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CHAPTER 6 

TWO-COLORED WALLPAPER PATTERNS

6.0  Business as usual?

6.0.1 Consistency with color. All concepts and methods 
pertaining to two-colored border patterns discussed in detail in 
chapter 5 extend appropriately to two-colored wallpaper patterns. 
Once again, and due to induced color inconsistencies, coloring  may 
only  preserve  or  decrease  symmetry . As an example, the 
following coloring of the cm pattern in figure 4.27 eliminates both  
its reflection and its glide reflection by way of color inconsistency:

Fig. 6.1

Indeed, the reflection axis L 1 reverses colors as it maps B to 

itself but preserves colors as it maps A to C; and the shown upward  



glide reflection along L 2 reverses colors as it maps B to C but 

preserves colors as it maps A to D. (An important lesson drawn out 
of this example that you should keep in mind throughout this chapter 
is this: whenever you check a reflection or glide reflection axis for 
consistency with color, make sure that you look both  at motifs on or 
‘near ’  that axis and at motifs ‘ far’  from that axis -- “far” and 
“near” depending on the fundamental (repeated) region’s size.)

6.0.2 The smallest rotation angle. As in the case of one-colored 
wallpaper patterns (chapter 4), the most important step in 
classifying two-colored wallpaper patterns is the determination of 
the pattern’s smallest rotation angle; again, coloring may eliminate 
certain rotations by rendering them inconsistent with color, and it 
is appropriate to state here that coloring  may  only  preserve  or  
increase  the  smallest  rotation  angle . As an example, the 
following two colorings (figures 6.2 & 6.3) of the p4g  pattern in 
figure 4.57 do increase the smallest  rotation  angle  consistent  
with  color  from 900 to 1800 (color-reversing) and 3600 (none), 
respectively; and this change most definitely affects our visual  
perceptions  of these ‘new’ wallpaper patterns: 

Fig. 6.2



Fig. 6.3

In the pattern of figure 6.2, clockwise 900 rotation about K  maps 
black A to black B but black B to grey C (inconsistent), while 1800 
rotation about K  maps all  black units to grey ones and vice versa 
(consistent): that is, the initial 900 rotation is gone but the induced 
1800 rotation -- recall (4.0.3) that applying a 900 rotation twice  
trivially generates a 1800 rotation -- survives. And in the pattern of 
figure 6.3 clockwise 900 rotation about K  maps black A to black B 
but black C to grey D (inconsistent), while 1800 rotation about K  
maps black A to black C but black B to grey D (inconsistent): that is, 
both  the 900 and 1800 rotations about K  have been rendered color- 
inconsistent by the original p4g  pattern’s coloring -- which has in 
fact ‘destroyed’ all  rotation centers, twofold and fourfold alike. In a 
nutshell, the pattern in figure 6.2 is a two-colored 1800 pattern, 
while the pattern in figure 6.3 is a two-colored 3600 pattern.  

6.0.3 When the two colors are ‘inseparable’. As in chapter 5, it 
is possible for a ‘two-colored looking’ pattern to be classifiable as 
one-colored because it has no  color-reversing  isometry . Here 
are two such ‘exotic’ examples featuring color-preserving  
t ranslat ion  -- present in all  two-colored patterns, hence not 
mentioned -- together with color-preserv ing  gl ide  ref lect ion  (a 



pg , figure 6.4) or color-preserving  half  turn  (a p2 , figure 6.5); of 
course one may view these two patterns as unions of two ‘equal  
and  disjoint’ , black and grey, pg  and p2  patterns, respectively.

                                                                                        pg
Fig. 6.4  
  

                    
                                                                                       p 2
Fig. 6.5              



6.0.4 Symmetry plans and types. Tricky two-colored wallpaper 
patterns such as the ones presented so far, as well as easier ones, 
are not that difficult to classify once the smallest rotation angle 
consistent with color has been determined. Indeed there are 
symmetry  plans  available at the end of most sections, focused on 
those symmetry elements that are essential for classification 
purposes; all notation introduced in 5.2.3 and employed in section 5.9 
remains intact. As in chapter 4, little attention is paid to the 
crystallographic notation’s mysteries: simply try to comprehend 
symmetry plans instead of memorizing sixty  three  type names! 

In each of the next seventeen sections we will be looking not 
only at all possible ways of coloring each one of the seventeen 
wallpaper types in two colors, but also at all possible two-colored 
types sharing the same isometries (be them color-preserving or 
color-reversing) with each of the seventeen parent types. For 
example, the two-colored patterns in figures 6.2 & 6.3 are no longer 
associated with the p4g  parent type, but rather with 1800 and 3600 
parent types to be determined -- stay tuned! Moreover, the number of 
two-colored possibilities associated with each parent type will be 
not only artistically and empirically determined, but also 
mathemat ica l ly  just i f ied  and  predic ted : and it is precisely 
through this ‘prediction process’ that you will begin to understand 
the mathematical structure of the seventeen wallpaper pattern 
types, and how their isometries interact  with each other, 
effectively building each type’s symmetry and ‘personality’ !    

Here is the number of two-colored types associated with each of 
the seventeen parent types, including  in each case the one-colored 
parent type itself (which is justified by our discussion in 6.0.3): 

p1 :   2 pmg :     6 p3 :         1
pg :   3 pmm :    6 p31m :    2
pm :  6 cmm :    6 p3m1 :    2
cm :    4                p4 :        3 p6 :         2
p2 :     3                p4g :      4 p6m :      4
pgg :   3                p4m :     6

As promised above, the grand total is 63: the journey begins!



6.1  p1 types (p1, p b′′′′ 1 )

6.1.1 One direction is not enough! A two-colored wallpaper 
pattern must by definition have translation consistent with color in 
two , therefore (4.1.1) infinitely  many , directions. Notice here, as 
in 5.1.2, the existence of color-preserving translation in all  two-
colored patterns (already mentioned in 6.0.3): since the successive 
application of any translation that leaves the pattern invariant 
produces a double  translation that also leaves the pattern 
invariant, the R  x R  = P  rule of 5.6.2 allows us to get a color-
preserving translation out of every color-reversing translation. 

On the other hand, color-reversing translation in one  direction 
(with no other color-consistent translations in sight) does not  make 
a wallpaper pattern! Combining ideas from section 4.1 (figures 4.12 
& 4.13), we use vertical  p ′′′′111  border patterns to built the 
following ‘non-pattern’  that has vertical color-reversing 
translation (hence black and grey in  perfect  balance  with each 
other): 

Fig. 6.6



6.1.2 Infinitely many color-reversing translations. Leaving the 
‘non-pattern’ of figure 6.6 behind us, let’s have a look at the two-
colored wallpaper pattern of figure 6.1: it clearly has no rotation, 
and we have already pointed out in 6.0.1 that all its reflections and 
glide reflections are gone due to color inconsistency. In view of our 
discussion in 6.0.3, you have every right to ask: is it ‘truly’ two-
colored? That is, does it have any isometries that swap  black and 
grey? Yes, if you remember to think of translations ! Indeed, you 
can easily see that there is an ‘obvious’ horizontal color-
reversing  translation  and three less obvious ‘diagonal’  color-
reversing translations, mapping A to B, C, and D, respectively; and 
you can probably see by now that there exist such translations in 
inf initely  many  direct ions . This property of the pattern in figure 
6.1 should not surprise you in view of our discussions in 4.1.1, 6.1.1, 
and the R  x P  = R  rule of 5.6.2: every two-colored wallpaper pattern 
that has color-reversing translation in one direction must have 
color-reversing translation in infinitely many directions.

The observation we just made holds true for every two-colored 
wallpaper pattern: all patterns you are going to see in this chapter 
have color-reversing translation in either  none  or  inf initely  
many  directions . Patterns that have nothing but color-reversing 
translation (and color-preserving translation, of course) are known 
as pb′′′′ 1 patterns. Here are three examples of such patterns simpler  

in underlying structure than the one in figure 6.1:                      
                      

                 pb′′′′ 1                       pb′′′′ 1                       pb′′′′ 1

Fig. 6.7



6.1.3 No color-reversing translations. The only wallpaper 
pattern type simpler than the p b′′′′ 1 is the one that has the only 

isometry common  to  all  wallpaper patterns (color-preserving  
translat ion ) and nothing else: this is the p1  type, familiar of 
course from section 4.1. But how about a p1  pattern that, just like 
the p2  and pg  patterns in 6.0.3, looks like a ‘genuine’ two-colored 
pattern, having black and grey in perfect balance with each other? 
Here is such an example: 

 

p 1
Fig. 6.8

We leave it to you to compare this pattern to the p b′′′′ 1  pattern of 

figure 6.1 and verify its p1  classification: notice in particular that 
there are no ‘underlying’ reflections or glide reflections; or, if you 
wish, they were dead before they were born, ruled out by structure  
and position  rather than inconsistency with color. 

6.2  pg types (pg, p b′′′′ 1g, pg ′′′′ )

6.2.1 Those elusive glide reflections. While the pattern in figure 
6.2 clearly has vertical and horizontal color-preserving reflections 
and in-between color-reversing glide reflections, as well as 1800 



rotations of both kinds, the corresponding isometries of the pattern 
in figure 6.3 are all  inconsistent with color; the only consistent 
with color isometries that the pattern in figure 6.3 seems to have 
are t ranslat ions , and in particular vertical and horizontal color-
reversing translations. So, are we to conclude that the pattern in 
question is a p b′′′′ 1? Well, as in every context in life, some knowledge 

of ‘history’  can only help. Going back to the pattern’s progenitor in 
figure 4.57, we see the standard p4g  ‘diagonal’ glide reflection: we 
leave it to you to check that the particular NW-SE  axis shown in 
figure 4.57 (passing through bottoms  of vertical rectangles) 
provides a color-preserving  glide reflection; and that the NW-SE 
glide reflection axes right next to it (passing through tops  of 
vertical rectangles) provide color-reversing  glide reflections. So 
the pattern in figure 6.3 is not a p b′′′′ 1 , but rather what is known as a 

pb′′′′ 1g : color-reversing translation (p b′′′′ 1 ) plus glide reflection, both  

color-preserving and color-reversing (g ) .

6.2.2  Let’s change those triangles a little! A slight modification 
of the pg  pattern in figure 6.4 yields another example of a p b′′′′ 1g : 

                                                                      pb′′′′ 1 g

Fig. 6.9    



The visual difference between the ‘two kinds’ of glide reflection 
axes is much more clear than the one in the example discussed in 
6.2.1, so it is even less surprising that one kind of axes preserve 
colors while the other kind reverse colors. 

6.2.3 Hunting for the third type. As we have seen in 5.2.1 and 
5.5.1, it is possible to have both  kinds  of vertical reflection axes 
or half turn centers reverse  colors in a two-colored border pattern. 
Therefore it is very reasonable to expect to have patterns in the pg  
family where all  glide reflection axes reverse  colors. Could a 
coloring of the familiar p4g  pattern of figure 4.57 produce such an 
example? Well, a closer look at the NW-SE glide reflection of the 
pb′′′′ 1g  pattern in figure 6.3 suggests this attempt:

Fig. 6.10

Indeed all NW-SE glide reflections reverse colors. But so do the 
NE-SW glide reflections (which were in fact inconsistent with color 
in figure 6.3)! Could such a pattern ever belong to the pg  family? As 
we will point out in sections 7.2, 7.9, and 7.10, and as you may 
already have observed in chapter 4, whenever a pattern has 
reflection and/or glide reflection in two  dist inct  di rec t ions  it 
must  also have rotation : indeed our pattern above has color-



reversing 900  rotation -- not to mention its color-preserving 
reflections and glide reflections -- and it belongs to the p4g  family 
(see 6.11.2). 

The lesson drawn out of this example is that some times we get 
more  symmetry than desired, especially when we try to ‘hide’  a 
rich underlying structure by way of coloring. This is a lesson worth 
remembering, but what about our original quest for a pg  kind of 
pattern with color-reversing  glide reflection only ? Well, perhaps 
it is time to be less adventurous, avoid ‘structural traps’, and look 
for a more down-to-earth example; not that it is the simplest way 
out, but, once again, a modification of the pg  pattern in figure 6.4 
works:

                                                                                         pg ′′′′
Fig. 6.11  

Patterns such as the one in figure 6.11 are known as pg ′′′′ .

6.2.4 Examples. These colorings should be compared to the p1  
colorings employed in figure 6.7:

 



 
               pb′′′′ 1g                        pg ′′′′                            p b′′′′ 1 g

Fig. 6.12

6.2.5 Are there any more pg  types? The three look-alikes in 
figures 6.4, 6.9, and 6.11 represent the three types (pg , p b′′′′ 1g , pg ′′′′ , 
respectively) discussed so far in this section: they all have glide 
reflection in a single direction, and what makes them distinct is the 
effect of their glide reflections on color. Could there be other such 
types? Well, in the absence of rotations and reflections, the only 
other isometry that could split the three types into subtypes is 
t ranslat ion . At first it looks like we could have three × two = six 
cases: three  possibilities for glide reflection (color-preserving 
only (PP ) or both color-preserving and color-reversing (PR ) or 
color-reversing only (RR )), and two  possibilities for translation 
(color-preserving only (PP ) or both color-preserving and color-
reversing (PR), see section 6.1). 

But a pattern’s glide reflections and translations are not  
independent  of each other: as we will prove in section 7.4, and as 
you can see in figure 6.13 right below, a glide reflection (mapping A 
to B) and a translation (mapping B to C) combined  produce another 
glide reflection (mapping A to C) parallel  to the first one (G × T = 
G); moreover (see figure 6.21 further below), the combination  of 
two paral lel  glide reflections of opposi te  vectors  is a 
translation perpendicular  to their axes (G × G = T).



 
Fig. 6.13

 In view of these facts, the multiplication rules of 5.6.2 analyse 
the six cases mentioned above as follows:

G(PP) × T(PP) = G(PP),    G(PP) × G(PP) = T(PP):    pg    
G(PP) × T(PR) = G(PR),    G(PP) × G(PP) = T(PP):    impossible
G(PR) × T(PP) = G(PR),    G(PR) × G(PR) = T(PR):    impossible  
G(PR) × T(PR) = G(PR),    G(PR) × G(PR) = T(PR):    pb′′′′ 1 g

G(RR) × T(PP) = G(RR),    G(RR) × G(RR) = T(PP):    pg ′′′′
G(RR) × T(PR) = G(PR),    G(RR) × G(RR) = T(PP):    impossible  

So, there are no more types in the pg  family after all. Using the 
examples of this section you can certainly confirm that the only 
member of the pg  family that has both kinds of translations (color-
preserving and color-reversing) is the one that has both kinds of 
glide reflections (p b′′′′ 1g ), just as the above equations indicate. And an 

important byproduct of the entire discussion, quite useful to 
remember throughout this chapter, is this: in the presence of (glide) 
reflections, t ranslat ions  play  no  role  at all when it comes to 
classifying two-colored wallpaper patterns; indeed a pattern with 
(glide) reflection has translations of both kinds if  and  only  if  it 
has both kinds of (glide) reflections! (Recall (1.4.8) that every 
reflection may be viewed as a special  case  of glide reflection.) 

6.2.6 Symmetry plans. We capture the structure of the three pg  
types as follows:



            pg                               pg ′′′′                             p b′′′′ 1 g
  P     P      P      P     P             R      R     R      R     R             P      R     P      R     P

Fig. 6.14 

In these symmetry plans glide reflection vectors are not shown 
for the sake of simplicity, but you must  indicate them in your work!

6.3  pm types ( pm, pm ′′′′ , p b′′′′ 1m, p ′′′′ m, p b′′′′ g, c ′′′′ m)   

  

6.3.1 Upgrading the glide reflection to reflection. Employing an 
old idea from 2.7.2 -- where we viewed a pma2  pattern as ‘half’ of a 
pmm2  pattern -- in the opposite direction, we are now ‘doubling’ 
the three pg -like patterns in figures 6.4, 6.9, and 6.11 into pm -like 
patterns by ‘ fat tening’  the glide reflections into reflections; that 
is, we reflect the pattern across every glide reflection axis without  
gliding the image. This process is bound to produce six  two-colored 
pm -like patterns having reflection  in one  direction: indeed as we 
reflect across the glide reflection axes we have the option  of a 
color effect either opposite to or same as that of the glide 
reflection (see also 6.3.2 and 6.3.5), so we end up with three × two = 
six pm  types. We illustrate the process in the following six figures, 
indicating in each case the ‘original’ pg -like pattern and providing 
the name for the ‘new’ pm -like pattern. Make sure you can 
rediscover the old pg -like pattern inside the richer structure of the 
new pattern; there is more than mere nostalgia in our call: the old 
glide reflection is alive and well, ‘hidden’  under the new reflection 
and ready to play an important role in the classification process! 

             
                                                                                            



                           
                                                                          pg →  pm              

Fig. 6.15
                                                                    
All reflections and hidden glide reflections preserve colors, so 

the new pattern is classified as a pm , despite being two-colored.              

                                                                                      pg  →  p b′′′′ g  

Fig. 6.16 



Reflections reverse colors, hidden glide reflections preserve 
colors (g ); there exists color-reversing  t ranslat ion  along the 
reflection axes (p b′′′′ ). Such patterns are known as pb′′′′ g. 

    

                     
                                                                       pg ′′′′  →  p ′′′′ m

Fig. 6.17

Once again we get color-reversing translation along the 
reflection axes (p ′′′′ ), all of which preserve colors (m ): the new 
pattern is known as p ′′′′m . 

Comparing the two patterns in figures 6.15 & 6.17 we see that 
they are similar not only in name, but in structure as well; in fact 
the only thing that makes them distinct  is that the p ′′′′m  has color-
reversing translation while the pm  doesn’t. But didn’t we promise 
back in 6.2.5 that “in the presence of (glide) reflection translation 
will play no role in the classification process”? Well, there is 
indeed another, more subtle way of distinguishing between pm  and 
p ′′′′ m , and that is their hidden  (‘old’) glide  reflection , which of 
course preserves colors in the case of the pm  (an ‘offspring’ of pg ) 
but reverses colors in the case of the p ′′′′m  (an ‘offspring’ of pg ′′′′ )! 



                                                                                     pg ′′′′  →  pm ′′′′    
    Fig. 6.18

All reflections and hidden glide reflections in this pm ′′′′  pattern 
do reverse colors (m ′′′′ ). Notice the absence of color-reversing 
translation.  

                                                                                  p b′′′′ 1g  →  c ′′′′m          

     Fig. 6.19



Things started getting a bit complicated! Unlike the previous 
four types, this pattern has both  color-preserving and color-
reversing reflection, and likewise both color-preserving and color-
reversing hidden glide reflection; notice that each reflection and 
hidden glide reflection associated with it have opposite  effect on 
color. And, for the first time, we get color-reversing translation in 
directions both  parallel and perpendicular to that of the reflection. 
Visual ly , the effect of all this is a feeling that every other co lumn  
in our pattern has been shifted (like in the case of the cm  patterns 
of section 4.4), hence its somewhat unexpected name (c ′′′′m ).

      
                                                                    pb′′′′ 1g  → pb′′′′ 1m     

       Fig. 6.20

Just as in the case of the other ‘offspring’ of p b′′′′ 1g  we just 

discussed (c ′′′′m , figure 6.19), this new pattern, known as p b′′′′ 1m , has 

both  color-preserving and color-reversing reflections. Unlike in the 
case of the c ′′′′m , however, the hidden glide reflection of the p b′′′′ 1m  

always has the same effect on color as the corresponding reflection.     

6.3.2 Are there any other types? The process employed in 6.3.1 



produced six pm -like two-colored wallpaper patterns out of the 
three pg -like patterns of section 6.2. We must ask: could there be 
any more types in the pm  family, ‘unrelated’ perhaps to pg  types? 
Well, looking back at the new types we constructed, we can fully  
describe them in terms of the effect on color (R  or P ) of their ‘two 
kinds’ of reflection (R) and  hidden glide reflection (G) as follows:

pm :              R(PP)/G(PP)
pb′′′′ g :             R(RR)/G(PP)

p ′′′′m :             R(PP)/G(RR)
pm ′′′′ :             R(RR)/G(RR)
c ′′′′m :             R(PR)/G(RP)
pb′′′′ 1m :          R(PR)/G(PR)

It becomes clear that the only possible extra types we could get 
would be of a form like R(PR)/G(RR) or R(RR)/G(PR), etc. That is, 
we ‘need’ types where the hidden glide reflection has the same 
effect on color as the corresponding reflection in the case of every  
other  reflection axis, and the opposite effect on color of that of the 
corresponding reflection in the case of all other reflection axes. In 
other words, we ‘need’ situations like the one pictured right below:

 

    

Fig. 6.21

But this is an impossible situation! Indeed the bottom reflection 
(M 1) followed by the top one (M 2) produce the shown vertical  



translation which must be color-preserving  (P  × P  = P ); but the 
same  translation  is produced by combining the corresponding 
hidden glide reflections (G1 followed by G2) of the shown opposite  

vectors , hence it has to be color-reversing  (P ××××  R = R ), too!

    The contradiction  we have arrived at shows that there 
cannot possibly be any pm -like two-colored wallpaper patterns 
other than the six  types already derived in 6.3.1.

6.3.3 Examples. You should pay special attention to the sixth 
example, which should belong to the cm  family but is in fact a p b′′′′ 1m  

because its in-between glide reflection is inconsistent  with color:

                c ′′′′ m                             p m ′′′′                           p b′′′′ 1 m

                p ′′′′ m                              p b′′′′ g                           p b′′′′ 1 m

Fig. 6.22



6.3.4 Translations and hidden glide reflections revisited. The 
examples in 6.3.1 and 6.3.3 make ‘visually obvious’ the fact that 
there always exists a glide reflection employing the same axis as 
any given reflection. Such a ‘hidden’ glide reflection exists because 
a translation paral le l  to the reflection axis is a lways  there (just 
as in the case of p1m1  and pmm2  border patterns); and it is easy to 
see that the hidden glide reflection’s minimal gliding vector is 
always equal  to the minimal translation vector along the reflection 
axis.

But why  should such a parallel translation be there, after all? 
The double application of every glide reflection produces a parallel 
translation of vector twice  as long as the gliding vector (2.4.2, 
5.4.1), but why should a ‘vectorless’ reflection carry the obligation 
to produce a translation parallel  to itself? This is best explained 
through a ‘proof without words’: 

Fig. 6.23

[Since every wallpaper pattern has translations in at  least  two  
directions, pick one in a direction non-perpendicular  to that of 
the reflection axis; then subsequent application of reflection (A to 
B), translation (B to C), reflection (C to D), and translation (D to E) 
produces a parallel to the reflection translation (mapping A to E)!]



Once we know that a translation vector parallel to the reflection 
axis exists , then it is possible to pick the minimal  such vector -- 
recall that wallpaper patterns do not  have arbitrarily small 
translations (4.0.4) -- which is easily shown to be the minimal 
gliding vector of a (hidden) glide reflection along the reflection axis. 
You should verify all these ideas for the examples in 6.3.1 and 6.3.3; 
you may in particular verify that the vertical translation guaranteed 
by the process in figure 6.23 is actually twice  as  long  as the 
pattern’s minimal vertical translation.

6.3.5 Symmetry plans. Even though we classified the pm  types 
looking at their reflections and hidden glide reflections, we prefer 
to provide their symmetry plans based on reflections and parallel to 
them translations . It is of course easy to see that there exists a 
color-revers ing  translation parallel to the reflection axis if and 
only if the reflection and the corresponding hidden glide reflection 
have opposite  effect on color.

           pm                        pm ′′′′                       pb′′′′ 1m  

            p ′′′′ m                      pb′′′′ g                       c ′′′′ m

Fig. 6.24



6.4  cm types ( cm, cm ′′′′ , pc′′′′ g, p c′′′′ m )

6.4.1 Playing that old game again. As we have seen in 4.4.3, 
every cm  pattern can be seen as a pm  pattern every other row of 
which has been shifted . Therefore it is reasonable to assume that 
the application of that process to the two-colored pm -like patterns 
of 6.3.1 -- shifting columns rather than rows, of course -- is bound 
to produce two-colored cm -like patterns. This turns out to be 
largely true, with a couple of exceptions: the ‘standard’ shifting 
process leads from the c ′′′′m  and the p b′′′′ 1m  ‘back’ to p b′′′′ 1g  (due to 

induced color  inconsistencies ). We illustrate all this in the 
following six figures: 

 

                                                                                    pm  →  cm        
Fig. 6.25    



                     
                                                                                    p b′′′′ g  → pc′′′′ g                  

      Fig. 6.26 
                                                                               

                                                                   p ′′′′ m  →  pc′′′′ m      

Fig. 6.27



                                                                                  pm ′′′′  →  cm ′′′′          
 Fig. 6.28

                                                                c′′′′ m  →  p b′′′′ 1g  

Fig. 6.29



                                                                               p b′′′′ 1m  → pb′′′′ 1g   

       Fig. 6.30

6.4.2 Another ‘game’ to consider. Let us revisit that p b′′′′ 1  pattern 

in figure 6.1: since its underlying structure (before coloring) is that 
of a cm , it is reasonable to assume that some other colorings may  
produce new  cm -like two-colored patterns. In figures 6.31-6.34 
below we present a few failed attempts toward such additional cm  
types (some of which involve color inconsistencies  leading this 
time to patterns belonging to the p1  and pm  groups rather than the 
pg  group): 



                                                                                           p b′′′′ 1       

 Fig. 6.31  
 

                                                                                           p b′′′′ g

Fig. 6.32



                                                                            

  
                                                                         pc′′′′ m                     

Fig. 6.33

                                                                         cm ′′′′
Fig. 6.34                                                                                             



So, while our first two colorings induced inconsistencies, 
yielding types ‘ lower’  than cm , the last two colorings provided cm  
types already known to us. Again, this begs the question: are there 
any other cm -like two-colored patterns besides the ones we have so 
far ‘discovered’? The answer follows easily from the facts 
discussed right below in 6.4.3 and 6.4.4.

6.4.3 No ‘essential’ hidden glide reflections. The reason we got 
six rather than just three pm -like patterns in section 6.3 was the 
possibility of using a reflection axis for a (hidden) glide reflection 
of opposite  effect on color. This is not quite possible in the case of 
a cm -like pattern ... simply because there cannot possibly be color-
reversing translations parallel  to reflection axes in such patterns!

To establish our claim above, let us first recall that a double 
application of a glide reflection yields a color-preserving  
translation parallel to it (5.4.1). Next, observe that the smallest  
possible translation vector parallel to the glide reflection axis has 
length equal to 2g , where g  > 0 is the length of the shortest  glide 
reflection vector. To establish this observation we argue by  
contradiction , employing yet another ‘proof without words’:

             
Fig. 6.35      

[Assume that there is a downward  translation vector of length 
t  strictly smaller  than 2g  (mapping A to B); apply then an upward  



glide reflection of length g  (mapping B to C): the result is a 
downward glide reflection (mapping A to C) of length t−g , which is 
shorter  than g , contradiction. (In case you like inequalit ies  and 
absolute  values , it’s all a consequence of 0 < t  < 2g  ⇒  |t−g | < g !)] 

6.4.4 No (glide) reflections of both kinds. You may already have 
noticed another feature common to all two-colored cm -like patterns 
presented so far: in each example, all reflections have the same  
effect  on  color ; and, likewise, all glide reflections have the same 
effect on color. This is not  a coincidence! As figure 6.36 indicates, 
every two adjacent reflection axes -- therefore all  reflection 
axes -- in a cm -like pattern must  have the same effect on color: 

    

Fig. 6.36

[Assume that M1 reverses  colors  and that G  preserves colors, 

the other three possibilities being treated in a very similar manner. 
Then M2 is the outcome of successive applications of G−−−−1 

(downward  glide reflection), M 1, and G  (upward  glide reflection). 

Employing the notation of 4.0.4, we may write M2 = G∗∗∗∗ M1∗∗∗∗ G−−−−1, so 

that the ‘multiplication rule’ of 5.6.2 yields P  × R  × P  = R  and 
therefore M 2 must  reverse  colors  (as figure 6.36 demonstrates).]

There is a similar argument (and picture) demonstrating the 
same fact for glide reflections: all  axes have the same  effect on 
color. At this point you may recall our ‘innocent’ comments in 4.4.6 
to the effect that all reflection and glide reflection axes in a cm  



pattern ‘ look  the  same’ . It’s a bit deeper than that: every two 
adjacent reflection axes (M 1, M 2) are conjugates  (4.0.4) of each 

other by way of some ‘ in-between’  glide reflection (G ); in simpler 
terms, there exists a glide reflection (G ) mapping  one (M 1) to the 

other (M2), and that has the consequences discussed above (as well 

as in 4.0.4 & 4.0.5 and even 4.11.2). Similar facts hold true for the 
glide reflections of every cm  pattern: every two adjacent glide 
reflection axes are mirrored to each other by some ‘ in-between’  
ref lect ion).

Putting everything discussed in the preceeding paragpaphs 
together we arrive at a conjecture : whenever I2 = I[I1], where I, I1, 

I2 are isometries leaving a two-colored pattern invariant, I1 and I2 

must have the same effect on color. As already indicated, our 
conjecture is not that difficult to prove -- via I2 = I∗ I1∗ I−1 and the 

‘multiplication rules’ of 5.6.2 -- so we will not delve into the 
details. But, please, remember this important  fact that we will be 
using throughout this chapter: every two isometries of a two-
colored  pattern mapped  to each other by a third  isometry  (and 
its inverse) must  have the same effect on color (by way of being 
conjugates  of each other). 

The observation made here is in fact important enough to be 
assigned a name of its own, Conjugacy  Principle ; a principle that 
not only will help us to classify and understand wallpaper patterns 
from here on, but has already been employed in less pronounced 
ways: for example, it does lie behind the fact that every  other  
reflection axis in a p m -like two-colored pattern (or glide reflection 
axis in a pg -like two-colored pattern) has the same effect on color! 
(Couldn’t it be called the Mapping  Principle , instead? Well, we 
prefer “Conjugacy Principle” because it resonates with the crucial 
role played by the abstract  algebraic  structure  of wallpaper 
patterns -- a structure not discussed here, but rather prominent in 
the literature...) Beyond the Conjugacy Principle (studied in detail in 
section 8.0), (glide) reflections are further analysed in section 8.1. 

6.4.5 Only four cm  types! It is now easy to show that there are 
no cm -like two-colored patterns other than the ones already 



described in this section. Indeed if we view a cm  two-colored 
pattern as a ‘merge’  of a pm  pattern (reflections) and a pg  pattern 
(glide reflections), we see that there are only two  possibilities for 
each ‘partner’ : only pm , pm ′′′′  for pm  (6.4.4 rules out p b′′′′ 1m  and c ′′′′m , 

while 6.4.3 rules out p ′′′′m  and p b′′′′ g ) and only pg , pg ′′′′  for pg  (pb′′′′ 1g  is 

ruled out by 6.4.4). But two × two = four, and we can certainly write 
down the new (cm ) types as ‘products’  of the old ones (pm , pg ):

cm  = pm  × pg , cm ′′′′  = pm ′′′′  × pg ′′′′ , pc′′′′ g  = pm ′′′′  × pg , pc′′′′ m  = pm  × pg ′′′′   

Of course this ‘multiplication’ was first introduced in section 
5.7, where we viewed pmm2 s as ‘products’ of pm11 s and p1m1 s.

6.4.6 Further examples and symmetry plans.      
                                                                      

              cm ′′′′                               pc′′′′ g                               p c′′′′ m

Fig. 6.37

                     cm                                             cm ′′′′

    



                pc′′′′ g                                    p c′′′′ m

   

  R   P   R   P   R   P   R                 P   R    P   R  P   R   P

Fig. 6.38

6.5  p2 types ( p2, p2 ′′′′ , pb′′′′ 2 )

6.5.1 A good place to start! ‘Experimenting’ a bit with the p2  
pattern in figure 6.5, we get a couple of ‘genuine’ two-colored ones:

                                                                                       p2 ′′′′
Fig. 6.39



                                                                                        p b′′′′ 2  

Fig. 6.40
  
The first type (p2 ′′′′ ) has color-reversing half turns only , the 

second (pb′′′′ 2) has both  color-preserving and color-reversing ones. 

6.5.2 From pg  to p2 . Let’s revisit those ‘root’ patterns of 6.2:

                                                                   pg →→→→  p2              
Fig. 6.41



                                                                                  pg ′′′′  →  p2 ′′′′                
      Fig. 6.42  

                    
                                                                               p b′′′′ 1g  → pb′′′′ 2

Fig. 6.43

What happened? By applying a ‘secret’ vertical  reflection to 
every  other  row  of a pg -like pattern, we end up -- in this case 
anyway -- with a p2 -like pattern! This incident suggests a strong 
analogy between the two types, which we discuss right below.



6.5.3 Half turns and translations. Are there any more p2 -like 
two-colored patterns? The answer is “no”, and it strongly relies on 
figure 6.44, inspired in turn by figure 6.13:

Fig. 6.44

What’s the story here? Well, go back to section 6.2 for a moment 
and recall how we established the correlation between glide 
reflections of both  kinds (color-preserving and color-reversing) and 
color-reversing translations: it all follows from the fact that the 
combination of a translation and a glide reflection is another glide 
reflection (figure 6.13); and that correlation proves (6.2.5) that 
there exist precisely three two-colored patterns in the pg  family. In 
exactly  the same way, figure 6.44 shows that the combination of a 
1800 rotation (mapping A to B) and a translation (mapping B to C) is 
another 1800 rotation (mapping A to C). It follows, for example, that 
we cannot have a pattern with color-preserving half turns only  and 
color-reversing translations: P  × R  = R , etc. (For a complete analysis 
of why there can only be three p2  types follow 6.2.5 case  by  case , 
with 6.4.4 (Conjugacy Principle) in mind, replacing glide reflections 
by half turns.)

A few additional comments are in order. First of all, the fact 
illustrated in figure 6.44 (rotation × translation = rotation) holds 
true for arbitrary  rotations, not just for 1800 rotations: a rigorous 



proof will be given in section 7.6. More to the point, the close 
analogy between pg  and p2  is also  based on the fact that, just as 
the combination of two paral lel  glide reflections is a translation 
(figure 6.21), the combination of two 1800 rotations is indeed a 
translation: use the two half turns of figure 6.44 ‘in the reverse’ to 
see how rotating B to A and then A to C is equivalent to translating 
B to C! (Yes, this rotation ××××  rotation = translation  equation 
requires the two angles to be 1800 or at least equal  to each other 
and  of opposite  orientation; see figure 6.99 or 7.5.2 for details.)

6.5.4 Symmetry plans. Nothing but rotation centers this time:

            p2                       p2 ′′′′                       pb′′′′ 2 

    
Fig. 6.45

6.5.5 Further examples. First our usual two-colored triangles:

                 pb′′′′ 2                       p2 ′′′′                        pb′′′′ 2

Fig. 6.46



You should probably compare figure 6.46 to figure 6.12!

And now a pb′′′′ 2  example that many students misclassify thinking 

that it has glide reflection:
 

  
                                                                        
                                                                        pb′′′′ 2

Fig. 6.47

In an echo of the discussion in 4.5.1, we would like to point out 
that the half turn centers in figure 6.47 form paral le lograms  
rather than rectangles (figures 6.41, 6.42, 6.43, 6.46) or squares 
(figures 6.5, 6.39, 6.40). This observation both justifies  the 
‘general’ arrangement (in parallelograms) of half turn centers in the 
p2  symmetry plans (6.5.4) and rules  out  (4.8.2) the glide reflection 
in figure 6.47!

6.6  pgg types ( pgg, pgg ′′′′ , pg ′′′′g ′′′′ )

6.6.1 From one to two directions. Let’s now apply a ‘secret’ 
vertical glide  reflection (6.5.2) of both  kinds (color-preserving and 
color-reversing) to every  row  of a pg  or pg ′′′′ :



                   
                                                                  pg →  pgg
Fig. 6.48

                                                                                  pg  →  pgg ′′′′                     
 Fig. 6.49



    
                                                                pg ′′′′  →  p g g ′′′′
Fig. 6.50

     
                                                               pg ′′′′  →  p g ′′′′ g ′′′′           

      Fig. 6.51    



                                                                      
So far so good: we obtained four two-colored patterns (from the 

‘root’ pg  and pg ′′′′  patterns of figures 6.4 & 6.11 always) having glide 
reflection in two  perpendicular directions, welcome additions to 
the pgg  family; two of them (figures 6.49 & 6.50) look  distinct but 
are the same mathematically (pgg ′′′′ ), with color-preserving glide 
reflection in one direction and color-reversing glide reflection in 
the other direction. But there will be ‘casualties’ caused by color  
inconsistencies  as we apply this process to the p b′′′′ 1g : right below 

you find two p b′′′′ 2 patterns with color-inconsistent glide reflection 

(mappable in fact to each other by either color-preserving horizontal 
glide reflection or color-reversing vertical glide reflection):

 

                                                                              p b′′′′ 1g  → pb′′′′ 2

Fig. 6.52



 
                                                                              p b′′′′ 1g  → pb′′′′ 2                      

        Fig. 6.53

6.6.2 Only three types indeed! Looking at the pgg -like patterns 
obtained so far, we notice that none of them has glide reflection of 
both kinds in the same direction: such a situation is indeed 
impossible  because of what figures 6.54 & 6.55 tell us:

Fig. 6.54 



This is a demonstration of a significant fact: the combination of 
two perpendicular  glide reflections (mapping A to B and B to C) 
produces a half  turn  (mapping A to C)! We will go through a rigorous 
proof of a generalization of this in section 7.10, but you should try 
to verify an important aspect of this new theorem: depending on 
which  way  the gliding vector of each of the two glide reflections 
goes (north-south versus south-north and west-east versus east-
west), as well as the order  in which the two glide reflections are 
combined, we get four  plausible centers (and half turns) out of 
eight  actual possibilities; in our case, a ‘symbol ic’  rule  yields 
(west-east) × (north-south) = northeast. (Notice also that the 
distances  of the rotation center from the glide reflection axes are 
equal to half  the length of the corresponding gliding vectors; as an 
important special  case , the composition of two perpendicular 
ref lect ions  is a half turn centered at their intersection point. 
These facts throw new light into sections 2.6 (pma2  border 
patterns) and 2.7 (pmm2  border patterns), as well as several 
sections in chapter 4!) 

Now figure 6.55, together with the preceding remarks, shows 
why color-preserving and color-reversing glide reflection axes of a 
pgg -like pattern cannot  coexist in the same direction:

    

Fig. 6.55



Is the half turn (at) K color-preserving or color-reversing? In 
view of K = G1∗∗∗∗ G++++ (G applied upwards (P) followed by G1 (P)) and     

K = G2∗∗∗∗ G−−−− (G applied downwards (P) followed by G2 (R)) we conclude 

that the half turn at K must be both  color-preserving and color-
reversing; that is, the situation featured in figure 6.55 (‘mixed’ 
horizontal axes) is impossible .

We conclude that each of the two pg -like ‘factors’ of a pgg -like 
pattern could be either a pg  or a pg ′′′′ , but not  a p b′′′′ 1g . This should 

allow for four possibilities, but since the outcome of this 
‘multiplication’ is not  affected by the order  of ‘factors’, we are 
down to three  types: 

pgg  = pg  × pg , pgg ′′′′  = pg  × pg ′′′′  = pg ′′′′  × pg , pg ′′′′g ′′′′  = pg ′′′′  × pg ′′′′       

6.6.3 Another way of looking at it. The discussion in 6.6.2 was 
very useful in terms of analysing the structure  of the pgg  pattern, 
but it is certainly not the easiest way to see that any two of its 
glide reflections parallel to each other must have the same effect on 
color. Indeed that follows at  once  from our Conjugacy  Principle  
(6.4.4): every two adjacent  parallel axes are mapped to each other 
by any  half turn center lying half  way  between them! It might be a 
good idea for you to see how the Conjugacy Principle works in this 
special  case,  though: you should be able to provide your own proof, 
arguing in the spirit of figure 6.36.

In another direction now, let’s revisit the pgg  example of 4.8.3 
and figure 4.43. We state there, with the Conjugacy Principle in mind 
(4.11.2), that it appears  that there are two  kinds of glide 
reflection axes in both  directions: our reservations are now further 
justified by the impossibility of coloring that pattern in such a way 
that any two parallel glide reflections would have opposite effect on 
color!

6.6.4 Further examples. First, three pgg -like ‘triangles’ that 
you should compare to the p2 -like patterns of figure 6.46: 



                 pg ′′′′ g ′′′′                      pgg ′′′′                              p g g ′′′′

Fig. 6.56

 The ‘proximity’ between the two families (pgg  and p2 ) is 
further outlined through the following curious example of a pg ′′′′g ′′′′  
that is a close  relative  of the p2  example in figure 6.5:

                  
                                                                       pg ′′′′ g ′′′′
Fig. 6.57

This is an example that many would classify as a p2 : after all, 
the rotations of both  the pg ′′′′g ′′′′  and the p2  are color-preserving only . 
Well, the advice offered in 4.8.2 remains valid: after you locate all  
(hopefully!) the rotation centers, check for ‘in-between’  diagonal  
glide reflection! Instead of applying this ‘squaring’ process to the 
p2 ′′′′  in figure 6.39 for a pgg ′′′′ , we offer a fancy pmg -generated pgg ′′′′ :



             
                                                                        pgg ′′′′
Fig. 6.58

This pattern (Laurie  Beitchman , Fall 1999) consists of two  
p m g s of distinct colors; its vertical and horizontal glide reflections 
reverse and preserve colors, respectively. Again, you may opt to find 
the glide reflection axes after  you get all  the half turn centers!

6.6.5 Symmetry plans. What follows captures our structural 
observations on the interplay between axes and centers (6.6.2):

pgg                            pgg ′′′′                           pg ′′′′g ′′′′               

Fig. 6.59



You should compare these pgg  symmetry plans to the p2  
symmetry plans in figure 6.45: parallelograms have now been 
‘ruled’  by  glide  reflection  into rectangles, and the real reason is 
revealed in 8.2.2!

6.7  pmg types ( pmg, p b′′′′ mg, pmg ′′′′ , pm ′′′′g, p b′′′′ gg, pm ′′′′g ′′′′)

6.7.1 How many types at most? By now we know the game well 
enough to try to predict  how many two-colored types can possibly  
exist within a family sharing the same symmetrical structure. In the 
case of the pmg  (reflection in one direction, glide reflection in a 
direction perpendicular to that of the reflection), we are dealing 
with the ‘product ’  of a ‘vertical’ p m  with a ‘horizontal’ pg . So it 
seems at  first  that we could have up to six × three = eighteen types 
... but we also know that several cases will most likely have to be 
ruled out, as it has happened in the case of the pgg .

First, let’s not forget the pmg ’s 1800 rotation and its centers, 
located -- special case of figure 6.55! -- on  glide reflection axes 
and half  way  between every two adjacent reflection axes: arguing 
as in 6.6.3 (Conjugacy Principle), we see that all reflection axes of a 
pmg  must have the same  effect  on color. (Alternatively, and closer 
in spirit to 6.4.4, we may appeal to the Conjugacy Principle by way 
of reflection axes mapped to each other by glide reflections rather 
than half turns!) This rules out p b′′′′ 1m  and c ′′′′m  for the pm  ‘factor’, so 

we are down to at  most  four × three = twelve pmg  types.  

Next, observe that ‘vertical’  hidden glide reflections and 
associated translations along reflection axes are fully determined  
by the ‘horizontal’  glide reflections. Indeed the combination of any 
two adjacent  glide reflections -- of opposi te  vectors, as in figure 
6.21 -- produces the shortest  possible  (by figure 6.60 below) 
translation parallel to the reflection. It follows that there exists 
vertical color-reversing translation if and only if there exists 
horizontal glide reflection of both kinds. 



Fig. 6.60

[The combination of a glide reflection G (mapping A to B) and a 
translation of length 2d perpendicular  to it (mapping B to C) 
produces a glide reflection G′  (mapping A to C) parallel  to G, of 
same  gliding vector and at a distance d  from G; so if d (the distance 
between any two adjacent horizontal glide reflections) is assumed 
to be minimal then 2d  (the length of the resulting vertical 
translation) must be minimal, too.] 

Putting everything together, we see that all  that  matters  
when it comes to the first factor (pm ) of a pmg  is whether its 
reflections preserve (PP ) or reverse (RR ) colors: color-reversing 
translations along reflection axes (and associated hidden glide 
reflections) appear  to play no crucial role anymore -- except that, 
as pointed out above, they do make their presence obvious indirectly, 
through the pmg ’s second factor (pg )! Anyhow, there can be at  most  
two × three = six pmg -like two-colored wallpaper patterns: two 
possibilities for the first factor (P P , R R ) and three possibilities for 
the second factor (PP, PR, RR); see also 6.7.4.

There is no obvious reason to exclude any one of the resulting six 
possible types; and as we are going to see right below, each of them 
does show up, predictably perhaps, in concrete examples!

6.7.2  Are they there after all? Applying a ‘secret’ ref lect ion   
to every  row  of our pg  ‘root’ patterns, we do  get six pmg  types:



    
                                                                                 pg  →  p m g
Fig. 6.61

                                                                pg  →  p m ′′′′ g                
Fig. 6.62   



                     
                                                               pg ′′′′  →  p m g ′′′′
Fig. 6.63

                                                                pg ′′′′  →  p m ′′′′ g ′′′′                
 Fig. 6.64                                  

So far there have been no surprises, save perhaps for the total 
absence of color-reversing translation -- provided in fact by the 



last two types, offspring of p b′′′′ 1g  and rather more interesting:

   
                                                           pb′′′′ 1g  → pb′′′′ mg

Fig. 6.65

                                                            pb′′′′ 1g  → pb′′′′ gg                

 Fig. 6.66 
                                                                                                                     



This completes the pmg  picture. The last two types, coming 
from the only pg -root with color-reversing translation (figure 6.9), 
have themselves color-reversing translation along the direction of 
the reflection (p b′ ).

6.7.3 Examples. First, five types for six triangular colorings:

             pm ′′′′ g                       p m ′′′′ g ′′′′                            p m g ′′′′

             pb′′′′ gg                             p b′′′′ mg                           p b′′′′ mg

Fig. 6.67

And now an old p4g  acquaintance (figures 6.2, 6.3, 6.10), 
revisited and (inconsistently) recolored as a p b′′′′ m g , calling for 

additional such pmg -like creations: 



       
                                                                      pb′′′′ mg

Fig. 6.68

6.7.4 Symmetry plans. Make sure you understand the complex 
interaction between reflection, glide reflection, and rotation:

             pmg                        pb′′′′ mg                   pmg ′′′′

             pm ′′′′g                          p b′′′′ gg                         pm ′′′′g ′′′′

Fig. 6.69

Even though this is not exactly how we classified the pmg -like 
patterns, it is not a bad idea to express the six types as ‘products’ 



of simpler types; the main difficulty lies with the p m  ‘factor’:

pmg  = pm  × pg , pb′′′′ mg  = p ′′′′m  × pb′′′′ 1g , pmg ′′′′  = pm  × pg ′′′′ ,
pm ′′′′g  = pm ′′′′  × pg , pb′′′′ gg  = pb′′′′ g  × pb′′′′ 1g , pm ′′′′g ′′′′  = pm ′′′′  × pg ′′′′  

Of course the mysteries of the crystallographic notation and 
everything else make a bit more sense now, don’t you think? (Notice 
again the role played by the ‘vertical’ color-reversing translation in 
determining the first factor in our products: p ′′′′m  or p b′′′′ g  in its 

presence (associated with a second factor of p b′′′′ 1g ), pm  or pm ′′′′  in its 

absence (associated with a second factor of pg  or pg ′′′′ ).)  

6.8  pmm types ( pmm, p b′′′′ mm, pmm ′′′′ , c ′′′′mm, p b′′′′ gm, pm ′′′′m ′′′′ )

6.8.1 An easy guess this time. The pmm  type may of course be 
viewed as the ‘product’ of two pm s. It can be shown as in 6.7.1 that 
it is easier to work with effect on color rather than types, and that 
we do not need to worry about the pm ’s hidden glide reflections or 
color-reversing translations. With three possibilities (section 6.3) 
for each  direction of reflection (PP , PR , RR ), and the order  of 
‘factors’ in our ‘multiplication’ reduced to the tr ivial  “vertical 
reflection versus horizontal reflection” issue, there seem to be at 
most  six possible pmm -like types: PP  × PP , PP  × PR , PP  × RR ,    
PR × PR, PR × RR, RR × RR. Let’s see how many of those we can 
actually get -- if not all!

6.8.2 From the pmg s to the pmm s. Returning to old tricks, we 
will now try to get as many pmm  types as possible by ‘perfect  
shiftings’  (4.4.2) of the pmg  types we created in section 6.7; that 
is, we shift every other row by half  the minimal horizontal 
translation.



               
                                                                            pmg  →  p m m
Fig. 6.70

Somewhat confused? It is not a bad idea to go back to figure 
6.61 for a moment and compare the two patterns! Let’s move on:  

   

                    
                                                                          p b′′′′ mg  → pb′′′′ mm  

 Fig. 6.71
   

Notice how the mixed horizontal glide  reflections of the p b′′′′ mg  

(figure 6.65) have turned into the mixed horizontal reflections of the 



pb′′′′ m m , while all vertical reflections remained color-preserving: we 

started with PP  × PR  and ended up, predictably, with PP  × PR .

                                                                            pm ′′′′g  →  pmm ′′′′
Fig. 6.72

No axis ‘lost’ its effect on color as figure 6.62 got ‘perfectly 
shifted’ into figure 6.72 (RR  × PP ). But look at our next step:

                                                                           pmg ′′′′  →  pmm ′′′′          
      Fig. 6.73



               
The two patterns in figures 6.72 & 6.73 look  distinct, but 

mathematically they are the same (RR × PP versus PP × RR), even 
though they are related to two distinct pmg -like patterns: indeed 
the pmg ′′′′  pattern of figure 6.63 (PP  × RR) and the pm ′′′′g  pattern of 
figure 6.62 (RR  × PP) are not  the same because the pmg ’s two 
‘factors’, unlike those of the pmm , are not  equivalent (reflection × 
glide reflection as opposed to reflection × reflection). 

Let’s go on to a ‘perfect shifting’ of figure 6.66:

     
                                                            pb′′′′ gg  → pb′′′′ gm

Fig. 6.74

This time we went from RR × PR to PR × RR: again ‘no changes’ 
(keeping in mind the equivalence between RR × PR and PR × RR in 
the pmm  type, in accordance to our observations above on the 
equivalence between its ‘vertical’ and ‘horizontal’ directions). 

Finally, a ‘perfect shifting’ of the pm ′′′′g ′′′′  pattern of figure 6.64 
leads, most predictably, to a RR  × RR  pmm -like pattern having 
color-reversing reflections only :

          



   
                                                                          pm ′′′′g ′′′′  →  pm ′′′′m ′′′′

Fig. 6.75

So we did get five  out of six possible types, missing PR  × PR : 
does this mean that there is no such pmm -like type? Certainly not: 

          
                                                             pb′′′′ gm  → c ′′′′mm

Fig. 6.76



                                                            pb′′′′ mm  → c ′′′′mm

Fig. 6.77

What happened? Shifting  now columns  (rather than rows ), and 
departing from two pmm  (rather than pmg ) types (figures 6.71 & 
6.74), we did arrive at two  ‘distinct’ representatives (figures 6.77 
& 6.76, respectively) of the sought sixth pmm -like type!

6.8.3 Examples. A larger than usual collection of ‘triangular 
patterns’ indicating the pmm ’s richness; notice how the last four 
examples have ‘dropped’ from cmm  to pmm  because of coloring. 

              pm ′′′′m ′′′′                           pmm ′′′′                           pmm ′′′′



             pb′′′′ mm                         p b′′′′ mm                           p b′′′′ gm

 

              pb′′′′ gm                        p b′′′′ mm                    c ′′′′ m m

                 

             c ′′′′ mm                    c ′′′′ mm                     p b′′′′ m m



               pb′′′′ gm                    p b′′′′ mm                     p b′′′′ gm

Fig. 6.78

6.8.4 Symmetry plans. No surprises here, just remember that all 
rotations are combinations of the two perpendicular reflection axes 
intersecting at their center (a special  case  of the fact illustrated 
in figure 6.54), hence their effect on color is determined by that of 
the reflections (and according to the ‘multiplication’ rules of 5.6.2). 

             pmm                        pb′′′′ mm                        pmm ′′′′

            c ′′′′mm                         p b′′′′ gm                        pm ′′′′m ′′′′

Fig. 6.79

We conclude by expressing each type as a ‘product’ of pm  types:



pmm  = pm  × pm , pb′′′′ mm  = p ′′′′m  × pb′′′′ 1m , pmm ′′′′  = pm  × pm ′′′′ ,
c ′′′′mm  = c ′′′′m  × c ′′′′m , pb′′′′ gm  = pb′′′′ 1m  × p b′′′′ g , pm ′′′′m ′′′′  = pm ′′′′  × pm ′′′′

In connection to figure 6.79 (pmm  symmetry plans) always, the 
‘first’ factor corresponds to the ‘vertical’ direction and the ‘second’ 
factor corresponds to the ‘horizontal’ direction. Color-reversing 
translation is no longer crucial enough to be explicitly indicated; 
consistently with 5.5.1 and 6.5.3, it is to be found precisely in those 
directions in which there exist half turn centers of opposi te  effect 
on color. In particular the elusive c ′′′′m m  is the only pmm -like type 
with color-reversing translation in both  the vertical and horizontal 
directions, while pmm  and pm ′′′′m ′′′′  are the only ones with no color-
reversing translation at all . More to the point, and arguing as in 
6.7.1, we see that there exist vertical reflections of opposite color 
effect if and only if there exists horizontal color-reversing 
translation (and vice versa).

6.9  cmm types ( cmm, cmm ′′′′ , cm ′′′′m ′′′′ , pc′′′′ mm, p c′′′′ mg, p c′′′′ gg )

6.9.1 How many types? Following the approach in 6.6.2, 6.7.1, 
and 6.8.1, we view a cmm -like pattern as a ‘product’ of two cm -like 
patterns. Having four possibilities for each ‘factor’ (PP , PR , RP , RR , 
where the first  letter now stands for reflection and the second  
letter for in-between glide reflection), and keeping in mind that 
‘multiplication’ is commutat ive  (again the ‘horizontal’ versus 
‘vertical’ non-issue), we see that there can be at most  ten possible 
cmm  types, defined by the ‘products’ PP × PP, PP × PR, PP × RP,  
PP × RR, PR × PR, PR × RP, PR × RR, RP × RP, RP × RR, RR × RR. 
Let’s first check how many types we can get ‘experimentally’ (6.9.2), 
and then check how many types are in fact impossible (6.9.3).

6.9.2 Perfectly shifting the pmm s. We trace each new (cmm ) 
type back to a pmg type, showing also the ‘intermediate’ pmm  type 
(the perfect shifting of which led to the cmm  type):



                                                                 pmg  →  pmm  →  c m m
Fig. 6.80
                                 

                                                 pb′′′′ mg  → pb′′′′ mm  → pc′′′′ mg

Fig. 6.81



        
     pm ′′′′g  → pmm ′′′′  → cmm ′′′′

Fig. 6.82
                                    

                                                  pmg ′′′′  →  p m m ′′′′  →  c m m ′′′′     
      Fig. 6.83



                                                                p b′′′′ gg  → pb′′′′ gm  → pc′′′′ gg  

Fig. 6.84
                                  

                                                pm ′′′′ g ′′′′  →  p m ′′′′ m ′′′′  →  c m ′′′′ m ′′′′
Fig. 6.85



pb′′′′ gm  → c ′′′′mm  → pb′′′′ gg

Fig. 6.86
                                   

                                               pb′′′′ mm  → c ′′′′mm  → pb′′′′ gg

 Fig. 6.87



Due to not-that-obvious color inconsistencies, the last two 
patterns are of the same pmg -like type! Our shifting process has 
produced five  out of at most ten possible types corresponding to the 
ten combinations listed in 6.9.1: PP × PP (cmm ), PR  × RP  (p c′′′′ mg ), 

PP × RR (cmm ′′′′ ), RP × RP (pc′′′′ gg ), RR × RR (cm ′′′′m ′′′′ ). But this 50% rate 

of success is a bit too low in view of our experience with the other 
types! Is it possible that some or all of the remaining five 
combinations are in fact impossible ?

6.9.3 Ruling out the non-obvious.  It turns out that another four 
of the combinations in 6.9.1 are impossible (PP  × PR , PP  × RP,      
PR × RR, RP × RR), leaving thus only one  question mark around      
PR × PR. Let’s see for example why a situation such as PP × PR is 
impossible, using a version of the argument in 6.6.2 (figure 6.55): 

             

Fig. 6.88

Is the half turn (at) K color-preserving or color-reversing? In 
view of K = M2∗∗∗∗ M 1 = M1∗∗∗∗ M 2 (reflection M 1 (P ) followed by 

reflection M2 (P) or  the other way around) and K = G2∗∗∗∗ G1 (glide 

reflection G 1 (P ) followed by glide reflection G 2 (R )) we conclude 

that the half turn at K must be both  color-preserving and color-
reversing, which is certainly impossible . 



So, the cmm  does not allow a ‘mixed’ combination of reflection 
and glide reflection in one direction and  a ‘pure’ combination in the 
other direction. Unlike in 6.6.3, this impossibility cannot be deduced 
from the Conjugacy Principle; it is solely a consequence of the 
pattern’s structure and the way its isometries are ‘weaved’  into 
each other. 

6.9.4 One more type! The question mark around PR × PR would 
not have been there at all were we blessed with photo memory: 
indeed the pattern in figure 6.2 has just what we were looking for, 
color-preserving reflections and  in-between color-reversing glide 
reflections in both  directions! Such patterns are known as p c′′′′ mm .  

But here is another question: how could we possibly  get a p c′′′′ mm  

out of those ‘root’ pg  patterns through our usual operations? This is 
something for you to wonder about as we are bidding farewell to our 
‘roots’: even though the p4m  types in section 6.12 may be viewed as 
special (‘square’) versions of the pmm , and likewise for p4g  
(section 6.11) and cmm  (as our last example on p c′′′′ mm  indicates), 

the pg  excursion cannot go on for ever, as color inconsistencies and 
worse stand on our way...

6.9.5 Examples. First a few ‘triangles’: compare  with 6.8.3!

                pc′′′′ gg                     p c′′′′ mg                     cmm ′′′′



               pc′′′′ mm                     p c′′′′ mg                   cm ′′′′ m ′′′′

Fig. 6.89

And now a collection of examples in the spirit of 6.4.2, with or 
without color  inconsistencies  (and consequent reductions  of 
symmetry from cmm  to ‘lower’ types):

                                                                                         p c′′′′ m m

Fig. 6.90



                                                                                          pc′′′′ mg

Fig. 6.91

                                                                                          cm ′′′′m ′′′′
Fig. 6.92



                                                                                           pm ′′′′
Fig. 6.93

cmm ′′′′
Fig. 6.94



pb′′′′ 2

Fig. 6.95

pc′′′′ gg

Fig. 6.96



 pb′′′′ gm

Fig. 6.97

You should be able to derive more types out of the original cmm  
pattern of figures 6.90-6.97 using yet more imaginative colorings!

6.9.6 Symmetry plans. Notice the location  and effect on color 
of rotation centers (determined  by that of (glide) reflection axes).

                 cmm                                               cm ′′′′m ′′′′



                 cmm ′′′′                                               pc′′′′ m m

                 p c′′′′ mg                                                p c′′′′ gg

Fig. 6.98

A couple of remarks: the half turn centers found at the 
intersection of any two perpendicular glide  reflection axes are 
‘products’ of any one of the two glide reflections and a reflection  
perpendicular  to it (as in the case of the pmg ), not  of the two 
glide reflections; and the length of the glide reflection vector is 
equal to the distance between two nearest half turn centers on a 
parallel to it (glide) reflection axis (as in the case of the pmg ).  

Finally, a ‘factorization’ of our cmm  types into simpler ones:

cmm  = cm  × cm , cm ′′′′m ′′′′  = cm ′′′′  × cm ′′′′ , cmm ′′′′  = cm  × cm ′′′′ ,
pc′′′′ mm  = pc′′′′ m  × pc′′′′ m , pc′′′′ mg  = pc′′′′ m  × pc′′′′ g , pc′′′′ gg  = pc′′′′ g  × pc′′′′ g

You may also ‘factor’ the cmm s using either pmm s and pgg s or, 
in resonance with the remarks made above, pmg s in both  directions!



6.10  p4 types ( p4, p4 ′′′′ , p c′′′′ 4 )

6.10.1 A look at fourfold rotations. We begin with a picture:

Fig. 6.99

That is, a clockwise  900 rotation centered at R1 (mapping A to 

B) followed by a clockwise  900 rotation centered at R2 (mapping B 

to C) result into a 1800 rotation  centered at K  (mapping A to C); 
and a clockwise  900 rotation centered at R1 (mapping A to B) 

followed by a counterclockwise  900 rotation centered at R 2 

(mapping B to D) result into a translation  (mapping A to D). Figure 
6.99 offers of course illustrations rather than proofs (which are 
special cases of 7.5.1 and 7.5.2, respectively).

You can also use figure 6.99 ‘backwards’ to illustrate how the 
combination of a translation (mapping D to A) and a 900 rotation 
(mapping A to B) is another 900 rotation (mapping D to B).  

6.10.2 The lattice of rotation centers revisited. Figure 6.99 



throws quite a bit of light into the lattice of rotation centers 
featured in figure 4.5. Indeed it is not a coincidence that we always 
get two  fourfold centers and one  twofold center in an isosceles  
r ight  tr iangle  (900-450-450) configuration: you can see this rather 
special triangle being formed by the composition of the two fourfold 
rotations in figure 6.99; and it is true that every  wallpaper pattern 
with 900 rotation is bound  to have 1800 rotation as well, with all  
the twofold centers ‘produced’ by fourfold centers as in figure 6.99.

6.10.3  Precisely three types. With all 1800 rotations fully 
determined by 900 rotations, and an interplay between fourfold 
rotations and translations (figure 6.99) fully reminiscent of the one 
between the pg ’s glide reflections and translations (figure 6.13) or 
the one between the p2 ’s half turns and translations (figure 6.44), it 
is easy to follow the approach in sections 6.2 (pg ) or 6.5 (p2 ) and 
conclude without much effort that there exist at  most  three p4  
types: p4  (all  900 rotations preserve  colors), p4 ′′′′  (all  900 
rotations reverse  colors), and p c′′′′ 4  (900 rotations of both  kinds). As 

usual, we need to show that such types do indeed exist:  
                 

               
                                                                                          p 4
Fig. 6.100



                      
                                                                                          p4 ′′′′
Fig. 6.101

                
                                                                        pc′′′′ 4

 Fig. 6.102



We leave it to you to investigate the complex relationship 
between the p4 -like patterns in figures 6.100-6.102 above and the 
p2 -like patterns in figures 6.5, 6.39, and 6.40!

6.10.4 Examples. First a couple of ‘triangles’ and ‘windmills’:

                                p4 ′′′′                                      pc′′′′ 4

Fig. 6.103

Next, a rather complicated p c′′′′ 4 , offspring of a p4g  of which all  

reflections and glide reflections have been destroyed by coloring:

                                                                                         p c′′′′ 4

Fig. 6.104



6.10.5 Symmetry plans. We use ‘straight’ and ‘slanted’ squares 
for the two  kinds  of fourfold centers (4.0.4), and dots for the 
twofold centers (included for reference only, as 900 patterns can be 
classified based solely  on the effect on color of their fourfold 
rotations).

           p4                                p4 ′′′′                               p c′′′′ 4

Fig. 6.105

Recall (4.0.3) that every fourfold center is also  a twofold center 
by way of double  application of the 900 rotation; this means that 
the resulting 1800 rotation is color-preserving: P  × P  = R  × R  = P . 
Observe that, by the same ‘multiplication’ rules, all  ‘genuine’ 
twofold centers must be color-preserving in p4  and p4 ′′′′ , but color-
reversing (P × R  = R) in p c′′′′ 4 : this follows from our remarks in 6.10.1 

and 6.10.2.

6.11  p4g types ( p4g, p4 ′′′′ g ′′′′ m, p4 ′′′′ g m ′′′′ , p4g ′′′′ m ′′′′ ) 

 
6.11.1 Studying the symmetry plan. Of course a p4g  may be 

viewed as a ‘merge’ of a cmm  (‘vertical’-‘horizontal’ direction) and 
a pgg  (‘diagonal’ direction). This leads to a rather complex 
interaction between the two structures, severely limiting the 
number of possible two-colored p4g -like patterns and best 
understood by having a close look at the p4g ’s symmetry plan:



                         
Fig. 6.106

Depending on their vector’s direction, the diagonal glide 
reflections G 1 and G 2 produce four  distinct twofold  rotations, 

centered at A, B, C, D. (This relies on figure 6.54 and, primarily, on 
common sense: where  else  could the four centers be?) Of course B 
and D are centers for fourfold rotations, but, as pointed out in 
6.10.5, such centers are also centers for color-preserving  twofold 
rotations. A first consequence of this is that the pgg -like 
component of a p4g  type can only be a pgg  or a pg ′′′′g ′′′′ : G1 and G2 must 

have the same effect on color, otherwise we get color-reversing  
twofold centers at B and D! Another consequence is that the cmm -
like component of a p4g  type can only (and possibly ) be a cmm  or a 
cm ′′′′m ′′′′  or a pc′′′′ mg : by figure 6.54 again, M1 and G4 combined produce a 

color-preserving  twofold center at D, and so do M 2 and G3; this 

means that horizontal/vertical glide reflections (G 4/G 3) must have 

the same  effect on color as vertical/horizontal reflections (M 1/M 2).                

A further analysis of the symmetry plan rules out the p c′′′′ mg  as a 

possible cmm  ‘factor’. Indeed the Conjugacy  Principle  (and also a 
precursory remark in 4.11.2) tells us that the fourfold  centers at B 
and D (reflected  to each other by M1) must have the same effect on 

color, hence the twofold  center at C, produced by a combination of 
two fourfold rotations (figure 6.99), must be color-preserving . 
But then the two reflection axes M1 and M2, which also  produce the 



twofold rotation at C, must both  be either color-preserving (cmm ) 
or color-reversing (cm ′′′′m ′′′′ ). (One may also appeal directly to the 
Conjugacy  Principle : M1 and M2 must have the same effect on 

color because they are rotated to each other by a 900 rotation at D!) 

6.11.2 Precisely four types. We are already familiar with the 
p4g  = cmm  × pgg  (but see 6.11.3 for a ‘two-colored’ version), and 
we had in fact produced a p4 ′′′′g ′′′′m  = cmm  × pg ′′′′g ′′′′  back in figure 6.10 
(color-reversing 900 rotations, color-reversing ‘diagonal’ glide 
reflections (pg ′′′′ g ′′′′ ), color-preserving ‘vertical’-‘horizontal’ 
reflections and glide reflections (cmm )). One way to arrive at a 
p4 ′′′′gm ′′′′  = cm ′′′′m ′′′′  × pgg  is this: start with a ‘p4 ′′′′ -unit’  like the one 
occupying the four central squares in figure 6.107, and then use 
color-reversing reflections to extend it to a full-fledged pattern:

                 

                                                                                        p4 ′′′′gm ′′′′  
Fig. 6.107



A variation on this approach, starting now with a ‘p4-unit’ , 
yields the fourth type, p4g ′′′′m ′′′′  = cm ′′′′m ′′′′  × pg ′′′′g ′′′′ :

        

                                                                      p4g ′′′′ m ′′′′
Fig. 6.108

Of course this approach would lead to the other two types if we 
used color-preserving  mirrors around our starting unit. Notice 
also that, while there seem  to be two kinds of fourfold centers in 
figures 6.107 & 6.108, their effect on color is the same in each case: 
for the reflection that maps them to each other makes them to have 
the same effect on color (Conjugacy  Principle ), even though it 
makes them look different (heterostrophic ) at the same time. 

6.11.3 Examples. Another way of getting p4g -like two-colored 
patterns is to start with a ‘p4 -unit’ or a ‘p4 ′′′′ -unit’ and then extend 
it to a full pattern using color-preserv ing  (by necessity) vertical-
horizontal t ranslat ions  instead of reflections:



                                       p4g                                            p4 ′′′′g ′′′′m

                               p4g ′′′′ m ′′′′                               p4 ′′′′ g m ′′′′

Fig. 6.109

6.11.4 Symmetry plans. Notice that a p4g -like pattern may be 
classified using only  the underlying ‘vertical’-‘horizontal’ c m m  
(and, more specifically, its reflections) together with the effect on 
color of the fourfold centers (all of which are of one  kind  and 
therefore represented by the same type of square dot): this remark 
has some practical significance, as it is often diff icult  to ‘see’ a p4g -
like pattern’s ‘diagonal’ pgg  glide reflection. Notice by the way that 
the g  or g ′′′′  in the ‘names’ listed below stands for the diagonal (pgg ) 
glide reflection, not  for the vertical-horizontal (c m m ) glide 
reflection. And do not forget that “diagonal”, “vertical”, and 
“horizontal” have always a lot to do ... with the way we ‘hold’ the 
pattern in question!



                     p4g                                          p4 ′′′′g ′′′′m

                   p4g ′′′′m ′′′′                                        p4 ′′′′gm ′′′′

Fig. 6.110

6.12  p4m types ( p4m, p4 ′′′′ m m ′′′′ , pc′′′′ 4mm, p c′′′′ 4gm, p4 ′′′′m ′′′′m, p4m ′′′′m ′′′′ )

6.12.1 Studying the symmetry plan. Fortunately (a lot of fun) or 
unfortunately (a lot of work), we need to repeat the ‘break down’ 
process we applied to the p4g  and its symmetry plan: that’s the only 
way to prove that there can only be six p4m -like two-colored 
patterns! So we start with a fresh look at the p4m ’s symmetry plan:



                   
Fig. 6.111

We see that the p4m  may be viewed as a ‘product’ of a ‘vertical’-
‘horizontal’ pmm  and a ‘diagonal’ cmm . Every two adjacent 
horizontal or vertical axes may  have opposite effect on color, but 
this is not possible for either any two parallel  diagonal reflection 
axes or any two parallel  diagonal glide reflection axes (by the very 
structure of cm (m )-like patterns, see 6.4.4); moreover, every two 
perpendicular  diagonal axes (such as G1, G2 or M3, M4, for 

example) must have the same effect on color by the Conjugacy  
Principle : indeed they are rotated  to each other by fourfold  
centers (such as A). We conclude, by revisiting 6.9.6 if needed, that 
the cmm  ‘factor’ could only (and possibly ) be one of cmm , cm ′′′′m ′′′′ , 
pc′′′′ mm , or p c′′′′ gg . Moreover, every horizontal and every vertical 

reflection axis intersecting each other at a fourfold  center 
(twofold  center within the pmm ), such as M 1, M 5 at B or M 2, M 6 at 

D, must have the same effect on color (Conjugacy  Principle  again). 
Therefore the pmm  ‘factor’ could only (and possibly ) be one of 
pmm , pm ′′′′m ′′′′ , or c ′′′′mm  (6.8.4).

Let’s now have a closer look at how the two types ‘merge’ into 
the p4m . The ‘genuine’ twofold  center C is produced by the 
combination of a glide reflection and a reflection perpendicular to it 
within the cmm  ‘factor’ (G 1, M 4 or G 2, M 3), as  well  as  by the 

combination of two perpendicular reflections within the pmm  



‘factor’ (M 1, M 2). The implication of this ‘weaving’  is that the two  

perpendicular  pairs  of diagonal (cmm ) and vertical-horizontal 
(pmm ) axes producing the same genuine twofold center must  be of 
same  combined  effect  on color: in the context of figure 6.111, 
(M4, G1) and (M1, M2) could possibly  be nothing but PP /PP , PP /RR , 

RR /PP , RR /RR (if C preserves colors) or PR /PR , RP /PR (if C 
reverses colors). (Recall (6.9.1, 6.8.1) that the letter order in the 
latter case is  crucial for c m m  types (reflection, glide reflection) 
but not  for p m m  types (reflection, reflection).) 

Converting our findings into ‘type multiplication’, we arrive at 
six  possible combinations:

p4m  = cmm  × pmm , p4 ′′′′m ′′′′m  = cmm  × pm ′′′′m ′′′′ , 
p4 ′′′′mm ′′′′  = cm ′′′′m ′′′′  × pmm , p4m ′′′′m ′′′′  = cm ′′′′m ′′′′  × pm ′′′′m ′′′′ ,
pc′′′′ 4mm  = pc′′′′ mm  × c ′′′′mm , pc′′′′ 4gm  = pc′′′′ gg  × c ′′′′mm  

6.12.2 Six types indeed. A good source of patterns verifying the 
five ‘new’ types above is chapter 5: employing the stacking process 
of chapter 4, we can often stack copies of a two-colored pmm2 -like 
border  pattern into a p4m -like two-colored wallpaper pattern:

 

      
                                                     pmm2  →  p 4 ′′′′ m m ′′′′
Fig. 6.112



     
                                                          pm ′′′′ m ′′′′ 2  →  p 4 m ′′′′ m ′′′′
Fig. 6.113      

    
                                                          pm ′′′′ m ′′′′ 2  →  p 4 ′′′′ m ′′′′ m
Fig. 6.114

By now you can probably tell that the process is somewhat 
‘unpredictable’: an ‘one-colored’  type (pmm2 , figure 5.31) led to a 
genuinely two-colored type (p4 ′′′′m m ′′′′ , figure 6.112), while distinct 
representatives of the same type (pm ′′′′m ′′′′2), one of them also from  
figure 5.31, led to two distinct p4m  types (figures 6.113 & 6.114).



We move on to get the remaining two p4m  types; the last one 
(figure 6.116) ‘requires’ a perfect ly  shif ted  stacking of yet 
another border pattern -- distinct from the one employed in figure 
6.115 despite being of the same type (p ′′′′mm2 ) -- from figure 5.31:

    
                                                           p ′′′′ m m 2  →  p c′′′′ 4 m m

Fig. 6.115

                                                                           p ′′′′mm2  →  p c′′′′ 4gm

Fig. 6.116
  



6.12.3 Further examples. Our ‘triangles’ have now been 
superficially merged into ‘squares’; notice the ‘two-colored’ p4m :

                              p4m                                        p4 ′′′′ m m ′′′′

                              p4 ′′′′ m ′′′′ m                                    p 4 m ′′′′ m ′′′′

                              pc′′′′ 4mm                                    p c′′′′ 4gm

Fig. 6.117

6.12.4 Hidden glide reflections revisited. While color-reversing 
translations along reflection axes no longer matter (6.7.1), hidden 



glide reflections are now upgraded thanks to the second of the next 
two p c′′′′ 4gm  examples provided by Amber  Sheldon  (Spring 1998): 

 
                                                                                      p c′′′′ 4gm

Fig. 6.118

This example is useful because it tells you once again that some 
patterns must be viewed ‘diagonally’ : that is, the cmm  direction 
(of in-between glide reflection) is vertical-horizontal rather than 
diagonal (as it has so far been the case with all our examples).

The next example is a clever variation on the previous one: all  
vertical-horizontal glide reflections are now inconsistent  with 
color; and so is every  other  diagonal reflection, but  the axes of all  
those diagonal reflections that are inconsistent with color do  work 
for diagonal glide  ref lections  (of vector shown below) that are  



consistent  with color! As a consequence of all this, we are now 
back  to vertical-horizontal viewing and diagonal cmm  subpattern 
(built, remarkably, on underlying structure of pmm  type):  

      
       pc′′′′ 4gm   

Fig. 6.119

6.12.5 Symmetry plans. The two p c′′′′ 4gm  patterns of 6.12.4 are 

fully indicative of the pit fal ls  associated with the classification 
of p4m -like patterns. We suggest the following way of ‘reading’ the 
symmetry plans listed below, particularly helpful in distinguishing 
between p4 ′′′′m ′′′′m  and p4 ′′′′mm ′′′′ : first  decide what the cmm  direction 
(of in-between  glide  reflection ) is and determine what the c m m  
type is, then  work on the p m m  ‘factor’, and finally  ‘merge’ the two 
factors following the p4m ’s ‘factorizations’ at the end of 6.12.1. 



                   p4m                                            p4 ′′′′mm ′′′′

                 p 4 ′′′′ m ′′′′ m                                p4m ′′′′ m ′′′′

                 p c′′′′ 4mm                                p c′′′′ 4gm 

Fig. 6.120



Predictably, fourfold centers preserve  colors precisely when 
they lie at the intersection of four  reflection axes of same  effect 
on color. Of course it is only in the last two types that different 
kinds of fourfold centers (not  mapped to each other by any of the 
pattern’s isometries) have opposite  effect on color. (Again we have 
not marked the effect on color of the twofold centers, which are not 
essential for classification purposes; and that effect is in any case 
easily determined (within the p m m  ‘factor’), as twofold centers lie 
at the intersection of two  reflection axes only . )

6.13  p3 types ( p 3 )

6.13.1 No threefold color-reversing rotations. The assumption 
that there exists a 1200 color-reversing rotation leads to an 
immediate contradict ion : starting with a black point A, its image  
must be grey, then the image of the image must be black, and finally 
the third image, which is no other than the departing point A, must 
be grey! More generally, the same argument shows that no ‘oddfold’ 
rotation (in a finite  pattern) can be color-reversing.

6.13.2  Farewell to color-reversing translations. As we show in 
section 7.6, and have indicated in 6.10.1 for the special case of 900, 
the combination of a rotation and a translation leads to a rotation of 
same  angle  but different center. It follows from 6.13.1 and the      
P  × R  = R  rule that no  wallpaper pattern with 1200 rotation (such as 
the p3  or actually every  type we are going to study from here on) 
can have color-reversing  translation.

6.13.3 Only one type. In the absence of (glide) reflection, 6.13.1 
and 6.13.2 imply that the only  possible type in the p3  group is the 
p3  itself. Below we offer an example of a ‘two-colored’ p3  pattern. 
Notice the three  different kinds of 1200 rotation centers (denoted 
by dots of different sizes): no two centers of different kind are 
mapped to each other by either a rotation or a translation. Notice 



also the rhombuses  formed by rotation centers of the same kind: 
their importance will be made clear in later sections and chapters! 

                                                                                             p3
Fig. 6.121

The pattern in figure 6.121 may not be the simplest two-colored 
p3  in the world, but it should be compared to the p31m  pattern in 
figure 6.122 below in order to illustrate a basic symmetry principle: 
less  symmetry is often harder  to achieve than more  symmetry!

6.14  p31m types ( p31m, p31m ′′′′ )

6.14.1 ‘Products’ of three cm s. The p31m  has reflection and in-
between glide reflection in three directions, hence it may be viewed 
as the ‘product’ of three cm s. Therefore all reflections within each 
one of the three directions must have the same effect on color and 
likewise all glide reflections within each of the three directions 



must have the same effect on color (6.4.4). Moreover , every two 
axes (be them glide reflection axes or  reflection axes) of non-
parallel  direction must have the same effect on color: indeed any 
two such axes (intersecting each other at 600) produce a 1200 
rotation   (see sections 7.2, 7.9, and 7.10); but this  rotation must  
leave the pattern invariant, therefore it must  be color-preserving 
(6.13.1), so that the two axes must have the same  effect on color. 

What all this means is that, in every p31m -like wallpaper 
pattern, all axes  -- be them reflection or glide reflection axes -- 
must have the same effect on color. That is, either all axes 
preserve colors (cm  × cm  × cm  = p31m ) or all axes reverse  
colors (cm ′′′′  × cm ′′′′  × cm ′′′′  = p31m ′′′′ ): no other possibilities!

6.14.2 Examples. First a ‘two-colored’ p31m :

                                                                                         p31m
Fig. 6.122

We have marked the two  different kinds of rotation centers by 
dots of different sizes. If you are at a loss trying to determine the 
color-preserving  reflection axes, simply connect the smal ler  



dots! As for glide reflection axes (not  crucial for classification 
purposes), those pass not only half way between every two adjacent 
rows of on-axis  centers (smaller dots), but also half way between 
every two adjacent rows of off-axis  centers (larger dots).

Next comes an example of a p31m ′′′′ :

                                                                                          p31m ′′′′
Fig. 6.123

As in the case of figure 6.122, color-reversing  reflection axes 
lie on lines formed by the smaller dots. And once again each on-axis 
center (smaller dot) is ‘surrounded’ by six  off-axis centers (larger 
dots) symmetrically placed on the vertices of an invisible hexagon .

Finally, an example of a p31m ′′′′ , ‘offspring’ of figure 4.69:



                                                                                      p31m ′′′′
Fig. 6.124

6.15  p3m1 types ( p3m1, p3m ′′′′ )

6.15.1 Three cm s again. As we indicated in 4.17.4, and will 
analyse further in chapters 7 and 8, the difference between the 
p31m  and p3m1  types is rather subtle , having in fact more to do 
with the glide reflection vector’s length and the distances between 
glide reflection axes and rotation centers than with ‘symmetry plan’ 
structure (and the off-axis centers of the p31m  specifically). It is 
clear in particular that both  the p3m1  and the p31m  are ‘products’ 
of three cm  patterns, and the entire p31m  analysis of 6.14.1 is also 
applicable to the p3m1  word by word. We conclude again that, 
depending on the (glide) reflections’ uniform  effect on color, there 
can only be two p3m1 -like patterns, p3m1  = cm  × cm  × cm  (all 
(glide) reflections preserve  colors) and p3m ′′′′  = cm ′′′′  × cm ′′′′  × cm ′′′′  (all 
(glide) reflections reverse  colors).

6.15.2 Examples. We begin with a ‘two-colored’ p3m1 :



                                                                                        p3m1
Fig. 6.125

Next, a rather ‘exotic’ p3m ′′′′  that probably celebrates the sacred 
concept of hexagon more than any other figure in this book:



 

 
                                                                                            p3m ′′′′
Fig. 6.126



We are back to three  kinds of rotation centers (p3  structure ). 
(This is not obvious for the p3m ′′′′  in figure 6.126, which at first 
glance seems  to have only two kinds of threefold centers: do you 
see why the ‘hexagon middle’ centers are of two kinds?) As in 
figures 4.71 & 4.73, reflection axes are defined by any three 
col l inear  centers of dif ferent  kind.  

Finally, let’s ‘dilute’  (4.17.1) the p31m ′′′′  pattern in figure 6.124 
in order to get a ‘triangular’ p3m ′′′′ :

                                                                                       p3m ′′′′
Fig. 6.127

Observe here that rotating all  triangles above about their center 
by any  angle other than 600 or 1200 or 1800 turns the p3m ′′′′  into a 
p3 ; exactly the same observation holds for the triangular p31m ′′′′  of 
figure 6.124 (and in fact for all p3m1 -like or p31m -like patterns)! 

6.15.3 How about symmetry plans? You have probably noticed by 
now that we have not provided symmetry plans for p3 , p31m , and 



p3m1  types. They are not that crucial, because the classification is 
very easy within each type (two cases at most). Anyway, you will 
find symmetry plans for all sixty three two-colored types at the end 
of the chapter (section 6.18); before that, look also for the p31m  
and the p3m1  ‘symmetry plans’ (inside the p6m ) in section 6.17!

6.16  p6 types ( p6, p6 ′′′′ )

6.16.1  The lattice of rotation centers. Let us first explain the 
arrangement of rotation centers (twofold, threefold, and sixfold) in 
600 wallpaper patterns (both p6 -like and p6m -like), shown already 
in figure 4.5 (‘beehive’ ), by way of the following demonstration:

Fig. 6.128

We see that a clockwise  1200 rotation (mapping A to B) 
followed by a clockwise  600 rotation (mapping B to C) results into 
a 1800 rotation (mapping A to C). While a complete proof of this 
will be offered only in 7.5.4, figure 6.128 is rather convincing; 
especially in view of the fact that the three rotation centers are 
located at the three vertices of a 90 0-600-300  triangle, exact ly  
as in figure 4.5! 

You should use a demonstration similar to figure 6.128 in order 
to verify that the combination of two clockwise 600 rotations is a 



clockwise 1200 rotation, that the combination of a 1800 rotation and 
a clockwise 1200 rotation is a counterclockwise 600 rotation, etc.

6.16.2 One kind of sixfold rotations at a time! Another fact 
valid for both p6 -like and p6m -like types is that no  600 wallpaper 
pattern can possibly have both  color-preserving and color-reversing 
sixfold centers. Indeed, should two 600 rotations of opposite  effect 
on color coexist in a pattern, their combination would generate a 
color-reversing  1200 rotation (see section 7.5 or proceed as in 
figure 6.99), which is impossible (6.13.1).

6.16.3 Only two types. In the absence  of (glide) reflection and 
color-reversing translation (6.13.2), and in view of 6.16.2 above, we 
conclude at once that only two p6 -like types are possible: one with 
only  color-preserving  600 rotations (p6 ) and one with only  
color-reversing  600 rotations (p6 ′′′′ ); no ‘mixed’ type like p b′′′′ 2  

(1800) or p c′′′′ 4  (900) is possible in the 600 case!

Of course all 1200 rotations in either the p6  or the p6 ′′′′  are 
color-preserving as usual. Then figure 6.128, together with the        
P × P = P and P × R = R rules, leads to an observation that may at 
times help you distinguish between p6  and p6 ′′′′ : all  1800 rotations in 
a p6  pattern are color-preserving, and all  1800 rotations in a p6 ′′′′  
pattern are color-reversing. (Sometimes you may even miss  the 
sixfold rotation and see only the twofold one, thus misclassifying a 
p6 ′′′′  or a p6  as a p2 ′′′′  or a p2 , respectively; more likely, you may only 
see the threefold rotation and misclassify a p6  or a p6 ′′′′  as a p3 !) 

These remarks make it clear that the classification process 
within the p6  type is rather simple, and the need for symmetry 
plans drastically reduced: therefore we follow the example set by 
the three previous sections, simply exiling the p6  symmetry plans 
to the ‘review’ section 6.18. 

6.16.4  Examples. First a ‘two-colored’ p6  (with sixfold, 
threefold, and twofold centers represented by hexagons, triangles, 



and dots, respectively):

                                                                                           p 6
Fig. 6.129 

The 900-600-300 triangles of figure 6.128 are certainly 
ubiquitous. There are many other remarks one could make with 
regard to the positioning of the three kinds of rotation centers. One 
non-trivial remark is that every two rotation centers corresponding 
to equal rotation angles are conjugate  in the sense of 6.4.4: at 
least one of the pattern’s isometries (in fact a rotation ) maps one 
to the other; in particular, this fact provides another explanation for 
the uniform effect on color within each kind of rotation. A related 
remark concerns the perfectly hexagonal arrangement of both 
twofold and threefold centers around every sixfold center. And so on.

We leave it to you to check that the p6  pattern in figure 6.129 
may be split into two identical p6 ′′′′  patterns the threefold centers of 
which are sixfold centers of the original p6  pattern and vice versa! 
Further, here are two similar yet distinct p6 ′′′′  patterns (the second 
of which is sum of two copies of the p31m ′′′′  pattern in figure 6.123):  



   

                                                                                            p6 ′′′′
Fig. 6.130

                                                                                            p6 ′′′′
Fig. 6.131



6.17  p6m types ( p6m, p6 ′′′′ m m ′′′′ , p6 ′′′′ m ′′′′ m, p6m ′′′′ m ′′′′ )

6.17.1 A symmetry plan in two parts. We begin with a very 
visual  introduction to the most complex of wallpaper patterns:

Fig. 6.132

Fig. 6.133



Two pictures are worth two thousand words, one may say! All we 
did was to ‘analyse’  a typical, hexagon-based p6m  pattern into one 
‘p3m1’  pattern (with reflection axes passing through the p6m ’s 
threefold centers and hexagons’  edges , figure 6.132) and one 
‘p31m’  pattern (with reflection axes avoiding the p6m ’s threefold 
centers and passing through the hexagons’  vertices , figure 6.133). 
This is in fact the ‘game’  we have been playing throughout most of 
this chapter, and some ‘cheating’  was always involved! In the 
present case, for example, we do know that the ‘off-axis’ centers in 
figure 6.133 (p31m  pattern) do  in fact l ie  on the reflection axes of 
the p3m1  pattern (figure 6.132); and that the ‘distinct’ on-axis 
centers of the p3m1  pattern in figure 6.132 (small and medium 
sized dots) are  in fact mapped  to each other by the p31m ’s 
reflection axes (figure 6.133). Moreover, the largest dots in both 
figures represent rotation centers for 600 rather than just 1200, and 
so on. At the same time, the ‘lower’ patterns (p3m1 , p31m ) 
included in the ‘higher’ pattern (p6m ) do determine  its structure: 
for example, wherever two reflection axes (one from each 1200 
subpattern) cross each other at a 300 angle -- see figures 6.132 and  
6.133 -- they do ‘produce’ a 600 rotation center (7.2.2). Conversely, 
the p6m ’s properties are inherited  by the p3m1  and the p31m  
contained in it: for example, we may always ‘use’ a sixfold center as 
a threefold one; after all, a double application of a 600 rotation 
produces a 1200 rotation (4.0.3). In  brief , our reduction  of the 
study of complex structures to that of simpler ones employed so far 
is sound , and we will appeal to it for one last time in 6.17.3.  

6.17.2 A complex structure indeed. Figures 6.132 and 6.133 
together  make it clear that the p6m ’s sixfold  centers lie at the  
intersection of six  reflection axes and that its threefold  centers 
lie at the intersection of three  reflection axes. Missing from both 
figures (and from 1200 patterns!) are the p6m ’s twofold  centers, 
which nonetheless exist, located half  way  between every two 
adjacent hexagons; they are in fact located at the intersection of 
one  reflection axis and two  glide reflection axes perpendicular  to 
hexagons’ edges (figure 6.132) and  at the intersection of one  
reflection axis and two  glide reflection axes parallel  to hexagons’ 
edges (figure 6.133). We conclude that the p6m ’s twofold centers lie 



at the intersection of two  reflection axes and four  glide reflection 
axes, still adhering to the ‘p6 rule’  set by figure 6.128, and in full 
agreement with figure 4.5 as well. See also figure 8.42! 

6.17.3 Only four types! Given the p6m ’s complexity and what 
has happened in the case of other complex types (such as the pmg  or 
the p4m ), you would probably expect a long story here, too, right? 
Well, sometimes we get a break, rather predictable in this case: 
since the p6m  is the ‘product’ of two simple  (in terms of two-color 
possibilities) types, its study may not be that complicated after all. 
Indeed there can be at  most  two × two = four types, all of which do  
in fact exist (6.17.4): p6m  = p3m1  × p31m  (both the p3m1 ’s and 
the p31m ’s (glide) reflections preserve colors), p6 ′′′′mm ′′′′  = p3m1  × 
p31m ′′′′  (the p3m1 ’s (glide) reflection preserves colors and the 
p31m ’s (glide) reflection reverses colors), p6 ′′′′m ′′′′m  = p3m ′′′′  × p31m  
(the p3m1 ’s (glide) reflection reverses colors and the p31m ’s 
(glide) reflection preserves colors), p6m ′′′′m ′′′′  = p3m ′′′′  × p31m ′′′′  (both 
the p3m1 ’s and the p31m ’s (glide) reflections reverse colors).

Our analysis so far is rather effective yet not terribly user-
friendly. Taking advantage of the fact that one of the p31m ’s (glide) 
reflection’s directions is ‘horizontal ’  (figure 6.133) and that one 
of the p 3 m 1 ’s (glide) reflection’s directions is ‘vert ical ’  (figure 
6.132), we capture the preceding paragraph’s findings in a simple 
diagram (and effective substitute  for symmetry plan) as follows:

         p6m                p6 ′′′′ m ′′′′ m           p6 ′′′′ m m ′′′′           p6m ′′′′ m ′′′′

Fig. 6.134

So, once you decide that a two-colored pattern belongs to the 
p6m  family (600 rotation plus ‘some’ reflection), locate all sixfold 
centers, pick four of them arranged in a (not necessarily ‘vertical’) 



rhombus  configuration as above, and then simply determine the 
effect on color of that rhombus’ short  diagonal  (p31m ) and long  
diagonal  (p3m1 ). Notice that you do not need at all the effect on 
color of the p6m ’s sixfold centers (represented by dots in figure 
6.134), but you may still use them to check  your classification: they 
of course have to preserve  colors (6) in the cases of p6m  and 
p6m ′′′′m ′′′′ , and reverse  colors (6 ′′′′ ) in the cases of p6 ′′′′mm ′′′′  and p6 ′′′′m ′′′′m . 

6.17.4 Examples. First a p6 ′′′′mm ′′′′  and a p6m ′′′′m ′′′′ :

                                                                                         p6 ′′′′mm ′′′′                  
Fig. 6.135

We indicate two  rhombuses of sixfold centers, one vertical and 
one non-vertical: the process is the same for both cases, the only 
thing that matters is the correct identification of the long  and 
short  diagonals. Make sure you can locate all the other isometries: 
threefold and twofold centers, in-between glide reflections, etc.



                                                                                        p6m ′′′′m ′′′′
Fig. 6.136

In this example, closer than you might think to the previous one, 
we see that there is no vertical  rhombus of sixfold centers. But we 
can still classify the pattern, using for example the horizontal  
rhombus at the bottom: both  its diagonals reverse  colors.

A slight yet necessary modification of the two-colored hexagons  
(and not only!) leads to examples of the remaining two p6m  types, 
p6 ′′′′m ′′′′m  and (‘two-colored’) p6m . This time there is only one 
rhombus of sixfold centers shown per example: 



                    
                                                                      p6 ′′′′ m ′′′′ m
Fig. 6.137

                                                                         p6m                        
 Fig. 6.138



Finally, some triangles inside the hexagons:

                                                                                       p6 ′′′′m ′′′′m

                                                                                       p6m ′′′′m ′′′′
Fig. 6.139



6.17.5 Reduction of symmetry revisited. You must have noticed 
that we provided no ‘triangular’ example of a p6 ′′′′mm ′′′′  in figure 6.139. 
While we leave it to you to decide whether or not such a particular 
example is possible, we compensate with the following variation: 

                                                                                     pc′′′′ mg  

Fig. 6.140

What happened? Quite simply, our coloring has rendered all  the  
p6m  isometries but  the ones shown in figure 6.140 inconsistent 
with color. More specifically, only one  direction of (glide) reflection 
has survived within each of the two 1200 patterns hidden behind the 
p6m . As a result, all sixfold and threefold rotations are gone, but 
the twofold ones are left intact; to be more precise, all the sixfold 
centers have been ‘downgraded’  to twofold ones. It is certainly not 
difficult now to classify this ‘fallen’ pattern as a c m m -like type. 

 
The p6m  is a type that can generate many two-colored types (in 

all groups save for 900) by way of color inconsistency (just like the 
p4g  of figure 4.57 has produced several 1800 and 3600 types). You 
should experiment  on your own and explore  its rich underground.



6.18  All sixty three types together (symmetry plans)

6.18.1 Reading and using the symmetry plans. As in section 
4.18, we split the seventeen families of two-colored wallpaper 
patterns into five  groups  based on the angle of smallest rotation, 
indicating the ‘parent  types’  within each group in parenthesis; but 
the descriptions of the various patterns and types here are going to 
be visual rather than verbal, based on the symmetry plans developed 
throughout this chapter. As in section 5.9, isometries inconsistent 
with color are discarded: there are no  Is in the symmetry plans!  

In what follows, and as in the rest of the book, solid  lines stand 
for ref lect ion  axes and dot ted  lines stand for gl ide  ref lect ion  
axes; once again, however, space limitations dictate the omission of 
all the glide reflection vectors and most translation vectors. 
Twofold, threefold, fourfold, and sixfold rotations are represented 
by dots, triangles, squares, and hexagons, respectively.

Recall at this point that all 1200 rotations preserve colors 
(6.13.1) and that all  reflections and glide reflections in two-colored 
1200 patterns must have the same effect on color (6.14.1): therefore 
in the respective symmetry plans a P  or R  to the symmetry plan’s 
lower left or right indicates that all  axes preserve colors or that 
all  axes reverse colors, respectively. Along the same lines, rather 
than marking with a P  or R , or even showing, every single (glide) 
reflection axis in each of the four p6m  types, we limit ourselves to 
a single rhombus formed by sixfold centers (in the spirit of 6.17.3); 
a single unmarked p6m  symmetry plan is shown in full .

Keep in mind that a symmetry plan not only provides the answer 
(as to what type a given two-colored wallpaper pattern belongs to), 
but it also may well lead  to the answer; it shows, for example, how 
rotation centers are positioned with respect to (glide) reflection 
axes and  vice versa: in some cases you may first locate the rotation 
centers, in other cases you may first find the (glide) reflection axes.      



(I) 3600 types (p1, pg, pm, cm) 

                       p1                              p b′′′′ 1

               

            pg                               pg ′′′′                             p b′′′′ 1g    

           pm                       pm ′′′′                       pb′′′′ 1 m

           p ′′′′m                             p b′′′′ g                             c ′′′′m



                         cm                               c m ′′′′

                                    
                
                              p c′′′′ g                                p c′′′′ m  

                    

(II) 1800 types (p2, pgg, pmg, pmm, cmm)

          p2                             p2 ′′′′                             p b′′′′ 2

        pgg                             pgg ′′′′                            pg ′′′′g ′′′′



            pmg                         p b′′′′ mg                         pmg ′′′′

         pm ′′′′g                          p b′′′′ gg                         pm ′′′′g ′′′′

          pmm                         p b′′′′ mm                       pmm ′′′′

          c ′′′′ mm                  p b′′′′ gm                    pm ′′′′ m ′′′′



                 cmm                                                 cm ′′′′m ′′′′

                cmm ′′′′                                                 p c′′′′ m m

                p c′′′′ mg                                       p c′′′′ gg

     



( III) 900  types (p4, p4g, p4m)

           p4                       p4 ′′′′                      pc′′′′ 4

                     p4g                                          p4 ′′′′g ′′′′m

                   p4g ′′′′m ′′′′                                        p4 ′′′′gm ′′′′



               p4m                                  p4 ′′′′ m m ′′′′

                 p 4 ′′′′ m ′′′′ m                                p4m ′′′′ m ′′′′

                 p c′′′′ 4mm                                p c′′′′ 4gm 



(IV-V) 1200  (p3, p31m, p3m1) & 60 0  (p6, p6m) types  

          p6                       p3                        p6 ′′′′

              p31m                                    p31m ′′′′

         

             p3m1                                    p3m ′′′′



            p6m                                       p6 ′′′′ m ′′′′ m

                    

         p6m ′′′′ m ′′′′                                        p6 ′′′′ m m ′′′′
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