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Abstract: Although creativity is often viewed as being associ-
ated with the notions of “genius” or exceptional ability, it can be
productive for mathematics educators to view creativity instead
as an orientation or disposition toward mathematical activity that
can be fostered broadly in the general school population. In this
article, it is argued that inquiry-oriented mathematics instruction
which includes problem-solving and problem-posing tasks and
activities can assist students to develop more creative approaches
to mathematics. Through the use of such tasks and activities,
teachers can increase their students’ capacity with respect to the
core dimensions of creativity; namely, fluency, flexibility, and
novelty. Because the instructional techniques discussed in this
article have been used successfully with students all over the
world, there is little reason to believe that creativity-enriched
mathematics instruction cannot be used with a broad range of
students in order to increase their representational and strategic
fluency and flexibility, and their appreciation for novel problems,
solution methods, or solutions.

Kurzreferat: Kreativität fördern durch einen Unterricht, der
reich ist an Situationen des mathematischen Problemlösens
und Aufgabenerfindens. Kreativität wird oft im Zusammen-
hang gesehen mit Begriffen wie “Genie” oder außergewöhnliche
Fähigkeiten. Demgegenüber kann es für Mathematiklehrer je-
doch produktiver sein, Kreativität als Orientierung für mathema-
tische Aktivitäten zu nehmen, die auf diese Weise bei der All-
gemeinheit der Schüler breit gefördert werden kann. In diesem
Beitrag wird gezeigt, daß forschender Mathematikunterricht, der
Aufgaben zum Problemlösen und zum Aufgabenerfinden bein-
haltet, Schüler dabei unterstützen kann, mehr kreative Zugänge
zur Mathematik zu entwickeln. Durch solche Aktivitäten und
Aufgaben kann der Lehrer die Fähigkeiten seiner Schüler im
Hinblick auf die Kernaspekte von Kreativität erweitern, nämlich
Gewandtheit, Flexibilität und Neues. Die hier diskutierten Un-
terrichtsmethoden wurden weltweit erfolgreich angewendet, so
daß es keinen Grund gibt, daran zu zweifeln, daß solch
ein kreativitätsfördernder Mathematikunterricht nicht auch bei
einem großen Teil aller Schüler eingesetzt werden kann, um
ihre Gewandtheit und Flexibilität im Hinblick auf Darstellung
und Strategien sowie ihr Interesse an neuartigen Aufgaben,
Lösungsmethoden oder Lösungen zu fördern.

ZDM-Classification: C40, D40, D50

1. Introduction
Mathematics as an intellectual domain stands at or near
the top of any hierarchical list of intellectual domains or-
dered according to the extent to which creativity is evident
in disciplinary activity or production. Thus, it is ironic
that for most students throughout the world, mathematics
would almost certainly be among the set of school subjects
least associated with creativity. Although genuine mathe-
matical activity is intimately interwoven with creativity,
schooling provides most students with little opportunity
to experience this aspect of the domain of mathematics.

The goal of this paper is to argue for a different kind of
experience for students – a form of instructional activity
that is enriched by concepts connected to the notion of
creativity.

In this paper, I discuss creativity as it connects with the
activities of problem posing and problem solving, which
are both strong themes in contemporary discussions of
mathematics education. In particular, I show how mathe-
matical problem posing and problem solving are connected
to key aspects of the classic and contemporary conceptions
of creativity and also to the assessment of creativity. I il-
lustrate the connection between these ideas and those of
others who have argued for and demonstrated methods of
providing various forms of inquiry-oriented mathematics
instruction. In this way, I hope to demonstrate the feasi-
bility of bringing creativity-enriched instruction to all stu-
dents. That is, the instructional principles and activities
proposed and discussed in this article are not applicable
only to the teaching of exceptional individuals, but rather
to the general student population.

2. Creativity: What is it and who has it?
In the psychological literature there are literally thousands
of commentaries offered or studies conducted on the na-
ture of creativity, its distribution within the population,
and its origins and manifestations in human experience.
Self-reports of exceptionally talented individuals, as well
as analyses of their work provided by observers, have il-
luminated aspects of creativity in areas as diverse as liter-
ary or musical composition (Getzels & Csikszentmihalyi,
1976; Ghiselin, 1952), scientific discovery (Mansfield &
Busse, 1981; Rothenberg, 1979), and mathematical think-
ing (Hadamard, 1945; Helson, 1983). Unfortunately, what
has garnered a great deal of attention in these accounts is
a so-called “genius” view of creativity.

According to the “genius” view of creativity, creative
acts are viewed as rare mental feats, which are produced
by extraordinary individuals who rapidly and effortlessly
use exceptional thought processes (Weisberg, 1988). The
genius view of creativity suggests both that creativity is
not likely to be heavily influenced by instruction and that
creative work is more a matter of occasional bursts of
insight than the kind of steady progression toward com-
pletion which tends to be valued in school. Thus, there
have been limited attempts to apply ideas derived from
the study of creativity to the education of all students.
But this view of creativity has been questioned in recent
research, and it is no longer the only view of creativity
available for application to education.

A new view of creativity has emerged from contem-
porary research – one which stands in sharp contrast to
the genius view. This research suggests that creativity
is closely related to deep, flexible knowledge in content
domains; is often associated with long periods of work
and reflection rather than rapid, exceptional insight; and
is susceptible to instructional and experiential influences
(Holyoak & Thagard, 1995; Sternberg, 1988). The con-
temporary view of creativity also suggests that persons
who are creative in a domain appear to possess a creative
disposition or orientation toward their activity in that do-
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main. That is, creative activity results from an inclination
to think and behave creatively. This emerging view of cre-
ativity provides a much stronger foundation on which to
build educational applications. In fact, this view suggests
that creativity-enriched instruction might be appropriate
for a broad range of students, and not merely a few ex-
ceptional individuals.

The classical and contemporary views of creativity differ
with respect to the nature of such aspects of creativity as
“insight” and with respect to the distribution of a capacity
for creative activity within the population. But there is
little disagreement between these views of creativity on the
centrality of the generative processes of problem posing
and problem solving in creative activity.

3. The Relation of creativity to problem posing and
problem solving
Problem posing, or problem finding, has long been viewed
as a characteristic of creative activity or exceptional talent
in many fields of human endeavor. For example, Getzels
and Csikszentmihalyi (1976) studied artistic creativity and
characterized problem finding as being central to the cre-
ative artistic experience. Related observations have been
made about professionals in various science fields (e.g.,
Mansfield & Busse, 1981). And Hadamard (1945) iden-
tified the ability to identify key research questions as an
indicator of exceptional talent in the domain of mathemat-
ics.

Problem posing, along with problem solving, is central
to the discipline of mathematics and the nature of math-
ematical thinking (Silver, 1994). When mathematicians
engage in the intellectual work of the discipline, it can
be argued that the self-directed posing of problems to be
solved is an important characteristic (Pólya, 1954). Mathe-
maticians may solve some problems that have been posed
for them by others or may work on problems that have
been identified as important problems in the literature,
but it is more common for them to formulate their own
problems, based on their personal experience and interests
(Poincaré, 1948). Professional mathematicians, whether
working in pure or applied mathematics, frequently en-
counter ill-structured problems and situations which re-
quire problem posing and conjecturing, and their intellec-
tual goal is often the generation of novel conjectures or
results (Pollak, 1987). Thus, unlike the situation in school
mathematics, in genuine mathematical activity, problems
may occasionally be presented for solution by an outside
source, but it is more common for them to arise out of
attempts to generalize a known result, or as tentative con-
jectures for working hypotheses, or as subproblems em-
bedded in the search for the solution to a larger problem.

As these observations suggest, the connection to creativ-
ity lies not so much in problem posing itself, but rather in
the interplay between problem posing and problem solv-
ing. It is in this interplay of formulating, attempting to
solve, reformulating, and eventually solving a problem that
one sees creative activity. Both the process and the prod-
ucts of this activity can be evaluated in order to determine
the extent to which creativity is evident. Among the fea-
tures of this activity that one might examine are the nov-

elty of the problem formulation or the problem solution,
the extent to which shifts in direction or focus were evi-
dent during the process of reformulation or solution, and
the number of formulations or reformulations generated or
the number of different solution paths explored or solu-
tions obtained. These are precisely the forms of cognitive
activity assessed in tests of creativity.

4. Key concepts underlying the assessment of creativity
The Torrance Tests of Creative Thinking (TTCT) (Tor-
rance, 1966; 1974) have frequently been used to assess
the creative thinking of children and adults. An extensive
program of research has validated this instrument as a pre-
dictor of creative production (Torrance, 1988). Three key
components of creativity assessed by the TTCT are flu-
ency, flexibility and novelty. Fluency refers to the number
of ideas generated in response to a prompt; flexibility to
apparent shifts in approaches taken when generating re-
sponses to a prompt; and novelty to the originality of the
ideas generated in response to a prompt. Note the simi-
larity between these components and the characteristics of
creative activity evident in problem posing and problem
solving, as discussed above. In fact, problem posing and
problem solving are often involved in the assessment of
creativity.

The notions of fluency, flexibility and novelty were
adapted and applied in the domain of mathematics by
Balka (1974), who asked subjects to pose mathematical
problems that could be answered on the basis of informa-
tion provided in a set of stories about real world situations.
In his analysis of students’ responses, fluency referred
to the number of problems posed or questions generated,
flexibility to the number of different categories of prob-
lems generated, and originality to how rare the response
was in the set of all responses.

Problem-posing and problem-solving tasks have also
been used by others to identify creative individuals. For
example, Getzels and Jackson (1962) developed a battery
of tests to measure creativity, of which one task asked
subjects to pose mathematical problems that could be an-
swered using information provided in a set of stories about
real world situations. Getzels and Jackson scored the sub-
jects’ problems according to the complexity of the pro-
cedures that would need to be used in order to obtain a
solution (i. e., the number and type of arithmetic operations
used), and they used the results as a measure of creativ-
ity. Other tasks used by Getzels and Jackson assessed the
fluency and originality of subjects as they solved prob-
lems that could have multiple answers or could be ap-
proached from multiple directions. Thus, the activities of
problem posing and problem solving, and the creative fea-
tures of such activity – fluency, flexibility, and novelty –
are well established within the practice of assessing cre-
ativity. These activities and features can also be incorpo-
rated into the teaching of mathematics in order to develop
in students a more creative disposition toward mathemat-
ics. And problem-posing and problem-solving activities
can serve as the mediating vehicles to achieve this goal
when they are used in inquiry-oriented mathematics in-
struction.
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5. Creativity-enriched, inquiry-oriented mathematics
instruction
Although there is no clear consensus on the nature of
inquiry-oriented teaching, in mathematics or in any other
domain, an inquiry approach to mathematics teaching
would generally be characterized as one in which some
of the responsibility for problem formulation and solution
is shared between teacher and students. One way in which
this has been done is to move the locus of instructional
activity away from the textbook and the teacher as the
only sources of problems to be solved in the mathematics
classroom.

Authors from several different countries have written
about instructional experiments in which students gener-
ate mathematics problems that are intended to be solved
by themselves, their classmates, or future students. In the
Netherlands, Van den Brink (1987) has reported an exper-
iment in which first grade children wrote and illustrated
a page of arithmetic sums for children who would enter
first grade in the following year; and Streefland (1987)
has employed similar authorship experiences for students.
In the United States, Healy (1993) has used a similar ap-
proach, which he calls “Build-a-book,” with secondary
school students, in which they study geometry not by us-
ing a commercial textbook but by creating their own book
of important findings based on their geometric investiga-
tions. In Australia, Skinner (1991) reports engaging pri-
mary grade children in an extensive amount of problem
posing; the posed problems are shared among the students
in the classroom and form the basis for much of the ensu-
ing mathematics problem-solving activity. In all of these
cases, students in these classrooms engage in generative
processes of problem posing and problem solving that are
likely to encourage the development of fluency, one of the
key features of creativity.

The development of students’ creative fluency is also
likely to be encouraged through the classroom use of ill-
structured, open-ended problems that are stated in a man-
ner that permits the generation of multiple specific goals
and possibly multiple correct solutions, depending upon
one’s interpretation. For example, consider the follow-
ing “Fermi-style” problem: “How many cells are there in
the body of an average adult male human?” (Schoenfeld,
1985). This problem calls for interpretation in order to
identify a well-structured problem to be solved. Moreover,
it is clear that this problem does not have a single exact
answer; rather, a range of plausible solutions could be jus-
tified. The use of such open-ended problems can provide
students with a rich source of experience in interpreting
problems, and perhaps generating different solutions asso-
ciated with different interpretations (Silver, 1994).

A number of other examples of the use of open prob-
lems in inquiry-oriented mathematics instruction can be
found in the literature. For example, Silver and Adams
(1987) provide examples of fairly simple, yet open-ended,
problems that call for interpretation and might be used in
teaching elementary school mathematics. Lesh (1981) has
provided examples of “applied” problems that are much
simpler than the example above regarding the cells in the
human body, but ones that can nevertheless offer students

valuable opportunities to tackle problems with multiple
interpretations and possible solutions. At the secondary
school level, Silver, Kilpatrick and Schlesinger (1990)
have provided numerous examples of open problems that
invite exploration and communication about mathemati-
cal ideas. Problem posing and open problems are also
prominent features of geometry instruction that uses com-
puter software tools, such as the Geometric Supposers
(Yerushalmy, Chazan & Gordon, 1993). And Sweller,
Mawer, and Ward (1983) have pointed to the potential
efficacy of making instructional use of non-goal-specific
problems (e.g., The radius of a circle inscribed in a square
is 6 inches. Find out all that you can about the square and
the circle.) as opposed to goal-specific problems (e.g., The
radius of a circle inscribed in a square is 6 inches. Find the
area of the square.). Additional examples of open-ended
problems suitable for use with students, and discussions
of critical issues in using open problems, are provided by
Nohda (1995), Pehkonen (1995), and Stacey (1995).

As with the instructional approaches discussed above
in which problems are generated by students rather than
presented by textbooks, all of these tasks seek to engage
students in problem posing and problem solving. As a
result, students should develop their representational and
strategic fluency, as they consider ill-defined situations in
which they pose and then solve a number of problems,
perhaps generating solutions for each of the different prob-
lems posed.

Students can not only become fluent in generating mul-
tiple problems from a situation, but they can also develop
creative flexibility as they generate multiple solutions to a
given problem. Complex, ill-structured problems such as
the one presented above about cells in the human body
certainly provide such opportunities, but even fairly sim-
ple problems can afford an opportunity for students to
display an array of solution methods. For example, Silver,
Kilpatrick, and Schlesinger (1990; pp. 16-19) provide an
example of a classroom instructional episode in which a
teacher and his students discuss multiple solutions to the
following well-known problem: “In the barnyard I have
some chickens and some rabbits. I count 50 heads and
120 legs. How many of each type of animal is in the barn-
yard?” In this episode, students displayed and discussed
the validity, generalizability, and power of two algebraic
approaches, a visual solution, and the use of successive ap-
proximations. In this case, individual students or groups of
students working collaboratively may each generate only
one solution, but the ensuing presentation and discussion
of alternative approaches helps students become aware
of different solution methods, thereby increasing their ca-
pacity to approach problems more flexibly in the future.
Many opportunities for similar experience with multiple
solutions and solution methods can be provided using the
kinds of open problems discussed above.

Similar opportunities are available to students in class-
rooms in which “open approach teaching” or teaching with
“open-end or open-ended problems” is employed in Japan
(Hashimoto & Sawada, 1984; Nohda, 1986, 1995; Shi-
mada, 1977). In this approach, students analyze problems
and problem-solving methods through a process of solving
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a problem in one way and then discussing and evaluating
a variety of solution methods that have been developed
and presented by classmates. In one version of this ap-
proach, problem posing also plays a prominent role, as
students pose mathematical problems that are related to
but different from another problem that was solved on a
previous day (Hashimoto, 1987). The use of problems that
permit a class of students to generate multiple solutions
is a key feature of this form of mathematics teaching, and
it is clearly associated with the development of students’
representational and strategic flexibility.

Another example of an instructional approach that is
likely to encourage the development of flexibility has
been developed by Brown and Walter (1983), and is of-
ten called “What-if-not?” This method of instruction em-
phasizes having students generate new problems from a
previously solved problem using a process of varying the
conditions or goals of the original problem. This instruc-
tional approach has been incorporated into mathematics
teaching at the college and precollege levels, and it is
highly likely to develop creative flexibility in students, as
well as to foster a generally creative disposition toward
mathematical activity.

Many of the kinds of problem-solving and problem-
posing experiences discussed above as being associated
with the building of students’ representational and strate-
gic fluency and flexibility can also be used to develop
in students an appreciation for and a capacity to produce
novel solutions, solution methods, or problems. For ex-
ample, in “What-if-not” instructional settings, as students
generate problems by varying the goals and conditions of
an original problem, they could be encouraged to gener-
ate a type of problem that is different from any that have
been generated thus far. In “open approach” instructional
settings, as successive solution approaches are discussed,
students can identify and discuss the ways in which new
solutions are similar to and different from those methods
generated previously. And students in instructional settings
in which they pose problems for classmates could be sim-
ilarly challenged to generate or evaluate the novelty of a
posed problem.

6. Creativity-enriched mathematics instruction: A
summary and an example
Figure 1 summarizes the instructional suggestions regard-
ing problem posing and problem solving that were dis-
cussed in the preceding section and illustrates their con-
nection to the three core features of creativity discussed
earlier in the paper: fluency, flexibility, and novelty.

The ideas and instructional examples discussed in this
paper are closely associated with the tradition of “problem
solving as art” popularized by Pólya (1954) and discussed
extensively by Stanic and Kilpatrick (1988). As Stanic
and Kilpatrick note, this view of mathematical problem
solving is deeply tied to the nature of genuine mathemat-
ical activity, and it offers considerable promise for de-
veloping in students a more creative disposition toward
mathematics. Nevertheless, it is also the case that teachers
often find this view of problem solving difficult to imple-
ment in classrooms. The supply of curriculum materials

specifically designed to support this view of mathemat-
ics instruction is small compared to the size of the set of
materials that supports a more procedural and mechanical
view of school mathematics. Nevertheless, if teachers ex-
amine the examples cited above and if they reflect on how
these models might be adapted to their teaching, it should
be possible for many teachers to apply the ideas discussed
above in a manner that develops their students’ creativity
and mathematical proficiency in appropriate ways through
problem-posing and problem-solving activities.

Limitations in space available in this article constrains
the extent to which practical matters can be addressed
adequately, but a simple, concrete example of how these
ideas might influence the planning and implementation of
mathematics instruction seems warranted. Let us consider
the following problem and a variety of ways in which it
might be used in connection to the ideas discussed above
and summarized in Figure 1: “Show that the product of
any four consecutive integers is divisible by 24.”

Problem Solving Creativity Problem Posing

Students explore open-
ended problems, with
many interpretations,
solution methods,
or answers

�!Fluency��

Students generate
many problems to be
solved

Students share their
posed problems

Students solve (or
express or justify) in
one way; then in
other ways

Students discuss many
solution methods

�!Flexibility��

Students pose
problems that are
solved in different
ways
Students use ”What-
if-not?” approach to
pose problems

Students examine
many solution meth-
ods or answers (ex-
pressions or justifica-
tions); then generate
another that is differ-
ent

�!Novelty��

Students examine sev-
eral posed problems;
then pose a problem
that is different

Fig. 1:
Relation of Mathematics Problem-Solving

and Problem-Posing Instructional Activities
to Core Components of Creativity

This problem can be solved in several different ways.
For example, students might generate examples of spe-
cific cases of products of consecutive integers, and then
look for a pattern that could provide an adequate justifica-
tion for the desired generalization. Alternatively, students
could use number theoretic concepts to argue that �� d �

must be the greatest common factor of the product of four
consecutive numbers. An example of argument that uses
the divisibility properties associated with numbers in the
string of consecutive integers is the following: One of the
four numbers in the string must be even and another one
must be a multiple of 4 (thereby together giving a common
factor of ��), and one of the numbers in the string must be
a multiple of 3 (thereby giving another common factor of
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3, which means that the common factor must be at least
24), and the smallest non-zero product of four consecutive
integers is 24 (thereby ensuring that the largest possible
common factor of all such strings can be no greater than
24), and so we can conclude that the greatest common
factor must be exactly 24. Other methods of solution and
argument are also possible. Used in this way, the prob-
lem could build representational and strategic flexibility
by providing students with exposure to several different
solution methods for the same problem.

This problem could also be used in other ways to ac-
complish additional goals. For example, after solving the
original problem, a teacher could have students use the
“What-if-not” approach to vary the original problem’s goal
(e.g., What is the smallest guaranteed divisor? or What
are all the possible factors?) or conditions (e.g., What if
there were 3 consecutive integers, 5 consecutive integers,
or N consecutive integers? or If the 4 integers were not
consecutive, could a guaranteed largest divisor still be de-
termined?).

A different approach to using this problem might involve
stating it in a more open-ended fashion, such as “What
conclusions can you draw about the product of any four
consecutive integers?” This formulation of the problem is
non-goal-specific and less well defined, thereby offering
students an opportunity not only to determine that 2, 3,
4, 6, 8, 12, and 24 are factors of all such products, but
also perhaps to detect other interesting features of such
products. For example, students might be challenged to
generate some characteristic of products of four consec-
utive integers that does not have to do with divisibility
by some integer. In response, some student might generate
the novel, and correct, hypothesis that all such products
are exactly one less than a perfect square. The solution of
this problem can itself be undertaken in a variety of ways.

Although only a single example of how these ideas
might be applied is given here, it should be clear that
this example illustrates a process that can be applied quite
generally to many mathematics problems. It should be pos-
sible for teachers to use or adapt this approach in plan-
ning or implementing mathematics instruction in order to
build their students’ capacity for fluency, flexibility and
novelty, and to help students develop a creative disposi-
tion toward mathematics. Interested readers are encour-
aged to consult the sources cited previously in discussing
creativity-enriched, inquiry-oriented mathematics instruc-
tion; many excellent practical instructional examples can
be found in those references.

In this article it has been argued that mathematics edu-
cators can view creativity not as the domain of only a few
exceptional individuals but rather as an orientation or dis-
position toward mathematical activity that can be fostered
broadly in the general school population. Support for this
claim can be inferred from the fact that the instructional
ideas discussed in this article have all been implemented
with students in a variety of classroom settings around the
world. Through the use of inquiry-oriented mathematics
instruction that includes opportunities for problem pos-
ing and problem solving, teachers can assist students to
develop greater representational and strategic fluency and

flexibility and more creative approaches to their mathe-
matical activity.
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