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This book is based on the Aisenstadt lectures of Joel Feldman at the CRM in
Montréal. It provides an exposition of techniques for the construction of interact-
ing fermionic quantum field theories. The mathematical construction of a Fermi
liquid by Feldman, Knörrer and Trubowitz has since then appeared in a series of
11 papers [1]. The book reviewed here can be considered as an introduction to
these papers.

1 The Setting

The functional integral approach to quantum field theory has become a stan-
dard tool of theoretical physics. In relativistic theories, it allows for a manifestly
covariant formulation of the theory, and it has given rise to many important
insights and developments, e.g. in gauge theories.

Functional integrals are notorious for being mathematically undefined and much
effort has been made to change this situation. In quantum mechanics, the tran-
sition to imaginary time, i.e. replacing the time evolution operator by the heat
kernel, leads to the Feynman–Kac formula which involves mathematically well–
defined integrals with respect to Wiener measure (see, e.g. [2]). Similarly, the
Wick rotation to imaginary time in quantum field theory gives a connection to
statistical mechanics that generalizes the Feynman–Kac formula and allows for
mathematically rigorous constructions of such theories. A Wightman theory in
Minkowski space can be reconstructed provided the Osterwalder–Schrader ax-
ioms are satisfied by the Schwinger functions of the Euclidian theory [3]. Proving
that the Schwinger functions associated to certain Lagrangians exist and satisfy
these axioms is the program of constructive quantum field theory. Several books
describe the progress in that direction [4, 5]. These constructions are in general
rather complicated because almost all models involve bosonic fields which re-
quire a combination of cluster expansions and large–field bounds in addition to
renormalization.

In nonrelativistic theories corresponding to the quantum statistical mechanics
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of many–body systems, functional integrals have become a natural and very
useful tool which by now is completely standard in theoretical solid–state physics.
Theories of electrons with a short–range two–body interaction can be formulated
as purely fermionic theories, which allow for a much simpler treatment that avoids
cluster expansions. The book describes such techniques.

Physically interesting functions in second-quantized fermion systems can be rep-
resented as fermionic functional integrals over suitable Grassmann algebras. For
instance, the free energy density of a system of fermions with Hamiltonian H in
a finite volume Λ at inverse temperature β

fΛ = − 1

β|Λ| log Tr e−βHΛ (1)

can formally be written as a Grassmann Gaussian integral

fΛ = − 1

β|Λ| log
∫

dµS(a)e−W0(a). (2)

The covariance S, an antisymmetric operator, and the interaction W0, an even
element of the Grassmann algebra, are determined by the Hamiltonian of the
model. The hard mathematical problem is to prove that the right hand side of
(2), as well as suitable generalizations thereof, exists and has a limit as the volume
|Λ| tends to infinity, in the physically interesting region of low temperatures.

The methods of constructive field theory, in particular the mathematical renor-
malization group (RG) method are well suited to treating this problem. Moreover,
they give direct access to physical properties, namely equilibrium properties of
such systems, without invoking Osterwalder–Schrader reconstruction theorems.

The constructive field theory approach to many–body systems was pioneered by
Feldman and Trubowitz [6] and independently by Benfatto and Gallavotti [7],
and has since then been used by these authors and others to prove a number of
mathematical theorems about solid state systems which were not accessible to
other methods. Variations of the same RG technique are being increasingly used
as calculational tools in solid state theory [8, 9].

2 Overview of the book

The book is divided into two parts. Part 1 contains an introduction to Grassmann
algebra and fermionic functional integrals of the type appearing on the right hand
side of (2). The renormalization group transformation is introduced to deal with
singular covariances which are characteristic of physically interesting problems.
In Part 2, some aspects of the construction of fermionic models by the methods
of Part 1 are treated.
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2.1 Part 1

Finite–dimensional Grassmann algebras and superalgebras are introduced in Sec-
tion 1.1. Sections 1.2 and 1.3 contain standard material about differentiation and
integration as linear maps on Grassmann algebras. Grassmann Gaussian Integrals
are introduced and in Section 1.4 their connection to Pfaffians and determinants
is reviewed. Proposition 1.21 contains the addition principle for Gaussian inte-
gration, which is the basis for the integration step in the RG transformation. In
Section 1.5, the above–mentioned relation of Grassmann integrals and fermionic
quantum field theories in second quantized Hamiltonian form is reviewed, and
formulas generalizing (2) to a complete set of observables, the time–ordered func-
tions, from which all observables can be reconstructed, are stated without proof.
Because all interesting covariances are singular, the construction requires taking
a limit. The singular covariance S is written as an infinite sum S =

∑
j≥0 S(j) of

regular ones. The addition principle allows to do the Gaussian integral succes-
sively, integrating with covariance S(j) in step j. This leads in a natural way to
the definition of the RG map

ΩS(W )(c) = log

∫
dµS(a) exp(−W (a + c))∫

dµS(a) exp(−W (a))
(3)

Basic properties of the map ΩS are discussed in Section 1.6. The antisymmetry of
the Grassmann generators implies almost trivially that normalized integrals are
rational functions in the interaction W (this property does not hold in bosonic
theories, where Grassmann algebras are replaced by algebras with commuting
generators). The Gaussian integral with respect to S is thus calculated by an
infinite iteration of RG maps, which generate a sequence of effective interac-
tions Wj by Wj+1 = ΩS(j)(Wj). The problem is thus to prove that this sequence
converges in a suitable Banach space of interactions.

Section 1.7 contains some facts about Wick ordering, an important technical in-
gredient. Wick ordering with respect to a Gaussian measure is simply introducing
orthogonal polynomials for this measure, and the fermionic version is a straight-
forward variant of it. Wick ordering is not fundamental, but it simplifies some
calculations and bounds, in particular the identification of “overlapping loops”
[10], which are not discussed in this monograph but are crucial for the construc-
tion of the Fermi liquid in [1]. Wick ordering is also an important ingredient in
the ring expansion developed in Part 2 of the book.

The treatment in all of Part 1 is for finite–dimensional algebras, while the object
appearing on the right hand side of (2) is a formal, infinite–dimensional Grass-
mann integral. The calculus on finite–dimensional Grassmann algebras developed
in part 1 extends in a natural way to infinite–dimensional ones if the covariance of
the Gaussian integral is sufficiently regular. Ways to do this are discussed briefly
in Appendix A. This extension does not play a central role in the construction
because the integral with a singular covariance on the RHS of (2) has to be ap-
proached by taking a limit anyway, and because in most applications, one can
construct it as a limit of finite–dimensional Grassmann integrals, to which the



ELibM Book Review: Fermionic Functional Integrals... 4

methods of Part 1 apply directly. For instance, for a lattice system, where Λ is a
finite set of cardinality |Λ|, the dimension D of the Grassmann algebra diverges
as |Λ| → ∞. Thus one needs to prove bounds that are uniform in D.

For finite D, the covariance S is just an antisymmetric D × D matrix. Section
1.8 contains important bounds for the analytical treatment of the Grassmann
integrals, the classic Gram estimate: if an n×n matrix A has entries Aij = 〈fi, gj〉
where for all i and j, fi and gj are vectors in some Hilbert space H, then

| det A| ≤
n∏

k=1

‖fk‖ ‖gk‖ (4)

If the covariance S has matrix elements of this form, the Gram estimate implies
analyticity of the RG map in W for a general class of interactions W . The
covariances of fermionic field theories are of this form since they are given as
Fourier transforms. For the covariances S(j), j fixed, the norms of fk and gk are
uniformly bounded in D. In the many–fermion systems this is true even uniformly
in j.

2.2 Part 2

The Gram estimate alone does, however, not imply analyticity of the renormal-
ization group map in W uniformly in D. For this, a sufficiently fast decay of the
covariance is also needed, i.e.

sup
k

∑

l

|S(j)
kl | < ∞ (5)

In the many–fermion systems and for β → ∞, this decay is true only for the
covariances S(j), not for S itself. That is, S is singular because of its slow decay.

To prove uniform analyticity, one also needs to exhibit certain connectedness
properties of the logarithm of ratios like the one in (3). The connectedness
property is stated most easily in terms of a Feynman graph expansion: only
connected graphs contribute. It is this property that ensures that, e.g. the free
energy density defined in (1) indeed has a limit as |Λ| → ∞. The full expansion
into Feynman graphs cannot be used because graph–by–graph estimates lead to
zero radius of analyticity. Connectedness can be made explicit in a way that
allows for convergent bounds in several ways. In their work, the authors choose
the “ring expansion”. In Section 2.2, they rewrite the Schwinger functional S(f)
(Definition 2.1), from which one can obtain the RG map ΩS, in terms of an
operator R acting on the Grassmann algebra as

S(f) =
∫

(1−R)−1(f)dµS . (6)

R is sometimes called the ring operator because, in a representation of the con-
tributions to the Gaussian integral by Feynman graphs, its application can be
pictorialized as adding layers to Feynman graphs, starting from a distinguished
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vertex [1]. This graphical representation is not needed in the proofs, but it pro-
vides some useful intuition.

The crucial hypotheses for the proof of analyticity, as formulated in Theorem 2.6
and Corollary 2.7, are in Definition 2.5. Hypothesis (HG) is a restatement of the
Gram bound, and (HS) is the summability of the covariance given by (5).

In Section 2.4, some applications are given. The first example is the two-dimensional
Gross–Neveu model. The covariance is the inverse of a Dirac operator. The inter-
action is a local four–fermion interaction. The limit to be taken is an ultraviolet
limit, i.e. the singularity is in the short–distance behaviour of the covariance. This
model is interesting because it is perturbatively just renormalizable, with power
counting very similar to scalar φ4 theory in 4 dimensions, but a construction of
this model has been possible [11, 12] because it is UV asymptotically free.

After this, the many–fermion system in two spatial dimensions is treated. The
big difference to the previous case is that the singularity of the many–fermion
covariance in Fourier space is not pointlike but on a submanifold of codimension
one, the Fermi surface (in two dimensions a curve). A treatment along the lines
sufficient for point singularities is presented as a warmup. It gives bounds that
are too weak to control the j–behaviour in a good way. After that, the “sector-
ization”, an angular decomposition of the Fermi curve, is introduced and a basic
convergence theorem (Theorem 2.15 MB2) is proven. The introduction of sectors
allows to use geometrical restrictions posed by the shape of the Fermi curve, to
improve the bounds such that physically interesting models can be constructed.
The sectorization, first introduced in [13], is a central technical tool in the study
of these systems in two dimensions. The bounds for the Gram constant and the
decay constant of the covariance are given in Appendix C.

In all these applications, the bounds given in the book are restricted to those
interaction terms that decrease under the iteration of the RG map ΩS(j) (the
irrelevant terms in RG language). That is, a straightforward iteration in j of
these bounds is not possible because of the hypothesis that the part of degree r
in the Grasssmann generators a, wr, vanishes for small values of r (e.g. wr = 0
for r ≤ 4 in Theorem 2.15 MB2). Even if this holds for Wj, it does not hold for
Wj+1 = ΩS(j)(Wj), so one cannot iterate. In fact, the wr with small r are those
that tend to grow under iteration of the RG map, and they have to be controlled
by a careful choice of counterterms and initial conditions, as well as a much more
detailed analysis of the RG map and its iteration. This is a hard task which takes
up most of [1] and other constructions of these models, and not treated in the
book. The bounds in the book do imply that one can focus on the flow of the wr

for small r. These functions are also the ones that one restricts to in practical
applications to physics.
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3 Concluding remarks

It is clearly not the intent of the authors to provide a very detailed discussion of
the background of the problem and its motivation. Their aim is to expose their
method as briefly as possible. Conciseness is indeed one of the great virtues of
the book: parts 1 and 2 are essentially 30 pages each, but they are selfcontained,
and in particular part 2 contains important partial results of the construction in
[1]. The text is written very clearly and carefully. Moreover, many problems are
included, and complete solutions are provided in Appendix D.

Unfortunately, there is almost no discussion of how the results derived in the book
fit into the general strategy of [1]. There is also no mention, not even a citation of
other works on the same class of problems using essentially the same RG strategy
but slightly different techniques or focusing on slightly different situations. The
ring expansion is not the only way to organize expansions such that analyticity
statements can be proven. The same is also possible using tree expansions à
la Brydges–Battle–Federbush [14, 15] or bounds obtained from the Brydges–
Kennedy formulas [16, 17]. The organization of the expansions using Laplacians
in the field variables done in some of these works provides an alternative to
the ring expansion technique. An introduction to the algebraic aspects, some
background, as well as a detailed proof of the relation to the second–quantized
Hamiltonian formulation, and a list of relevant references, is provided, e.g., in
[18]. Another recent reference about the RG is [19].

To summarize, this is an excellent technical introduction for graduate students
and researchers new to the field who want to start reading the series of papers
[1]. To get a motivation and a larger perspective of the study of these problems,
or to learn about alternative techniques, readers need to consult other references.
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1479–1481 Comm. Math. Phys.

[13] J. Feldman, J. Magnen, V. Rivasseau, E. Trubowitz, Helv. Phys. Acta 65
(1992) 679

[14] A. Lesniewski, Comm. Math. Phys. 108 (1987) 437–467

[15] M. Salmhofer, C. Wieczerkowski, J. Stat. Phys. 99 (2000) 557–586

[16] A. Abdesselam, V. Rivasseau, Lett. Math. Phys. 41 (1998) 77–88

[17] M. Disertori, V. Rivasseau, Comm. Math. Phys. 215, 251,291 (2000)

[18] M. Salmhofer, Renormalization: An Introduction, Springer Texts and Mono-
graphs in Physics, Springer, Heidelberg, 1998

[19] G. Benfatto, G. Gallavotti, Renormalization Group, Princeton University
Press, 1995

Manfred Salmhofer
Institut für Theoretische Physik

Universität Leipzig
Augustusplatz 10

04109 Leipzig

Email: salmhofer@itp.uni-leipzig.de


