly) dm = S (i(a)y). )
If 2]ls = lyllo, then

[s(lylle)i(@)z)]|y = s(llylle)ile)zlle = slylle)i(e)ylle = s(lylle).

and, by Proposition 5, we get

Ja (i(a)z) = T (s(lylle)i(@)z) = s(llylle),

which contradicts the inequality (3). Consequently, ||z|o # ||y|lo. >
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Corollary 1. If an Orlicz function ® satisfies the (Ag)-condition, and z,y € Lg(B, m)+
then z -y = 0 if and only ||z + yl|ls = ||z — yl|s-

<Ifz#0,y#0and z-y=0, then [z +y| = |z —y| and ||z + y|lo = ||z — y|ls-

Conversely, let x,y € Lg(B,m)+ and ||z + ylle = ||z — yllo. Since ® satisfies the As-
condition, it follows that the norm || - ¢ is strictly monotone (see Proposition 7). If z -y # 0,
then |z —y| S |z+y|. Thus ||z +y|le # ||z —y||e, which is not true. Consequently, z-y = 0. >

Recall that a linear operator T in a vector lattice X is called positive if T'(z) > 0 for all
0 < z € X. For any positive operator T we have |T'(z)| < T(|z|), where |z| = x4 + x_, and
x4, z_ are the positive and negative parts of an element x € X [1, Chapter 3, Section 3.1.1].

Corollary 2. Let the Orlicz function ® satisfy the (Ag)-condition, and let V : Ly (B, m) —
Lg(B,m) be a positive linear isometry. If ¢,y € Ly(B, m)+ and z-y = 0, then V(x)-V (y) = 0.

<Ifz,y € Le(B,m); and -y = 0, then |z + y| = |z — y| and

V(@) +Vylle = IV(z+ylle =z +ylle =z —yllle
=z —yllo =[V(z—y)lle = IV(z) = V(y)le-

Since V(x) > 0, V(y) > 0, it follows that V(x) - V(y) = 0 (see Corollary 1). >

A linear operator T : L%(B) — L%(B) is called a homomorphism if T'(z - y) = T'(z) - T(y)
for all z,y € L°(B). It is clear that any homomorphism 7 : LY(B) — L°(B) is a positive
operator.

A positive linear operator T : L%(B) — LY%(B) is called normal (resp., completely
additive) if T(sup,xo) = sup,T(r,) for any increasing net {z,} C L°(B), such that
0 <zo1x€LYB) (resp., T(Y ;s €) = SUPaca 2 jeq 1(€5), for every family of idempotents
{eitier C B, eje; = 0,4 # j, 1,5 € I, where A = {a} is the directed poset of all finite subsets
of I, ordered by inclusion).

It is clear that the normality property for a positive linear operator implies that
this operator is a completely additive one. In the case when T : L%(B) — L°B) is
a homomorphism, the inverse implication is also valid, that is, every completely additive
homomorphism of T : LY(B) — L°(B) is a normal operator [27, Theorem 4].

Since m(1) = 1 and p is a o-finite measure, it follows that there exists a sequence
{en} C B(Q) such that

plen) < oo, ener =0, n#k, nk=1,2,..., supe, =1,

n>1

and {e, - m(q) : ¢ € B} C L*(,%, ). Thus the function v(q) = Yoo, [, enm(q)dp is a
o-finite numerical measure on the Boolean algebra B, in particular, B is a Boolean algebra
of countable type. In this case, in the definition of normality (resp., completely additivity) of
a positive linear operator T : LY(B) — L°(B), instead of an increasing net {z,} C L°(B)
(resp., a family of idempotents {e;}ic; C B, e;e; = 0, @ # j, i,j € I), one should take a
sequence {z,} C L°(B) (resp., a countable family of idempotents {e;}i>1 C B, e;e; = 0,
i£j i, i=12..).

The following theorem gives a description of all positive linear isometries acting in an
Orlicz—Kantorovich spaces.

Theorem 1. Let an Orlicz function ® satisfy the (Ay)-condition, and let V : Lg(B, m) —
Lg(B,m) be a positive linear isometry. Then there exist an injective normal homomorphism
T : L°(B) — L°(B) and a positive element y € Lg(B,m) such that V(x) = y - T(z) for all
x € Loe(B,m).
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< Define the mapping ¢ : B — B, by setting ¢(e) = s(V(e)), e € B, where s(V (e)) is
the support of the element V' (e) € Ly (B, m). It is clear that ¢(e) = 0 if and only if e = 0. If
e,g € B and eg = 0, then V(e) - V(g) = 0 (see Corollary 2, thus ¢(e) - ¢(g) = 0. Therefore,

pleVyg)=s(V(e+g)) =s(V(e) +V(g) =s(V(e)) +s(V(g)) = v(e) +¢(g9) = ple) V ¢(g).

Using mathematical induction, we obtain that

gp( sup ei) = sup ¢(e;)

1<i<n 1<i<n

for any finite set of pairwise disjoint idempotents {e;}* ; C B.

Let {e;}3°; C B be a countable set of pairwise disjoint idempotents, and let
gn = SUDPj¢icn €is m = 1,2,... Then g, T sup,>1 g» = sup;>; €¢; := ¢, and, by Proposition 6,
we get V(gn) T V(e). Thus

plgn) = 5(V(gn)) T5(V(e)) = p(e), thatis, supp(e;) = p(e).

i>1
Moreover,
p(1) = p(e+Ce) = s(V(e+Ce)) = s(V(e) + V(Ce)) = 5(V(e)) + s(V(Ce)) = p(e) +¢(Ce),

that is, ¢(Ce) = p(1) — ¢(e). Thus the mapping ¢ : B — B satisfies all the properties
of a regular isomorphism from Definition 3.2.3 [8, Chapter III, §3.2], so ¢ is an injective
completely additive Boolean homomorphism [8, Chapter III, § 3.2, Remarks 3.2.4]. Using now
Theorems 3 and 4 from [27], we get that there exists an injective normal homomorphism 7 :
L°(B) — L%(B) such that T'(e) = ¢(e) for all e € B. In addition, the restriction A = T'|¢(p)
is a || - ||co-continuous injective homomorphism from C'(B) into C(B).

If e € B then

Vie)=V(A—-(1-e))s(V(e)) = V(1)ple) = V(1 —e)p(l—e)ple)
=V(@)p(e) = V(1 —e)p((1 —e)e) = V(1)g(e),

that is, V(e) = V(1)p(e). If
xzzn:aiei €S(B)CC(B), e €B, eej=0,i#j i,j=1,...,n,
i=1
is a step element then
V(z) = iaiV(ei) =V(1) iaiT(ei) =V(Q)- - T(z).
i=1 i=1

Let = € C(B), and let {z,}22; C S(B) be a sequence of step elements such that
|z, — 2||oc — 0. Then

HT(azn) - T(x)HOO = HA(xn) - A(x)HOO — 0.
Therefore,

IV(ea) = VOT@)|y = V(D) Tea) = VOT@)|, = V(D) Ten — ),
<V, - 7], 0.
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Since
[V(zn) = V@)l = [IV@n = 2)ll| < [V(n = 2D < [lzn — 2] [[V@)]|5 = 0,

it follows that V(z) = V(1)1 (x).

Let us show that the equality Va = V(1) - T'(z) holds for all x € Lg(B,m). It suffices
to check this equality for all 0 < = € Lg(B,m). Let 0 < x € Lg(B,m), and let 0 < z, =
T-X{o<z<n} € C(B). Since x,, T z and the norm ||-|| is order continuous norm (Proposition 6),
it follows that

V@) - Tan) = Vi@)ly = [[V(@a) = V@) = o0 =2l = 0.

Using now the convergence T'(z,) T T'(z), we obtain that V(z) = V(1) - T(x), where
0< V(].) S L<1>(B,m) >

In the case of the Orlicz function ®(t) = t?/p, Theorem 1 entails the following description
of all positive linear isometries acting in a Banach—Kantorovich LP-space.

Corollary 3. Let m be the Maharam measure on a complete Boolean algebra B, and let
V. LP(B,m) — LP(B,m), 1 < p < oo, be a positive linear isometry. Then there exists an
injective normal homomorphism T : L%(B) — L°(B) and a positive element y € LP(B,m)
such that V(z) =y - T(z) for all x € LP(B,m).
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[TOJIOZKNTEJ/IBHBIE NSOMETPUN [TPOCTPAHCTB OPJINYA — KAHTOPOBIYA

Baxupos B. C.}, Yuun B. 1.2

! TamkenTckuit roCyJapCTBEHHBIA TPAHCIOPTHBIA YHUBEPCUTET,
V3b6ekucran, 100167, Tamkent, yn. Temupityaanmap, 1;
2 Hanposa tbHEIT yHUBEpCHTET Y36eKncTana,
V3bekucran, Tamkent, 100174, By3sropomok

E-mail: botirzakirov@list.ru, vladimirchil@gmail.com

Amnnoranust. [Tycrs B nosnas Gysesa anrebpa, Q(B) croynosckuii komnakt miust B, n nycrs Coo (Q(B))
KOMMyTaTHBHasl ajarebpa Bcex HelpepblBHbIX byHKImi z : Q(B) — [—00, +00], NPUHUMAIOIXAXO0, 3HAYEHU
400 Ha HUTJE He IUIOTHBIX MojMHOXKecTBax u3 Q(B). Mbl pacemarpusaem npocrpanctsa Opimaa — Kanro-
posuua (Ls(B,m),| - ||le) C Coo(Q(B)) ¢ nHopmoit Jlrokcembypra, nocrpoetntse 1o dynximn Opinda ¢ u
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BEKTOPHO3HAYHON Mepe M CO 3HAUEHUAMHA B anrebpe JAefCTBATENbHBIX N3MepuMbIx dynkimit. [lokasbiBaercs,
410 B citydae Hanuaus (Aq)-ycnosust s dyuknuu Opawya @, Hopma || - ||¢ ABIAETCS TOPSIKOBO HETIPEPHIB-
HOM, T. €. ||Zn|le | O must sr0Goit mocsieoBarensaoct {xn} C Lo (B, m), xy | 0. Kpome Toro, B sTOM ciy4ae,
HOpMa || - ||¢ siBiIsteTCcst CTPOro MOHOTOHHOI, T. €. u3 |z| S |y| =,y € Lo (B, m) caexyer, aro ||z|le S ||y||e. [Ipu
9TOM, J|JIsl TIOJIOXKUTEJIBHBIX 3JIEMEHTOB T,y € Lo (B, m) pasercrso ||z +y|le = ||z —ylle BBIIOMHSETCH TOTIA
U TOJBKO Torja, Korma -y = 0. Vcnonb3ys atu cBojicTBa HOpMbI JI1oKceMBypra, JOKa3bIBAeTCs, ITO It
JII06OH OJIOXKUTENIbHOM JnHeitHoi uzomerpun V : Lo (B, m) — Le (B, m) CyHecTBYIOT TaKue MHbEKTUBHbIH
HopMmaJbHbll romoMopdusM T : Co (Q(B)) — Coo (Q(B)) u mosoxkurenbHblil 371ement y € La (B, m), 9to
V(z) =y -T(z) musascex z € La(B,m).

Kurouesbie csioBa: npocrpancTso Banaxa — KanTtoposuva, dynxnus Opinda, BEKTOpHOZHAYHAS Mepa,
HOJIO’KUTE/IbHAS N30METPHsl, HOPMAJIBHBIA rOMOMOPGhU3M.
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