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In the study of geometry, one is constantly confronted with groups of 
transformations on various “spaces.”  Many of these groups consist simply of the 
symmetries of those spaces with respect to suitably chosen properties. An obvious 
example is furnished by the symmetries of the cube. Geometrically speaking, these are 
the one-one transformations which preserve distances on the cube.  They are known as 
“isometries,” and are 48 in number. 

[Birkhoff & MacLane, Survey of Modern Algebra (1941), p. 127] 

The goal of this note is a purely geometrical classification of 
isometries of the line, circle, plane, sphere and space. The main idea 
employed is that every isometry of Rn is essentially determined, for 
n = 2 and n = 3 at least, by its effect on one circle, where it is 
conveniently ‘trapped’. Moreover, we stress the affinity between 
isometries in R1, R2 and R3 and offer, with the exception of one 
lemma, what we view as a ’two-dimensional’ classification of 
isometries of R3. Our method differs substantially from the standard 
geometrical approach (as given, for example, in chapters 3 & 7 of [3] 
or 8 & 16 of [5]) and is, we hope, more constructive and intuitive. 

Before we begin, let us recall that every isometry of R1 is 
determined by its effect on 2 non-identical points, every isometry 
of R2 is determined by its effect on 3 non-collinear points, every 
isometry of R3 is determined by its effect on 4 non-coplanar points, 
and so on. This is a simple consequence of two well known facts:

 
(I) isometries of Rn+1 map n-spheres to n-spheres of equal radius  

(II) every n+2 n-spheres in Rn+1 whose centers are ‘in general 
position’ can have at most one point in common; for example, the 
intersection of every 3 circles in R2 the centers of which are not 
collinear is either a singleton or the empty set.    



Isometries of R 1

Consider two distinct points W, E on a straight line L, with W 
‘west’ of E and E ‘east’ of W. Given an isometry h, W′ = h(W) may of 
course be any point of L, including W itself. But, once W′  is known, 
the isometry condition |W′E ′ | = |WE| implies that there exist precisely 
two possibilities for E′  = h(E): either E′  lies east of W′  (orientation  
preserved), or E′  lies west of W′  (orientation reversed).

In the first case, |EE′| = |W′E′| − |W′E| = |WE| − |W′E| = |WW′| implies 
that E moves by the vector WW′, and so does, in view of |W′P ′| = |WP| 
and |E′P ′ | = |EP|, every point P of L (figure 1): the isometry is a 
translation by WW′ , reduced to the identity map (trivial isometry) in 
the special case W′ = W. 

Fig. 1

In the second case, |WE′| = |W′E′| − |WW′| = |WE| − |WW′| = |W′E|  
implies that the midpoint M of WW′  is also the midpoint of EE′ , and, 
thanks to |W′P′| = |WP| and |E′P′| = |EP| again, of PP′ for every point P of 
L as well (figure 2): the isometry is a (point) reflection about M.

Fig. 2

Proposition 1: Every isometry of R1 is either a translation or a 
ref lect ion.

The following figure, precursor of two more interesting ones 
(11 and 17) to come, captures our observations:



Fig. 3

Isometries of S 1

Replacing line segments by circular arcs, we may employ the 
arguments of the previous section in order to show that every 
isometry of a circle is either a ‘circular translation’ or a ‘circular 
point reflection’. Moreover, since equal circular arc lengths on a 
circle S1 correspond to equal angles and equal straight line 
distances in R2, it is both possible and convenient to view circular 
isometries as restrictions of planar isometries. Conversely, planar 
isometries may be viewed as ‘unions’ of circular isometries defined 
on a continuum of cocentric circles covering the plane. 

Indeed a circular point reflection about M (or, equivalently, about 
M’s antidiametrical point N) is clearly the restriction on that circle 
of a unique reflection about a line passing through M and the circle’s 
center K (figure 4).     

                 

Fig. 4



                                                                                                
Also, a circular translation by an oriented arc of length s on a 

circle of radius r may be viewed as the restriction on that circle of 
a unique rotation about K by a likewise oriented angle φ = s/r (figure 
5), which is typically assumed to lie in [0, π]. 

                    

Fig. 5

Proposition 2: Every isometry of S1 is either a reflection or a 
rotat ion.

Figures 4 and 5 illustrate how isometries of S1 are extended to 
isometries of R2 and how the image of an arbitrary point P is found 
(P →  Q →  Q′  →  P′) using circles cocentric to the initial one and the 
fact that isometries preserve collinearity (of K, P, Q).       

Isometries of R 2

Knowing that every isometry of R2 is determined by its effect on 
three non-collinear points, we choose these three points to be two 
distinct, non-antidiametrical points W, E on a circle C plus the 
circle’s center, K. Since isometries preserve circles, C is mapped to 
another circle C′ of equal radius, with W, E, K mapped to W′, E′, K′. Of 
course it is possible to have C′  = C (if and only if K′  = K), in which 



case there is nothing new to investigate: the isometry leaves C, and 
K as well, invariant, therefore (Proposition 2) it is either a rotation 
about K or a reflection about a line that passes through K.

Even in case K′ ≠ K, the translation by the vector K′K maps C′ back 
to C (C″ = C), K′ back to K (K″ = K) and W′, E′ to points W″, E″ on C. That 
is, we may view the isometry in question as the combined effect of 
a rotation or reflection (leaving C invariant and mapping W and E to 
W ″  and E″ ) followed by the translation KK′  (figure 6). This 
combination  produces two more possibilities for our planar 
isometry: composition of rotation followed by translation, and 
composition of reflection followed by translation.

Fig. 6

The composition of a rotation followed by a translation is still a 
rotation, by the same angle but about a different center. To see this, 
observe first that every rotation by φ about K may be represented as 
the composition of any two reflections intersecting each other at K 
at an angle of φ/2 (figure 7); 



Fig. 7
                                                                                                   
as K moves toward infinity the two lines intersect each other 

further and further away, so it is not surprising that every 
translation of vector length d may be represented as the composition 
of any two parallel reflections at a distance d/2 from each other and 
perpendicular to the translation vector (figure 8).
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Now to get the new rotation r2 = (K2, φ) out of the old rotation r1 

= (K1, φ) followed by a translation t, all we need to do is choose r1’s 



‘second’ reflection line to be the same as t’s ‘first’ reflection line: 
the square of the common reflection is the identity, so the net 
effect of the composition is the combination of the remaining two 
reflections, which must intersect each other at a point K2 and at an 

angle φ/2 (figure 9).       
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Fig. 9

We turn now to the composition of a reflection m followed by a 
translation t. Using the parallelogram rule, we analyse t into two 
translations, one perpendicular to m (t1) and one parallel to m (t2). 

Since t1 may be expressed as the combination of m and a parallel to 

it reflection m′  (figure 10), the net effect of the composition is a 
reflection (m′ ) followed by a parallel to it translation (t2): exactly 

as above, the square of m produced nothing but the identity.
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Fig. 10

Pairs of a reflection and a parallel to it translation (such as m′  
and t2) are important enough to be viewed as a single isometry 

known as glide reflection. For one thing, they do commute with each 
other, which is not generally the case for any two given isometries. 
Even more important, given two congruent sets on the plane, it is in 
general either a rotation or a glide reflection -- depending on the 
‘orientation’ between them -- that maps one to the other: this is 
demonstrated in figure 11 below. (Of course a reflection may always 
be viewed as a glide reflection the translation vector of which has 
zero length; and a translation is sometimes viewed as a ‘degenerate 
rotation’ the center of which is the point at infinity.)



Fig. 11

Putting everything together, and keeping in mind the special case 
K ′ ≠ K, W″  = W, E″  = E, which corresponds to a plain translation, we 
arrive at the following classification of planar isometries.

Proposition 3: Every isometry of R2 is one of the following: 
translation, reflection, rotation, glide reflection.

Quite clearly in view of our analysis above, a rotation may occur 
either in case K′ = K or in case K′ ≠ K. Less obviously, the same is 
true of reflections: indeed the case K′  ≠ K occurs precisely when WW″  
and EE″  are parallel to KK′, and corresponds to the composition of a 
reflection and a translation perpendicular to it (such as m and t1 in 

figure 10, with t2 = 0).

Notice that, unlike rotations and reflections, translations and 
glide reflections may not leave a finite set invariant. It follows that 
the isometry group of a polygon may only consist of rotations and 
reflections. In fact only 2 types of such groups are possible, the 
cyclic groups Cn and the dihedral groups Dn; see [5], section 8.2 for a 

proof of what is known among geometers as “Leonardo (da Vinci)’s 
Theorem”.  

On the other hand, translations and glide reflections may well 
leave an infinite set invariant, as figure 12 illustrates:



Fig. 12

The infinite set of figure 12 is a wallpaper pattern of pgg type, 
invariant under infinitely many glide reflections (represented by 
dotted lines) in two perpendicular directions. Depending on their 
group of isometries, there exist 17 distinct types of wallpaper 
patterns (i.e., sets invariant under translation in two distinct 
directions); a very accessible introduction to them is [6]. 

The pattern in figure 12 is also left invariant under the shown 
(centers of) 2-dimensional point reflections (i.e., 1800 rotations): 
this is a consequence of the fact that the composition of two glide 
reflections intersecting each other at an angle φ is always a rotation 
by an angle 2φ about a point determined by the two translation 



vectors. This property of glide reflections is in full generality 
established by combining some of the tricks employed in this 
section. It is rather easier to show that the composition of two non-
opposite rotations (K1, φ1), (K2, φ2) is again a rotation (K, φ):
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We have simply analysed each rotation into two reflections, and 
in such a way that the reflection K1K2 is shared by both rotations.

Isometries of S 2

      
In direct analogy to what happens in the case of S1 and R2, an 

isometry of S2 is an isometry of R3 that maps some sphere G to 
itself. Now of course we need four “generally positioned” points to 
determine such isometries, so we pick the center K of G, two non-
antidiametrical points W, E on G’s “equator” (i.e., the great circle 
passing through W and E) and the “north pole” N. Clearly K′ = K holds 
for every isometry mapping G to itself. Now if in addition N′  = N, 
then the equator has to be mapped to itself: indeed any “tilting” of 
the equator would lead to an obvious violation of at least one of the 
isometry conditions |N′W ′| = |NW| and |N′E′| = |NE|; in simpler terms, W′ 
and E′ may differ from W and E but they have to be on the equator. 
Conversely, the equator is mapped to itself (C′  = C) only in case the 
north pole is either mapped to itself (N′  = N) or mapped to the south 
pole (N′  = S). So we need to investigate three cases altogether: 

Case 1: N′  = N, C′  = C. The isometry’s restriction on C is a circular 
isometry, so that Proposition 2 applies, allowing precisely two 



possibilities, a rotation and a reflection. But such a rotation and 
reflection must be “extendable” to isometries that in addition leave 
K and N invariant; in each case, the extending R3 isometry has to be 
unique, due to its agreement with the original isometry on W, E, K 
and N. It is easy to see that the sought R3 extensions are a (line) 
rotation about SN (extending (“level-by-level”) a 2-dimensional 
rotation about K) and a (plane) reflection about a plane perpendicular 
to C that bisects WE and contains SN (extending a 2-dimensional 
reflection about a line passing through K):

Fig. 14

Case 2: N′ = S, C′ = C. A reflection about C brings us to Case 1. Our 
R3 isometry is therefore a composition of either reflections about C 
and a perpendicular to C plane containing SN or reflection about C 
and a rotation about SN. In the first case the outcome is easily seen 
to be a 1800 rotation about the intersection line of the two planes, a 
line lying on C and passing through K. In the second case the outcome 
(composition of a reflection and a rotation perpendicular to each 
other) is a new 3-dimensional isometry called rotoreflection [2] or 
rotation reflection [4] or rotary reflection [5] or rotatory reflection 
[3]; we adopt the first term and discuss this isometry in some more 
detail further below. 

Case 3: N′ ≠ N, N′ ≠ S, C′ ≠ C. This time W′ and E′ lie on C′, with the 



arc W′E ′ of C′ equal to the arc WE of C. Either a rotation about the 
intersection line of C, C′  or a reflection about the plane that bisects 
the angle of C, C′ maps C to C′, N to N′ and W, E to two points W″ , E″  
on C′ . (Indeed those two isometries work, and there can be no others: 
any isometry mapping C to C′ (C″  = C′) must either satisfy N″  = N′ and 
S″  = S′ or N″  = S′ and S″  = N′; we pick the one that satisfies N″  = N′, be 
it the rotation or the reflection.) Once everything is on C′ , we appeal 
to Case 1 to find either a “C′-reflection” (about a plane containing 
S ′N ′) or a “C′-rotation” (about S′N ′) that maps W″  to W′ and E″  to E′ 
(and leaves N′  and S′  invariant). Putting everything together, we see 
(figure 15) that our isometry has to be one of the following: 

Fig. 15



-- composition of two reflections passing through K (which is a 
rotation about their intersection line by twice the angle between 
their planes, as figure 7’s 3-dimensional version demonstrates)

-- composition of two rotations passing through K (which is 
again a rotation, as in figure 13’s 3-dimensional version (employing 
the plane containing the two lines as “common reflection”) 

-- composition of a reflection P passing through K followed by a 
rotation L passing through K or vice versa: as our “3-dimensional 
lemma” at the end of this note shows, such a pair (P, L) may always 
be replaced by a pair (P1, L1) with P1, L1 perpendicular to each other 

and P1*L1 = P*L; in other words, the isometry in question in this last 

case is a rotoreflection. (Of course the rotoreflection may be just a 
reflection or rotation (satisfying N″  = N′) in the special case W″  = W′ , 
E″  = E′ (no second isometry (leaving C′ invariant) needed).)                       

Proposition 4: Every isometry of S2 is one of the following:  
reflection, rotation, rotoreflection.

In the case of rotoreflection, it is indeed significant that the 
reflection P1 and the rotation L1 are perpendicular to each other: 

that makes them commuting isometries, which is generally not the 
case between a rotation L and a reflection P. Of course something 
similar happens in R2 with glide reflections: translation and 
reflection commute only in case they are parallel to each other. And, 
in the same way a commuting combination of reflection and 
translation in R2 is “dynamic” enough to be viewed as an isometry on 
its own (glide reflection), the commuting combination of reflection 
and rotation in R3 deserves a separate consideration and name 
(rotoref lect ion).

The similarity between glide reflection and rotoreflection 
pointed out above is of a rather deeper nature. Indeed, keeping the 
lattitude γ fixed, we may view the effect of a rotoreflection on a 
circle Cγ parallel to the equator C0 as the composition of a “circular 

translation” (by an arc of length (rcosγ)φ) and a “circular reflection” 
about C0 (figure 16). A connection between rotoreflection and glide 



reflection along similar lines is nicely illustrated in page 307 of [4].

        

Fig. 16

Proposition 4 implies that the isometry group of a polyhedron 
may only consist of rotations, reflections and rotoreflections. In 
fact only 14 types of such groups are possible; see [5], section 17.2, 
for a proof of “Hessel’s Theorem” (which is effectively summarized 
in figure 8.28 of [4]). A closer look at the isometry group of the cube 
is provided in http: / /www.oswego.edu/~baloglou/103/cube.html , where 
the cube’s 48 isometries are classified into 10 types and a 10×10 
“grouped group table” is provided.     

Isometries of R 3

The derivation of the isometries of R3 from the isometries of S2 
is entirely analogous to the derivation of the isometries of R2 from 
the isometries of S1, therefore we omit many details. Basically we 
end up composing an isometry inside a sphere G′  with a translation 



(that maps G′  “back” to a sphere G). So we need to figure out the 
following compositions: reflection followed by translation, rotation 
followed by translation, and rotoreflection followed by translation.

For a reflection P followed by a translation T, all we need to do 
is to adapt figure 10 (and related comments) to R3. In particular, we 
analyse the translation into one perpendicular to P (T1) and one 

parallel to P (T2); the final outcome is a reflection P′  = P*T1 parallel 

to the original one, followed by a parallel to it translation (T2): 

predictably, this commuting combination of reflection and 
translation is still called a (3-dimensional) glide reflection.

Similarly, for a rotation L followed by a translation T, we 
combine figures 7, 8 and 9, adapted to R3; but this time we analyse T 
into two components, one parallel to L (T1) and one perpendicular to 

L (T2). We end up with a new rotation L′  =T2*L parallel to L (and of 

the same angle), followed by a parallel to it translation (T1): this 

new isometry could or should be called glide rotation -- notice that 
L ′  and T1 commute -- but is instead known in the existing literature 

as screw (rotation) or twist [3].

Finally, for a rotoreflection P*L = L*P followed by a translation 
T, we again write T as T1*T2 (with T1 and T2 perpendicular to P and 

L, respectively) and we notice, employing ideas from the two cases 
above, that (T1*T2)*(L*P) = T1*(T2*L)*P = T1*L ′*P = T1*P*L ′  = 

(T1*P)*L ′  = P′*L ′ : the outcome is just another rotoreflection, the 

translation has been “absorbed”, no new isometry has been produced.

Proposition 5: Every isometry of R3 is one of the following: 
translation, reflection, rotation, glide reflection, rotoreflection,     
glide rotation.

Our findings are visually summarized in figure 17, a natural 
companion to figures 3 and 11:  



Fig. 17

The rotoreflection shown above, equal in fact to a 3-dimensional 
“point reflection”, is special enough to be known under a separate 
name, inversion (about the midpoint of the two “origins”); it may be 
viewed (in infinitely many ways) as the composition of a reflection 
about any plane passing through that “midpoint”) and a perpendicular 
to it 1800 rotation. Crystallographers often use rotoinversion 
(composition of rotation and inversion) instead of rotoreflection: it 
is easy to see that a rotoinversion by an angle φ is equivalent to a 
rotoreflection by an angle φ−π (and about the same reflection plane).

  Just as in figures 3 and 11, every pair on the left consists of 
two ’homostrophic’ sets (superimposable via mere sliding), while 



every pair on the right consists of two ’heterostrophic’ sets: this is 
not a coincidence, as reflection ‘reverses orientation’, and so do 
glide reflection and rotoreflection (products of three reflections); 
but products of two or four reflections (such as rotation/translation 
and glide rotation, respectively) are bound to ‘preserve orientation’. 

One should be careful when it comes to orientation. For example, 
a planar glide reflection may be viewed as the restriction of a 1800 
glide rotation: the former reverses orientation (in its own plane), 
the latter does not. Conversely, while a 1800 rotoreflection reverses 
orientation in R3, its restriction on any plane containing its axis is a 
1800 rotation (half turn) that preserves orientation (on its plane).

Just as in the case of R2, no finite subset of R3 may be invariant 
under translation, glide reflection or glide rotation. But infinite sets 
could be invariant under such isometries, and, just as there exist 
precisely 17 types of wallpaper patterns in R2, there exist exactly 
230 types of crystallographic groups in R3; for example, just as 
figure 17 ‘extends’ figure 11, there exist several 3-dimensional 
‘extensions’ of the pattern in figure 12, based on copies of those 
‘triple L’s. A good introduction to crystallographic groups is [2].

The compositions of 3-dimensional isometries are left to the 
reader to investigate: no new techniques beyond those presented 
here are needed. As an example, we mention that the composition of 
two glide reflections or skew rotations or glide rotations is a glide 
rotation. (In the case of skew rotations L1 and L2, write L2*L1 as 

(P2*S2)*(S1*P1), where S1, S2 are the two parallel planes that 

contain L1 and L2.)

Rotoreflection = rotation * reflection 

We finally discuss the promised 3-dimensional result that lies 
behind our “2-dimensional” classification of the isometries of R3:

Lemma: The composition P*L of rotation about line L followed by 
reflection about plane P is always equal to some composition P1*L1 

of rotation about line L1 followed by reflection about plane P1, with 



L1 perpendicular to P1. Moreover, if γ is the angle between P and L, 

and φ is L’s rotation angle, then 

-- the angle between P and P1 is tan−1[(tan(φ/2))cosγ] 

-- L1’s rotation angle is cos−1[ 1+(tan2(φ/2))cos2γ

1+tan2(φ/2)
].

Proof: Let L′  be L’s projection on P, so that the angle between L 
and L′  equals γ, and let P′  be the unique plane that is perpendicular to 
both P and L′  and passes through their intersection O (figure 18). Let 
L1, L2 be the unique pair of lines on P′  satisfying L(L1) = L2 and, by 

necessity, being symmetric of each other about the plane defined by 
L and L′ (figure 18). Observe that the unique plane P1 that passes 

through O and is perpendicular to L1 is the only one that might work. 

Indeed P*L(L1) = P(L2) = L1, and the only possibility for P*L(L1) = L1 

with P and L perpendicular to each other is P = P1 and L = L1: the only 

line left invariant under a rotoreflection P *L is its own “axis”. 

Fig. 18

To make P1*L1 work, it suffices to pick a rotation angle for L1 so 

that P1*L1 will be equal to P*L on just one point outside L1. Indeed 

P1*L1 and P*L agree on O and every single point on L1; and every two 



rotoreflections that are equal to each other on three non-collinear 
points must equal each other everywhere on R3. To see this, observe 
first that if the isometries I1 and I2 of R3 are equal on three non-

collinear points A, B, C then either I1 = I2 or I1 = m*I2, where m is the 

reflection about the plane defined by A, B, C. Indeed for every point D 
outside the plane ABC, both I1(D) and I2(D) must lie on the three 

spheres (A, |AD|), (B, |BD|) and (C, |CD|), which have precisely two 
points in common, symmetric of each other about ABC; so either I2 or 

m * I2 agrees with I1 on the four non-coplanar points A, B, C, D (hence 

everywhere else). But the composition of a rotoreflection and a 
reflection (rotation * reflection * reflection) is easily seen to be 
either a twist or a rotation -- the latter in our case, as P1 does pass 

through the intersection of P and L -- which, unlike rotoreflections, 
do “preserve orientation” (see figure 17 and related comments): this 
rules out I1 = m*I2 in our case (I1 = P1*L1, I2 = P*L). 

For convenience, we determine L1’s angle φ1 so that P1*L1 agrees 

with P*L on the point K on L. First, we set our coordinate axes: the 
x-axis will be L′ , the y-axis will be the intersection of P′  with P, 
and the z-axis will be the projection of L on P′ , which is of course 
perpendicular to P (figure 18). Next, notice that the angle between P 
and P1 is equal to that between the z-axis (OM) and L1 (OA), which is 

of course half the angle θ between L1 and L2. Finally, L(A) = B (hence 

∠ AKB = φ) and ∠ KOM = π/2-γ, together with simple trigonometry in 
the triangles MAK (right angle at M), MAO (right angle at M) and KOM 
(right angle at K) establish the relations tan(φ/2) = |AM|/|KM|, 
tan(θ/2) = |AM|/|OM| and cosγ = |KM|/|OM| (figure 18); elimination then 
yields tan(θ/2) = (tan(φ/2))cosγ.

Set now |OK| = d, so that K = (dcosγ, 0, dsinγ). Clearly, P*L(K) = 
P(K) = K′ = (dcosγ, 0, −dsinγ). Since P1 and L1 are perpendicular they 

commute, hence P1*L1(K) = L1*P1(K) = L1(K1′ ), where K1′  is the image 

of K under reflection about the line z = −tan(θ/2)y on the plane x = 
dcosγ; as figure 19 shows, reflection about that line maps (0, h) to 
(−hsinθ, −hcosθ), therefore K1′  = (dcosγ, −dsinγsinθ, −dsinγcosθ) and 

|K′K1′ | = 2dsinγsin(θ/2).
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Fig. 19

Now we need to pick φ1 so that L1(K1′ ) = K′. Observe that L1 may be 

written as {x = 0, z = (cot(θ/2))y}. Ordinary Calculus shows that the 

minimum distance of (a, b, c) from {x = 0, z = my} occurs at y = 
mc+b

m2+1
 

and equals a2+
(mb−c)2

m2+1
. It is easy then to check that the minimum 

distances of both K′ and K1′  from L1 occur at y = 
−dsinγsinθ

2
, for a 

point N on L1, and are equal: |K′N| = |K1′ N| = d 1−sin2γcos2(θ/2) . 

Applied to K′K1′ N, the law of cosines yields, in view of tan(θ/2) = 

(tan(φ/2))cosγ, cosφ1 = [ 1+(tan2(φ/2))cos2γ

1+tan2(φ/2)
].

A non-analytical “derivation” of N, easily extendable (by way of 
tan(θ/2) = (tan(φ/2))cosγ) to a Calculus-free computation of φ1, is 

shown below:



Fig. 20

Remarks:

(1) It follows from the main rotoreflection angle formula that   
0 < φ ≤ π yields 0 < φ1 ≤ 2γ, with φ1 < φ.

(2) If φ is replaced by −φ, or P*L by L*P, then L1 is replaced by L2.

(3) The determination of L1 and P1 is illustrated through six 

examples in http: / /www.oswego.edu/~baloglou/103/rotref .html ; those 
examples involve various pairs of reflection and rotation in a cube.

This note is an outgrowth of work in progress devoted to 
wallpaper patterns [1]. I would like to thank my colleagues Patrick 
Halpin and Kathleen Lewis for some helpful remarks, and several 
other colleagues and students of “Symmetries” at SUNY Oswego for 
the support and inspiration they have provided. 
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