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Univ. Hamburg 37 (1972) 86–97. Theorem 1.8.1 is from L. Euler, Solutio
problematis ad geometriam situs pertinentis, Comment. Acad. Sci. I. Petro-
politanae 8 (1736), 128–140.

Of the large subject of algebraic methods in graph theory, Section 1.9
does not claim to convey an adequate impression. The standard monograph
here is N.L. Biggs, Algebraic Graph Theory , Cambridge University Press 2nd edition: CUP 1993
1974. A more recent and comprehensive account is given by C.D. Godsil &
G.F. Royle, Algebraic Graph Theory , in preparation. Surveys on the use
of algebraic methods can also be found in the Handbook of Combinatorics
(R.L. Graham, M. Grötschel & L. Lovász, eds.), North-Holland 1995.
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Proof . Let G be any 2k-regular graph (k > 1), without loss of generality
connected. By Theorem 1.8.1, G contains an Euler tour v0e0 . . . e`−1v`,
with v` = v0. We replace every vertex v by a pair (v−, v+), and every
edge ei = vivi+1 by the edge v+

i v
−
i+1 (Fig. 2.1.5). The resulting bipartite

graph G′ is k-regular, so by Corollary 2.1.4 it has a 1-factor. Collapsing
every vertex pair (v−, v+) back into a single vertex v, we turn this 1-
factor of G′ into a 2-factor of G. ¤

v

v−

v+

Fig. 2.1.5. Splitting vertices in the proof of Corollary 2.1.5

2.2 Matching in general graphs

Given a graph G, let us denote by CG the set of its components, and by
q(G) the number of its odd components, those of odd order. If G has a
1-factor, then clearly

q(G−S) 6 |S| for all S ⊆ V (G),

since every odd component of G−S will send a factor edge to S.

G

S S

HS

Fig. 2.2.1. Tutte’s condition q(G−S) 6 |S| for q = 3, and the
Not all the edges in
the components of
G−S are shown.contracted graph HS from Theorem 2.2.3.

Again, this obvious necessary condition for the existence of a 1-factor
is also sufficient:
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X′

XX′

a bYa

X

3. Do Ya and Yb separate a from b minimally if X and X ′ do? Are |Ya|
and |Yb| minimum for vertex sets separating a from b if |X| and |X ′|
are?

4.+ Suppose that X and X ′ separate a from b minimally, and that X meets
at least two components of G−X ′. Show that X ′ meets all the com-

X and X ′ should be
minimal as separating
vertex sets in G, not just
with respect to two fixed
vertices a and b.

ponents of G−X, and that X meets all the components of G−X ′.

5.− Prove the elementary properties of blocks mentioned at the beginning
of Section 3.1.

6. Show that the block graph of any connected graph is a tree.

7. Show, without using Menger’s theorem, that any two vertices of a 2-
connected graph lie on a common cycle.

8. For edges e, e′ ∈ G write e ∼ e′ if either e = e′ or e and e′ lie on some
common cycle in G. Show that ∼ is an equivalence relation on E(G)
whose equivalence classes are the edge sets of the non-trivial blocks
of G.

9. Let G be a 2-connected graph but not a triangle, and let e be an edge
of G. Show that either G− e or G/e is again 2-connected.

10. Let G be a 3-connected graph, and let xy be an edge of G. Show that
G/xy is 3-connected if and only if G−{x, y } is 2-connected.

11. (i) Show that every cubic 3-edge-connected graph is 3-connected.

(ii) Show that a graph is cubic and 3-connected if and only if it can
be constructed from a K4 by successive applications of the following
operation: subdivide two edges by inserting a new vertex on each of
them, and join the two new subdividing vertices by an edge.

12.− Show that Menger’s theorem is equivalent to the following statement.
For every graph G and vertex sets A,B ⊆ V (G), there exist a set P of
disjoint A–B paths in G and a set X ⊆ V (G) separating A from B in
G such that X has the form X = {xP | P ∈ P } with xP ∈ P for all
P ∈ P.

13. Work out the details of the proof of Corollary 3.3.4 (ii).

14. Let k > 2. Show that every k-connected graph of order at least 2k
contains a cycle of length at least 2k.

15. Let k > 2. Show that in a k-connected graph any k vertices lie on a
common cycle.
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contrary to (1). Hence the neighbour of vi on P is its only neighbour
in Ci,j , and similarly for vj . Thus if Ci,j 6= P , then P has an inner
vertex with three identically coloured neighbours in H; let u be the first
such vertex on P (Fig. 5.2.1). Since at most ∆ − 2 colours are used
on the neighbours of u, we may recolour u. But this makes Pů into a
component of Hi,j , contradicting (2).
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Fig. 5.2.1. The proof of (3) in Brooks’s theorem

For distinct i, j, k, the paths Ci,j and Ci,k meet only in vi. (4)

For if u 6= vi ∈ Ci,j ∩Ci,k, then u has two neighbours coloured j and two
coloured k, so we may recolour u. In the new colouring, vi and vj lie in
different components of Hi,j , contrary to (2).

The proof of the theorem now follows easily. If the neighbours of v
are pairwise adjacent, then each has ∆ neighbours inN(v)∪{ v } already,
so G = G [N(v)∪{ v } ] = K∆+1. As G is complete, there is nothing to
show. We may thus assume that v1v2 /∈ G, where v1, . . . , v∆ derive their
names from some fixed ∆-colouring c of H. Let u 6= v2 be the neighbour
of v1 on the path C1,2; then c(u) = 2. Interchanging the colours 1 and 3
in C1,3, we obtain a new colouring c′ of H; let v′i, H

′
i,j , C

′
i,j etc. be defined

with respect to c′ in the obvious way. As a neighbour of v1 = v′3, our
vertex u now lies in C ′2,3 , since c′(u) = c(u) = 2. By (4) for c, however,
the path v̊1C1,2 retained its original colouring, so u ∈ v̊1C1,2 ⊆ C ′1,2.
Hence u ∈ C ′2,3 ∩C ′1,2, contradicting (4) for c′. ¤

As we have seen, a graph G of large chromatic number must have
large maximum degree: at least χ(G)− 1. What else can we say about
the structure of graphs with large chromatic number?

One obvious possible cause for χ(G) > k is the presence of a Kk

subgraph. This is a local property of G, compatible with arbitrary values
of global invariants such as ε and κ. Hence, the assumption of χ(G) > k
does not tell us anything about those invariants for G itself. It does,
however, imply the existence of a subgraph where those invariants are
large: by Corollary 5.2.3, G has a subgraph H with δ(H) > k− 1, and
hence by Theorem 1.4.2 a subgraph H ′ with κ(H ′) > 1

4 (k− 1). b 1
4 (k− 1)c
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12.+ Let 1 6 r 6 n be integers. Let G be a bipartite graph with bipartition
{A,B }, where |A| = |B| = n, and assume that Kr,r 6⊆ G. Show that∑

x∈A

(
d(x)

r

)
6 (r− 1)

(
n

r

)
.

Using the previous exercise, deduce that ex(n,Kr,r) 6 cn2−1/r for some
constant c depending only on r.

(Hint. For the displayed inequality, count the pairs (x, Y ) such that
x ∈ A and Y ⊆ B, with |Y | = r and x adjacent to all of Y . For the
bound on ex(n,Kr,r), use the estimate (s/t)t ≤

(
s
t

)
≤ st and the fact

that the function z 7→ zr is convex.)

13. The upper density of an infinite graphG is the supremum of ||H||
(|H|

2

)−1
,

taken over all non-empty finite subgraphs H of G. Show that this

The upper density of G
should be defined as the
infimum of all reals α such
that the finite graphs H ⊆ G
with ‖H‖

(|H|
2

)−1
> α have

bounded order.

number always takes one of the countably many values 0, 1, 1
2
, 2

3
, 3

4
, . . ..

(Hint. Erdős-Stone.)

14.− In the definition of an ε-regular pair, what is the purpose of the re-
quirement that |X| > ε |A| and |Y | > ε |B|?

15.− Show that any ε-regular pair in G is also ε-regular in G.

16. Prove the regularity lemma for sparse graphs, that is, for every sequence
(Gn)n∈N of graphs such that ‖Gn‖/n2→ 0 as n→∞.

Notes
The standard reference work for results and open problems in extremal graph
theory (in a very broad sense) is still B. Bollobás, Extremal Graph Theory,
Academic Press 1978. A kind of update on the book is given by its author in
his chapter of the Handbook of Combinatorics (R.L. Graham, M. Grötschel &
L. Lovász, eds.), North-Holland 1995. An instructive survey of extremal graph
theory in the narrower sense of our chapter is given by M. Simonovits in
(L.W. Beineke & R.J. Wilson, eds.) Selected Topics in Graph Theory 2, Aca-
demic Press 1983. This paper focuses among other things on the particular
role played by the Turán graphs. A more recent survey by the same author
can be found in (R.L. Graham & J. Nešetřil, eds.) The Mathematics of Paul
Erdős, Vol. 2, Springer 1996.

Turán’s theorem is not merely one extremal result among others: it is
the result that sparked off the entire line of research. Our proof of Turán’s
theorem is essentially the original one; the proof indicated in Exercise 10 is
due to Zykov.

Our version of the Erdős-Stone theorem is a slight simplification of the
original. A direct proof, not using the regularity lemma, is given in L. Lovász,
Combinatorial Problems and Exercises (2nd edn.), North-Holland 1993. Its
most fundamental application, Corollary 7.1.3, was only found 20 years after
the theorem, by Erdős and Simonovits (1966).

The regularity lemma is proved in E. Szemerédi, Regular partitions of
graphs, Colloques Internationaux CNRS 260—Problèmes Combinatoires et
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Proc. Colloq. Math. Soc. János Bolyai (1996). The theorem marks a break-
through towards a conjecture of Burr and Erdős (1975), which asserts that the
Ramsey numbers of graphs with bounded average degree are linear: for every

. . .with bdd. average degree
in every subgraph are linear

d ∈ N, the conjecture says, there exists a constant c such that R(H) 6 c |H|
for all graphs H with d(H) 6 d. This conjecture has been verified also for the

. . . all graphs H with
d(H ′) 6 d for every H ′ ⊆ H

class of planar graphs (Chen & Schelp 1993) and, more generally, for the class
of graphs not containing Kr (for any fixed r) as a topological minor (Rödl &
Thomas 1996). See Nešetřil’s Handbook chapter for references.

Our first proof of Theorem 9.3.1 is based on W. Deuber, A generalization
of Ramsey’s theorem, in (A. Hajnal, R. Rado & V.T. Sós, eds.) Infinite and
finite sets, North-Holland 1975. The same volume contains the alternative
proof of this theorem by Erdős, Hajnal and Pósa. Rödl proved the same result
in his MSc thesis at the Charles University, Prague, in 1973. Our second
proof of Theorem 9.3.1, which preserves the clique number of H for G, is due
to J. Nešetřil & V. Rödl, A short proof of the existence of restricted Ramsey
graphs by means of a partite construction, Combinatorica 1 (1981), 199–202.

The two theorems in Section 9.4 are due to B. Oporowski, J. Oxley &
R. Thomas, Typical subgraphs of 3- and 4-connected graphs, J. Combin. The-
ory B 57 (1993), 239–257.
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16.− For every k > 1, find a threshold function for {G | ∆(G) > k }.
(Hint. This is a result from the text in disguise.)

17.− Given d ∈ N, is there a threshold function for the property of containing
a d-dimensional cube (see Ex. 2, Ch. 1)? If so, which; if not, why not?

18. Show that t(n) = n−1 is also a threshold function for the property of
containing any cycle.

19. Does the property of containing any tree of order k (for k > 2 fixed)
have a threshold function? If so, which?

20.+ Given a graph H, let P be the property of containing an induced copy
of H. If H is complete then, by Corollary 11.4.6, P has a threshold
function. Show that P has no threshold function if H is not complete.

(Hint. Show first that no such threshold function t = t(n) can tend to
zero as n→∞. Then use Exercise 12.)

21.+ Prove the following version of Theorem 11.4.3 for unbalanced sub-
graphs. Let H be any graph with at least one edge, and put ε′(H) :=
max { ε(F ) | ∅ 6= F ⊆ H }. Then the threshold function for PH is

t(n) = n−1/ε′(H).

(Hint. Imitate the proof of Theorem 11.4.3. Instead of the sets Hi,
consider the sets H2

F := { (H,H ′′) ∈ H2 | H ′ ∩H ′′ = F }. Replace (H ′, H ′′)
the distinction between the cases of i = 0 and i > 0 by the distinction
between the cases of ‖F‖ = 0 and ‖F‖ > 0.)

Notes
There are a number of monographs and texts on the subject of random
graphs. The most comprehensive of these is B. Bollobás, Random Graphs,
Academic Press 1985. Another advanced but very readable monograph is
S. Janson, T. ÃLuczak & A. Ruciński, Topics in Random Graphs, in prepara-
tion; this concentrates on areas developed since Random Graphs was pub-
lished. E.M. Palmer, Graphical Evolution, Wiley 1985, covers material similar
to parts of Random Graphs but is written in a more elementary way. Com-
pact introductions going beyond what is covered in this chapter are given
by B. Bollobás, Graph Theory , Springer GTM 63, 1979, and by M. Karoński,
Handbook of Combinatorics (R.L. Graham, M. Grötschel & L. Lovász, eds.),
North-Holland 1995.

A stimulating advanced introduction to the use of random techniques in
discrete mathematics more generally is given by N. Alon & J.H. Spencer, The
Probabilistic Method, Wiley 1992. One of the attractions of this book lies
in the way it shows probabilistic methods to be relevant in proofs of entirely
deterministic theorems, where nobody would suspect it. Another example for
this phenomenon is Alon’s proof of Theorem 5.4.1; see the notes for Chapter 5.

The probabilistic method had its first origins in the 1940s, one of its
earliest results being Erdős’s probabilistic lower bound for Ramsey numbers
(Theorem 11.1.3). Lemma 11.3.2 about the properties Pi,j is taken from Bol-
lobás’s Springer text cited above. A very readable rendering of the proof that,
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algorithm exists (no matter how slow) that decides for any given graph
whether or not that graph is knotless. To this day, no such algorithm
is known. The property of knotlessness, however, is easily ‘seen’ to be
hereditary: contracting an edge of a graph embedded in 3-space will not
create a knot where none had been before. Hence, by the minor theorem,
there exists an algorithm that decides knotlessness—even in polynomial
(cubic) time!

However spectacular such unexpected solutions to long-standing
problems may be, viewing the graph minor theorem merely in terms
of its corollaries will not do it justice. At least as important are the
techniques developed for its proof, the various ways in which minors are
handled or constructed. Most of these have not even been touched upon
here, yet they seem set to influence the development of graph theory for
many years to come.

Exercises

1.− Let 6 be a quasi-ordering on a set X. Call two elements x, y ∈ X
equivalent if both x 6 y and y 6 x. Show that this is indeed an
equivalence relation on X, and that 6 induces a partial ordering on the
set of equivalence classes.

2. Let (A,6) be a quasi-ordering, and assume that every descending chain
a0 > a1 > . . . in A is finite. For subsets X ⊆ A let

Forb4(X) := { a ∈ A | a 6> x for all x ∈ X } .

Show that A is a well-quasi-ordering if and only if every subset B ⊆ A
closed under > (i.e. such that x 6 y ∈ B ⇒ x ∈ B) can be written as
B = Forb4(X) with some finite X ⊆ A.

3. Find a quasi-ordering (A,6), without an infinite antichain, such that
not every subset B ⊆ A closed under > has the form B = Forb4(X). . . .with finite X
(Compare the previous exercise.)

4. Prove Proposition 12.1.1 and Corollary 12.1.2 directly, without using
Ramsey’s theorem.

5. Given a quasi-ordering (X,6) and subsets A,B ⊆ X, write A 6′ B if
there exists an order preserving injection f :A→B with a 6 f(a) for
all a ∈ A. Does Lemma 12.1.3 still hold if the quasi-ordering considered
for [X]<ω is 6′?

6.− Show that the relation 6 between rooted trees defined in the text is
indeed a quasi-ordering.

7. Show that the finite trees are not well-quasi-ordered by the subgraph
relation.
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