
20 1. The Basics

If G = MX is a subgraph of another graph Y , we call X a minor of Y
and write X � Y . Note that every subgraph of a graph is also its minor;
in particular, every graph is its own minor. By Proposition 1.7.1, any
minor of a graph can be obtained from it by first deleting some vertices
and edges, and then contracting some further edges. Conversely, any
graph obtained from another by repeated deletions and contractions (in
any order) is its minor: this is clear for one deletion or contraction, and
follows for several from the transitivity of the minor relation (Proposition
1.7.3).

If we replace the edges of X with independent paths between their
ends (so that none of these paths has an inner vertex on another path
or in X), we call the graph G obtained a subdivision of X and write
G = TX.8 If G = TX is the subgraph of another graph Y , then X is a
topological minor of Y (Fig. 1.7.3).

X

Y

G

Fig. 1.7.3. Y ⊇ G = TX, so X is a topological minor of Y

If G = TX, we view V (X) as a subset of V (G) and call these vertices
the branch vertices of G; the other vertices of G are its subdividing
vertices. Thus, all subdividing vertices have degree 2, while the branch
vertices retain their degree from X.

Proposition 1.7.2.

(i) Every TX is also an MX (Fig. 1.7.4); thus, every topological
minor of a graph is also its (ordinary) minor.

(ii) If ∆(X) � 3, then every MX contains a TX; thus, every minor
with maximum degree at most 3 of a graph is also its topological
minor. �

Proposition 1.7.3. The minor relation � and the topological-minor
relation are partial orderings on the class of finite graphs, i.e. they are
reflexive, antisymmetric and transitive. �

8 So again TX denotes an entire class of graphs: all those which, viewed as a
topological space in the obvious way, are homeomorphic to X. The T in TX stands

The ‘all’ is true only if

δ(X) � 3. Graphs obtained

from X by suppressing vertices

of degree 2 (see p. 29) are not

considered as a TX.

for ‘topological’.
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3.5 Linking pairs of vertices 71

Let u1, . . . , uk be those k vertices in U that are not an end of a
path in P. For each i = 1, . . . , k, let Li be the U -path in K (i.e., the
subdivided edge of the K3k) from ui to the end of Pi in U , and let vi be
the first vertex of Li on any path P ∈ P. By definition of P, P has no
more edges outside E(K) than PviLiui does, so viP = viLi and hence
P = Pi (Fig. 3.5.1). Similarly, if Mi denotes the U -path in K from ui

to the end of Qi in U , and wi denotes the first vertex of Mi on any
path in P, then this path is Qi. Then the paths siPiviLiuiMiwiQiti are
disjoint for different i and show that G is k-linked. �

si

Pi

P

Li

vi

ui

Mi

Qi ti

wi

Fig. 3.5.1. Constructing an si–ti path via ui

The proof of Theorem 3.5.2 yields only an exponential upper bound
for the function f(k). As 2ε(G) � δ(G) � κ(G), the following result
implies the linear bound of f(k) = 16k:

Theorem 3.5.3. (Thomas & Wollan 2005)
Let G be a graph and k ∈ N. If G is 2k-connected and ε(G) � 8k, then
G is k-linked.

We begin our proof of Theorem 3.5.3 with a lemma.

Lemma 3.5.4. If δ(G) � 8k and |G| � 16k, then G has a k-linked
subgraph.

Proof . If G itself is k-linked there is nothing to show, so suppose not.
Then we can find a set X of 2k vertices s1, . . . , sk, t1, . . . , tk that cannot
be linked in G by disjoint paths Pi = si . . . ti. Let P be a set of as many . . . that have no inner

vertices in X.such paths as possible, but all of length at most 7. If there are several
such sets P, we choose one with |

⋃
P| minimum. We may assume that

P contains no path from s1 to t1. Let J be the subgraph of G induced
by X and all the vertices on the paths in P, and let H := G−J .

Note that each vertex v ∈ H has at most three neighbours on any
given Pi ∈ P: if it had four, then replacing the segment uPiw between
its first and its last neighbour on Pi by the path uvw would reduce |

⋃
P|

and thus contradict our choice of P. Moreover, v is not adjacent to both
si and ti whenever si, ti /∈

⋃
P, by the maximality of P. Thus if |P| =: h,

then v has at most 3h+(2k−2h)/2 � 3k neighbours in J . As δ(G) � 8k
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116 5. Colouring

contrary to (1). Hence the neighbour of vi on P is its only neighbour
in Ci,j , and similarly for vj . Thus if Ci,j �= P , then P has an inner
vertex with three identically coloured neighbours in H; let u be the first
such vertex on P (Fig. 5.2.1). Since at most ∆ − 2 colours are used
on the neighbours of u, we may recolour u. But this makes Pů into a
component of Hi,j , contradicting (2).

vi

vj

P ů

Ci,j
i

j j

j

j

i

ii

v

u
i

Fig. 5.2.1. The proof of (3) in Brooks’s theorem

For distinct i, j, k, the paths Ci,j and Ci,k meet only in vi. (4)

For if vi �= u ∈ Ci,j ∩Ci,k, then u has two neighbours coloured j and two
coloured k, so we may recolour u. In the new colouring, vi and vj lie in
different components of Hi,j , contrary to (2).

The proof of the theorem now follows easily. If the neighbours of v
are pairwise adjacent, then each has ∆ neighbours in N(v)∪{ v } already,
so G = G [ N(v)∪{ v } ] = K∆+1. As G is complete, there is nothing to
show. We may thus assume that v1v2 /∈ G, where v1, . . . , v∆ derive their
names from some fixed ∆-colouring c of H. Let u �= v2 be the neighbour
of v1 on the path C1,2; then c(u) = 2. Interchanging the colours 1 and 3
in C1,3, we obtain a new colouring c′ of H; let v′

i, H ′
i,j , C ′

i,j etc. be defined
with respect to c′ in the obvious way. As a neighbour of v1 = v′

3, our
vertex u now lies in C ′

2,3 , since c′(u) = c(u) = 2. By (4) for c, however,
the path v̊1C1,2 retained its original colouring, so u ∈ v̊1C1,2 ⊆ C ′

1,2.
Hence u ∈ C ′

2,3 ∩C ′
1,2, contradicting (4) for c′. �

As we have seen, a graph G of large chromatic number must have
large maximum degree: trivially at least χ(G)− 1, and less trivially at
least χ(G) (in most cases). What more can we say about the structure
of graphs with large chromatic number?

One obvious possible cause for χ(G) � k is the presence of a Kk

subgraph. This is a local property of G, compatible with arbitrary values
of global invariants such as ε and κ. Hence, the assumption of χ(G) � k
does not tell us anything about those invariants for G itself. It does,
however, imply the existence of a subgraph where those invariants are
large: by Corollary 5.2.3, G has a subgraph H with δ(H) � k − 1, and
hence by Theorem 1.4.3 a subgraph H ′ with κ(H ′) � � 1

4 (k− 1)�. κ(H ′) � � 1
4k�
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134 5. Colouring

9. Find a lower bound for the colouring number in terms of average degree.

10.− A k-chromatic graph is called critically k-chromatic, or just critical ,
if χ(G − v) < k for every v ∈ V (G). Show that every k-chromatic
graph has a critical k-chromatic induced subgraph, and that any such
subgraph has minimum degree at least k− 1.

11. Determine the critical 3-chromatic graphs.

12.+ Show that every critical k-chromatic graph is (k− 1) - edge-connected.

13. Given k ∈ N, find a constant ck > 0 such that every large enough
graph G with α(G) � k contains a cycle of length at least ck |G|.

14.− Find a graph G for which Brooks’s theorem yields a significantly weaker
bound on χ(G) than Proposition 5.2.2.

15.+ Show that, in order to prove Brooks’s theorem for a graph G = (V, E),
we may assume that κ(G) � 2 and ∆(G) � 3. Prove the theorem under
these assumptions, showing first the following two lemmas.

(i) Let v1, . . . , vn be an enumeration of V . If every vi (i < n) has
a neighbour vj with j > i, and if v1vn, v2vn ∈ E but v1v2 /∈ E,
then the greedy algorithm uses at most ∆(G) colours.

(ii) If G is not complete and vn has maximum degree in G, then vn

has neighbours v1, v2 as in (i).

16.+ Show that the following statements are equivalent for a graph G:

(i) χ(G) � k;

(ii) G has an orientation without directed paths of length k− 1; length k

(iii) G has an acyclic such orientation (one without directed cycles).

17. Given a graph G and k ∈ N, let PG(k) denote the number of vertex
colourings V (G) →{1, . . . , k}. Show that PG is a polynomial in k of
degree n := |G|, in which the coefficient of kn is 1 and the coefficient
of kn−1 is −‖G‖. (PG is called the chromatic polynomial of G.)

(Hint. Apply induction on ‖G‖.)

18.+ Determine the class of all graphs G for which PG(k) = k (k−1)n−1. (As
in the previous exercise, let n := |G|, and let PG denote the chromatic
polynomial of G.)

19. In the definition of k-constructible graphs, replace the axiom (ii) by

(ii)′ Every supergraph of a k-constructible graph is k-constructible;

and the axiom (iii) by

(iii)′ If G is a graph with vertices x, y1, y2 such that y1y2 ∈ E(G)
but xy1, xy2 /∈ E(G), and if both G + xy1 and G + xy2 are k-
constructible, then G is k-constructible.

Show that a graph is k-constructible with respect to this new definition
if and only if its chromatic number is at least k.
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170 7. Extremal Graph Theory

Proof . We prove the theorem with c = 10. Let G be a graph of aver-
age degree at least 10r2. By Theorem 1.4.3 with k := r2, G has an
r2-connected subgraph H with ε(H) > ε(G) − r2 � 4r2. To find a
TKr in H, we start by picking r vertices as branch vertices, and r − 1
neighbours of each of these as some initial subdividing vertices. These
are r2 vertices in total, so as δ(H) � κ(H) � r2 they can be chosen
distinct. Now all that remains is to link up the subdividing vertices in
pairs, by disjoint paths in H corresponding to the edges of the Kr of
which we wish to find a subdivision. Such paths exist, because H is
1
2r2-linked by Theorem 3.5.3. �

The proof of Thm 7.2.1 fails in
the last line if r is odd, since
then r2/2 is not an integer.
Here are three alternatives:

1. Repeat the proof as stated,
but with c = 11. Then ε(H)
is large enough to make H
�r2/2�-linked.

2. Start with c = 10 and H as
stated but link the r branch
vertices directly, using Ex. 24,
Ch. 3.

3. Start with c = 10 and H

as stated. Let H′ be the

graph obtained from H by

deleting the r chosen branch

vertices. Their r(r − 1)

neighbours can be linked in

H′ as required. Indeed, H′

is k-linked by Theorem 3.5.3

for k = 1
2
r(r − 1) (∈ N), as

κ(H′) � κ(H)− r � r(r − 1)

and

ε(H′) � ε(H)− r � 4r(r− 1).

For small r, one can try to determine the exact number of edges
needed to force a TKr subgraph on n vertices. For r = 4, this number is
2n− 2; see Corollary 7.3.2. For r = 5, plane triangulations yield a lower
bound of 3n − 5 (Corollary 4.2.10). The converse, that 3n − 5 edges
do force a TK5—not just either a TK5 or a TK3,3, as they do by Co-
rollary 4.2.10 and Kuratowski’s theorem—is already a difficult theorem
(Mader 1998).

Let us now turn from topological minors to general minors. The
average degree needed to force a Kr minor is known almost precisely.
Thomason (2001) determined, asymptotically, the smallest constant c
that makes the following theorem true as α + o(1), where o(1) stands
for a function of r tending to zero as r →∞ and α = 0.53131 . . . is an
explicit constant.

Theorem 7.2.2. (Kostochka 1982)
There exists a constant c ∈ R such that, for every r ∈ N, every graph G
of average degree d(G) � c r

√
log r contains Kr as a minor. Up to the

value of c, this bound is best possible as a function of r.

The easier implication of the theorem, the fact that in general an average
degree of c r

√
log r is needed to force a Kr minor, follows from consid-

ering random graphs, to be introduced in Chapter 11. The converse
implication, that this average degree suffices, is proved by methods not
dissimilar to the proof of Theorem 3.5.3.

Rather than proving Theorem 7.2.2, therefore, we devote the re-
mainder of this section to another striking aspect of forcing minors: that
we can force a Kr minor in a graph simply by raising its girth (as long
as we do not merely subdivide edges). At first glance, this may seem
almost paradoxical. But it looks more plausible if, rather than trying to
force a Kr minor directly, we instead try to force a minor just of large
minimum or average degree—which suffices by Theorem 7.2.2. For if the
girth g of a graph is large then the ball { v | d(x, v) < �g/2� } around
a vertex x induces a tree with many leaves, each of which sends all but
one of its incident edges away from the tree. Contracting enough disjoint

diestel
Highlight



190 7. Extremal Graph Theory

15.− Prove the Erdős-Sós conjecture for the case when the tree considered
is a star.

16. Prove the Erdős-Sós conjecture for the case when the tree considered
is a path.

(Hint. Use Exercise 7 of Chapter 1.)

17.+ For which trees T is there a function f : N→N tending to infinity, such
that every graph G with χ(G) < f(d(G)) contains an induced copy of T?
(In other words: can we force the chromatic number up by raising the
average degree, as long as T does not occur as an induced subgraph?
Or, as in Gyárfás’s conjecture: will a large average degree force an
induced copy of T if the chromatic number is kept small?)

18. Given two graph invariants i1 and i2, write i1 � i2 if we can force
i2 arbitrarily high on a subgraph of G by making i1(G) large enough.
(Formally: write i1 � i2 if there exists a function f : N→N such that,
given any k ∈ N, every graph G with i1(G) � f(k) has a subgraph H
with i2(H) � k.) If i1 � i2 as well as i1 � i2, write i1 ∼ i2. Show that
this is an equivalence relation for graph invariants, and sort the follow-
ing invariants into equivalence classes ordered by <: minimum degree;
average degree; connectivity; arboricity; chromatic number; colouring
number; choice number; max { r | Kr ⊆ G }; max { r | TKr ⊆ G };
max { r | Kr � G }; min max d+(v), where the maximum is taken over
all vertices v of the graph, and the minimum over all its orientations.

19.+ Prove, from first principles, the theorem of Wagner (1964) that every
graph of chromatic number at least 2r contains Kr as a minor.

(Hint. Use induction on r. For the induction step, contract a connected
subgraph chosen so that the remaining graph still needs at least half as
many colours as the given graph.)

20. Let G be a graph of average degree at least 2r−2. By considering the
neighbourhood of a vertex in a minimal minor H � G with ε(H) � ε(G),
prove Mader’s (1967) theorem that G � Kr.

21.− Derive Wagner’s theorem (Ex. 19) from Mader’s theorem (Ex. 20).

22.+ Given a graph G with ε(G) � k ∈ N, find a minor H � G such that
both δ(H) � k and δ(H) � |H|/2.

23.+ Find a constant c such that every graph with n vertices and at least
n+2k(log k +log log k + c) edges contains k edge-disjoint cycles (for all
k ∈ N). Deduce an edge-analogue of the Erdős-Pósa theorem (2.3.2).

(Hint. Assuming δ � 3, delete the edges of a short cycle and apply
induction. The calculations are similar to the proof of Lemma 2.3.1.)

24.− Use Exercise 22 of Chapter 3 to reduce the constant c in Theorem 7.2.1

Exercise 24 should read:

24. (i) Find the flaw in the
last line of the proof of
Thm 7.2.1 given in the text.

(ii) Correct the proof by
joining the branch vertices
directly, using Exercise 24
of Chapter 3.

from 10 to 5.

25.+ Show that any function h as in Lemma 3.5.1 satisfies the inequality
h(r) > 1

8
r2 for all even r, and hence that Theorem 7.2.1 is best possible

up to the value of the constant c.
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210 8. Infinite Graphs

Let n ∈ N be given. If n = 0, choose any ray from R0 as Q0, and
put R1 := R0 \ {Q0 }. Then conditions (1)–(5) hold for n = 0.

Suppose now that n � 1, and consider a ray R0
n ∈ Rn. By (4), R0

n is
disjoint from

n−1⋃

i=1

⋃
Pn−1(Qi)H := Q0 ∪ . . .∪Qn−1 ∪

n−1⋃

i=1

Pn−1(Qi) .

By the choice of R0 and (4), we know that R0
n ∈ ω. As also Q0 ∈ ω,

there exists an infinite set P of disjoint R0
n–H paths. If possible, we

choose P so that
⋃
P ∩

⋃
Pn−1(Qi) = ∅ for all i � n − 1. We may

then further choose P so that
⋃
P ∩ Qi �= ∅ for only one i, since by

(1) the Qi are disjoint for different i. We define p(n) as this i, and put
Pn(Qj) := Pn−1(Qj) for all j � n− 1.

If P cannot be chosen in this way, we may choose it so that all its
vertices in H lie in

⋃
Pn−1(Qi) for the same i, since by (3) the graphs⋃

Pn−1(Qi) are disjoint for different i. We can then find infinite disjoint
subsets Pn(Qi) of Pn−1(Qi) and P ′ of P. We continue infinitely many of
the paths in P ′ along paths from Pn−1(Qi)\Pn(Qi) to Qi or to Qp(i), to
obtain an infinite set P ′′ of disjoint R0

n–Qi or R0
n–Qp(i) paths, and define

p(n) as i or as p(i) accordingly. The paths in P ′′ then avoid
⋃
Pn(Qj)

for all j � n− 1 (with Pn(Qj) := Pn−1(Qj) for j �= i) and Qj for all
j �= p(n). We rename P ′′ as P, to simplify notation.

In either case, we have now defined Pn(Qi) for all i < n so as to
satisfy (5) for n, chosen p(n) as in (2), and found an infinite set P of
disjoint R0

n–Qp(n) paths that avoid all other Qj and all the sets Pn(Qi).
All that can prevent us from choosing R0

n as Qn and P as Pn(Qn) and
Rn+1 � Rn \ {R0

n } is condition (4): if P meets all but finitely many
rays in Rn infinitely, we cannot find an infinite set Rn+1 � Rn of rays
avoiding P.

However, we may now assume the following:

Whenever R ∈ Rn and P ′ � P is an infinite set of R–Qp(n)

paths, there is a ray R′ �= R in Rn that meets P ′ infinitely.
(∗)

For if (∗) failed, we could choose R as Qn and P ′ as Pn(Qn), and select
from every ray R′ �= R in Rn a tail avoiding P ′ to form Rn+1. This
would satisfy conditions (1)–(5) for n.

Consider the paths in P as linearly ordered by the natural order of
their starting vertices on R0

n. This induces an ordering on every P ′ � P.
If P ′ is a set of R–Qp(n) paths for some ray R, we shall call this ordering
of P ′ compatible with R if the ordering it induces on the first vertices of
its paths coincides with the natural ordering of those vertices on R.

Using assumption (∗), let us choose two sequences R0
n, R1

n, . . . and
P0 � P1 � . . . such that every Rk

n is a tail of a ray in Rn and each
Pk is an infinite set of Rk

n–Qp(n) paths whose ordering is compatible



8.3 Homogeneous and universal graphs 213

More precisely, if � is a graph relation (such as the minor, topolo-
gical minor, subgraph, or induced subgraph relation up to isomorphism),
we call a countable graph G∗ universal in P (for �) if G∗ ∈ P and G � G∗

for every countable graph G ∈ P.
Is there a graph that is universal in the class of all countable graphs?

Suppose a graph R has the following property:

Whenever U and W are disjoint finite sets of vertices in R,
there exists a vertex v ∈ R−U −W that is adjacent in R
to all the vertices in U but to none in W .

(∗)

Then R is universal even for the strongest of all graph relations, the
induced subgraph relation. Indeed, in order to embed a given countable
graph G in R we just map its vertices v1, v2, . . . to R inductively, making
sure that vn gets mapped to a vertex v ∈ R adjacent to the images of
all the neighbours of vn in G [ v1, . . . , vn ] but not adjacent to the image
of any non-neighbour of vn in G [ v1, . . . , vn ]. Clearly, this map is an
isomorphism between G and the subgraph of R induced by its image.

Theorem 8.3.1. (Erdős and Rényi 1963)
There exists a unique countable graph R with property (∗).

Proof . To prove existence, we construct a graph R with property (∗)
inductively. Let R0 := K1. For all n ∈ N, let Rn+1 be obtained from
Rn by adding for every set U ⊆ V (Rn) a new vertex v joined to all the
vertices in U but to none outside U . (In particular, the new vertices form
an independent set in Rn+1.) Clearly R :=

⋃
n∈N

Rn has property (∗).
To prove uniqueness, let R = (V, E) and R′ = (V ′, E′) be two graphs

with property (∗), each given with a fixed vertex enumeration. We con-
struct a bijection ϕ: V →V ′ in an infinite sequence of steps, defining ϕ(v)
for one new vertex v ∈ V at each step.

At every odd step we look at the first vertex v in the enumeration
of V for which ϕ(v) has not yet been defined. Let U be the set of those
of its neighbours u in R for which ϕ(u) has already been defined. This
is a finite set. Using (∗) for R′, find a vertex v′ ∈ V ′ that is adjacent in The vertex v′ should also

lie outside the image of ϕ.
R′ to all the vertices in ϕ(U) but to no other vertex in the image of ϕ
(which, so far, is still a finite set). Put ϕ(v) := v′.

At even steps in the definition process we do the same thing with
the roles of R and R′ interchanged: we look at the first vertex v′ in
the enumeration of V ′ that does not yet lie in the image of ϕ, and set
ϕ(v) = v′ for a vertex v that matches the adjacencies and non-adjacencies new vertex v
of v′ among the vertices for which ϕ (resp. ϕ−1) has already been defined.

By our minimum choices of v and v′, the bijection gets defined on
all of V and all of V ′, and it is clearly an isomorphism. �
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8.4 Connectivity and matching 225

Given a set S of vertices in a graph G, let us write C′
G−S for the set

of factor-critical components of G−S, and G′
S for the bipartite graph

Definition:
G �= ∅ is factor-critical
if G has no 1-factor but
G − v does for every
vertex v ∈ G.

with vertex set S ∪C′
G−S and edge set { sC | ∃ c ∈ C : sc ∈ E(G) }.

Theorem 8.4.11. (Aharoni 1988)
A graph G has a 1-factor if and only if, for every set S ⊆ V (G), the set
C′

G−S is matchable to S in G′
S .

Applied to a finite graph, Theorem 8.4.11 implies Tutte’s 1-factor
theorem (2.2.1): if C′

G−S is not matchable to S in G′
S , then by the

marriage theorem there is a subset S′ of S that sends edges to more
than |S′| components in C′

G−S that are also components of G−S′, and
these components are odd because they are factor-critical.

Theorems 8.4.8 and 8.4.11 also imply an infinite version of the
Gallai-Edmonds theorem (2.2.3):

Corollary 8.4.12. Every graph G = (V, E) has a set S of vertices that
is matchable to C′

G−S in G′
S and such that every component of G − S

not in C′
G−S has a 1-factor. Given any such set S, the graph G has a

1-factor if and only if C′
G−S is matchable to S in G′

S .

Proof . Given a pair (S, M) where S ⊆ V and M is a matching of S
in G′

S , and given another such pair (S′, M ′), write (S, M) � (S′, M ′) if

S ⊆ S′ ⊆ V �

⋃
{V (C) | C ∈ C′

G−S }

and M ⊆ M ′. Since C′
G−S ⊆ C′

G−S′ for any such S and S′, Zorn’s lemma
implies that there is a maximal such pair (S, M).

For the first statement, we have to show that every component C
of G − S that is not in C′

G−S has a 1-factor. If it does not, then by
Theorem 8.4.11 there is a set T ⊆ V (C) such that C′

C−T is not matchable
to T in C ′

T . By Corollary 8.4.9, this means that C′
C−T has a subset

C that is not matchable in C ′
T to the set T ′ ⊆ T of its neighbours,

while T ′ is matchable to C; let M ′ be such a matching. Then (S, M) <
(S ∪T ′, M ∪M ′), contradicting the maximality of (S, M).

Of the second statement, only the backward implication is non-
trivial. Our assumptions now are that C′

G−S is matchable to S in G′
S

and vice versa (by the choice of S), so Proposition 8.4.6 yields that G′
S

has a 1-factor. This defines a matching of S in G that picks one vertex
xC from every component C ∈ C′

G−S and leaves the other components
of G− S untouched. Adding to this matching a 1-factor of C − xC for
every C ∈ C′

G−S and a 1-factor of every other component of G− S, we
obtain the desired 1-factor of G. �
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228 8. Infinite Graphs

its closure together with all inner points of C(v)–Sn edges. Then G [ Sn ]
and these Ĉ(v) together partition |G|.

We wish to prove that, for some n, each of the sets Ĉ(v) with v ∈ Dn

is contained in some O(v) ∈ O. For then we can take a finite subcover
of O for G [ Sn ] (which is compact, being a finite union of edges and
vertices), and add to it these finitely many sets O(v) to obtain the desired
finite subcover for |G|.

Suppose there is no such n. Then for each n the set Vn of vertices
v ∈ Dn such that no set from O contains Ĉ(v) is non-empty. Moreover,
for every neighbour u ∈ Dn−1 of v ∈ Vn we have C(v) ⊆ C(u) because
Sn−1 ⊆ Sn , and hence u ∈ Vn−1; let f(v) be such a vertex u. By the
infinity lemma (8.1.2) there is a ray R = v0v1 . . . with vn ∈ Vn for all n.
Let ω be its end, and let O ∈ O contain ω. Since O is open, it contains a
basic open neighbourhood of ω: there exist a finite set S ⊆ V and ε > 0
such that Ĉε(S, ω) ⊆ O. Now choose n large enough that Sn contains
S and all its neighbours. Then Ĉ(vn) lies inside a component of G−S. C(vn)
As C(vn) contains vnR ∈ ω, this component must be C(S, ω). Thus

Ĉε(S, ω)Ĉ(vn) ⊆ C(S, ω) ⊆ O ∈ O ,

contradicting the fact that vn ∈ Vn. �

If G has a vertex of infinite degree then |G| cannot be compact.
(Why not?) But Ω(G) can be compact; see Exercise 61 for when it is.

What else can we say about the space |G| in general? For example,
is it metrizable? Using a normal spanning tree T of G, it is indeed
not difficult to define a metric on |G| that induces its topology. But
not every connected graph has a normal spanning tree, and it is not
easy to determine which graphs do. Surprisingly, though, it is possible
conversely to deduce the existence of a normal spanning tree just from
the assumption that the subspace V ∪Ω of |G| is metric. Thus whenever
|G| is metrizable, a natural metric can be made visible in this simple
structural way:

Theorem 8.5.2. For a connected graph G, the space |G| is metrizable
if and only if G has a normal spanning tree.

The proof of Theorem 8.5.2 is indicated in Exercises 30 and 63.

Our next aim is to review, or newly define, some topological notions
of paths and connectedness, of cycles, and of spanning trees. By substi-
tuting these topological notions with respect to |G| for the corresponding
graph-theoretical notions with respect to G, one can extend to locally
finite graphs a number of theorems about paths, cycles and spanning
trees in finite graphs that would not otherwise extend. We shall do this,
as a case in point, for the tree-packing theorem of Nash-Williams and
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238 8. Infinite Graphs

9.− Theorem 8.1.3 implies that there exists an N→N function fχ such that,
for every k ∈ N, every infinite graph of chromatic number at least fχ(k)
has a finite subgraph of chromatic number at least k. (Namely, let fχ

be the identity on N.) Are there similar functions fδ and fκ for the
minimum degree and connectivity?

10. Prove Theorem 8.1.3 for countable graphs using the fact that, in this
case, the topological space X defined in the second proof of the theorem
is sequentially compact. (Thus, every infinite sequence of points in
X has a convergent subsequence: there is an x ∈ X such that every
neighbourhood of X contains a tail of the subsequence.) of x

11.+ Show that, given k ∈ N and an edge e in a graph G, there are only finitely
many bonds in G that consist of exactly k edges and contain e.

12.− Extend Theorem 2.4.4 to infinite graphs.

13. Rephrase Gallai’s cycle-cocycle partition theorem (Ex. 35, Ch. 1) in
terms of degrees, and extend the equivalent version to locally finite
graphs.

14. Prove Theorem 8.4.8 for locally finite graphs. Does your proof extend
to arbitrary countable graphs?

15. Extend the marriage theorem to locally finite graphs, but show that it
fails for countable graphs with infinite degrees.

16.+ Show that a locally finite graph G has a 1-factor if and only if, for
every finite set S ⊆ V (G), the graph G−S has at most |S| odd (finite)
components. Find a counterexample that is not locally finite.

17.+ Extend Kuratowski’s theorem to countable graphs.

18.− A vertex v ∈ G is said to dominate an end ω of G if any of the following
three assertions holds; show that they are equivalent.

(i) For some ray R ∈ ω there is an infinite v–R fan in G.

(ii) For every ray R ∈ ω there is an infinite v–R fan in G.

(iii) No finite subset of V (G− v) separates v from a ray in ω.

19. Show that a graph G contains a TKℵ0 if and only if some end of G is
dominated by infinitely many vertices.

20. Construct a countable graph with uncountably many thick ends.

21. Show that a countable tree has uncountably many ends if and only if
it contains a subdivision of the binary tree T2.

22. A graph G = (V, E) is called bounded if for every vertex labelling
�: V → N there exists a function f : N → N that exceeds the labelling
along any ray in G eventually. (Formally: for every ray v1v2 . . . in G
there exists an n0 such that f(n) > �(vn) for every n > n0.) Prove the
following assertions:

(i) The ray is bounded.

(ii) Every locally finite connected graph is bounded.
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242 8. Infinite Graphs

56. Construct a locally finite factor-critical graph (or prove that none ex-
ists).

The question is whether a
locally finite factor-critical
graph can be infinite.
G �= ∅ is factor-critical if G
has no 1-factor but G− v
does for every vertex v ∈ G.

57.− Let G be a countable graph whose finite subgraphs are all perfect. Show
that G is weakly perfect but not necessarily perfect.

58.+ Let G be the incomparability graph of the binary tree. (Thus, V (G) =
V (T2), and two vertices are adjacent if and only if they are incompa-
rable in the tree-order of T2.) Show that G is perfect but not strongly
perfect.

59. Let G be a graph, X ⊆ V (G), and R ∈ ω ∈ Ω(G). Show that G contains
a comb with spine R and teeth in X if and only if ω ∈ X.

60. Give an independent proof of Proposition 8.5.1 using sequential com-
pactness and the infinity lemma.

61.+ Let G be a connected countable graph that is not locally finite. Show
that |G| is not compact, but that Ω(G) is compact if and only if for
every finite set S ⊆ V (G) only finitely many components of G − S
contain a ray.

62. Given graphs H ⊆ G, let η: Ω(H)→Ω(G) assign to every end of H the
unique end of G containing it as a subset (of rays). For the following
questions, assume that H is connected and V (H) = V (G).

(i) Show that η need not be injective. Must it be surjective?

(ii) Investigate how η relates the subspace Ω(H) of |H| to its image
in |G|. Is η always continuous? Is it open? Do the answers to
these questions change if η is known to be injective?

(iii) A spanning tree is called end-faithful if η is bijective, and topo-
logically end-faithful if η is a homeomorphism. Show that every
connected countable graph has a topologically end-faithful span-
ning tree.

63.+ Let G be a connected graph. Assuming that G has a normal spanning
tree, define a metric on |G| that induces its usual topology. Conversely,
use Jung’s theorem of Exercise 30 to show that if V ∪ Ω ⊆ |G| is
metrizable then G has a normal spanning tree.

64.+ (for topologists) In a locally compact, connected, and locally connected
Hausdorff space X, consider sequences U1 ⊇ U2 ⊇ . . . of open, non-
empty, connected subsets with compact frontiers such that

⋂
i∈N

Ui = ∅.
Call such a sequence equivalent to another such sequence if every set of
one sequence contains some set of the other, and vice versa. Note that
this is indeed an equivalence relation, and call its classes the Freudenthal
ends of X. Now add these to the space X, and define a natural topology
on the extended space X̂ that makes it homeomorphic to |X| if X is a
graph, by a homeomorphism that is the identity on X.

65. Let F be a set of edges in a locally finite graph G, and let A :=
⋃

F be
its closure in |G|. Show that F is a circuit if and only if, for every two
edges e, e′ ∈ F , the set A� e̊ is connected but A� (̊e∪ e̊′) is disconnected
in |G|.
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12.3 Tree-decompositions 325

Let us call our tree-decomposition (T,V) of G linked , or lean,4 if it
satisfies the following condition:

(T4) Given t1, t2 ∈ T and vertex sets Z1 ⊆ Vt1 and Z2 ⊆ Vt2 such that
|Z1| = |Z2| =: k, either G contains k disjoint Z1–Z2 paths or there
exists an edge tt′ ∈ t1Tt2 with Vt ∩Vt′ < k. |Vt ∩Vt′ |

The ‘branches’ in a lean tree-decomposition are thus stripped of any
bulk not necessary to maintain their connecting qualities: if a branch is
thick (i.e. the separators Vt ∩Vt′ along a path in T are large), then G is
highly connected along this branch. For t1 = t2, (T4) says that the parts
themselves are no larger than their ‘external connectivity’ in G requires;
cf. Lemma 12.4.5 and Exercise 35.

In our quest for tree-decompositions into ‘small’ parts, we now have
two criteria to choose between: the global ‘worst case’ criterion of width,
which ensures that T is nontrivial (unless G is complete) but says nothing
about the tree-likeness of G among parts other than the largest, and
the more subtle local criterion of leanness, which ensures tree-likeness
everywhere along T but might be difficult to achieve except with trivial
or near-trivial T . Surprisingly, though, it is always possible to find a
tree-decomposition that is optimal with respect to both criteria at once:

Theorem 12.3.10. (Thomas 1990)
Every graph G has a lean tree-decomposition of width tw(G).

There is now a short proof of Theorem 12.3.10; see the notes. The
fact that this theorem gives us a useful property of minimum-width
tree-decompositions ‘for free’ has made it a valuable tool wherever tree-
decompositions are applied.

The tree-decomposition (T,V) of G is called simplicial if all the
separators Vt1 ∩ Vt2 induce complete subgraphs in G. This assumption
can enable us to lift assertions about the parts of the decomposition to
G itself. For example, if all the parts in a simplicial tree-decomposition
of G are k-colourable, then so is G (proof?). The same applies to the
property of not containing a Kr minor for some fixed r. Algorithmically,
it is easy to obtain a simplicial tree-decomposition of a given graph into
irreducible parts. Indeed, all we have to do is split the graph recursively
along complete separators; if these are always chosen minimal, then the
set of parts obtained will even be unique (Exercise 27).

Conversely, if G can be constructed recursively from a set H of
graphs by pasting along complete subgraphs, then G has a simplicial
tree-decomposition into elements of H. For example, by Wagner’s The-
orem 7.3.4, any graph without a K5 minor has a supergraph with a
simplicial tree-decomposition into plane triangulations and copies of the

4 depending on which of the two dual aspects of (T4) we wish to emphasize
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340 12. Minors, Trees, and WQO

Let H be a graph, S a surface, and k ∈ N. We say that H is k-nearly
embeddable in S if H has a set X of at most k vertices such that H −X
can be written as H0 ∪H1 ∪ . . .∪Hk so that

(N1) there exists an embedding σ: H0 ↪→ S −k that maps only vertices
to cuffs and no vertex to the root of a cuff;

(N2) the graphs H1, . . . , Hk are pairwise disjoint (and may be empty),
and H0 ∩Hi = σ−1(Ci) for each i;

(N3) every Hi with i � 1 has a linear decomposition (V i
z )z∈Ci∩σ(H0)

of
width at most k such that z ∈ V i

z for all z. Replace z by σ−1(z).

Here, then, is the structure theorem for the graphs without a Kn minor:

Theorem 12.4.11. (Robertson & Seymour 2003)
For every n ∈ N there exists a k ∈ N such that every graph G not n � 5
containing Kn as a minor has a tree-decomposition whose torsos are
k-nearly embeddable in a surface in which Kn is not embeddable.

Note that there are only finitely many surfaces in which Kn is not
embeddable. The set of those surfaces in the statement of Theorem
12.4.11 could therefore be replaced by just two surfaces: the orientable
and the non-orientable surface of maximum genus in this set. Note also
that the separators Vt ∩ Vt′ in the tree-decomposition of G (for edges
tt′ of the decomposition tree) have bounded size, e.g. at most 2k + n,
because they induce complete subgraphs in the torsos and these are k-
nearly embeddable in one of those two surfaces.

We remark that Theorem 12.4.11 has only a qualitative converse:
graphs that admit a decomposition as described can clearly have a Kn

minor, but there exists an integer r depending only on n such that none
of them has a Kr minor.

Theorem 12.4.11, as stated above, is true also for infinite graphs
(Diestel & Thomas 1999). There are also structure theorems for exclud-
ing infinite minors, and we state two of these.

First, the structure theorem for excluding Kℵ0 . Call a graph H
nearly planar if H has a finite set X of vertices such that H − X can
be written as H0 ∪ H1 so that (N1–2) hold with S = S2 (the sphere)
and k = 1, while (N3) holds with k = |X|. (In other words, deleting
a bounded number of vertices makes H planar except for a subgraph
of bounded linear width sewn on to the unique cuff of S2 − 1.) A tree-
decomposition (T, (Vt)t∈T ) of a graph G has finite adhesion if for every
edge tt′ ∈ T the set Vt ∩ Vt′ is finite and for every infinite path t1t2 . . .
in T the value of lim infi→∞ |Vti ∩Vti+1 | is finite.

Unlike its counterpart for Kn, the excluded-Kℵ0 structure theorem
has a direct converse. It thus characterizes the graphs without a Kℵ0

minor, as follows:
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Exercises 353

36.+ (continued)

Find an N → N
2 function k �→ (h, �) such that every graph with an

externally �-connected set of h vertices contains a bramble of order at
least k. Deduce the weakening of Theorem 12.3.9 that, given k, every
graph of large enough tree-width contains a bramble of order at least k.

A tangle of order k ∈ N in a graph G = (V, E) is a set T of ordered pairs
(A, B) of subsets of V satisfying the following conditions.

(T 1) For every (A, B) ∈ T , the 2-set {A, B} is a separation in G or order < k.

(T 2) For every separation {A, B} of order < k in G, at least one of (A, B),
(B, A) is an element of T .

(T 3) If (A1, B1), (A2, B2), (A3, B3) ∈ T then A1 ∪A2 ∪A3 �= V .

(T 4) No (A, B) ∈ T is such that A = V .
Condition (T 4) is redundant

(It makes sense in the original
definition of a tangle, where
separations are pairs of
subgraphs, not vertex sets,
and (T 3) refers to G while
(T 4) refers to V .)

37. Deduce from Exercise 35 that every graph of tree-width at least 4k has
a tangle of order k.

38. Extend Corollary 12.4.10 as follows. Let H be a connected planar
graph, let X be any set of connected graphs including H, and let H :=
{MX | X ∈ X}. Show that H has the Erdős-Pósa property, witnessed
by the same function f as defined in the proof of Corollary 12.4.10.
Explain how it is possible that f depends on H but not on any of the
other graphs in X .

39.+ Show that, for every non-planar graph H, the class MH fails to have
the Erdős-Pósa property.

(Hint. Embed H in a surface S, and consider only graphs embedded
in S.)

40.+ Extend Corollary 12.4.10 to disconnected graphs H, or find a counter-
example.

41.+ Show that the four ingredients to the structure of the graphs in
Forb�(Kn) as described in Theorem 12.4.11—tree-decomposition, an
apex set X, genus, and vortices H1, . . . , Hk—are all needed to capture
all the graphs in Forb�(Kn). More precisely, find examples of graphs in
Forb�(Kn) showing that Theorem 12.4.11 becomes false if we require
in addition that the tree-decomposition has only one part, or that X
is always empty, or that S is always the sphere, or that H1, . . . , Hk are
always empty. No exact proofs are required.

42. Without using the minor theorem, show that the chromatic number of
the graphs in any �-antichain is bounded.

43. Let Sg denote the surface obtained from the sphere by adding g handles.
Find a lower bound for |KP(S)| in terms of g.

(Hint. The smallest g such that a given graph can be embedded in Sg

is its orientable genus. Use the theorem that the orientable genus of a
graph is equal to the sum of the genera of its blocks.)

44. Deduce the graph minor theorem from the self-minor conjecture.
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362 Appendix B

the classification theorem, but to form a picture2 let us see what the
above operations mean. To add a handle to a surface S, we remove two
open discs whose closures in S are disjoint, and identify3 their boundary
circles with the circles S1 ×{ 0 } and S1 ×{ 1 } of a copy of S1 × [ 0, 1 ]
disjoint from S. To add a crosscap, we remove one open disc, and then

Since S1 has two possible
orientations, two copies
of S1 can be identified in
two essentially different
ways. The corresponding
two ways of adding a
handle yield different
new surfaces. For the
classification one only
uses one of these, the
way that preserves the
orientability of the surface
(as in Figure B.1).

identify opposite points on its boundary circle in pairs.
In order to see that these operations do indeed give new surfaces,

we have to check that every identification point ends up with a neigh-
bourhood homeomorphic to R

2. To do this rigorously, let us first look
at circles more generally.

A cylinder is the product space S1 × [ 0, 1 ], or any space homeo-
morphic to it. Its middle circle is the circle S1 ×{ 1

2 }. A Möbius strip
is any space homeomorphic to the product space [ 0, 1 ] × [ 0, 1 ] after
identification of (1, y) with (0, 1− y) for all y ∈ [ 0, 1 ]. Its middle circle
is the set { (x, 1

2 ) | 0 < x < 1 }∪{ p }, where p is the point resulting from
the identification of (1, 1

2 ) with (0, 1
2 ). It can be shown4 that every circle

C in a surface S is the middle circle of a suitable cylinder or Möbius strip
N in S, which can be chosen small enough to avoid any given compact
subset of S �C. If this strip neighbourhood is a cylinder, then N \C has
two components and we call C two-sided ; if it is a Möbius strip, then
N \C has only one component and we call C one-sided .

Using small neighbourhoods inside a strip neighbourhood of the
(two-sided) boundary circle of the disc or discs we removed from S in
order to attach a crosscap or handle, one can show easily that both
operations do produce new surfaces.

Since S is connected, S \ C cannot have more components than
N \C. If S \C has two components, we call C a separating circle in S;
if it has only one, then C is non-separating . While one-sided circles are
obviously non-separating, two-sided circles can be either separating or
non-separating. For example, the middle circle of a cylinder added to
S as a ‘handle’ is a two-sided non-separating circle in the new surface
obtained. When S′ is obtained from S by adding a crosscap in place of
a disc D, then every arc in S that runs half-way round the boundary
circle of D becomes a one-sided circle in S′.

The classification theorem thus has the following corollary:

Lemma B.1. Every surface other than the sphere contains a non-
separating circle.

2 Compare also Figure B.1.
3 This is made precise by the identification topology, whose formal definition can

be found in any topology book.
4 In principle, the strip neighbourhood N is constructed as in the proof of Lem-

ma 4.2.2, using the compactness of C. However since we are not in a piecewise linear
setting now, the construction is considerably more complicated.
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Hints for Chapter 8 385

67. Recall that, in S1, every point has a neighbourhood basis consisting of
arcs in R

2. Can you show that every arc in C that links two ends must
meet an edge? If not, can you show that it meets a vertex? If not,
remember the proof of Lemma 8.5.5.

68. Exercise 26.

69. Enumerate the double rays D and D� in one infinite sequence, and in-
ductively define partial homeomorphisms between these D� and suitable
segments of S1. When this is done, extend the partial homeomorphism
on the union of all the double rays to the ends of G so as to make the
final map continuous.

70. The main assertion to be proved is that every subspace C satisfying
the conditions is a circle. Let A ⊆ C be an arc linking two vertices
x0 and y0. If v is any vertex in C � A, the arc-connectedness of C
yields a v–A arc in C, which has a first point on A. By the degree
condition assumed, this must be x0 or y0. Starting from an enumera-
tion v0, v1, . . . of the vertices in C, construct a 2-way infinite sequence
. . . x−2, x−1, x0, y0, y1, y2 . . . of vertices such that C contains arcs Ai

linking x−i−1 to x−i and Bi linking yi to yi+1 for all i ∈ N, so that
the union U of A and all these arcs is a homeomorphic copy of (0, 1)
in C. Use the connectedness of its ‘tails’ to show that these converge
to unique ends in C. Deduce from the degree assumptions that these
two ends coincide, and that U = C is a circle.

71. Use Lemma 8.5.4. You may also use that every circle contains an edge.

72.− Show that if a topological spanning tree is homeomorphic to a space
|T | with T a tree, but does not itself have this form, it contains an end
which this homeomorphism maps to a point in T (i.e., not to an end).
Can you find a topological spanning tree for which this is impossible?

73. Start with a maximal set of disjoint rays.

74.+ Given a point ω ∈ A � A, pick a sequence v1, v2, . . . of vertices in A
that converges to ω, and arcs An ⊆ A from vn to vn+1. Then use the
infinity lemma to concatenate suitable portions of the An to form a

74.+ Given a point ω ∈ A � A

and a sequence x1, x2, . . . of

points in A converging to ω,

one can find xn–xn+1 arcs

in A and concatenate these

to one continuous function

α: [ 0, 1) → A. Now map

1 to ω. What additional

properties of the An do you

need so that the extended

map [ 0, 1 ]→|G| is continuous

at 1? (You may use the fact

that, if it is, then its image

contains an arc from α(0) ∈ A

to α(1) = ω.) To ensure that

the An have these properties,

it may help to choose the xn

as vertices.

continuous function α: [ 0, 1 ]→|G| that maps [ 0, 1) to A and 1 to ω.
You may use the fact that the image of such a function α contains an
arc from α(0) ∈ A to α(1) = ω.

75. Recall that non-separating induced cycles of a plane graph are face
boundaries.

76.− How can T fail to be a topological spanning tree?

77. Find the circuits greedily, making sure all edges are captured.

78. Check thinness. For an alternative proof, use Theorem 8.5.8 (i) instead 8.5.8 (iii)
of (ii).

79.+ For the ‘only if’ part, use a theorem from the text. The task in the
‘if’ part is to combine the edge-disjoint circles from Theorem 8.5.8 (ii)
into a single continuous image of S1. Start with one of those circles,
and incorporate the others step by step. Check that the ‘limit map’
σ: S1 →|G| is continuous (and defined) on all of S1.

diestel
Highlight

diestel
Highlight



388 Hints for all the exercises

5. What would be the measure of the set {G } for a fixed G?

6. Consider the complementary properties.

7.− P2,1.

8. Apply Lemma 11.3.2.

9. Induction on |H| with the aid of Exercise 6.

10. Imitate the proof of Lemma 11.2.1.

11. Imitate the proof of Proposition 11.3.1. To bound the probabilities
involved, use the inequality 1 − x � e−x as in the proof of Lemma
11.2.1.

12.+ (i) Calculate the expected number of isolated vertices, and apply Lem-
ma 11.4.2 as in the proof of Theorem 11.4.3.

(ii) Linearity.

13.+ Chapter 7.2, the proof of Erdős’s theorem, and a bit of Chebyshev.

14. For the first problem modify an increasing property slightly, so that it
ceases to be increasing but keeps its threshold function. For the second,

Interchange ‘first’ and
‘second’.

look for an increasing property whose probability does not really depend
on p.

15.− Permutations of V (H).

16.− This is a result from the text in disguise.

17.− Balance.

18. For p/t→ 0 apply Lemmas 11.1.4 and 11.1.5. For p/t→∞ apply Co-
rollary 11.4.4.

19. There are only finitely many trees of order k.

20.+ Show first that no such threshold function t = t(n) can tend to zero as
n→∞. Then use Exercise 11.

21.+ Examine the various steps in the proof of Theorem 11.4.3, identify the
two points where it now fails, and repair them. While the first part
requires a slightly different tack as a consequence, the second adapts
more mechanically.

Hints for Chapter 12

1.− Antisymmetry.

2. For the backward implication, assume first that A has an infinite an-
tichain; this case is easier. The proof for other case is not quite as
obvious but similar; note that A = Z is not a counterexample.

3. To prove Proposition 12.1.1, consider an infinite sequence in which
every strictly decreasing subsequence is finite. How does the last ele-
ment of a maximal decreasing subsequence compare with the elements
that come after it? For Corollary 12.1.2, start by proving that at least
one element forms a good pair with infinitely many later elements.
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