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Preface

Matroids were first defined in 1935 as an abstract generalization of
graphs and matrices. In the subsequent two decades, comparatively few
results were obtained. But starting in the mid-1950s, progress was made
at an ever-increasing pace. As this book is being written, a large collection
of deep matroid theorems already exists. These results have been used
to solve difficult problems in diverse fields such as civil, electrical, and
mechanical engineering, computer science, and mathematics.

There is now far too much matroid material to permit a comprehen-
sive treatment in one book. Thus, we have confined ourselves to a part of
particular interest to us, the one dealing with decomposition and compo-
sition of matroids. That part of matroid theory contains several profound
theorems with numerous applications. At present, the literature for that
material is quite difficult to read. One of our goals has been a clear and
simple exposition that makes the main results readily accessible.

The book does not assume any prior knowledge of matroid theory.
Indeed, for the reader unfamiliar with matroid theory, the book may serve
as an introduction to that beautiful part of combinatorics. For the expert,
we hope that the book will provide a pleasant tour over familiar terrain.

The help of many people and institutions has made this book possible.
P. D. Seymour introduced me to matroids and to various decomposition
notions during a sabbatical year supported by the University of Waterloo.
The National Science Foundation funded the research and part of the writ-
ing of the book through several grants. Most of the the writing was made
possible by the support of the Alexander von Humboldt-Foundation and
of the University of Texas at Dallas, my home institution. The University
of Bonn and Tel Aviv University assisted the search for and verification of
reference material.
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M. Grötschel of the University of Augsburg made the resources of the
Institute of Applied Mathematics available for the editing, typesetting, and
proofreading. He also supported the project in many other ways. P. Bauer,
M. Jünger, A. Martin, G. Reinelt, M. Stoer, and G. Ziegler of the University
of Augsburg were of much assistance.

T. Konnerth most ably typeset the manuscript in TEX. R. Karpelowitz
and C.-S. Peng patiently prepared the numerous drawings.
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tique helped considerably to clarify and simplify material.

To all who so generously gave of their time and who lent support in
so many ways, I express my sincere thanks. Without their help, the book
would not have been written.

About the Revised Edition

The transfer of the copyright from Academic Press, Inc., to the author in
1997 made possible the issue of a revised edition that can be distributed in
electronic format and that may be printed for personal use without charge.

Since an extensive revision would have caused a significant delay of
publication, we limited almost all changes to the correction of typographical
errors and to the updating of the publication data of the references.

The change of format forced a reprocessing of the numerous drawings.
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Swaminathan, F.-S. Sun, and G. M. Ziegler assisted with the updating of
the references.

The final editing was done by I. Truemper.
We very much thank all who helped with the preparation of the revised

edition. Without that help, we could not have accomplished that task.



Chapter 1

Introduction

1.1 Summary

A matroid may be specified by a finite set E and a nonempty set of so-
called independent subsets of E. The independent subsets must observe two
simple axioms. We will introduce them in Chapter 3. Matroids generalize
the concept of linear independence of vectors, of determinants, and of the
rank of matrices. In fact, any matrix over any field generates a matroid.
But there are also matroids that cannot be produced this way.

With matroids, one may formulate rather compactly and solve a large
number of interesting problems in diverse fields such as civil, electrical, and
mechanical engineering, computer science, and mathematics. Frequently,
the matroid formulation of a problem strips away many aspects that at
the outset may have seemed important, but that in reality are quite ir-
relevant. Thus, the matroid formulation affords an uncluttered view of
essential problem features. At the same time, the matroid formulation of-
ten permits solution of the entire problem, or at least of some subproblems,
by powerful matroid techniques.

In this book, we are largely concerned with the binary matroids, which
are produced by the matrices over the binary field GF(2). That field has
just two elements, 0 and 1, and addition and multiplication obey very
simple rules. Any undirected graph may be represented by a certain binary
matrix. The graphic matroid produced by such a matrix is an abstraction
of the related graph. Thus, binary matroids generalize undirected graphs.

During the past forty years or so, a large number of profound matroid
theory results have been produced. A significant portion of these results

1



2 Chapter 1. Introduction

concerns properties of binary matroids and related matroid decompositions
and compositions. Unfortunately, much of the latter material is not easily
accessible. This fact, and our own interest in combinatorial decomposition
and composition, motivated us to assemble this book.

As we started the writing of the book, we faced a basic conflict. On one
hand, we were tempted to prove all matroid results with as much generality
as possible. On the other hand, we were also tempted to restrict ourselves
to binary matroids, since the proofs would become less abstract. A major
argument in favor of the second viewpoint was that the matroid classes
analyzed here are binary anyway. Thus, that viewpoint won. Nevertheless,
we have mentioned extensions of results to general matroids whenever such
extensions are possible.

We proceed as follows. Chapter 2 contains basic definitions concerning
graphs and matrices. In Chapter 3, we motivate and define binary ma-
troids. We also prove a number of basic results. In particular, we classify
whether the elements of a matroid are loosely or tightly bound together,
using the idea of matroid separations and of matroid connectivity. In addi-
tion, we learn to shrink matroids to smaller ones by two operations called
deletion and contraction. Any such reduced matroid is called a minor of
the matroid producing it. Finally, we derive from any matroid another ma-
troid by a certain dualizing operation. Appropriately, the latter matroid is
called the dual matroid of the given one.

Chapters 4–6 contain fundamental matroid constructions, tools, and
theorems. Chapter 4 is concerned with some elementary constructions
of graphs and binary matroids. The constructions rely on replacement
rules called series-parallel steps and delta-wye exchanges. In Chapter 5,
we introduce a simple yet effective method called the path shortening tech-
nique. With its aid, we establish basic connectivity relationships and cer-
tain results about the intersection and partitioning of matroids. Chapter 6
contains another elementary matroid tool called the separation algorithm,
which identifies certain matroid separations.

The techniques and results of Chapters 4–6 are put to a first use in
Chapters 7 and 8. In Chapter 7, we prove the so-called splitter theorem,
which links connectivity of a given matroid with the presence of certain
minors. With that theorem, we show that a sufficiently connected matroid
always contains minors that form a sequence with special properties. In
Chapter 8, we establish fundamental notions and theorems about matroid
decomposition and composition.

With Chapter 9, we begin the second half of the book. That chapter
provides fundamental facts about a very important property of real matri-
ces called total unimodularity. Several translations of the total unimodu-
larity property into matroid language are possible. In one such translation,
total unimodularity becomes a property of binary matroids called regu-
larity. Establishing a real matrix to be totally unimodular then becomes
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equivalent to proving that a certain binary matroid is regular.
In Chapters 10–13, we prove a number of decomposition and compo-

sition results about the class of regular matroids and about other, closely
related matroid classes. In Chapter 10, we begin with an analysis of the
graphic matroids, which are regular. In Chapter 11, we examine the re-
maining regular matroids, i.e., the nongraphic ones. In Chapter 12, we
explore nonregular matroids that, loosely speaking, have many regular mi-
nors. The matroids with that property are called almost regular. Finally
in Chapter 13, we investigate flows in matroids by borrowing ideas from
flows in graphs. A well-known result about the behavior of flows in graphs
is the max-flow min-cut theorem. The matroids whose flows exhibit the
nice behavior described in that theorem are called the max-flow min-cut
matroids. The investigation of Chapter 13 focuses on these matroids.

For each of the classes of matroids mentioned so far (graphic, regu-
lar, almost regular, max-flow min-cut), Chapters 9–13 provide polynomial
testing algorithms, representative applications, and, except for the almost-
regular case, characterizations in terms of excluded minors. In addition,
excluded minor characterizations of the binary matroids and of the ternary
matroids are given in Chapters 3 and 9, respectively. The ternary matroids
are the matroids produced by the matrices over GF(3).

The book may be read as follows. First, one should cover Chapters 2
through 9. During a first reading, one may skip the proofs of the chapters.
Chapters 10–13 are largely independent. Thus, one may read them in any
order, provided one is willing to occasionally interrupt the reading of a
chapter for a quick glance at some auxiliary result of an earlier chapter. In
the first section of each chapter, we list relevant earlier chapters, if any.

1.2 Historical Notes

In 1935, H. Whitney realized the mathematical importance of an abstrac-
tion of linear dependence. His pioneering paper (Whitney (1935)) contains
a number of equivalent axiomatic systems for matroids, and thus laid the
foundation for matroid theory. In the 1950s and 1960s, W. T. Tutte built
upon H. Whitney’s foundation a remarkable body of theory about the struc-
tural properties of matroids. In the 1960s, J. Edmonds connected matroids
with combinatorial optimization. Within a few years, he produced several
key results. In the process, he popularized matroid theory.

From 1965 on, an ever growing number of researchers became inter-
ested in matroids. In 1976, D. J. A. Welsh published a book (Welsh (1976))
that contained essentially all results known at that time. As these notes
are written, a comprehensive treatment of matroid theory in one book is
no longer possible. Selected topics are covered in Crapo and Rota (1970),
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Lawler (1976), Aigner (1979), Lovász and Plummer (1986), White (1986),
(1987), (1991), Kung (1986c), Schrijver (1986), Murota (1987), Recski
(1989), Fujishige (1991), Oxley (1992), Bachem and Kern (1992), and Bjö-
rner, Las Vergnas, Sturmfels, White, and Ziegler (1993). Kung (1986c)
includes an excellent historical survey.

Central to this book is the work of P. D. Seymour, W. T. Tutte, and
K. Wagner. In historical order, the key results are as follows: K. Wagner’s
decomposition of the graphs without minors isomorphic to the complete
graph on five vertices (Wagner (1937a)); W. T. Tutte’s characterization of
the regular and graphic matroids (Tutte (1958)) and his efficient test of
graphicness (Tutte (1960)); P. D. Seymour’s characterization of the max-
flow min-cut matroids (Seymour (1977a)), his decomposition of the regular
matroids (Seymour (1980b)), and his results on matroid flows (Seymour
(1981a)).

Some years ago, these results motivated us to start a systematic in-
vestigation using graph and matroid decomposition and composition as
main tools (Truemper (1985a), (1985b), (1986), (1987a), (1987b), (1988),
(1990), (1992a), (1992b), Tseng and Truemper (1986)). Except for some
minor modifications and simplifications, this book comprises a large portion
of that effort.

Due to space constraints, the book does not include details of several
important matroid results that are related to the material covered here. In
particular, we have omitted the principal partitioning results and related
earlier material by M. Iri, N. Tomizawa, and others (Kishi and Kajitani
(1967), Tsuchiya, Ohtsuki, Ishizaki, Watanabe, Kajitani, and Kishi (1967),
Iri (1969), Bruno and Weinberg (1971), Ozawa (1971), Tomizawa (1976b),
Iri (1979), Nakamura and Iri (1979), Narayanan and Vartak (1981), To-
mizawa and Fujishige (1982), Murota and Iri (1985), and Murota, Iri, and
Nakamura (1987)). Tomizawa and Fujishige (1982) provide a detailed his-
torical survey of the work on principal partitions. We should also mention
L. Lovász’ matroid matching results (Lovász (1980), see also Lovász and
Plummer (1986)). That work is not really related to the contents of this
book. We are compelled to mention it here since it is one of the very
profound achievements in matroid theory. We also have not included, but
should mention here, work on oriented matroids. These matroids were in-
dependently defined by Bland and Las Vergnas (1978) and Folkman and
Lawrence (1978). Two recent books cover most of the known results for
oriented matroids (Bachem and Kern (1992), and Björner, Las Vergnas,
Sturmfels, White and Ziegler (1993). Finally, many important matroid
applications are described in Iri and Fujishige (1981), Iri (1983), Murota
(1987), and Recski (1989).



Chapter 2

Basic Definitions

2.1 Overview and Notation

This chapter covers basic definitions about graphs and matrices, and the
computational complexity of algorithms. For a first pass, the reader may
just scan the material.

We first introduce notation and terminology connected with sets. An
example of a set is {a, b, c}, the set with a, b, and c as elements. With two
exceptions, all sets are assumed to be finite. The exceptions are the set of
real numbers IR, and possibly the set of elements of an arbitrary field F .

Let S and T be two sets. Then S ∪ T is {z | z ∈ S or z ∈ T}, the
union of S and T . The set S ∩ T is {z | z ∈ S and z ∈ T}, the intersection
of S and T . The set S − T is {z | z ∈ S and z 6∈ T}, the difference of S
and T . The set (S ∪ T )− (S ∩ T ) is the symmetric difference of S and T .

Let T contain all elements of a set S. We denote this fact by S ⊆ T
and declare S to be a subset of T . We write S ⊂ T if S ⊆ T and S 6= T .
The set S is then a proper subset of T . The set of all subsets of S is the
power set of S. We denote by |S| the cardinality of S. The set ∅ is the set
without elements and is called the empty set.

The terms “maximal” and “minimal” are used frequently. The mean-
ing depends on the context. When sets are involved, the interpretation is
as follows. Let I be a collection, each of whose elements is a set. Then a
set Z ∈ I is a maximal set of I if no set of I has Z as a proper subset.
Z ∈ I is a minimal set of I if no proper subset of Z is in I.

5



6 Chapter 2. Basic Definitions

2.2 Graph Definitions

An undirected graph is customarily given by a set of nodes and a set of
edges. For example, the graph

(2.2.1)

1

4 5 62

3

Graph with node labels

has nodes 1, 2, 3, 4, 5, 6, and various edges connecting them. The nodes are
sometimes called vertices or points. The edges are sometimes referred to as
arcs.

Unless stated otherwise, we rely on a slightly different graph notation.
We start with a nonempty set E of edges, say E = {e1, e2, . . . , en}. Then
we declare certain subsets of E to be the nodes. Each such subset specifies
the edges incident at the respective node.

Let us apply this idea to the graph of (2.2.1). That graph has ten
edges. Thus, we may choose E = {e1, e2, . . . , e10}. The graph of (2.2.1)
becomes the following graph G.

(2.2.2) e10

e8

e6

e4

e1

e2

e3

e5

e7

e9

Graph G with edge labels

Node 1 of (2.2.1) is now the subset {e1, e2, e5, e8, e9} of E, and node 5
has become the subset {e6, e7, e8, e9, e10}. Observe that each edge occurs
in at most two nodes. The latter sets are the endpoints of the edge. An
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edge occurring in just one node is a loop. For example, e1 occurs only in
the node {e1, e2, e5, e8, e9} and thus is a loop. On the other hand, e2 occurs
in {e1, e2, e5, e8, e9}, as well as in {e2, e3, e6}. We also say that an edge is
incident at a node, meaning that it is an element of that node.

There are two special cases where the set notation cannot properly
represent the nodes. The first instance involves nodes that have no edges
incident. We call such nodes isolated. According to our definition, each
isolated node produces a copy of the empty set. Thus, if a graph has at
least two isolated nodes, then we encounter multiple copies of the empty set.
In the second case, the graph has two nodes that are connected with each
other by any number of edges, but that have no other edges incident. Then
the two nodes produce identical edge subsets. In principle, one may handle
the two special cases with some auxiliary notation, say using labels on edge
subsets. However, for almost all graphs discussed in this book, the special
cases never arise. Indeed, in a moment we will see how isolated nodes may
be avoided altogether. Thus, we use the above-defined set notation and
implicitly assume that a more sophisticated version is employed if needed.

At first glance, our notation has little appeal even when one ignores the
trouble caused by the above exceptional cases. But the utility of the idea
will become apparent when we discuss graph minors and related reduction
and extension operations. At any rate, we can avoid the cumbersome set
notation by the introduction of additional symbols. For example, we may
declare i to be the vertex {e1, e2, e5, e8, e9}, and j to be {e6, e7, e8, e9, e10}.
We usually work with symbols such as i and j, and in graph drawings
we may write them next to the nodes they reference. By this device, we
approach the compactness of notation inherent in the customary notation.
At times, we want to emphasize that a subset of edges defines a vertex.
We then refer to that subset as a star, or more specifically, as a k-star if it
contains k edges. The degree of a vertex is its cardinality.

We avoid isolated nodes as follows. We always start with graphs having
no isolated nodes. Suppose we remove edges from a graph so that a node
becomes isolated. Then we also remove that node as well. From now
on, whenever we mention the removal of some edges from a graph, we
implicitly assume the removal of isolated nodes. Note that the reduced
graph is unique regardless of the order in which edges are removed. As an
example, removal of the edges e2, e3, and e6 from the graph G of (2.2.2)
includes removal of the node {e2, e3, e6}.

Subgraph

A subgraph is obtained from a given graph by the removal of some edges.
A subgraph is proper if at least one edge is removed. Let J be a subset
of the node set of a graph. Delete from the graph all edges that have at
least one endpoint not in J . The resulting graph is the subgraph induced
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by J . For example, let i and j be the earlier defined nodes of G of (2.2.2),
i.e., i = {e1, e2, e5, e8, e9} and j = {e6, e7, e8, e9, e10}. The subgraph of G
induced by J = {i, j} is

(2.2.3)
e8

e1

e9

Induced subgraph of graph G of (2.2.2)

The nodes of the induced subgraph may have fewer edges incident than
the corresponding nodes of the original graph. This is so for the above
example. As a consequence, the set J need not be the vertex set of the
induced subgraph.

Path, Cycle, Tree, Cocycle, Cotree

Suppose we walk along the edges of a graph starting at some node s, never
revisit any node, and stop at a node t 6= s. The set P of edges we have
traversed is a path from s to t. The nodes of the path are the nodes of the
graph we encountered during the walk. The nodes s and t are the endpoints
of P . The length of the path P is |P |. For the graph G of (2.2.2), let i and
j be the previously defined nodes. Then P = {e2, e3, e7} is a path from i
to j. The length of P is 3. Two paths with equal endpoints are internally
node-disjoint if they do not share any node except for the endpoints. Later
in this section, the statement of Menger’s Theorem relies on a particular
fact about the number of internally node-disjoint paths connecting two
nodes. If the two nodes, say i and j, are adjacent, then that number is
unbounded since we may declare any number of paths to consist of just the
edge connecting i and j. Evidently, these paths are internally node-disjoint.

Imagine another walk as described above, except that we return to s.
The set C of edges we have traversed is a cycle. The length of the cycle is
|C|. A set containing just a loop is a cycle of length 1. For the graph G of
(2.2.2), C = {e2, e3, e7, e8} is a cycle of length 4. Let H be a path or cycle
of a graph G. An edge e of G is a chord for H if the endpoints of e have
edges of H incident but are not connected by an edge of H.

In a slight abuse of language, we say at times that a graph G is a
cycle or a path, meaning that the edge set of G is a cycle or path of G.
We employ terms of later defined edge subsets such as trees and cotrees
similarly. The reader may wonder why we introduce such inaccuracies. We
must describe a number of diverse graph operations that are not easily
expressed with one simple set of terms. So either we tolerate a slight abuse
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of language, or we are forced to introduce a number of different terms and
sets. We have opted for the former solution in the interest of clarity.

Analogously to the use of “maximal” and “minimal” for sets, we use
these terms in connection with graphs as follows. Suppose certain sub-
graphs of a graph G have a property P, while others do not. Then a
subgraph H of G is a maximal subgraph of G with respect to P if no other
subgraph of G has P and has H as proper subgraph. A subgraph H of G is
a minimal subgraph of G with respect to P if no proper subgraph of H has
P. We later use “maximal” and “minimal” in connection with matrices in
a similar fashion. The above definitions become the appropriate ones when
“graph” is replaced throughout by “matrix.”

A graph is connected if for any two vertices s and t, there is a path from
s to t. The connected components of a graph are the maximal connected
subgraphs.

A tree T of a connected graph G is a maximal subset of edges not
containing any cycle. Note that a tree is the empty set if and only if the
connected G has just one node and all edges of G are loops. A tip node or
leaf node of a tree is a node of G having just one edge of T incident. That
edge is a leaf edge of the tree. For G of (2.2.2), T = {e2, e3, e4, e7, e10}
is a tree. It is easy to show that the cardinality of a tree is equal to the
number of nodes of G minus 1. A cotree of G is E − T for some tree T of
G. Suppose we select for each connected component of a graph G one tree.
The union of these trees is a forest of G. An edge of a graph G that is not
in any cycle is a coloop. In graph theory, such an edge is sometimes called
a bridge or isthmus. It is easy to see that a coloop is in every forest of G.
On the other hand, a loop cannot be part of any forest of G. The rank of
a graph G is the cardinality of any one of its forests.

As a matter of convenience, we introduce the empty graph. That graph
does not have any edges or nodes, and its rank is 0. We consider the empty
graph to be connected.

As one removes edges from a graph, eventually the number of con-
nected components must increase or nodes must disappear, or the empty
graph must result. In each case, the rank is reduced. A minimal set of edges
whose removal reduces the rank is a cocycle or minimal cutset. In the graph
G of (2.2.2), the set {e2, e5, e8, e9} is a cocycle for the following reason. Its
removal reduces the rank from 5 to 4, while removal of any proper subset
of {e2, e5, e8, e9} maintains the rank at 5. Recall that a coloop is contained
in every forest. Hence, removal of a coloop leads to a drop in rank. We
conclude that a set containing just a coloop is a cocycle. The definitions of
forest and cocycle imply that a cocycle is a minimal subset of edges that
intersects every forest.

A subset of non-loop edges of a given graph G forms a parallel class
if any two edges form a cycle and if the subset is maximal with respect to
that property. We also say that the edges of the subset are in parallel. A
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subset of edges forms a series class (or coparallel class) if any two edges
form a cocycle and if the subset is maximal with respect to that property.
We also say that the edges of the subset are in series or coparallel. In the
example graph G of (2.2.2), the edges e8 and e9 are in parallel, and e4

and e5 are in series. In the customary definition of “series,” a series class
of edges constitutes either a path in the graph all of whose intermediate
vertices have degree 2, or a non-loop cycle all of whose vertices, save at
most one, have degree 2. Our definition allows for these cases, but it also
permits a slightly more general situation. For example, in the graph

(2.2.4)
e

f

Graph G

the edges e and f are in series since {e, f} is a cocycle. A graph is simple
if it has no loops and no parallel edges. It is cosimple if it has no coloops
and no coparallel edges.

Deletion, Addition, Contraction, Expansion

We now introduce graph operations called deletion, addition, contraction,
and expansion. It will become evident that these operations are easily
accommodated by the graph notation where nodes are edge subsets. This is
decidedly not so for the traditional notation displayed in (2.2.1). Before we
provide details of the operations, let us examine their goals. Since additions
and expansions are inverse to deletions and contractions, it suffices for us
to state the goals for deletions and contractions. So let G be a connected
graph, and e be an edge of G. Then the deletion (resp. contraction) of edge
e is to result in a connected graph whose trees (resp. cotrees) are precisely
the trees (resp. cotrees) of G that do not contain edge e. The reader should
have no trouble verifying that the following definitions achieve these goals.

We start with the deletion of an edge e. If e is a coloop, then the dele-
tion is carried out as a contraction, to be described in a moment. Otherwise,
the deletion is the removal of the edge e from the graph. Accordingly, we
remove e from the edge set E and from the one or two nodes containing
it. Addition of an edge is the inverse of deletion. We consider the addition
operation only if the corresponding deletion involves an edge that is not a
coloop.

We define the contraction operation. If e is a loop, then the contraction
of e is carried out as a deletion. If e is not a loop, then the contraction may
be imagined to be a shrinking of the edge e until that edge disappears. In
G, let the edge e have endpoints i and j. Accordingly, in the contraction
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of e we remove e from the edge set of G, and replace i and j by a new
node (i ∪ j) − {e}. For example, in a contraction of the edge e8 of the
graph G of (2.2.2), we replace the endpoints i = {e1, e2, e5, e8, e9} and
j = {e6, e7, e8, e9, e10} by (i ∪ j) − {e8} = {e1, e2, e5, e9, e6, e7, e10}. Note
that the edge e9 is an element of i and j. Thus, e9 becomes a loop by
the contraction. Expansion by an edge e is the inverse of contraction.
We consider the expansion only if the corresponding contraction operation
involves an edge that is not a loop.

We emphasize that the removal of an edge e may not be the same as
its deletion. Indeed, the two operations produce different graphs if and
only if e is a coloop both of whose endpoints have degree of at least 2.

A reduction is a deletion or a contraction. An extension is an addition
or an expansion.

Uniqueness of Reductions

Suppose a given sequence of reductions for a given graph G produces a
graph G′. One would wish that the same G′ results if one changes the
order in which the reductions are carried out. Unfortunately, this is not
so. For example, suppose in the graph of (2.2.4) we first delete e and then
delete f . After the deletion of e, the edge f is a coloop. Hence, the deletion
of f becomes a contraction, and the resulting graph G′ is given by (2.2.5)
below.

(2.2.5)

Graph G′

If we reverse the sequence of deletions, we get the graph G′′ of (2.2.6)
below. Clearly, G′ and G′′ are different graphs. The difference is produced
by the fact that one of the deletions of e and f is actually carried out as a
contraction.

(2.2.6)

Graph G′′

For obvious reasons, we want to avoid the nonuniqueness of reductions. A
particularly simple method for achieving that goal relies on the following
convention. Let G be a graph. When we consider reductions of G, we
implicitly order the edges of G, and perform the reductions in the sequence
that is compatible with that order. The same order of the edges of G
is assumed for all reductions involving G. Indeed, that order is assumed
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to induce the related order of edges in all graphs producible from G by
reductions. Trivially, this convention induces a unique outcome when a
given subset U of edges is contracted and a given subset W of edges is
deleted.

We denote deletion by “\” and contraction by “/.” Let G be a graph,
and suppose U and W are disjoint edge subsets of G. Then G′ = G/U\W
denotes the graph produced from G by contraction of U and deletion of
W . We implicitly assume that uniqueness of G′ is achieved by the above
convention, or possibly by some other device. G′ is called a minor of G.
As a matter of convenience, we consider G itself to be a minor of G. When
U or W is empty, we may write G\W or G/U , respectively, instead of
G/U\W . Suppose U contains just one element u. We then write G/u
instead of G/{u} to unclutter the notation. Similarly, we write G\w and
G/u\w.

Cycle/Cocycle Condition

We should mention that our simple resolution of the nonuniqueness of
reductions may be inappropriate in some settings. For such situations, a
second method for achieving uniqueness of reductions may be a good choice.
That method relies on a cycle/cocycle condition, which demands that the
set U (resp. W ) of edges to be contracted (resp. deleted) does not include
a cycle (resp. cocycle). The cycle/cocycle condition guarantees uniqueness
of reductions, since the order of any two successive reduction steps can be
reversed without affecting the outcome of those two reductions. We leave
it to the reader to fill in the elementary arguments. For the cycle/cocycle
condition to be useful, we must still prove that any minor can be produced
under that condition. The following arguments establish that fact. Let G′

be any graph producible from a given graph G by some sequence of deletions
and contractions. We claim that G′ is G/U\W for some disjoint U and W
that obey the cycle/cocycle condition. The following construction proves
the claim. Start with U = W = ∅. One by one, perform the reductions
that transform G to G′. Consider one such reduction, say involving edge z.
Let G′′ be the graph on hand at that time. Suppose z is to be contracted.
If z is not (resp. is) a loop of G′′, then add z to U (resp. W ). Suppose
z is to be deleted. If z is not (resp. is) a coloop of G′′, then add z to W
(resp. U). A simple inductive proof establishes that the final set U (resp.
W ) does not contain a cycle (resp. cocyle) of G. We omit the details. By
the definition of U and W , G/U\W is the graph G′ as desired. Thus,
all minors of G producible under all possible implicit edge orderings are
obtainable as minors under the cycle/cocycle condition.

The cycles and cocycles of a minor G/U\W can be readily deduced
from those of G. We claim that the cycles of G/U\W are the mini-
mal nonempty members of the collection {C − U | C ⊆ E − W ; C =
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cycle of G}. The proof consists of two easy steps, the details of which we
leave to the reader. First, one shows that every cycle of G/U\W occurs
in the collection. Second, one establishes that each nonempty member of
the collection contains a cycle of G/U\W . An analogous proof procedure
verifies that the cocycles of G/U\W are the minimal nonempty members
of the collection {C∗ −W | C∗ ⊆ E − U ; C∗ = cocycle of G}.

Addition is denoted by “+” and expansion by “&.” Recall that addi-
tion of an edge is carried out only if that edge does not become a coloop.
Similarly, expansion of an edge is done only if that edge does not become a
loop. The latter operation is thus accomplished as follows. We split a node
into two nodes and connect them by the new edge. Suppose we add the
edges of a set U and expand by the edges of a set W . In the resulting graph,
the sets U and W obey the cycle/cocycle condition. Thus, the earlier argu-
ments about that condition imply that the same graph results, regardless
of the order in which the additions and expansions are performed. That
graph is denoted by G&U+W . Analogously to G/U\W , we simplify that
notation at times. That is, we may write G&U , G+W , G&u when U = {u},
etc.

Subdivision, Isomorphism, Homeomorphism

In a special case of expansion, we replace an edge e by a path P that
contains e plus at least one more edge. We say that the edge e has been
subdivided. The substitution process by the path is a subdivision of edge e.

Two graphs are isomorphic if they become identical upon a suitable
relabeling of the edges. They are homeomorphic if they can be made iso-
morphic by repeated subdivision of certain edges in both graphs.

At times, a certain graph, say G, may be a minor of a graph G, or may
only be isomorphic to a minor of G. In the first case, we say, as expected,
that G is a minor of G, or that G has G as a minor. For the second, rather
frequently occurring case, the terminology “G has a minor isomorphic to
G” is technically correct but cumbersome. So instead, we say that G has
a G minor.

Planar Graph

A graph is planar if it can be drawn in the plane such that the edges do
not cross. The drawing need not be unique. Thus, we define a plane graph
to be a drawing of a planar graph in the plane. Consider the following
example.
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(2.2.7) e10

e8

e6

e4

e1

e2

e3

e5

e7

e9

Graph G

Suppose one deletes from the plane all points lying on the edges or vertices
of the plane graph. This step reduces the plane to one or more (topologi-
cally) open and connected regions, which are the faces of the plane graph.
For example, the edges e2, e3, e4, and e5 and their endpoints border one
face of the graph of (2.2.7). Note that each plane graph has exactly one
unbounded face.

A connected plane graph has a dual produced as follows. Into the
interior of each face, we place a new point. We connect two such points by
an edge labeled e if the corresponding two faces contain the edge e in their
boundaries. We use the asterisk to denote the dualizing operation. Thus,
G∗ denotes the dual of a plane graph G.

As an example, we derive G∗ from the connected graph G of (2.2.7).
Below, the dashed edges are those of G∗. We place each edge label near
the intersection of the edge of G and the corresponding edge of G∗.

(2.2.8)
e10

e8

e6

e4

e1

e2

e3

e5

e7

e9

Graph G of (2.2.7) and its dual G∗
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Note that according to our definition, the drawing of the dual graph G∗

may not be unique. For example, in the drawing of G∗ of (2.2.8) we could
reroute the edge e2 to change the unbounded face. One can avoid the
defect of nonuniqueness of G∗ by drawing the original graph G on the
sphere instead of in the plane. Then each face is bounded, and the drawing
of the dual graph G∗ on the sphere is unique. Furthermore, one can show
that the dual of G∗ is G again, i.e., (G∗)∗ = G. Using either type of
drawing, one may verify the following relationships. Coloops of G become
loops of G∗. Indeed, every cocycle of G is a cycle of G∗. Any cotree of G
is a tree of G∗. Parallel edges of G are series (= coparallel) edges of G∗.

Vertex, Cycle, and Tutte Connectivity

There are several ways to specify the connectivity of graphs. Two commonly
used concepts of graph theory are vertex connectivity and cycle connectivity.
But here we employ Tutte connectivity. We define all three types, then
justify our choice.

We need an auxiliary process called node identification of two nodes.
Informally speaking, node identification amounts to a merging of two given
nodes into just one node. For the precise definition, let G1 and G2 be two
connected graphs. Then we identify a node i of G1 with a node j of G2 by
redefining the nodes i and j to become just one node i ∪ j. One extends
this definition in the obvious way for the pairwise identification of k ≥ 1
nodes of G1 with k nodes of G2.

Let (E1, E2) be a pair of nonempty sets that partition the edge set E
of a connected graph G. Let G1 (resp. G2) be obtained from G by removal
of the edges of E2 (resp. E1). Assume G1 and G2 to be connected. Suppose
pairwise identification of k nodes of G1 with k nodes of G2 produces G.
These k nodes of G1 and G2, as well as the k nodes of G they create, we
call connecting nodes. Since G is connected, and since both G1 and G2

are nonempty, we have k ≥ 1. If k = 1, the single connecting node of
G is an articulation point of G. For general k ≥ 1, (E1, E2) is a vertex
k-separation of G if both G1 and G2 have at least k + 1 nodes. The pair
(E1, E2) is a cycle k-separation if both E1 and E2 contain cycles of G.
Finally, (E1, E2) is a Tutte k-separation if E1 and E2 have at least k edges
each. Correspondingly, we call G vertex k-separable, cycle k-separable, or
Tutte k-separable. For k ≥ 2, the graph G is vertex k-connected (resp. cycle
k-connected, Tutte k-connected) if G does not have any vertex l-separation
(resp. cycle l-separation, Tutte l-separation) for 1 ≤ l < k. Note that the
empty graph is vertex, cycle, and Tutte k-connected for every k ≥ 2. The
same conclusion holds for the connected graph with just one edge.

It is easy to see that any vertex l-separation or cycle l-separation is a
Tutte l-separation. Thus, Tutte k-connectivity implies vertex k-connecti-
vity and cycle k-connectivity. The converse does not hold, i.e., in gen-
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eral, vertex k-connectivity plus cycle k-connectivity do not imply Tutte
k-connectivity. A counterexample is the simple graph on four nodes where
any two nodes are connected by an edge. For any k ≥ 1, that graph is
readily checked to be both vertex k-connected and cycle k-connected. But
it has a Tutte 3-separation (E1, E2) where E1 is one of the 3-stars, and
where E2 contains the remaining three edges. In (2.2.11) below, we declare
the graph of the counterexample to be the wheel W3. There are not many
other counterexamples. Indeed, it is not difficult to show that the wheels
W1 and W2 of (2.2.11) constitute the only other counterexamples.

To summarize: Tutte connectivity implies vertex and cycle connectiv-
ity, while vertex and cycle connectivity imply Tutte connectivity except for
the graphs W1, W2, and W3.

Suppose G is a plane graph. We claim that (E1, E2) is a vertex k-
separation of G if and only if it is a cycle k-separation of G∗. The proof
follows by duality once one realizes the following: Each of the graphs G1

and G2 defined earlier from E1 and E2 has at least k + 1 vertices if and
only if each one of E1 and E2 contains a cocycle of G.

Each one of vertex, cycle, and Tutte connectivity has its advantages
and disadvantages. Thus, one should select the connectivity type depend-
ing on the situation at hand. In our case, we prefer a connectivity concept
that is invariant under dualizing. That is, a plane graph should be k-
connected if and only if its dual is k-connected. Tutte connectivity satisfies
this requirement, while vertex and cycle connectivity do not. This feature
of Tutte connectivity is one reason for our choice. A second, much more
profound reason is the fact that Tutte k-connectivity for graphs is in pleas-
ant agreement with Tutte k-connectivity for matroids, as we shall see in
Chapter 3.

By Menger’s Theorem (Menger (1927)), a connected graph G is vertex
k-connected if and only if every two nodes are connected by k internally
node-disjoint paths. Equivalent is the following statement. G is vertex
k-connected if and only if any m ≤ k nodes are joined to any n ≤ k nodes
by k internally node-disjoint paths. One may demand that the m nodes
are disjoint from the n nodes, but need not do so. Also, the k paths can
be so chosen that each of the specified nodes is an endpoint of at least one
of the paths. By the above observations, the “only if” part remains valid
when we assume G to be Tutte k-connected instead of vertex k-connected.
Menger’s Theorem also implies the following result. A graph is 2-connected
if and only if any two edges lie on some cycle.

From now on we abbreviate the terms “Tutte k-connected,” “Tutte
k-separation,” and “Tutte k-separable” to k-connected, k-separation, and
k-separable.

The maximal 2-connected subgraphs of a connected graph G are the
2-connected components of G. Consider the following process. At a node
of one of the components, attach a second component. At a node of the
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resulting graph, attach a third component, and so on. Then the components
and nodes of attachment can be so selected that this process creates G.

Complete Graph

The simple graph with n ≥ 2 vertices, and with every two vertices con-
nected by an edge, is denoted by Kn. It is the complete graph on n vertices.
Small cases of Kn are as follows.

(2.2.9)

K2 K3 K4 K5

Small complete graphs

Bipartite Graph

A graph G is bipartite if its vertex set can be partitioned into two nonempty
sets such that every edge has one endpoint in each of them. Note that a
bipartite graph cannot have loops. The complete bipartite graph Km,n is
simple, has m nodes on one side and n on the other one, and has all possible
edges. Small cases are as follows.

(2.2.10)

K1,1 K2,1 K2,2 K3,1 K3,2 K3,3

Small complete bipartite graphs

Evidently, K1,1 is the complete graph K2.

Wheel Graph

A wheel consists of a rim and spokes. The rim edges define a cycle, and the
spokes are edges connecting an additional node with each node of the rim.
The wheel with n spokes is denoted by Wn. Small wheels are as follows.

(2.2.11)

W1 W2 W3 W4

Small wheels
Evidently, W3 is the complete graph K4.

In the next section, we introduce definitions for matrices over fields.
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2.3 Matrix Definitions
In this section, we define a few elementary concepts and tools of matrix
theory. We make much use of the binary field GF(2). The ternary field
GF(3) and the field IR of real numbers are also employed. Occasionally, we
refer to a general field F .

The binary field GF(2) has only the elements 0 and 1. Addition is
given by: 0 + 0 = 0, 0 + 1 = 1, and 1 + 1 = 0. Multiplication is specified
by: 0 · 0 = 0, 0 · 1 = 0, and 1 · 1 = 1. Note that the element 1 is also the
additive inverse of 1, i.e., −1. Thus, we may view a {0,±1} matrix to be
over GF(2). Each −1 then stands for the 1 of the field.

The ternary field GF(3) has 0, 1, and −1. Instead of the −1, we could
also employ some other symbol, say 2, but will never do so. Addition is as
follows: 0+0 = 0, 0+1 = 1, 0+(−1) = −1, 1+1 = −1, 1+(−1) = 0, and
(−1)+(−1) = 1. Multiplication is given by: 0 ·0 = 0, 0 ·1 = 0, 0 · (−1) = 0,
1 · 1 = 1, 1 · (−1) = −1, and (−1) · (−1) = 1.

Submatrix, Trivial/Empty Matrix, Length, Order

A row (resp. column) submatrix is obtained from a given matrix by the
deletion of some rows (resp. columns). A submatrix is produced by row or
column deletions. A submatrix is proper if at least one row or column has
been deleted from the given matrix. Subvectors are similarly defined.

We allow a matrix to have no rows or columns. Thus, for some k ≥ 1,
a matrix A may have size k× 0 or 0× k. Such a matrix is trivial. We even
permit the case 0 × 0, in which case A is empty. The length of an m × n
matrix is m+n. The order of a square matrix A is the number of rows of A.
We denote any column vector containing only 1s by 1. Suppose a matrix
A has been partitioned into two row submatrices B and C, say A = [B

C ].
For typesetting reasons, we may denote this situation by A = [B/C]. In
the special case where A, B, and C are column vectors, say a, b, and c,
respectively, we may correspondingly write a = [b/c].

Frequently, we index the rows and columns of a matrix. We write the
row indices or index subsets to the left of a given matrix, and the column
indices or index subsets above the matrix. For example, we might have

(2.3.1)

c

a
b

0

0

1
1

1
1

gd e f

1

1
0

1

1
1B =

Example matrix B

Matrix Isomorphism

We consider two matrices to be equal if up to permutation of rows and
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columns they are identical. Two matrices with row and column indices are
isomorphic if they become equal upon a suitable change of the indices.

We may refer to a column directly, or by its index. For example, in
a given matrix B let b be a column vector with column index y. We may
refer to b as “the column vector b of B.” We may also refer to b by saying
“the column y of B.” In the latter case, we should say more precisely “the
column of B indexed by y.” We have opted for the abbreviated expression
“the column y of B” since references of that type occur very often in this
book. We treat references to rows in an analogous manner.

Characteristic Vector, Support Matrix

Suppose a set E indexes the rows (resp. columns) of a column (resp. row)
vector with {0, 1} entries. Let E′ be the subset of E corresponding to the
1s of the vector. Then that vector is the characteristic column (resp. row)
vector of E′. We abbreviate this to characteristic vector when it is clear
from the context whether it is a row or column vector. The support of a
matrix A is a {0, 1} matrix B of same size as A such that the 1s of B occur
in the positions of the nonzeros of A. Sometimes, we view B to be a matrix
over GF(2) or over some other field F .

Occasionally, we append an identity to a given matrix. In that case
the index of the ith column of the identity is taken to be that of the ith
row of the given matrix. From the matrix B of (2.3.1), we thus may derive
the following matrix A.

(2.3.2)

g

1

1
1

c d

c

a
b

0

0

0
1

1
0

a b

1

0
0

0

1
1

e

1

0
1

f

1

1
0A =

Matrix A produced from B of (2.3.1)

We often view a given {0, 1} or {0,±1} matrix at one time to be over
GF(2), at some other time to be over GF(3), and later still to be over IR
or over some other field F . Thus, a terminology is in order that indicates
the underlying field. For example, consider the rank of a matrix, i.e., the
order of any maximal nonsingular submatrix. If the field is F , we refer
to the F-rank of the matrix. For determinants we use “detF ,” but in the
case of GF(2) and GF(3) we simplify that notation to “det2” and “det3,”,
respectively. There is another good reason for emphasizing the underlying
field. In Chapter 3, we introduce abstract matrices, which have abstract
determinants, abstract rank, etc. In connection with these matrices, we
just use “determinant” or “det,” “rank,” etc.
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Pivot

Customarily, a pivot consists of the following row operations, to be per-
formed on a given matrix A over a field F . First, a specified row a is scaled
so that a 1 is produced in a specified column d. Second, scalar multiples of
the new row a are added to all other rows so that column d becomes a unit
vector. In this book, the term F-pivot refers to a closely related process.
We explain the pivot operation using the GF(2) case. Let B be a matrix
with row index set X and column index set Y . A GF(2)-pivot on a nonzero
pivot element Bxy of a matrix B over GF(2) is carried out as follows.

(2.3.3)

(2.3.3.1) We replace for every u ∈ (X − {x}) and every
w ∈ (Y −{y}), Buw by B′

uw = Buw +(Buy ·Bxw).

(2.3.3.2) We exchange the indices x and y. That is, y be-
comes the index of the row originally indexed by
x, and x becomes the index of the column origi-
nally indexed by y.

For example, view B of (2.3.1) to be a matrix over GF(2). A GF(2)-pivot
on Bad = 1 may be displayed as follows.

(2.3.4) GF(2)-pivot

c

a
b

0

0

1
1

1
1

d e f

1

1
0

g

1

1
1B =

c

d
b

0

0

1
1

1
1

ga e f

1

1
1

1

1
0B' =

Effect of GF(2)-pivot in B of (2.3.1)

Here and later we use a circle to highlight the pivot element.
Suppose we append an identity matrix I to B, getting A of (2.3.2), and

do row operations in A to convert column d to a unit vector. We achieve
this by adding row a to row b. Next, we exchange the columns a and d,
including indices. Finally, we replace the row index a by d. Let A′ be the
resulting matrix. Below we display A and A′.

(2.3.5)
row operations

and
column exchange

g

1

1
1

c d

c

a
b

0

0

0
1

1
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1

0
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1
1
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0
1
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1

1
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1
g

1

1
0
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0
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0
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0
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1
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1
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1

1
1A' =

Effect of row operations and column exchange
in A of (2.3.2)

By definition A = [I | B], and evidently A′ = [I | B′]. The latter conclusion
holds in general, provided the row operations in A replace, in the pivot
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column, the nonzeros other than the pivot element by 0s. The pivot rules
of (2.3.3) are thus nothing but an abbreviated method for obtaining the
submatrix B′ of A′ directly from B. Since A and A′ are related by row
operations, every column index subset of A corresponding to a basis of A
also indexes a basis of A′, and vice versa.

The above operations and conclusions can be extended to arbitrary
fields F as follows. Let B be a matrix over F with row index set X and
column index set Y . An F-pivot on a nonzero pivot element Bxy of B is
defined as follows.

(2.3.6)

(2.3.6.1) We replace for every u ∈ (X − {x}) and every
w ∈ (Y − {y}), Buw by B′

uw = Buw + (Buy ·
Bxw)/(−Bxy).

(2.3.6.2) We replace Bxy by −Bxy, and exchange the in-
dices x and y.

Clearly, the GF(2)-pivot of (2.3.3) is a special case of the F -pivot. We have
the following result for F -pivots.

(2.3.7) Lemma. Let B′ be derived from B by an F -pivot as described
by (2.3.6). Append identities to both B and B′ to get A = [I | B] and
A′ = [I | B′]. Declare the row index sets of B and B′ to become the column
index sets of the identity submatrices I of A and A′, respectively. Then
every column index subset of A corresponding to a basis of A also indexes
a basis of A′, and vice versa.

The proof proceeds along the lines of the GF(2) case, except for a sim-
ple scaling argument. We omit the details. Pivots have several important
features. For the discussion below, let B, Bxy, and B′ be the matrices just
defined.

First, when we F -pivot in B′ on B′
yx, we obtain B again.

Second, the pivot operation is symmetric with respect to rows versus
columns. Thus, the F -pivot operation and the operation of taking the
transpose commute.

Third, we may use F -pivots to compute determinants as follows. Sup-
pose that B is square. If we delete row y and column x from B′, then
the resulting matrix, say B′′, satisfies | detF B′′| = |(detF B)/Bxy|. Thus,
B is nonsingular if and only if this is so for B′′. Obviously, this way of
computing determinants is nothing but the well-known method based on
row operations.

Fourth, pivots lead to a simple proof of the submodularity of the rank
function, to be covered next.
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Submodularity of Matrix Rank Function

Let f be a function that takes the matrices over F to the nonnegative
integers. Suppose for any matrix B over F , and for any partition of B of
the form

(2.3.8) B =

B11 B12 B13

B21 B23B22

B31 B32 B33

Partitioned version of B

the values of f for the submatrices

(2.3.9)

B11 B12

B21 B22 ;D1 =
B23B22

B32 B33
D2 =

;B21 B23B22D3 =
B12

B22

B32

D4 =

Submatrices D1, D2, D3, D4 of B

satisfy the inequality

(2.3.10) f(D1) + f(D2) ≥ f(D3) + f(D4).

Then f is submodular. We have the following result.

(2.3.11) Lemma. The F -rank function is submodular.

Proof. If B22 is nonzero, pivot in B22. From the resulting matrix, say C,
delete the pivot row and pivot column. This step converts the submatrices
D1, D2, D3, and D4 of B to, say, C1, C2, C3, C4. Evidently for k =
1, 2, 3, 4, F -rank Ck = F -rank Dk−1. Thus, the desired conclusion follows
by induction once we handle the case where B22 = 0. In that situation, we
have

(2.3.12)

F -rank D1 ≥ F -rank B21 + F -rank B12

F -rank D2 ≥ F -rank B32 + F -rank B23

F -rank D3 ≤ F -rank B21 + F -rank B23

F -rank D4 ≤ F -rank B12 + F -rank B32
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Thus,

(2.3.13)

F -rank D1 + F -rank D2 ≥ F -rank B21 + F -rank B12

+ F -rank B32 + F -rank B23

≥ F -rank D3 + F -rank D4

as desired.

The reader may want to prove the following result of linear algebra
using the submodularity of the F -rank function.

(2.3.14) Lemma. Let A be a matrix over a field F , with F -rank A =
k. If both a row submatrix and a column submatrix of A have F -rank
equal to k, then they intersect in a submatrix of A with the same F -rank.
In particular, any k F -independent rows of A and any k F -independent
columns of A intersect in a k × k F -nonsingular submatrix of A.

Bipartite Graph of Matrix

Let A be any matrix over any field. Then BG(A) is the following bipartite
graph. Each row and each column of A corresponds to a node. Each
nonzero entry Axy leads to an edge connecting row node x with column
node y. In contrast to the earlier graph definitions, we do allow isolated
nodes in connection with BG(A). We can afford to do so since we never
attempt to apply reductions or extensions to BG(A).

Connected Matrix

We say that A is connected if BG(A) is connected. Suppose A is trivial,
i.e., A is k × 0 or 0 × k for some k ≥ 1. Then BG(A) and hence A are
connected if and only if k = 1. Suppose A is empty, i.e., of size 0×0. Then
BG(A) is the empty graph. By the earlier definition, the empty graph is
connected. Thus, the empty matrix is connected. A connected block of a
matrix is a maximal connected and nonempty submatrix.

Parallel Vectors

Two column or row vectors of A are parallel if they are nonzero and if one
of them is a scalar multiple of the other one. Equivalently, the two vectors
must be nonzero and must form a rank 1 matrix.
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Eulerian Matrix

Define a {0,±1} matrix to be column (resp. row) Eulerian if the columns
(resp. rows) sum to 0(mod 2), or equivalently, if each row (resp. column)
of the matrix has an even number of nonzeros. Declare a {0,±1} matrix
to be Eulerian if it is both column and row Eulerian.

Display of Matrices

We employ a particular convention for the display of matrices. If in some
region of a matrix we explicitly list some entries but not all of them, then
the omitted entries are always to be taken as zeros. This convention un-
clutters the appearance of matrices with complicated structure.

2.4 Complexity of Algorithms

We cover elementary notions of the computational complexity of algorithms
in a summarizing discussion. Define a problem to be any question about m×
n {0,±1} matrices that is answered each time by “yes” or “no.” Any such
matrix represents a problem instance. Suppose some algorithm determines
the correct answer for each problem instance. In the case of an affirmative
answer, a second m× n {0,±1} matrix is possibly part of the output.

We measure the size of each problem instance by the size of a binary
encoding of the input matrix and, if applicable, of the output matrix. De-
note by s that measure. Up to constants, m · n or the total number of
nonzeros in the input and output matrices constitutes an upper bound on
s.

We may imagine the algorithm to be encoded as a computer program.
The algorithm is polynomial if the run time of the computer program can,
for some positive integers α, β, and γ, be uniformly bounded by a polyno-
mial of the form α · sβ + γ. We also say that the algorithm is of order β,
and we denote this by O(sβ).

Suppose there are positive integers δ, ǫ, and ζ such that the following
holds. For each problem instance of size s and with an affirmative answer,
a proof of “yes” exists whose binary encoding is bounded by δ ·sǫ +ζ. Then
the problem is said to be in NP.

A problem P is polynomially reducible to a problem P ′ if there is a
polynomial algorithm that transforms any instance of P into an instance
of P ′.

The class NP has a subclass of NP-complete problems, which in some
sense are the hardest problems of NP. Specifically, a problem is NP-
complete if every problem in NP is polynomially reducible to it. Thus, ex-
istence of a polynomial solution algorithm for just one of the NP-complete



2.5. References 25

problems would imply existence of polynomial solution algorithms for ev-
ery problem in NP. It is an open question whether or not such polynomial
algorithms exist.

Let P be a given problem. If some NP-complete problem is polyno-
mially reducible to P , then P is NP-hard.

A polynomial algorithm is not necessarily useable in practice. The
constants α and β of the upper bound α · sβ on the run time may be huge,
and the algorithm may require large run times even for small problem in-
stances. The definition of “polynomial” completely ignores the magnitude
of these constants.

The polynomial algorithms of this book always involve constants α
and exponents β that are small enough to make the schemes useable in
practice. Despite this fact, a note of caution is in order. We frequently
accept some algorithmic inefficiency in the interest of simplicity and clarity
of the exposition. Thus, most schemes of this book can be speeded up. The
required modifications can be complex, but they also yield substantially
faster algorithms.

In the next section, we provide references for the material of this chap-
ter.

2.5 References

The introductory material of almost any book on graph theory — for exam-
ple, Ore (1962), Harary (1969), Wilson (1972), or Bondy and Murty (1976)
— covers most of the graph definitions of Section 2.2. The view of nodes
as edge subsets is used in Truemper (1988); most computer programs for
graph problems rely on the same viewpoint. The Tutte connectivity is due
to Tutte (1966a). Most matrix definitions of Section 2.3 are included in
any book on linear algebra, see for example Faddeev and Faddeeva (1963),
Strang (1980), or Lancaster and Tismenetsky(1985). The definition of ma-
trix submodularity is a translation of matroid submodularity (see Truemper
(1985a)). Details about the computational complexity definitions may be
found in Garey and Johnson (1979).



Chapter 3

From Graphs to Matroids

3.1 Overview

In this chapter, we construct matroids from graphs and matrices. In Sec-
tion 3.2, we start with graphs. We encode them by certain binary matrices
that lead to matroids we call graphic. For these matroids, we adapt a
number of the graph concepts and operations of Chapter 2, for example
the operation of taking minors. In Section 3.3, we generalize the construc-
tion of Section 3.2 by starting with arbitrary binary matrices, not just those
arising from graphs. From the binary matrices, we deduce the binary ma-
troids. In Section 3.4, we carry the generalization one step further. This
time, we begin with abstract matrices, which represent a proper general-
ization of matrices over fields. From the abstract matrices, we define all
matroids.

It is easy to determine matroids that cannot be produced from any
graph, or from any binary matrix, or even from any matrix over any field.
On the other hand, compact characterizations of the matroids that cannot
be obtained from the matrices over some given field are usually difficult to
find. We meet an exception in Section 3.5. There we characterize the ma-
troids producible from the binary matrices by excluding a certain 4-element
matroid, called U2

4 , as a minor. Sections 3.4 and 3.5 may be skipped by the
reader who is only interested in binary matroids. Later, we occasionally
refer to the material on general matroids to point out extensions. The final
section, 3.6, lists references.

The chapter requires knowledge of the definitions of Chapter 2. To
assist the reader, we will repeat certain definitions.

26
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3.2 Graphs Produce Graphic Matroids

In this section, we deduce the graphic matroids from graphs by the fol-
lowing two-step process. In the first step, we encode graphs G by certain
binary matrices called node/edge incidence matrices F . In the second step,
we derive from the matrices F the graphic matroids M . For insight into the
structure of the matroids M so created, we transform the node/edge inci-
dence matrices F by elementary row operations into certain binary matrices
B. The latter matrices contain in compact form all facts about M . Thus,
we say that the matrices B represent M . We translate a number of graph
definitions and concepts for G into statements about the matrices B and
the graphic matroids M . In particular, we link trees, cycles, cotrees, and
cocycles of G to features of B and M . We also describe the effect of taking
minors in the graphs G on B and M , and characterize k-connectivity of G
in terms of partitions of B and M . Finally, we establish the relationship
between graphs that give rise to the same graphic matroid, and conclude
with a handy procedure for deciding whether a certain 1-element binary
extension of a graphic matroid is graphic.

Throughout this section, we assume G to be a connected graph with
edge set E. The following graph will serve as an example.

(3.2.1) e10

i1

i2

i3

i4
i5 i6

e8

e6

e4

e1

e2

e3

e5

e7

e9

Graph G

Observe the node symbols i1, i2, . . . , i6. Recall that each one of these
symbols stands for the subset of edges incident at the respective node.

Node/Edge Incidence Matrix

We may represent G by a binary matrix F called the node/edge incidence
matrix. Each node of G corresponds to a row of that matrix, and each edge
to a column. Suppose an edge e connects nodes i and j in G. Into column
e of the matrix, we place one 1 into row i, a second 1 into row j, and 0s
into the remaining rows. This rule accommodates all edges of G except
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for loops. There are several ways to treat loops. Here we decide to place
only 0s into the columns of loops. For the example graph G of (3.2.1), the
resulting matrix F is

(3.2.2)
i2
i3
i4
i5
i6

i1

F =

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

0 1 0 0 1 0 0 1 1 0

0 00 0 0 0 0 0 0 1
0 00 0 0 1 1 1 1 1

0 100 01 0 0 0 0
0 00110 1 0 0 0
0 1 1 0 0 1 0 0 0 0

Node/edge incidence matrix F of G of (3.2.1)

Except for the endpoints of loops, we can reconstruct G from F . Thus,
modulo that small defect, F represents G.

Recall from Chapter 2 the following definitions. A cycle of G is the
edge set of a walk where all nodes are distinct and where one returns to
the departure node. A tree of G is a maximal edge subset of E without
cycles. A cocycle of G is a minimal set of edges that intersects every tree
of G. A cotree of G is the set E −X for some tree X of G. The rank of G
is the cardinality of any one of its trees. Thus, it is the number of nodes
of G minus 1.

In the discussion to follow, we always assume that the graph G has a
cycle and a cocyle. Toward the end of this section, we address the special
(actually elementary) situation where G has no cycle or no cocycle.

Over GF(2), the linear dependence of n ≥ 1 vectors, say of f1, f2, . . . ,
fn, is characterized as follows: That set is GF(2)-dependent if there exists
a nonempty subset J ⊆ {1, 2, . . . , n} such that

∑
j∈J f j = 0 (summation in

GF(2), of course). Declare the vectors f1, . . . , fn to be minimally GF(2)-
dependent, for short GF(2)-mindependent, if they are GF(2)-dependent,
and if every proper subset of these vectors is GF(2)-independent.

For example, column e1 of F of (3.2.2) is GF(2)-mindependent. So are
the columns e2, e3, e4, e5. The first case corresponds to the loop e1 of G, the
second one to the cycle {e2, e3, e4, e5}. Indeed, by the just-given definition,
a set of GF(2)-mindependent columns of the node/edge incidence matrix
must correspond to a subgraph G of G with the following two properties.
First, each node of G has even degree. Second, there is no subgraph of
G but the empty one where each node has even degree. Evidently, the
cycles of G are the only subgraphs of G with these two properties. This
implies that the subgraphs of G without cycles correspond to the GF(2)-
independent column subsets of F . In particular, the trees of G correspond
to the bases of F , and the rank of G is the GF(2)-rank of F .

So far, we have interpreted cycles and trees of G in terms of F . How do
cocycles and cotrees manifest themselves in F? We will answer that ques-
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tion in a moment. In the meantime, the reader may want to try obtaining
an answer.

Graphic Matroid

Suppose we are just interested in the collection, say I, of trees of G and
their subsets. That interest may be surprising. But the set I contains a
significant amount of information about G. Exactly how much, we will see
later in this section. For example, with I we can decide whether or not an
edge subset C of E is a cycle. The answer is “yes” if and only if C is not
in I and every proper subset of C is in I. On the other hand, we cannot
decide with I which nodes are the endpoints of loops.

For the graph G of (3.2.1), I includes the sets {e2, e3, e4, e7, e10} and
{e3, e5, e6}. We know that each set in I is the index set of a column
submatrix F ′ of F with GF(2)-independent columns. Conversely, every
such index set is recorded in I.

Still assume that we are just interested in I. We are tempted to
combine the edge set E of G and the set I to the ordered pair M = (E, I).
The set E is the groundset of M , and I is the collection of independent sets
of M . Sometimes, we want to emphasize that M is deduced from G and
denote it by M(G). In subsequent sections of this chapter, we will see that
M(G) is a special case of what then will be called binary matroids or even
just matroids. In the spirit of those definitions, we call M(G) the graphic
matroid of G.

Representation Matrix

We have established the collection I from the node/edge incidence matrix
F of G. Elementary row operations performed on F do not affect GF(2)-
independence of columns. Thus, we may determine I from any matrix
derived from F by such operations. We discuss a special case of such row
operations next.

First, we delete one row from F getting a matrix F ′. Since each column
of F has an even number of 1s, the sum of the rows of F is the zero vector.
Hence, F and F ′ have same GF(2)-rank.

Second, we perform binary row operations to convert the column sub-
matrix of F ′ corresponding to some tree of G to an identity matrix.

For the example matrix F of (3.2.2), we select {e2, e3, e4, e7, e10} as
tree of G. When we apply the preceding two-step procedure to F , we get
the matrix of (3.2.3) below. Note the row indices of the matrix. They are
in agreement with the notation introduced in Section 2.3.
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(3.2.3) 0
1
0

0
0

0
0

1 0 0 1 0 0 1 1 0

00 0 0 0 0 0 0 0 1
00 0 1 1 1 1 0

0 010 0 0 0 0
0 11 1 0 1 1 0

columns of identity matrix

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

e3

e7

e4

e10

e2

Matrix obtained from F of (3.2.2)

The matrix of (3.2.3) is a bit difficult to read. We thus permute its
columns to collect the identity submatrix at the left end. This change
results in the matrix A below.

(3.2.4)

e2
e3
e4A =
e7
e10

e2 e3 e4 e7 e10 e1 e5 e6 e8 e9

1

1
1

1
1

0 1 0 1 1

0 0 0 0 0
0 0 1 1 1
0 1 0 0 0
0 1 1 1 1

Matrix A deduced from the matrix of (3.2.3)

The unspecified entries in the identity submatrix of A are to be taken as
zeros, in agreement with the convention introduced in Section 2.3 about
unspecified matrix entries.

In the case of a general graph G, let X be some tree of G, and Y be the
corresponding cotree E −X . Then for some binary matrix B, the matrix
A is of the form

(3.2.5)
BA = IX

X Y

Matrix A for general graph G with tree X

As explained in Section 2.3, the same information is conveyed by B with
row index set X and column index set Y ; that is, by

(3.2.6) B

Y

X

Matrix B for general graph G with tree X
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For our example case,

(3.2.7)
B = X

e2
e3
e4
e7
e10

e1 e5 e6 e8 e9

0 1 0 1 1

0 0 0 0 0
0 0 1 1 1
0 1 0 0 0
0 1 1 1 1

Y

Matrix B for graph G of (3.2.1)

The matrix B may be viewed as a binary encoding of the matroid M =
(E, I). Since M was defined to be a graphic matroid, we call B a graphic
matrix. We also say that B represents M over GF(2), or that B is a
representation matrix of M . In the literature, the term standard represen-
tation matrix is sometimes used. The node/edge incidence matrix is then
a nonstandard representation matrix. We omit “standard” since we almost
always employ matrices like B to represent M .

Tree, Subgraph Rank

We show how trees, cycles, cotrees, cocycles, and the rank of subgraphs of
G manifest themselves in B of (3.2.6). We repeatedly make use of some
partition (X1, X2) of X , and of some partition (Y1, Y2) of Y . Typically,
we just specify one set of X1, X2, and one set of Y1, Y2. For any such
partitions, we assume B to be partitioned as

(3.2.8) X1
B =

Y1

B1

D1X2

Y2

B2

D2

Partitioned version of B

Let Z be a tree of G. Define X2 = Z ∩X and Y1 = Z ∩ Y . In A of (3.2.5),
the submatrix A indexed by Z = X2 ∪ Y1 is thus a GF(2)-basis of A of the
form

(3.2.9)

X2

A =
X1

X2

0

Y1

D1

B1

...1
1

Submatrix of A indexed by Z = X2 ∪ Y1
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The submatrix B1 of A is square, and, by cofactor expansion, GF(2)-
nonsingular. Conversely, any square and GF(2)-nonsingular submatrix B1

of B defined by (X1, X2) and (Y1, Y2) corresponds to a tree Z = X2∪Y1 of
G. More generally, let the submatrix B1 of B of (3.2.8) be of any size and
with GF(2)-rank B1 = k. Then the subgraph of G containing precisely the
edges of X2 ∪ Y1 has rank equal to |X2|+ k.

Cycle

We know that a cycle C of G corresponds to a column submatrix A of
A with GF(2)-mindependent columns. Analogously to the tree case, let
such a column submatrix be indexed by X2 = C ∩ X and Y1 = C ∩ Y .
Once more, (3.2.9) displays the general case. GF(2)-mindependence of the
columns of A implies that they must add up to 0 in GF(2). Thus, each row
of B1 (resp. D1) must contain an even (resp. odd) number of 1s. Note that
this parity condition on the row sums of B1 and D1 uniquely determines
X1 and X2 when Y1 is specified. Furthermore, by GF(2)-mindependence,
no nonempty proper column submatrix of A, say indexed by X ′

2 ⊆ X2 and
Y ′

1 ⊆ Y1, satisfies the analogous parity condition.

Fundamental Cycle

The special case of a cycle with |Y1| = 1, say Y1 = {y}, is of particular
interest. If column y contains no 1s, then y is a loop. Otherwise, X2 is
the index set of the rows with a 1 in column y. The cycle is X2 ∪ {y}.
It is the fundamental cycle that y forms with a subset of the tree X . By
reversing these arguments, we obtain a quick way of constructing B. Let
the tree X be given. We take each edge y ∈ Y (= E −X) in turn and find
the fundamental cycle C that y forms with a subset of X . Then column y
of B is the characteristic vector of C − {y}. That is, the entry in column
y and row x ∈ X is 1 if x ∈ (C − {y}), and is 0 otherwise.

Parallel Elements

A cycle of cardinality 2, say {y, z} with y ∈ Y , manifests itself in B
by two parallel columns indexed by y and z, or by a unit vector column
indexed by y and with the 1 in row z. We say that y and z are in parallel
in M . We define any element to be parallel to itself. Then “is parallel to”
is easily checked to be an equivalence relation. The equivalence classes are
the parallel classes of M . They are precisely the parallel classes of G.
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Cotree

Recall that a cotree of G is the set E−Z for some tree Z of G. Consider
the transpose of B of (3.2.8), i.e.,

(3.2.10) (D

Y2

Y1 (B1)
t 1)

t

)(D
2 t

)(B2 t
Bt =

X1 X2

Transpose of B of (3.2.8)

Suppose Z = X2 ∪ Y1. The cotree X1 ∪ Y2 corresponds to the GF(2)-
nonsingular submatrix (B1)t of B in the same way in which the tree Z is
related to the GF(2)-nonsingular B1 of B.

Append an identity to Bt, getting

(3.2.11)
Y IA*=

Y X

Bt

Bt with additional identity matrix

Evidently, every cotree indexes a GF(2)-basis of A∗, and vice versa.

Cocycle

We know that a cocycle is a minimal set that intersects every tree. Put
differently, a cocycle is a minimal set that is not contained in any cotree.
The latter definition shows that cocycles are related to cotrees in the same
way that cycles are related to trees. Thus, for the interpretation of cocycles
in terms of B, the previous discussion for cycles becomes applicable once we
make suitable substitutions. The special cycle case with |Y1| = 1 becomes
the special cocycle case with |X1| = 1, say with X1 = {x}. If row x of
B contains no 1s, then x is a coloop. Otherwise, let Y1 be the index set
of the columns with a 1 in row x. Then Y1 ∪ {x} is a cocycle. It is the
fundamental cocycle that x forms with a subset of the cotree Y . We may use
fundamental cocycles to construct the rows of B. The process is analogous
to the construction of the columns of B via fundamental cycles.

Coparallel or Series Elements

A cocycle of cardinality 2, say {x, z} with x ∈ X , manifests itself in B by
two parallel rows indexed by x and z, or by a unit vector row indexed by
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x and with the 1 in column z. We also say that x and z are coparallel, or
in series. Declare any element to be in series with itself. Then “is in series
with” is an equivalence relation. The equivalence classes are the coparallel
or series classes of M . They are precisely the series classes of G, according
to the nonstandard definition of “series” for graphs in Section 2.2.

Dual of Graphic Matroid

For a given graph G, let I∗ be the set of cotrees and their subsets. The fact
that cycles are related to I in the same way in which cocycles are related
to I∗ suggests that we tie I and I∗ together by duality. Specifically, we
define the pair M∗ = (E, I∗) to be the dual matroid of M . The prefix “co-”
dualizes a term. For example, each set in I∗ is co-independent. Consistent
with the definition of graphic matroid, we call M∗ the cographic matroid of
G, and denote it by M(G)∗. By the above discussion, Bt represents M∗.
For this reason, we call Bt cographic.

Let G be a connected plane graph, and G∗ be its dual. In Section
2.2, the following is shown. The cotrees of G are the trees of G∗, and the
cocycles of G are the cycles of G∗. Thus, in this special case, M∗ is the
graphic matroid of G∗. Consistent with graph terminology, we call M , as
well as all of its representation matrices B, planar. This definition and the
preceding observation imply that planarity of M implies graphicness of M
and M∗, or equivalently, graphicness and cographicness of M .

Is it possible that the dual of a graphic matroid is not graphic? The
answer is “yes.” Toward the end of this section, we include two examples
of a graphic M where M∗ is not graphic. In Chapter 10, it is proved that
M∗ is graphic if and only if G is planar.

Pivot

According to the pivot rule (2.3.3) of Section 2.3, a GF(2)-pivot in B of
(3.2.6), say with pivot element Bxy, is carried out as follows.

(3.2.12)

(3.2.12.1) We replace for every u ∈ (X−{x}) and every w ∈
(Y −{y}), Buw by Buw +(Buy ·Bxw) (operations
in GF(2)).

(3.2.12.2) We exchange the indices x and y.

Let B′ be the matrix produced from B by the pivot. From Section
2.3, we know that this change corresponds to elementary row operations
and one column exchange that transform the matrix A composed of B and
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an identity matrix, i.e.,

(3.2.13)
BA = IX

X Y

Matrix A derived from B

to

(3.2.14)
X' IA' =

X' Y'

B'

Matrix A′ derived from B′

where X ′ = (X − {x}) ∪ {y} and Y ′ = (Y − {y}) ∪ {x}. Hence, by pivots
we can deduce from B any matrix B′′ that corresponds to a specified tree
X ′′ of G. This fact is very useful. It permits us always to select a B′′ that
is particularly convenient for our purposes. One such case we see next,
when we discuss the effects of edge deletions, additions, contractions, and
expansions. We briefly review these graph operations.

A deletion of a noncoloop edge is the removal of that edge. A deletion
of a coloop is accomplished by a contraction, which is defined next. A
contraction of a nonloop edge is the contraction of the edge so that its
endpoints become one vertex. A contraction of a loop is a deletion. An
addition of an edge is the addition of an edge that does not become a
coloop. An expansion by an edge involves splitting of a node into two
nodes, which are joined by the new edge. The new edge cannot be a loop.
A reduction is a deletion or a contraction. An extension is an addition or
an expansion. For disjoint U, W ⊆ E, the minor G/U\W is the graph
produced by contraction of the edges of U and deletion of the edges of W .
The process is well defined because of an implicit ordering of the edges of
G. No such ordering needs to be assumed when U contains no cycle and W
no cocycle. Any graph producible from G by some sequence of reductions
is obtainable as G/U\W , where U and W obey the cycle/cocycle condition
just stated.

Matroid Deletion, Addition, Contraction, Expansion,
Minor

We translate the above graph operations into matroid language. We start
with the taking of minors. So let G/U\W be one such minor. As just
stated, we may assume U and W to obey the cycle/cocycle condition. We
claim that G has a tree X and a cotree Y = E −X such that U ⊆ X and
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W ⊆ Y . The proof is as follows. Since W contains no cocycle of G, the
minor G\W has the same rank as G. Evidently, G\W contains U . Since
U does not contain a cycle of G, U also does not contain a cycle of G\W .
Thus, in G\W we may extend U to a tree X of G\W . Since G\W and G
have same rank, X is also a tree of G. By the construction, the tree X of
G contains U , and the cotree Y = E −X of G contains W .

Let B be the matrix of (3.2.6) corresponding to X and Y , i.e., B is

(3.2.15)
B

Y

X

Matrix B for general graph G with tree X

Derive B′ from B by deleting the rows indexed by U and the columns in-
dexed by W . We claim that B′ represents the graphic matroid of G/U\W .
We denote that matroid by M/U\W , and we call it the minor of M ob-
tained by contraction of U and deletion of W . The proof is as follows.

Each tree Z ′ of G/U\W is contained in E − (U ∪W ). Indeed, Z ′ ∪U
must be a tree Z ⊆ (E−W ) of G. Conversely, for every tree Z ⊆ (E−W )
of G with U ⊆ Z, the set Z ′ = Z − U is a tree of G/U\W . We know from
the earlier discussion that Z = X2∪Y1, with X2 ⊆ X and Y1 ⊆ Y , is a tree
of G if and only if the square submatrix B1 of B indexed by X1 = X −X2

and Y1 is GF(2)-nonsingular. Thus, the trees Z ′ of G/U\W correspond
precisely to the square GF(2)-nonsingular submatrices B1 of B′. Hence,
B′ represents M/U\W , the graphic matroid of G/U\W .

Recall from Section 2.2 that the cycles and cocycles of G undergo the
following changes as we go from G to G/U\W . The cycles of G/U\W are
the minimal nonempty sets of the collection {C − U | C ⊆ E − W ; C =
cycle of G}. The cocycles of G/U\W are the minimal nonempty sets of the
collection {C∗ −W | C∗ ⊆ E − U ; C∗ = cocycle of G}. Correspondingly,
the circuits and cocircuits of M/U\W may be derived from those of M .

We just proved that each deletion (resp. contraction) of an edge of G
that is not a coloop (resp. loop) produces the removal of a column (resp.
row) from a properly selected matrix B. Each addition (resp. expansion),
the operation inverse to deletion (resp. contraction), corresponds to the
adjoining of a column (resp. row) to B.

Suppose G is a plane graph, and G∗ its dual. We know that Bt

represents the graphic matroid of G∗. Now row vectors of B appear as
column vectors in Bt, and column vectors of B appear as row vectors in
Bt. A deletion in G induces a column removal in B, and thus a row removal
in Bt. The latter removal corresponds to a contraction in G∗. By matroid
arguments, we have proved that deletions in G correspond to contractions
in G∗.
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Up to this point, we have assumed that G has a cycle and a cocycle.
Now suppose that this is not the case. Then G consists only of loops
incident at one node, or of coloops, or is empty. In the first case, we define
B to have no rows and as many columns as G has loops. In the second
case, B is to have no columns and as many rows as G has coloops. In the
third situation, B is to be the 0×0 matrix. By the definitions of Chapter 2,
in the first two situations B is a trivial matrix, and in the third one the
empty matrix. A trivial (resp. empty) B represents a trivial (resp. empty)
matroid. The empty matroid has E = ∅, I = I∗ = {∅}, and has no circuits
or cocircuits. We leave it to the reader to verify that the above reduction
and extension results are valid for the special case of a trivial or empty B.

Separations and Connectivity

We turn to Tutte k-separations, for short k-separations, of G. We show
how such separations manifest themselves in B of (3.2.15). Recall from
Chapter 2 that a k-separation of G with k ≥ 1 is a pair (E1, E2) of
nonempty sets that partition E and that have the following properties.
First, |E1|, |E2| ≥ k. Second, the subgraph G1 (resp. G2) obtained from
G by removal of the edges of E2 (resp. E1) must be connected. Third,
identification of k nodes of G1 with k nodes of G2 must produce G. For
k ≥ 2, the graph G is Tutte k-connected, for short k-connected, if G has no
l-separation for 1 ≤ l < k.

Given a k-separation (E1, E2) of G and given the matrix B of (3.2.15),
define for i = 1, 2, Xi = Ei∩X and Yi = Ei∩Y . Thus, B can be partitioned
as

(3.2.16) X1
B =

Y1

B1

D1X2

Y2

B2

D2

Partitioned version of B

We claim that

(3.2.17) GF(2)-rank D1 + GF(2)-rank D2 = k − 1.

For a proof, append to B an identity matrix, getting

(3.2.18)
A =

X2

X1

X1 X2

0

0

Y1

D1

B1

Y2

B2

D2

...1
1

...1
1

Matrix B of (3.2.16) with additional identity matrix
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Derive from A the matrix A1 (resp. A2) by deleting the columns indexed
by X2 ∪ Y2 (resp. X1 ∪ Y1). Then

(3.2.19)
GF(2)-rank A1 = |X1|+ GF(2)-rank D1

GF(2)-rank A2 = |X2|+ GF(2)-rank D2

The matrix A may be obtained from the node/edge incidence matrix F
of G by row operations. Thus, for i = 1, 2, the rank of Gi is equal to
GF(2)-rank Ai. We combine this result with (3.2.19) and get

(3.2.20)

(rank of G1) + (rank of G2)

= GF(2)-rank A1 + GF(2)-rank A2

= |X1|+ |X2|+ GF(2)-rank D1 + GF(2)-rank D2

= (rank of G) + GF(2)-rank D1 + GF(2)-rank D2

Finally, the graphs G1 and G2 are connected, and identification of k nodes
of these graphs produces G. For i = 1, 2, let the graph Gi have ni + k
nodes. Then G has n1 + n2 + k nodes. With these definitions,

(3.2.21)
(rank of G1) + (rank of G2) = (n1 + k − 1) + (n2 + k − 1)

= (n1 + n2 + k − 1) + (k − 1)
= (rank of G) + (k − 1)

Then (3.2.17) follows directly from (3.2.20) and (3.2.21).

Definition of k-Separation and k-Connectivity

The preceding discussion motivates the following definitions. For any k ≥ 1,
the matrix B of (3.2.15) is k-separable if B can be partitioned as in (3.2.16)
such that

(3.2.22)
|X1 ∪ Y1|, |X2 ∪ Y2| ≥ k

GF(2)-rank D1 + GF(2)-rank D2 ≤ k − 1

The pair (X1 ∪ Y1, X2 ∪ Y2) is a k-separation of B. For k ≥ 2, the matrix
B is k-connected if B has no l-separation for 1 ≤ l < k.

Connectivity in M is defined via that of B. That is, for k ≥ 1, M
is k-separable if B is k-separable. For k ≥ 2, M is k-connected if M
(equivalently, B) has no l-separation for 1 ≤ l < k. In particular, the
empty matroid is k-connected for all k ≥ 2.

The above definitions and observations validate the following lemma.
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(3.2.23) Lemma. Let G be a connected graph, and M be the graphic
matroid of G. For k ≥ 1, any k-separation of G induces a k-separation of
M .

Let us näıvely attempt to prove the converse. That is, we assume a
k-separation (X1∪Y1, X2∪Y2) of M as given by (3.2.16) and (3.2.22). We
let G1 (resp. G2) be the subgraph created from G by removal of the edges
of E2 = X2 ∪ Y2 (resp. E1 = X1 ∪ Y1). Now we try to reverse the order of
the arguments made earlier about (3.2.16)–(3.2.21).

The inequality GF(2)-rank D1 + GF(2)-rank D2 ≤ k − 1 of (3.2.22)
creates a first difficulty. We would like equality. This problem is easily
avoided. We simply restrict ourselves to a k-separation of M with minimal
k. Equivalently, we may demand M , and hence B, to be k-connected and
k-separable.

By (3.2.20) and (3.2.21), we have

(3.2.24) (rank of G1) + (rank of G2) = (rank of G) + k − 1

We also know that |E1|, |E2| ≥ k by (3.2.22). We could prove (E1, E2) to
be a k-separation of G if we could show G1 and G2 to be connected. Try as
we might, this we cannot do. For good reason, since (E1, E2) is not always
a k-separation of G, as we shall see.

Link between Graph and Matroid Separations

So let us scale down our goal. Let us simply strive to obtain a detailed
description of the structure of G with k-separable M , k being minimal.
To this end, we temporarily abandon our notion of nodes as edge subsets.
Instead, we adopt the customary notion of nodes as points. Thus, a node
of G may occur in several subgraphs of G. We retain the assumption that
G is a connected graph with edge set E.

We need a few definitions to describe and prove the structure of G.
Let H1, H2, . . . , Hp, p ≥ 2, be subgraphs of G whose edge sets partition E.
Each Hi contains at least one edge. The connecting vertices of Hi are the
vertices of Hi that also occur in some Hj, j 6= i. The remaining vertices
of Hi are internal. The vertices that occur in both Hi and Hj , i 6= j, are
the common vertices of Hi and Hj . The sum of H1, H2, . . . , Hr, r ≤ p,
written as H1 + H2 + · · ·+ Hr, is the not necessarily connected subgraph
of G whose edge set is the union of the edge sets of H1, H2, · · ·, Hr.

Let L(H1, H2, . . . , Hp) be the following connected graph. Its nodes
are labeled H1, H2, . . . , Hp. As many parallel arcs connect node Hi with
node Hj of L(H1, H2, . . . , Hp) as Hi and Hj have vertices in common.
We declare the graphs H1, H2, . . . , Hp to be connected in tree fashion if
L(H1, H2, . . . , Hp) is a tree. They are connected in cycle fashion if the
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latter graph is a cycle. To avoid confusion, we use “vertex” and “edge”
in connection with G, and “node” and “arc” when L(H1, H2, . . . , Hp) is
involved.

We are now ready to describe and prove the structure of G.

(3.2.25) Theorem. Let M be the graphic matroid of a connected graph
G. Assume (E1, E2) is a k-separation of M with minimal k ≥ 1. Define
G1 (resp. G2) from G by removing the edges of E2 (resp. E1) from G. Let
R1, R2, . . . , Rg be the connected components of G1, and S1, S2, . . . , Sh be
those of G2.

(a) If k = 1, then the Ri and Sj are connected in tree fashion.
(b) If k = 2, then the Ri and Sj are connected in cycle fashion.
(c) If k ≥ 3, either (c.1) or (c.2) below holds.

(c.1) Each of G1 and G2 is connected (thus G1 = R1 and G2 = S1)
and contains a cycle or an internal vertex. The two graphs have
exactly k vertices in common.

(c.2) One of g and h is equal to 2, and the other one is equal to k.
Without loss of generality assume g = 2 and h = k. Then S1,
S2, . . . , Sh contain exactly one edge each. The union of the edge
sets of the Si (which is E2) is a cocycle of G of cardinality k. The
two connected components R1 and R2 of G1 contain at least one
cycle each.

Proof. The edge sets of R1, R2, . . . , Rg and S1, S2, . . . , Sh partition E.
Let mi (resp. nj) be the number of internal vertices of Ri (resp. Sj). Define
pij to be the number of vertices Ri and Sj have in common. We accomplish
the proof via a series of claims.

Claim 1. The graph L(R1, . . . , Rg, S1, . . . , Sh) has g + h nodes and

(3.2.26)
∑
i,j

pij = g + h + k − 2

arcs, and thus is a tree plus k − 1 arcs.

Proof. The number of nodes of L(R1, . . . , Rg, S1, . . . , Sh) is by definition
g+h. Since the graphs Ri, Sj , and G are connected, we have (rank of Ri) =
mi +

∑
j pij−1, (rank of Sj) = nj +

∑
i pij−1, and (rank of G) =

∑
i mi +∑

j nj +
∑

i,j pij − 1. Furthermore, (rank of G1) =
∑

i(rank of Ri) =∑
i mi +

∑
i,j pij − g, and (rank of G2) =

∑
j(rank of Sj) =

∑
j nj +∑

i,j pij−h. By (3.2.24), (rank of G1)+(rank of G2) = (rank of G)+k−1,
and thus (

∑
i mi +

∑
i,j pij − g) + (

∑
j nj +

∑
i,j pij − h) = (

∑
i mi +∑

j nj +
∑

i,j pij−1)+k−1. Solving the latter equation for
∑

i,j pij , which
is the number of arcs of L(R1, . . . , Rg, S1, . . . , Sh), we obtain

∑
i,j pij =

g + h + k − 2. Q. E. D. Claim 1
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Claim 2. Parts (a) and (b) of the theorem hold.

Proof. Suppose k = 1. By Claim 1, L(R1, . . . , Rg, S1, . . . , Sh) is a tree,
and (a) follows. Let k = 2. Then L(R1, . . . , Rg, S1, . . . , Sh) has exactly
one cycle. If there are additional arcs, then L(R1, . . . , Rg, S1, . . . , Sh) has
a degree 1 node, and thus, G and M are 1-separable, a contradiction of the
minimality of k. Thus, (b) follows. Q. E. D. Claim 2

As a result of Claim 2, we may assume from now on that k ≥ 3.

Claim 3. At least one of the graphs R1, . . . , Rg, S1, . . . , Sh has at least
as many edges as it has connecting vertices.

Proof. Assume otherwise. Thus, each subgraph Ri (resp. Sj) of G is
a tree on

∑
j pij (resp.

∑
i pij) vertices. Hence, G has

∑
i,j pij vertices

and
∑

i(
∑

j pij − 1) +
∑

j(
∑

i pij − 1) = 2
∑

i,j pij − g − h edges. Using∑
i,j pij = g +h+k−2 of (3.2.26), we see that G has g +h+k−2 vertices

and g + h + 2(k − 2) edges. Since G is k-connected, the degree of each
vertex of G is at least k. Thus,

(3.2.27) k · (number of vertices) ≤ 2 · (number of edges)

Accordingly, k(g + h + k− 2) ≤ 2(g + h + 2(k− 2)), which implies g + h ≤
4− k ≤ 1, a contradiction. Q. E. D. Claim 3

Claim 4. For all i and j,

(3.2.28) (rank of Ri) + (rank of Sj) ≥ (rank of Ri + Sj)

The inequality is strict if and only if pij ≥ 2.

Proof. Direct computation verifies the claim. Q. E. D. Claim 4

By Claim 3, we may assume from now on that R1 has at least as many
edges as it has connecting vertices. Equivalently, R1 has an internal vertex
or a cycle.

Claim 5. If g = 1, i.e., if G1 = R1, then case (c.1) applies.

Proof. If each Sj has no internal vertex and is a tree, then G2 has |E2| =∑
j p1j − h edges. Using (3.2.26) with g = 1, we have |E2| = k − 1, which

contradicts |E2| ≥ k. Thus, without loss of generality, S1 has at least as
many edges as it has vertices. Assume h ≥ 2. Since G does not have a 1-
separation, S2 has at least two vertices in common with G1. Shift the edge
set of S2 from E2 to E1. The resulting pair (E0

1 , E0
2) corresponds to the

subgraphs R1 +S2 and S1 +S3 + · · ·+Sh of G and, with the aid of (3.2.28),
is easily checked to be an l-separation of M with l < k. But this contradicts
the minimality of k. Thus, h = 1. By (3.2.26), G1 = R1 and G2 = S1 have
k vertices in common, so case (c.1) holds. Q. E. D. Claim 5

From now on, we assume g ≥ 2.
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Claim 6. If in L(R1, . . . , Rg, S1, . . . , Sh) the node Sj has degree 2, then
the subgraph Sj of G contains exactly one edge.

Proof. By the assumption, the subgraph Sj of G has two vertices in com-
mon with R1, . . . , Rg. Suppose the edge set of Sj , say E′, has at least two
edges. Then (E′, E−E′) is a 2-separation of M , which is not possible since
k ≥ 3. Q. E. D. Claim 6

Claim 7. Case (c.2) applies.

Proof. Shift the edge sets of R2, . . . , Rg from E1 to E2. The resulting par-
tition (E1

1 , E1
2) of E corresponds to graphs R1 and G1

2 = R2+· · ·+Rg+S1+
· · ·+ Sh. By (3.2.28), that partition is easily seen to be an l-separation of
M with l ≤ k. By the minimality of k, we have l = k. Then by Claim 5, R1

and G1
2 have exactly k vertices in common, and G1

2 is connected. Suppose
S1, S2, . . . , St are the Sj graphs that have vertices in common with R1.
Since G1

2 is connected, so is the graph L(R2, . . . , Rg, S1, . . . , Sh). Indeed,
the latter graph is obtained from L(R1, . . . , Rg, S1, . . . , Sh) by the removal
of node R1, and thus, by Claim 1, has g + h − 1 nodes and g + h − 2
arcs. Hence, L(R2, . . . , Rg, S1, . . . , Sh) is a tree. Any tip node of that tree
must correspond to some Sj , 1 ≤ j ≤ t, since otherwise G and M are
1-separable. For the same reason, t ≥ 2. Let S1 be a tip node of the
tree. Then the subgraph S1 of G has exactly one vertex in common with
R2 + · · ·+ Rg + S1 + · · ·+ Sh.

Similar arguments show that the graphs R1 + S1 and R2 + · · ·+ Rg +
S2 + · · · + Sh also correspond to a k-separation of G and M . Thus, we
conclude the following. R1 and R2 + · · ·+ Rg + S1 + · · ·+ Sh have exactly
k vertices in common. R1 + S1 and R2 + · · · + Rg + S2 + · · · + Sh also
have exactly k vertices in common. S1 and R2 + · · ·+ Rg + S2 + · · ·+ Sh

have exactly one vertex in common. The last three statements imply that
R1 and S1 have exactly one vertex in common. Hence, the node S1 in
L(R1, . . . , Rg, S1, . . . , Sh) has degree 2. By Claim 6, the subgraph S1 of G
contains just an edge.

Inductively, we now show that each of the subgraphs S2, . . . , St con-
tains just one edge. Specifically, we assume for some r < t, that S1, . . . ,
Sr have just one edge each. We then prove that one of the subgraphs Sj

of G, r + 1 ≤ j ≤ t, say Sr+1, has just one edge. For the case r + 1 = t,
we also show that t = h = k and g = 2. We omit the detailed arguments
since they are very similar to the above ones.

It remains to be shown that each of R1 and R2 contains a cycle. We
know that each subgraph S1, . . . , Sh has just one edge. So if R1 or R2 has
no cycle, i.e., is a tree, then G has a degree 2 vertex, and G and M are
2-separable, a contradiction. Thus, (c.2) holds. Q. E. D. Claim 7

The above claims clearly establish Theorem (3.2.25).
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Theorem (3.2.25) has several important results as corollaries. They
are the main reason why, in this book, we prefer Tutte connectivity over
vertex or cycle connectivity for graphs.

(3.2.29) Corollary. Let M be the graphic matroid of a connected graph
G. For any k ≥ 2, M is k-connected if and only if this is so for G.

Proof. By Lemma (3.2.23), any l-separation of G is an l-separation of M .
Via Theorem (3.2.25), we argue that any l-separation of M with minimal l
implies that G has an l-separation, as follows. The cases (a), (b), and (c.1)
of the theorem are straightforward. For case (c.2), the graphs R1 + S1 +
· · ·+ Sh and R2 produce the desired l-separation of G.

(3.2.30) Corollary. Let G be a connected plane graph. Then for any
k ≥ 2, G is k-connected if and only if this is so for the dual graph G∗.

Proof. By Corollary (3.2.29) and matroid duality, the graphs G and G∗

and the matroids M and M∗ are all k-connected if this is so for any one of
these graphs and matroids.

Recall from Chapter 2 that a matrix A is connected if the associated
bipartite graph BG(A) is connected. It is easily seen that A is not connected
if and only if A is a trivial matrix, i.e., of size m×0 or 0×m, for some m ≥ 1,
or A has a row or column without 1s, or A has a block decomposition. Let
us apply this result to a binary matrix B representing a graphic matroid
M . It is easily checked via (3.2.16) that B is 2-connected if and only if B
is connected. Correspondingly, we define the matroid M to be connected if
it is 2-connected. Note that “G is connected” is a statement quite different
from “B is connected” or “M is connected.” The latter two statements are
by Corollary (3.2.29) equivalent to “G is 2-connected.” Admittedly, the use
of “connected” has become a bit confusing by the above definitions. But
that use is so well accepted in matroid theory that we employ it here, too.
The next corollary summarizes the above relationship for future reference.

(3.2.31) Corollary. Let G be a connected graph and B be a representa-
tion matrix of the graphic matroid M of G. Then G is 2-connected if and
only if B (and hence M) is connected.

Finally, we have the following characterization of a 3-connected graph
in terms of any representation matrix of its graphic matroid.

(3.2.32) Corollary. The following statements are equivalent for a con-
nected graph G with edge set E and for any representation matrix B of
the graphic matroid M of G.

(i) G is 3-connected.
(ii) If |E| ≥ 2: G has no loops or coloops.

If |E| ≥ 4: G has no parallel or series edges. Furthermore, deletion of
at most two stars does not produce a disconnected graph.
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(iii) M is 3-connected.
(iv) B is connected, has no parallel or unit vector rows or columns, and

has no partition as in (3.2.16) with GF(2)-rank D1 = 1, D2 = 0, and
|X1 ∪ Y1|, |X2 ∪ Y2| ≥ 3.

(v) Same as (iv), but |X1 ∪ Y1|, |X2 ∪ Y2| ≥ 5.

Proof. Corollary (3.2.29) proves (i)⇐⇒ (iii). The implications (i)⇐⇒ (ii)
and (iii) ⇐⇒ (iv) are easily seen, and (iv) =⇒ (v) is trivial. The possibly
surprising (v) =⇒ (iv) is established by a straightforward checking process
as follows. In B of (3.2.16), assume GF(2)-rank D1 = 1 and D2 = 0. If
the length of B1 is 3 or 4, then B can be seen to have a zero column or
row, or parallel or unit vector rows or columns. Any such case is already
excluded by the first part of (iv). Thus, it suffices to require |X1 ∪ Y1| ≥ 5,
and by duality, |X2 ∪ Y2| ≥ 5.

In the remainder of this section, we address the following questions:
How are the graphs related that produce a given graphic matroid? How
can one obtain a graph that generates a given graphic matroid? When does
a binary matrix correspond to a graphic matroid?

Graph 2-Isomorphism

We begin with the first question. So let M be a graphic matroid. Declare
any two connected graphs G and H that produce M to be 2-isomorphic.
Necessarily, G and H have the same edge set, say E. Each one of the
following sets of edge subsets of G or H completely determines M , and
thus must be the same for G and H: the set of trees, the set of cycles,
the set of cotrees, and the set of cocycles. For the same reason, G and H
have the same rank function, the same k-separations for any k ≥ 1, and
the same connectivity. Despite the numerous relationships between G and
H, these graphs may be quite different. For example, in (3.2.34) below,
the first graph and the last graph of the sequence are quite distinct, yet
will be shown to be 2-isomorphic.

We start with the case where M is 1-separable. We claim that the
2-connected components of G, say G1, G2, . . . , Gt, are connected in tree
fashion. By Theorem (3.2.25), G consists of p ≥ 2 connected subgraphs
that are connected in tree fashion. Select a case with p maximum. If one of
the subgraphs is not 2-connected, then that subgraph itself consists of q ≥ 2
subgraphs that are connected in tree fashion. Evidently, this contradicts
the maximality of p. By 2-isomorphism, the edge set of each 2-connected
component Gi of G must be that of a 2-connected component, say Hi, of
H. Thus, H1, H2, . . . , Ht are the 2-connected components of H, which
are also connected in tree fashion. We emphasize that the tree structure
produced by G1, . . . , Gt may be entirely different from that of H1, . . . , Ht.
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If for all i, we had Gi = Hi, then we would have completely explained
the difference between G and H. But this may not be so. Thus, we must
understand the relationships between 2-connected but different Gi and Hi.
To simplify the notation, we assume M , G, and H to be themselves 2-
connected. The next lemma shows that G is equal to H if we strengthen
that assumption to 3-connectedness.

(3.2.33) Lemma. Let G and H be 3-connected and 2-isomorphic graphs.
Then G = H.

Proof. By trivial checking, we may assume that G has at least six edges.
Let Z be any star of G. By Corollary (3.2.32) (ii), Z is a cocycle of G and
G\Z is 2-connected. Thus, Z is a cocycle of H and H\Z is 2-connected.
This is only possible if Z is a star of H. We conclude that each star of G
is one of H, and vice versa. Then G = H.

By Lemma (3.2.33) and the earlier discussion, just one case remains,
where M , G, and H are 2-connected and 2-separable. Take a 2-separation
of G. It induces two subgraphs G′ and G′′. Assume that identification of
nodes k and l of G′ with nodes m and n, respectively, of G′′ produces G.
Instead, let us identify k of G′ with n of G′′, and l of G′ with m of G′′.
Here is an example of this operation.

(3.2.34)
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Example of switching operation

Roughly speaking, we have switched the nodes of attachment of G′ with
G′′. For this reason, we say that the new graph is obtained from G by a
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switching. It is easy to see that G and the new graph have the same set of
cycles. Thus, they are 2-isomorphic.

Let G′ and G′′ be the just-defined subgraphs of a 2-separation of
G. The graph G′ may not be 2-connected. By Theorem (3.2.25), the
2-connected components of G′ are connected in tree fashion. That tree
must be a path, since otherwise G is 1-separable. Apply the same argu-
ments to G′′. Combine the two observations. Thus, G has 2-connected
subgraphs, say G1, G2, . . . , Gt, for some t ≥ 2, that are connected in cycle
fashion. In the notation of Theorem (3.2.25), G1+G2+· · ·+Gt = G. By 2-
isomorphism, H also has 2-connected subgraphs, say H1, H2, . . . , Ht, where
for all i, Gi and Hi have the same edge set. Clearly, H1+H2+· · ·+Ht = H.
We now establish how the Hi are linked in H.

(3.2.35) Lemma. H1, H2, . . . , Ht are connected in cycle fashion.

Proof. Each 2-connected Gi with at least two edges constitutes one side
of a 2-separation of G. By 2-isomorphism and Theorem (3.2.25), this also
holds for the 2-connected Hi and H. Thus, Hi has exactly two nodes in
common with the remaining subgraphs Hj of H. The same conclusion
holds trivially if Gi and Hi have just one edge. Let C be any cycle of G
that includes at least one edge of Gi and at least one edge of some Gj ,
j 6= i. Then C must include at least one edge each from G1, G2, . . . , Gt.
The analogous fact holds for the Hi. These observations imply that H1,
H2, . . . , Ht are connected in cycle fashion.

We now link 2-isomorphism and switching.

(3.2.36) Theorem. Let G and H be 2-connected and 2-isomorphic
graphs. Then H may be obtained from G by switchings.

Proof. If G is 3-connected, Lemma (3.2.33) applies. Otherwise, as ex-
plained above, for some t ≥ 2, let G1, G2, . . . , Gt be 2-connected subgraphs
of G linked in cycle fashion and satisfying G1 + G2 + · · · + Gt = G. By
Lemma (3.2.35), the corresponding 2-connected subgraphs H1, H2, . . . , Ht

of H are connected in cycle fashion as well.
Consider G1 by itself. Join the two nodes that G1 has in common with

the remaining Gi, i ≥ 2, by an edge u. Let G′
1 be the resulting 2-connected

graph. Analogously, add an edge u to H1, getting H ′
1. By the structure of

G and H, the graphs G′
1 and H ′

1 are 2-isomorphic. By induction, G′
1 can by

switchings be transformed to H ′
1. The same switchings can be performed

in G when we view the edge u of G′
1 as representing G2 + · · ·+ Gt. Thus,

by certain switchings, every Gi of G becomes Hi. Finally, the subgraphs
Hi of the new G can by switchings be so positioned that H results.

Chapter 10 includes a polynomial algorithm that for a given graphic
matroid M finds a graph G producing M . The algorithm can even de-
termine whether an arbitrary binary matroid is graphic. The algorithm
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essentially consists of two subroutines. One of them is called the graphic-
ness testing subroutine. We describe and validate it next, using Theorem
(3.2.36).

Graphicness Testing Subroutine

The input to the subroutine consists of a matrix B′ given by

(3.2.37)
b

z

B' = BX

Y

Input matrix for graphicness testing subroutine

The submatrix B indexed by X and Y is known to be graphic. Also given
is a graph G that produces B. That graph is known to be 3-connected or
to be a subdivision of a 3-connected graph. In the subroutine, we want to
decide whether B′ is graphic. We first analyze the relationships among B′,
B, b, and G.

We know that the row index set X of B is a tree of G. Let Z be the
set of rows x ∈ X for which bx = 1. In the tree X of G, paint each edge of
Z red. We leave the remaining edges of X unpainted.

Suppose B′ is graphic. Let H ′ be a graph for B′, with the edges of
Z painted red as in G. In that graph, the set X is also a tree. Moreover,
according to the column vector b and the painting rule, the red edges must
form a fundamental cycle with the edge z. Thus, the red edges form a
path in H ′ as well as in H ′\z = H. The graph H generates B, as does G.
Hence, the 2-connected G and H are 2-isomorphic. By Theorem (3.2.36),
H is obtainable from G by switchings. Thus, graphicness of B′ implies that
G can by switchings be transformed to a graph where the red edges form
a path.

Conversely, assume that G can by switchings be changed into a graph
H where the red edges form a path. Add an edge z to H whose endpoints
are those of the path. Let H ′ be the resulting graph. Then in H ′ the
fundamental cycle that z forms with X is {z} ∪ Z, and thus, H ′ generates
B′. Therefore, B′ is graphic.

Recall that any graph G to be processed by the graphicness testing
subroutine either is 3-connected or is a subdivision of a 3-connected graph.
In the first case, no switchings are possible. Thus, B′ is graphic if and
only if the red edges form a path in G. Assume the second case, i.e., G is
a subdivision of a 3-connected graph. Then in any 2-separation of G, the
edge set of one side is readily seen to be a subset of some series class of
G. Evidently, any switching amounts to a resequencing of some edges of
the series class. Conversely, any resequencing of the edges of a series class



48 Chapter 3. From Graphs to Matroids

can clearly be accomplished by switchings. It is a trivial matter to check
whether resequencing of series class edges can result in a red path. Thus,
we can readily decide whether B′ is graphic. We leave it to the reader to
write down the rules formally.

Suppose B′ is found to be graphic. The subroutine then outputs the
graph H ′ and stops. If B′ has been determined to be not graphic, then the
subroutine says so and stops.

We demonstrate the subroutine with four examples. In the first case,
we have

(3.2.38)
1
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d
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b

0
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1
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1
1

h i z

1
1

0

0
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1 0
0 1

1 1 0
0 0 1

B' = X

Example 1 for graphicness test

The graph G

(3.2.39)

f

he
a

b

c g
d i

Graph G for Example 1

produces the submatrix B of B′ indexed by X and Y . Evidently, G is
isomorphic to the wheel W4 plus one additional edge and is 3-connected.
According to our graphicness test for B′, the edges of X corresponding to
the 1s in column z of B′ must be painted red. Thus, we paint the edges b
and d. These red edges form a path, so B′ is graphic. In G, we join the
two endpoints of that path by an additional edge z to obtain the following
graph for B′.

(3.2.40)
f

he
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c g
d i

z

Graph H ′ for Example 1
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That graph is isomorphic to K5, the complete graph on five vertices. Thus,
B′ of (3.2.38) represents up to index changes M(K5), the graphic matroid
of K5.

The second example involves the matrix

(3.2.41)

0 1

1

f

e 1 1

g h
Y

0
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b

01
1

z
0 1

0
B' = X

0
c
d

0 1 1 0
1

1 1

Example 2 for graphicness test

A graph G for the submatrix B indexed by X and Y is given by

(3.2.42)
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h

e

Graph G for Example 2

Evidently, the graph is a subdivision of the 3-connected wheel W3. This
time, we must paint the edges a, d, and e red. The red edges do not form
a path, but we can obtain a path by resequencing a and f as well as d and
h. Following such sequencing, we join the endpoints of the resulting red
path by a new edge z to obtain the graph

(3.2.43)
f

h

e
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b

c

g

d
z

Graph H ′ for Example 2

Thus, B′ is graphic. We leave it to the reader to verify that the graph for
B′ is isomorphic to K3,3, the complete bipartite graph with three vertices
on either side. We conclude that B′ of (3.2.41) represents up to index
changes M(K3,3), the graphic matroid of K3,3.
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For the third example, we re-index and repartition the transpose of
the matrix of (3.2.38) to get

(3.2.44)
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Example 3 for graphicness test

A graph G producing B is

(3.2.45)
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Graph G for Example 3

The graph is clearly a subdivision of the 3-connected wheel W3. This time
we must paint the edges d, e, and f red. Obviously, no resequencing of d
and g, of e and h, and of f and i can result in a red path. Thus, B′ is not
graphic. Since it is up to indexing the transpose of the matrix of (3.2.38),
it represents up to a change of indices M(K5)∗. Thus, that matroid is not
graphic.

For the fourth case, we re-index and repartition the transpose of the
matrix of (3.2.41) as

(3.2.46)
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Example 4 for graphicness test

The graph G of (3.2.47) below produces the submatrix B of B′ indexed by
X and Y . Evidently, G is isomorphic to the 3-connected wheel W4.
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(3.2.47)
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Graph G for Example 4

According to column z of B′, we paint in G all edges of X red. The red
edges do not form a path in G. Thus, B′ is not graphic. Since B′ is up to
a re-indexing the transpose of the matrix of (3.2.41), it represents up to a
change of indices M(K3,3)∗. Thus, that matroid is not graphic.

The last two examples establish the following result.

(3.2.48) Lemma. The matroids M(K5)∗ and M(K3,3)∗ are not graphic.

There are easier ways to prove Lemma (3.2.48). The matroid M(K5)∗

has ten elements and rank 6. Thus, a graph for that matroid has ten edges
and seven nodes. Since M(K5)∗ is 3-connected, the degree of each node
of the graph is at least 3. But then the graph must have at least eleven
edges, a contradiction. The matroid M(K3,3)∗ has nine elements and rank
4. Since contraction of any edge in K3,3 reduces that graph to the 3-
connected wheel graph W4, deletion of any element from M(K3,3)∗ must
result in a 3-connected minor. We conclude that a graph for M(K3,3)∗ must
have nine edges and five nodes, and deletion of any edge from that graph
must produce a 3-connected minor. There is only one candidate graph. It
is K5 minus one edge. But that graph has two vertices of degree 3, and
the deletion of some edge produces a 2-separable minor, a contradiction.

We conclude this section by recording the existence of the polynomial
graphicness testing subroutine.

(3.2.49) Lemma. There is a polynomial algorithm, called the graphic-
ness testing subroutine, for the following problem. Input is a binary matrix
B′ = [B | b], where B is graphic. Also given is a graph G for B. It is known
that G is 3-connected or is a subdivision of a 3-connected graph. The al-
gorithm decides whether B′ is graphic. In the affirmative case, a graph H
for B′ is also produced.

We mentioned earlier that the graphicness testing subroutine will in
Chapter 10 be combined with a second subroutine to a polynomial test
for graphicness of binary matroids. That second subroutine carries out the
following task. It analyzes the connectivity of the binary matroid for which
graphicness is to be decided. In doing so, the subroutine converts the given
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problem into a sequence of subproblems, each of which can be solved by
the above graphicness testing subroutine.

In the next section, we extend the class of graphic matroids to the
class of binary matroids.

3.3 Binary Matroids Generalize Graphic

Matroids

So far, we have used graphs to create the graphic matroids. In the process,
we have developed quite a few matroid concepts. In this section, we gener-
alize the graphic matroids to the binary ones. Indeed, the definitions and
concepts for graphic matroids introduced in the preceding section are al-
ready so rich that most of them need at most a trivial adjustment to make
them suitable for binary matroids. Thus, this section is long on definitions
and short on motivation of concepts and explanations.

The reader familiar with matroid theory will surely notice that many
results of this section hold for general matroids, not just binary ones. In
the next section, 3.4, we include a list of these results. We cover binary
matroids here in such detail for two reasons. First, we want to exhibit how
features and properties of matroids are motivated by elementary linear
algebra arguments. Binary matrices and matroids are the perfect vehicle
to display that relationship. Second, the techniques and arguments of this
section are used in much more complicated settings in subsequent chapters.
The discussion of this chapter thus sets the stage and prepares the reader
for that material.

We proceed as follows. We define the binary matroids via binary
matrices, along with fundamental concepts such as base, circuit, cobase,
cocircuit, rank function, and representation matrix. We introduce matroid
minors via the reduction operations of deletion and contraction and explain
the effect these operations have on bases, circuits, cobases, and cocircuits.

Next, we describe (Tutte) k-separations and k-connectivity. We link
these concepts to the related ones for graphs. At that time, we are ready for
a census of the 3-connected binary matroids with at most eight elements.

In this book, the presentation relies heavily on what we call the matrix
viewpoint of binary matroids. In the remainder of the section, we show
that other viewpoints are just as important. In particular, we introduce
the submodularity of the rank function and prove with that concept a basic
3-connectivity result. We now begin the detailed presentation.

Binary Matroid

Let F be a binary matrix with a column index set E. Let I be the collection



3.3. Binary Matroids Generalize Graphic Matroids 53

of subsets Z ⊆ E such that the column submatrix of F indexed by Z has
GF(2)-independent columns. We consider Z = ∅ to be in I. The sets
Z of I are independent. Declare M = (E, I) to be the binary matroid
generated by F . The set E is the groundset of the matroid. A base X
of M is a maximum cardinality subset of I. Equivalently, X indexes the
columns of a GF(2)-basis of F . A circuit C of M is a minimal subset of E
that is not contained in any base of M . Equivalently, C indexes a GF(2)-
mindependent column submatrix of F . A cobase Y of M is the set E −X
for some base X . A cocircuit C∗ of M is a minimal subset of E that is not
contained in any cobase of M . The rank of a subset Z ⊆ E, denoted by
r(Z), is the cardinality of a maximal independent subset contained in Z.
The function r(·) is the rank function of M . Collect in a set I∗ all cobases
Y of M and all their subsets. The sets Z∗ of I∗ are co-independent. The
pair M∗ = (E, I∗) is the dual matroid of M .

Suppose M is the graphic matroid of a connected graph G with edge
set E. Then a base (resp. a circuit, a cobase, a cocircuit, the rank function)
of M is a tree (resp. a cycle, a cotree, a cocycle, the rank function) of G.

Representation Matrix

Suppose a matrix A is deduced from F by elementary row operations.
Clearly, GF(2)-independence of columns is not affected by such a change.
Thus, we may determine I from A instead of F . A special case is as follows.
First, we delete GF(2)-dependent rows from F , getting, say, F ′. Second,
we perform binary row operations to convert the column submatrix of F ′

indexed by some base X to an identity. With Y = E −X , we thus have
for some binary matrix B,

(3.3.1)
BA = IX

X Y

Matrix A for matroid M with base X

We allow the special cases X = ∅ or Y = ∅. B is then a trivial or empty
matrix. The information contained in A is also conveyed by the submatrix
B of A, which has the form

(3.3.2) B

Y

X

Matrix B for matroid M with base X

The binary B is a representation matrix of M . We also say that B rep-
resents M over GF(2). In the literature, the term standard representation
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matrix is sometimes used for A or B. The matrix F is then a nonstan-
dard representation matrix. But we almost always work with B, so the
abbreviated terminology suffices.

Bases, circuits, and the rank function of M manifest themselves in B
as follows. For any partition of X into X1 and X2 and of Y into Y1 and
Y2, we assume B to be partitioned as

(3.3.3) X1
B =

Y1

B1

D1X2

Y2

B2

D2

Partitioned version of B

Base, Rank Function

A set Z ⊆ E is a base of M if and only if X2 = Z∩X and Y1 = Z∩Y induce
a partition in B where B1 is square and GF(2)-nonsingular. More generally,
let Z be an arbitrary subset of E. Then B1 defined via X2 = Z ∩X and
Y1 = Z ∩ Y has GF(2)-rank k if and only if Z has rank r(Z) = |X2|+ k in
M .

Circuit

Let C ⊆ E. Define X2 = C ∩X and Y1 = C ∩Y . Then C is a circuit of M
if and only if in B of (3.3.3), the number of 1s in the rows of B1 (resp. D1)
is even (resp. odd), and for any proper subset C′ ⊂ C, the corresponding
(B1)′ and (D1)′, defined by X ′

2 = C′ ∩X and Y ′
1 = C′ ∩ Y , do not satisfy

that parity condition. Note that Y1 = C ∩ Y and the parity condition
uniquely determine X2, and thus B1 and D1.

Recall that a {0, 1} matrix is column Eulerian if each row contains an
even number of 1s, or equivalently, if the columns sum (in GF(2)) to 0.
By the above discussion, any circuit of M indexes a column submatrix of
A = [I | B] that is column Eulerian. Conversely, any column submatrix
of A that is column Eulerian and that does not contain a proper column
submatrix with that property corresponds to a circuit of M .

We describe three special cases of circuits using the above notation.

Loop

Suppose |C| = 1, say C = {y}. The element y is a loop of M . Necessarily,
Y1 = {y}, and column y of B must be a zero vector. Conversely, any zero
column vector of B corresponds to a loop.
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Parallel Elements, Triangle

Suppose |C| = 2. The two elements of C, say y and z, are said to be
parallel. Both elements of C cannot be in X , so we may assume y ∈ Y .
Two cases are possible. We have either X2 = {z} and Y1 = {y}, or X2 = ∅
and Y1 = {y, z}. In the first case, column y of B is a unit vector with 1 in
row z. In the second case, columns y and z of B are parallel. Conversely, a
column unit vector or two parallel columns of B correspond to two parallel
elements of M . If |C| = 3, then C is a triangle.

Fundamental Circuit

Suppose |C| ≥ 2 and |Y1| = 1, say Y1 = {y}. Then X2 is the index set
of the rows of B with 1s in column y, and C = X2 ∪ {y}. The circuit C
is called the fundamental circuit the element y forms with the base X of
M . The fundamental circuits Cy that the elements y ∈ Y form with X
allow a fast construction of B. Indeed, each column y ∈ Y of B is the
characteristic vector of Cy − {y}. That is, column y has 1s in the rows
indexed by Cy − {y}, and 0s elsewhere.

Cobase, Cocircuit

Cobases and cocircuits of M are exhibited by B as follows. Let Z ⊆ E. As
before, define X2 = Z ∩X , X1 = X −X2, Y1 = Z ∩ Y , and Y2 = Y − Y1.
By the earlier definition of base and cobase, the set Z is a base of M and
Z∗ = E − Z = X1 ∪ Y2 is a cobase of M if and only if in the transpose of
B,

(3.3.4) (D

Y2

Y1 (B1)
t 1)

t

)(D
2 t

)(B2 t
Bt =

X1 X2

Transpose of B of (3.3.3)

the submatrix (B1)t is square and GF(2)-nonsingular. Append to Bt an
identity matrix, getting

(3.3.5)
Y IA*=

Y X

Bt

Bt with additional identity matrix
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Evidently, Z∗ is a cobase of M if and only if Z∗ indexes the columns of a
GF(2)-basis of A∗.

Let C∗ ⊆ E, X1 = C∗ ∩ X , X2 = X − X1, Y2 = C∗ ∩ Y , and
Y1 = Y − Y2. Then C∗ is a cocircuit of M if and only if the earlier
described circuit condition holds for C∗ and Bt instead of C and B. We
describe three special cases in terms of B.

Coloop

Suppose |C∗| = 1, say C∗ = {x}. The element x is a coloop of M . Neces-
sarily, X1 = {x}, and row x of B must be a zero vector. Conversely, any
zero row vector of B corresponds to a coloop.

Coparallel or Series Elements, Triad

Suppose |C∗| = 2. The two elements of C∗, say x and z, are said to be
coparallel or in series. Both elements cannot be in Y , so we may assume
x ∈ X . Two cases are possible. We have either X1 = {x} and Y2 = {z},
or X1 = {x, z} and Y2 = ∅. In the first case, row x of B is a unit vector
with 1 in column z. In the second case, rows x and z of B are parallel.
Conversely, a row unit vector or two parallel rows of B correspond to two
series elements of M . If |C∗| = 3, then C∗ is a triad.

Fundamental Cocircuit

Suppose |C∗| ≥ 2, and |X1| = 1, say X1 = {x}. Then Y2 is the index set of
the columns of B with 1s in row x, and C∗ = Y2 ∪ {x}. The cocircuit C∗

is called the fundamental cocircuit the element x forms with the cobase Y
of M . Analogously to the circuit case, the fundamental cocircuits permit
a fast construction of B.

Binary Spaces

We relate circuits and cocircuits of M to binary spaces on E, i.e., to the
linear subspaces of GF(2)E. Specifically, consider the nullspace S of A of
(3.3.1), which is given by {s | A · s = 0}. Evidently, the vectors s ∈ S with
minimal support are exactly the characteristic vectors of the circuits of M .
Any basis of these vectors generates S.

By definition of M∗ from A∗ of (3.3.5), the minimal support vectors
of the nullspace S∗ = {s∗ | A∗ · s∗ = 0} of A∗ are exactly the characteristic
vectors of the cocircuits of M∗.

So, in a way, the circuits of M generate S. Correspondingly, the
cocircuits produce S∗, which is well known (and easily proved) to be the
orthogonal complement of S.
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Intersection of Circuits and Cocircuits

Frequently, a judicious choice of the base X and the cobase Y of M produces
a B that simplifies the proof of some result. Equivalently, we may want to
proceed by GF(2)-pivots from a given representation matrix of M to some
other one to exhibit a particular aspect of M . The pivots were covered
in Section 2.3, and also in (3.2.12). Thus, we omit details about that
operation.

Here is an example result that is easily proved with a clever choice of
X and Y . That result ties circuits to cocircuits by a parity condition.

(3.3.6) Lemma. Let C (resp. C∗) be a circuit (resp. cocircuit) of a
binary matroid M . Then |C ∩ C∗| is even.

Proof. Choose a cobase Y that contains all elements of C∗ save one, say x.
Let B be the related matrix. Thus, row x of B is the characteristic vector
of C∗ − {x}. If x ∈ C (resp. x 6∈ C), then by the previously described
parity condition for circuits, row x of B has an odd (resp. even) number
of 1s in the columns indexed by C ∩ Y . Either case proves |C ∩ C∗| to be
even.

Of course, Lemma (3.3.6) also follows trivially from the just-cited or-
thogonality of the binary spaces S and S∗ produced by the circuits and
cocircuits, respectively, of M .

Symmetric Difference of Circuits

We should mention the following result about circuits.

(3.3.7) Lemma. Let C1 and C2 be two circuits of a binary matroid M .
Then (C1 ∪ C2) − (C1 ∩ C2), the symmetric difference of C1 and C2, is a
disjoint union of circuits of M .

Proof. Given B, define A = [I | B]. As observed earlier, the column
submatrix of A indexed by C1 (resp. C2) is column Eulerian. The same
fact holds for the column submatrix indexed by Z = (C1∪C2)− (C1∩C2).
Thus, the columns indexed by Z are GF(2)-dependent. Hence, Z contains
a circuit C. Then Z−C is also column Eulerian, and the desired conclusion
follows by induction.

Note that the proof of Lemma (3.3.7) remains valid when each of C1

and C2 is a disjoint union of circuits. Thus, we have the following seemingly
more general result.

(3.3.8) Lemma. Let each of C1 and C2 be a disjoint union of circuits
of a binary matroid M . Then the symmetric difference of C1 and C2 is a
disjoint union of circuits of M .
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Deletion, Contraction, Reduction

We turn to deletions and contractions of binary matroids. Any such oper-
ation is a reduction.

The operations are defined as follows. Let B be the matrix of (3.3.2)
representing M . Thus, B is

(3.3.9) B

Y

X

Matrix B for matroid M with base X

A deletion of an element w ∈ E from M leads to a matroid M represented
as follows. If w is not a coloop of M , select any representation matrix B
of M where w ∈ Y . Delete column w from B. The resulting matrix B
represents M . It is easy to verify that the same M results, regardless of
which specific B is selected to determine B. The proof consists of showing
that all possible B are obtainable from each other by GF(2)-pivots. If w
is a coloop of M , we declare the deletion to be a contraction, which is
covered next. A contraction of an element u ∈ E in M leads to a matroid
M represented as follows. If u is not a loop of M , select any representation
matrix B of M where u ∈ X . Delete row u from B. The resulting matrix
B represents M . Here, too, the outcome does not depend on the selection
of the specific B. If u is a loop, declare the contraction to be a deletion.

Even after the discussion of deletions and contractions for graphs and
graphic matroids in Sections 2.2 and 3.2, the reader may still be a bit puz-
zled that we have declared the deletion of a coloop of M to be a contraction,
and the contraction of a loop of M to be a deletion. Below, we motivate
these rules using the matrix A = [I | B]. Suppose we intend to delete an
element w from M . Our goal is to transform A to a matrix A = [I | B] so
that the index sets of independent column submatrices of A are precisely
the index sets of independent column submatrices of A that do not include
w. Note that this goal is a generalization of the goal for edge deletions in
graphs, as covered in Section 2.2. There we relied on tree subsets instead
of independent column submatrices. It turns out that we must consider
three cases of A to determine the desired A. In the first case, w indexes a
column of B. Then deletion of column w from A, and thus from B, gives
the desired A and B. This case is covered by the deletion rule given above.
In the second case, w indexes a column of the identity I, and row w of B
is nonzero. Then by row operations in A, or equivalently by a GF(2)-pivot
in B, we achieve the first case, again in conformance with the deletion rule
given above. The third case is like the second one, except that row w of B
is zero. Note that w is then a coloop of M . Suppose we delete column w
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from A. Then row w of the resulting matrix A′ is zero and has no influ-
ence on the independence of column subsets of A′. Thus, we might as well
drop that row from A′. But these two steps, deletion of column w from
A followed by deletion of row w, correspond precisely to the deletion of
row w from B, and thus to the contraction of the coloop w. The situation
for the contraction of a loop may be explained in the same manner using
A∗ = [I | Bt] instead of A.

Uniqueness of Reductions

Let U and W be two disjoint subsets of E. Suppose we contract the
elements of U and delete the elements of W . In a moment, we outline
a proof showing that the outcome is not affected by the order in which
the reductions are carried out. Assuming that result, we are justified in
denoting the resulting unique matroid by M/U\W . Any such matroid is
a minor of M . For convenience, we consider M itself to be a minor of
M . Analogously to the case of G/U\W in Section 2.2, we may simplify
the notation for M/U\W . Thus, we may write M/U , M\W , M/u when
U = {u}, etc.

That the order of the reductions is irrelevant may be shown by in-
duction as follows: One reverses the sequence of two successive reduction
steps and proves that this change has no effect on the outcome. We leave
it to the reader to carry out the elementary case analysis. Note that the
preceding uniqueness result for reduction sequences is at variance with the
situation for graphs. According to Section 2.2, the ordering of reduction
sequences does matter when graphs are involved. Indeed, in that section we
introduced a technical device to enforce a certain ordering. We have just
seen that the sequence of the reductions is irrelevant in binary matroids,
and thus in graphic matroids. This implies that the graphs producible by
differing sequences must all correspond to the same matroid minor. Thus,
all such graphs are 2-isomorphic. In this book, we almost always look at
graphs from the matroid standpoint, and can afford to ignore differences
between 2-isomorphic graphs. Indeed, any one graph of a collection of 2-
isomorphic candidates may be used to carry out proofs or to develop ideas
about matroids. These facts motivated our choice of the technical device
of Section 2.2.

Circuit/Cocircuit Condition

Analogously to the case for graphs, for any minor M of M , there are disjoint
U, W ⊆ E such that U contains no circuit, W contains no cocircuit, and
M = M/U\W . We say that such U and W satisfy the circuit/cocircuit
condition. The proof of the existence of U and W is almost trivial. We
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know that a representation matrix for M can be deduced from one for M
by a sequence of operations, each of which is a GF(2)-pivot or the deletion
of a row or column. We could perform all GF(2) pivots initially, then carry
out the deletion of rows and columns. Let U be the index set of the rows
so deleted, and W be that of the columns. Clearly, U and W satisfy the
circuit/cocircuit condition, and M = M/U\W as desired.

Bases, Cobases, Circuits, and Cocircuits of Minors

Sometimes, it is convenient to assume the circuit/cocircuit condition. An
instance comes up next. We want to express bases, cobases, circuits, and
cocircuits of a minor M = M/U\W in terms of the related sets of M .
We claim that the formulation below suffices if U and W satisfy the cir-
cuit/cocircuit condition.

(3.3.10)

The set of bases of M = M/U\W is
{X − U | U ⊆ X ⊆ E −W ; X = base of M};
the set of cobases of M is
{X∗ −W | W ⊆ X∗ ⊆ E − U ; X∗ = cobase of M}

(3.3.11)

The set of circuits of M = M/U\W consists of
the minimal members of
{C − U | C ⊆ E −W ; C = circuit of M};
the set of cocircuits of M consists of
the minimal members of
{C∗ −W | C∗ ⊆ E − U ; C∗ = cocircuit of M}

Validation of (3.3.10) and (3.3.11) is not difficult. By the circuit/cocircuit
condition on U and W , contraction of U and deletion of W may be trans-
lated to submatrix-taking in some matrix B of (3.3.9) representing M .
Thus, one only needs to examine the effect of such submatrix-taking on
bases, cobases, circuits, and cocircuits. We omit the arguments since they
closely follow the presentation of Section 3.2 about minors of graphic ma-
troids.

Display of Minor, Visible Minor

Let M with representation matrix B have M as a minor. Suppose B
represents M . If B is a submatrix of B, then we say that B displays M
via B, or more briefly, that B displays M . Note that the submatrix of
B claimed to be B must match not only the numerical entries, but also
the row and column index sets of B. We also say that the minor M is
visible by the display of B in B. By the definition of minor via pivots and
row/column deletions, we have the following simple but useful lemma.
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(3.3.12) Lemma. Let M be a binary matroid with a minor M , and B
be a representation matrix of M . Then M has a representation matrix B
that displays M via B and thus makes the minor M visible.

Two special cases of Lemma (3.3.12) involve so-called contraction and
deletion minors, to be discussed next.

Contraction Minor

Define a minor M of M on a set E to be a contraction minor of M if
for some U ⊆ E, M = M/U . If M is the graphic matroid of a graph G,
then any minor of G corresponding to a contraction minor of M is called a
contraction minor of G. The next lemma shows how a contraction minor
M manifests itself in representation matrices of M displaying M .

(3.3.13) Lemma. The following statements are equivalent for any binary
matroid M and any minor M of M . Let B be a representation matrix of
M .

(i) M is a contraction minor of M .
(ii) M has a representation matrix B displaying M via B, where B is of

the form

(3.3.14)
X

U

B 0

WY

B =
0 1

X

Y

Matrix B displaying contraction minor M

(iii) Every representation matrix B of M displaying M via B is of the form
given by (3.3.14).

Proof. Assuming (i), we deduce (iii) as follows. Let B display M via B.
Thus, B is of the form given by (3.3.14), except that possibly the submatrix
of B indexed by X and W may not be zero. Assume that submatrix to
be nonzero. Now M = M/(U ∪W ) by assumption. Then by the rule for
contractions, a matrix for M is produced from B by deletion of the rows
of U , followed by one or more pivots and deletion of one or more rows,
and finally by deletion of some zero columns. But the resulting matrix has
fewer rows than B and cannot represent M , a contradiction. Trivially, (iii)
implies (ii). Finally, the contraction rule proves that (ii) implies (i).

Suppose we have a representation matrix B of a binary matroid M .
Assume that B displays a minor M of M . Then parts (ii) and (iii) of
Lemma (3.3.13) provide a simple way of ascertaining whether or not M is
a contraction minor of M . In the notation of (3.3.14), the answer is “yes”
if and only if the submatrix of B indexed by X and W is 0.
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Deletion Minor

A minor M = M\W is a deletion minor of M . Correspondingly to the
contraction case, we define deletion minors of a graph G via those of the
graphic matroid of G. By duality, Lemma (3.3.13) implies the following
result.

(3.3.15) Lemma. The following statements are equivalent for any binary
matroid M and any minor M of M . Let B be a representation matrix of
M .
(i) M is a deletion minor of M .
(ii) M has a representation matrix B displaying M via B, where B is of

the form

(3.3.16)

Y

B =

Y

U

X B

0

W

X 0
1

Matrix B displaying deletion minor M

(iii) Every representation matrix B of M displaying M via B is of the form
given by (3.3.16).

Addition, Expansion, Extension

Addition and expansion are the inverse operations of deletion and contrac-
tion. Thus, an addition (resp. expansion) corresponds to the adjoining of a
column (resp. row) to a given B. An extension is an addition or expansion.
We denote additions by “+” and expansions by “&.” For example, a ma-
trix for M&U+W is obtained from one for M by adjoining rows indexed
by U and columns indexed by W . Suppose the matroid so created is a
minor of some other matroid. Then without further specification, the en-
tries in the added rows and columns are well defined. For example, suppose
M = M/U\W where U and W observe the circuit/cocircuit condition. Let
U ⊆ U and W ⊆ W . Then M&U+W is taken to be M/(U−U)\(W −W ).
We use a simplified notation for extensions analogously to that for reduc-
tions. Thus, we may write M&U , M+W , M&u when U = {u}, etc.

Deletion, Contraction, Addition, Expansion in Dual
Matroid

By definition, deletions (resp. contractions) of M correspond to the re-
moval of columns (resp. rows) from an appropriately chosen B. Recall that
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Bt represents M∗. Thus, deletions (resp. contractions) of M correspond
to contractions (resp. deletions) in M∗. Put differently, for any disjoint
subsets U and W of E, (M/U\W )∗ = M∗/W\U . Furthermore, additions
(resp. expansions) in M correspond to expansions (resp. additions) in M∗.

Matroid Isomorphism

Two matroids are isomorphic if they become equal upon a suitable rela-
beling of the elements. Analogously to the case of graph minors, a given
matroid M may be a minor of a matroid M , or may only be isomorphic to
a minor of M . In the first situation, we say, as expected, that M is a minor
of M , or that M has M as a minor. But in the second case, we frequently
abbreviate “M has a minor isomorphic to M” to “M has an M minor.”

k-Separation and k-Connectivity

We turn to separations and the connectivity of M . Let B be partitioned
as in (3.3.3), i.e.,

(3.3.17) X1
B =

Y1

B1

D1X2

Y2

B2

D2

Partitioned version of B

If for some k ≥ 1,

(3.3.18)
|X1 ∪ Y1|, |X2 ∪ Y2| ≥ k

GF(2)-rank D1 + GF(2)-rank D2 ≤ k − 1

then (X1 ∪ Y1, X2 ∪ Y2) is a Tutte k-separation, for short k-separation, of
B and M . The k-separation is exact if the rank condition of (3.3.18) holds
with equality. B and M are Tutte k-separable, for short k-separable, if they
have a k-separation. For k ≥ 2, B and M are Tutte k-connected, for short
k-connected, if they have no l-separation for 1 ≤ l < k. When M is 2-
connected, we also say that M is connected. Let M be the graphic matroid
of a graph G. If M is connected (i.e., 2-connected), then by Corollary
(3.2.29), G is 2-connected. Thus, connectedness of M is not the same as
connectedness of G. We mentioned this problem previously in Section 3.2.

The two connectivity corollaries (3.2.31) and (3.2.32) for graphs and
graphic matroids have easy extensions to the general binary case, as follows.
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(3.3.19) Lemma. Let M be a binary matroid with a representation
matrix B. Then M is connected if and only if this is so for B.

Proof. Via (3.3.17) and (3.3.18), it is easily checked that B is connected if
and only if it is 2-connected. Thus, M is 2-connected, and hence connected,
if and only if B is connected.

(3.3.20) Lemma. The following statements are equivalent for a binary
matroid M with set E and a representation matrix B of M .

(i) M is 3-connected.

(ii) B is connected, has no parallel or unit vector rows and columns, and
has no partition as in (3.3.17) with GF(2)-rank D1 = 1, D2 = 0, and
|X1 ∪ Y1|, |X2 ∪ Y2| ≥ 3.

(iii) Same as (ii), but |X1 ∪ Y1|, |X2 ∪ Y2| ≥ 5.

Proof. (i) ⇐⇒ (ii) follows directly from the definition of 3-connectivity,
and (ii) =⇒ (iii) is trivial. Finally, (iii) =⇒ (ii) is established as follows.
In B of (3.3.17), assume GF(2)-rank D1 = 1 and D2 = 0. If the length of
B1 is 3 or 4, then B can be seen to have a zero column or row, or parallel
or unit vector rows or columns. Any such case is already excluded by the
first part of (ii). Thus, it suffices to require |X1 ∪ Y1| ≥ 5, and by duality,
|X2 ∪ Y2| ≥ 5.

Census of Small Binary Matroids

It is instructive that we include a census of small 3-connected binary ma-
troids, say on n ≤ 8 elements. In that census, we refer to graphic and
cographic matroids and their graphic and cographic representation matri-
ces. We have discussed such matroids in detail in Section 3.2. We also
refer to regular and nonregular matroids, which are defined via a property
of real matrices termed total unimodularity. Let us take up the latter con-
cepts one by one. A real matrix A is totally unimodular if every square
submatrix D of A has detIR D = 0 or ±1. In particular, all entries of a
totally unimodular matrix must be 0 or ±1. A binary matroid M is regular
if in some binary representation matrix B of M the 1s can be so signed so
that a {0,±1} real totally unimodular matrix results.

We shall motivate these definitions in Chapter 9. For the time being,
we just state without proof two of the many important properties of reg-
ular matroids. First, a binary matroid M is regular if and only if every
representation matrix B can be signed to become a real totally unimodular
matrix. Second, every graphic or cographic matroid is regular. Because
of the first property, it makes sense that we define a binary matrix to be
regular if its 1s can be signed so that a real totally unimodular matrix re-
sults. That property also implies that the dual matroid and every minor
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of a regular matroid are regular. Finally, we know from Section 3.2 that
graphicness and cographicness are maintained under minor-taking.

Here is the promised census of the 3-connected binary matroids with
n ≤ 8 elements. It may be verified by straightforward enumeration of cases.

n = 0: M is the empty matroid.

n = 1: M consists of a loop or a coloop; the representation matrix B is
the 0× 1 or 1× 0 trivial matrix, respectively.

n = 2: M consists of two parallel elements. We may also consider the
two elements to be in series. At any rate, B = [ 1 ].

n = 3: M is a triangle, i.e., a circuit with three elements, or a triad, i.e.,
a cocircuit with three elements. In the first case, B = [ 1/1 ]. In
the second case, B = [ 1 1 ].

n = 4, 5: There is no 3-connected binary matroid with four or five elements.

n = 6: M is the graphic matroid M(W3), where W3 is the wheel with
three spokes. Up to pivots, B is the matrix

(3.3.21)
0
1 1 0
1 0 1

11

Matrix representing graphic matroid M(W3)

Note that up to this point, all matroids have been graphic and cographic.

n = 7: M is the Fano matroid F7 given by

(3.3.22)
0

1

1 1
1B7 = 1 10

0 1 1

1

Matrix representing Fano matroid F7

or its dual F ∗
7 given by (B7)t. We claim that F7, and hence

F ∗
7 , are not regular. Indeed, if B7 is signed so that all 2 × 2

submatrices have {0,±1} real determinants, then up to column
and row scaling, B7 is already that matrix. But the first three
columns of B7 define a 3× 3 matrix with real determinant equal
to 2. The name is based on the fact that the matroid is the
Fano plane, which is the projective geometry PG(2,2). The seven
elements of the matroid are the points of the geometry.
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n = 8: If M is regular, then M is the graphic matroid of M(W4), where
W4 is the wheel with four spokes. Up to pivots, B is the matrix

(3.3.23)
0

1

00
1 1

1

1 1 00
0 0 1

1
0

Matrix representing graphic matroid M(W4)

If M is nonregular, then M is one of two matroids given by

(3.3.24)

01
01 1

0

1 1
B8.1 = 00

11 1 1

1
0

Matrix B8.1 representing nonregular matroid
with eight elements, case 1

and

(3.3.25)

1
1

1 0 1 1
B8.2 =

0 1 1 1

011
101 1

Matrix B8.2 representing nonregular matroid
with eight elements, case 2

The matroid represented by B8.2 is the affine geometry AG(2,3),
which has eight points corresponding to the eight binary vectors
with three entries each. A subset of the points is (affinely) GF(2)-
mindependent if the corresponding subset of vectors has even car-
dinality and is linearly GF(2)-dependent, and if it is minimal with
respect to these two conditions. For that matroid, contraction
(resp. deletion) of any element produces the nonregular matroid
F7 (resp. F ∗

7 ) as a minor. Thus, that matroid is highly nonregular.
In contrast, deletion of any row or column from B8.1 produces a
matrix that represents a regular matroid.

So far, we have stressed what one might call the matrix viewpoint of
binary matroids. As we shall see in Section 3.4, that notion can be extended
to general matroids using matrices termed abstract. The main advantage
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of that notion is the fact that a binary matrix (or in general, an abstract
matrix) displays numerous bases, circuits, cobases, and cocircuits of the
matroid simultaneously. For this reason, we view matrices (binary, or over
other fields, or abstract) to be an important tool of matroid theory.

There are, however, other and equally important viewpoints. One of
them considers the rank function r(·) of M as a main tool. Recall that
this function was defined via B of (3.3.17) as follows. For any subset
Z ⊆ E, let X2 = Z ∩ X and Y1 = Z ∩ Y . By (3.3.17), X1 = X − X2

and Y1 index the submatrix B1 of B. Then declare the rank of Z to be
r(Z) = |X2|+GF(2)-rank B1. The utility of the rank function largely rests
upon a property called submodularity. Section 2.3 includes a definition of
submodularity for functions defined on matrices. There it is shown that
the matrix rank function is submodular. Shortly, we define submodularity
for functions that map the subsets of a set E to the nonnegative integers.
We then prove the matroid rank function to be submodular.

The matrix viewpoint, the rank function viewpoint, as well as sev-
eral others not mentioned so far (e.g., the geometric viewpoint, the lattice
viewpoint — see the books cited in Chapter 1), have advantages and dis-
advantages. Intuitively speaking, matrices very conveniently display bases,
circuits, cobases, and cocircuits that differ just by a few elements. On the
other hand, the relationships between radically different bases, circuits,
etc., are not well exhibited. The rank function approach, as well as sev-
eral others, treats all such cases evenly. Indeed, for the solution of several
problems involving radically different bases, circuits, etc., the rank function
seems particularly suitable.

The results described in this book rely largely on the matrix viewpoint.
But the reader should not be misled by this fact. It just turns out that the
results of this book are nicely treatable by matrices. But there are a number
of problems of matroid theory where other approaches, in particular ones
relying on the rank function, are superior to the matrix technique employed
here. Below, we describe two simple instances that exhibit the power of
the rank function approach. But first we express the defining k-separation
conditions of (3.3.18) in terms of r(·).

k-Separation Condition for Rank Function

(3.3.26) Lemma. Let M be a binary matroid on a set E and with rank
function r(·). Suppose E1 and E2 partition E. Then (a) and (b) below
hold.

(a) (E1, E2) is a k-separation of M if and only if

(3.3.27)
|E1|, |E2| ≥ k

r(E1) + r(E2) ≤ r(E) + k − 1
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(b) (E1, E2) is an exact k-separation of M if and only if

(3.3.28)
|E1|, |E2| ≥ k

r(E1) + r(E2) = r(E) + k − 1

Proof. (a) To establish the “only if” part, take any representation matrix
B of M , say indexed by X and Y as before. Define for i = 1, 2, Xi =
Ei ∩X and Yi = Ei ∩ Y . Let these sets partition B as in (3.3.17). Since
|E1|, |E2| ≥ k, we have |X1∪Y1|, |X2∪Y2| ≥ k. By the definition of r(·), we
have for i = 1, 2, r(Ei) = |Xi| + GF(2)-rank Di, and r(E) = |X1| + |X2|.
Since r(E1)+r(E2) ≤ r(E)+k−1, we have |X1|+GF(2)-rank D1 + |X2|+
GF(2)-rank D2 ≤ |X1|+|X2|+k−1, or GF(2)-rank D1+GF(2)-rank D2 ≤
k− 1. Thus, by (3.3.18), (X1 ∪ Y1, X2 ∪ Y2) = (E1, E2) is a k-separation of
M . For the proof of the “if” part, one reverses the above arguments.
(b) This follows from the proof of (a) by suitable replacement of some
inequalities by equations.

We now define the submodularity property and prove that the rank
function r(·) has that property.

Submodularity of Rank Function

A function f(·) from the set of subsets of a finite set E to the nonnegative
integers is submodular if for any subsets S, T ⊆ E,

(3.3.29) f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T )

(3.3.30) Lemma. r(·) is a submodular function.

Proof. Take any binary representation matrix of M . Let A1, A2, A3, and
A4 be the column submatrices of A = [I | B] corresponding to the column
index sets S, T , S∪T , and S∩T , respectively. Evidently, A4 is a submatrix
of A1, A2, and A3, and both A1 and A2 are submatrices of A3. Let B4 be a
basis of A4. For i = 1, 2, 3, extend B4 to a basis of Ai, say by adjoining Bi.
Evidently, the number of columns of [B4 | B1], [B4 | B2], [B4 | B3], and
B4 is the matroid rank of S, T , S ∪ T , and S ∩ T , respectively. Thus, the
submodularity inequality (3.3.29) holds if and only if B1 and B2 together
have at least as many columns as B3. The latter condition holds since by
the construction, [B4 | B3] is a basis of A3, while [B4 | B1 | B2] spans all
columns of A3.

We use submodularity of r(·) in the proof of the next result. Define
M c©z to be the matroid obtained from M/z by deletion of the elements
of each parallel class except for one representative of each class. Similarly,
derive M d©z from M\z by contracting the elements of each series class
except for one representative of each class.
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(3.3.31) Lemma. Let M be a 3-connected binary matroid on a set E.
Take z to be any element of E. Then M c©z or M d©z is 3-connected.

Proof. The arguments below rely repeatedly on three observations that
follow directly from (3.3.10) and (3.3.11). First, if a set is not a circuit (resp.
cocircuit) of M , then it cannot be a circuit (resp. cocircuit) in any minor
derived from M by deletions only (resp. contractions only). In particular,
the 3-connected matroid M has no parallel or series elements, and thus, for
any element z, the minor M\z (resp. M/z) has no parallel (resp. series)
elements. Second, if an element z is not a coloop (resp. loop) of M , then
M\z (resp. M/z) has the same rank as M . Third, the rank of a set Z ⊆ E
drops at most by 1 when an element z 6∈ Z is contracted, and stays the
same when z 6∈ Z is deleted.

Assume the lemma fails, i.e., for some 3-connected M and z ∈ E, both
M c©z and M d©z are 2-separable. Let (P ′, Q′) be a 2-separation of M c©z.
We know that no two elements of M c©z are in parallel. Thus, |P ′| ≥ 3
or P ′ contains two series elements. The obvious assignment of the parallel
elements by which M/z and M c©z differ converts (P ′, Q′) to a 2-separation
(P, Q) of M/z where P ⊇ P ′ and Q ⊇ Q′. Since M is 3-connected, M/z
has no series elements. If |P ′| = 2 and P ′ = P , then P must be a set of
two series elements in M/z, which is impossible. Thus, |P ′| = 2 implies
|P | ≥ 3. We conclude |P | ≥ 3 in general, and |Q| ≥ 3 by symmetry. Using
duality, M d©z must have a 2-separation (R, S) with |R|, |S| ≥ 3.

Assume |P ∩R| ≤ 1. Then |P ∩ S|, |Q∩R| ≥ 2. The same conclusion
holds if |Q ∩ S| ≤ 1. Thus, we may assume |P ∩ R|, |Q ∩ S| ≥ 2 or
|P ∩ S|, |Q ∩ R| ≥ 2. By symmetry, we may suppose that the former
situation holds.

Denote by r(·), rM/z(·), and rM\z(·) the rank functions of M , M/z,
and M\z, respectively. Since (P, Q) and (R, S) are 2-separations of M/z
and M\z, respectively, we have

(3.3.32)
rM/z(P ) + rM/z(Q)≤ rM/z(E − {z}) +1
rM\z(R)+ rM\z(S) ≤ rM\z(E − {z}) +1

Now rM/z(P ) ≥ r(P ∪ {z})− 1, rM/z(Q) ≥ r(Q ∪ {z})− 1, and rM/z(E −
{z}) = r(E)− 1. Also, rM\z(R) = r(R), rM\z(S) = r(S), and rM\z(E −
{z}) = r(E). We use these relationships to deduce from (3.3.32) the in-
equalities

(3.3.33) r(P ∪ {z}) + r(Q ∪ {z})≤ r(E) + 2
r(R) + r(S) ≤ r(E) + 1

By submodularity, we also have

(3.3.34) r(P ∩R)+ r(P ∪R ∪ {z})≤ r(P ∪ {z}) + r(R)
r(Q ∩ S) + r(Q ∪ S ∪ {z}) ≤ r(Q ∪ {z})+ r(S)
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Add the two inequalities of (3.3.33). Similarly, add the two inequalities of
(3.3.34). The resulting two inequalities imply

(3.3.35) [r(P ∩R)+ r(Q ∪ S ∪ {z})]
+ [r(Q ∩ S) + r(P ∪R ∪ {z})]≤ 2r(E) + 3

But then at least one of the pairs (P ∩R, Q∪S ∪{z}) and (Q∩S, P ∪
R ∪ {z}) must be a 2-separation of M , which is not possible.

Along the same lines, but with much simpler arguments, one can prove
the following lemma. We leave the proof to the reader.

(3.3.36) Lemma. Let M be a connected binary matroid on a set E.
Take z to be any element of M . Then M/z or M\z is connected.

We conclude this section by proving that submodularity of the r(·)
function and submodularity of the GF(2)-rank function are equivalent. To
show this, we assume S and T to be subsets of E for a binary matroid
M with a binary representation matrix B. Let the customary index sets
X and Y of B be partitioned into X0, X1, X2, X3, and Y0, Y1, Y2, Y3,
respectively, so that

(3.3.37)

X0 = X − (S ∪ T )
X1 = X ∩ (S − T )
X2 = X ∩ (S ∩ T )
X3 = X ∩ (T − S)
Y0 = Y − (S ∪ T )
Y1 = Y ∩ (S − T )
Y2 = Y ∩ (S ∩ T )
Y3 = Y ∩ (T − S)

Let the partitions of X and Y induce the following partition of B.

(3.3.38)
B11 B12 B13

B21 B23B22

B31 B32 B33

Y1 Y0Y3Y2

Y

X2

X1

X0

X3

X

0
1

Partitioned version of B
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Define submatrices D1, D2, D3, D4 of B as in (2.3.9), i.e.,

(3.3.39)

B11 B12

B21 B22 ;D1 =
B23B22

B32 B33
D2 =

;B21 B23B22D3 =
B12

B22

B32

D4 =

Submatrices D1, D2, D3, D4 of B

By the discussion following (3.3.3), the equations below relate the GF(2)-
rank of the Di to the matroid rank of S, T , S ∪ T , and S ∩ T .

(3.3.40)

r(S) = |X1|+ |X2|+ GF(2)-rank D1

r(T ) = |X2|+ |X3|+ GF(2)-rank D2

r(S ∪ T ) = |X1|+ |X2|+ |X3|+ GF(2)-rank D3

r(S ∩ T ) = |X2|+ GF(2)-rank D4

Then clearly the submodularity inequality for r(·), which is r(S) + r(T ) ≥
r(S ∪ T ) + r(S ∩ T ), holds if and only if this is so for the submodularity
inequality for the GF(2)-rank function, which is GF(2)-rank D1 + GF(2)-
rank D2 ≥ GF(2)-rank D3 + GF(2)-rank D4.

In the next section, we move from binary matrices to abstract ones.
Correspondingly, we obtain all matroids instead of just the binary ones.

3.4 Abstract Matrices Produce All
Matroids

Binary matrices produce the binary matroids. In a natural extension, we
could consider matrices over fields other than GF(2) and the matroids pro-
duced by them. We skip that step. Instead, we move in this section directly
to abstract concepts of independence, bases, circuits, and rank, and in the
process create the entire class of matroids. We also introduce abstract ma-
trices as a generalization of matrices over fields, and we describe some of
their features. Routine arguments prove that the abstract matrices gen-
erate all matroids, and that the matroids produce all abstract matrices.
Indeed, one may view abstract matrices as one way of encoding matroids.
Abstract matrices exhibit many features of linear algebra. They also dis-
play several properties of matroids rather conveniently, and we have found
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them to be very useful. In particular, they often help one to detect and
prove new structural results that are hidden from view when, instead, one
thinks of a matroid as a construction via certain sets, functions, geometries,
or operators.

Abstract matrices behave to quite an extent like binary matrices. This
fact explains why so many seemingly special results for binary matroids
hold for the general case. To support that claim, toward the end of this
section we list results of Section 3.3 for binary matroids that, sometimes
after an elementary modification, hold for general matroids. We are now
ready for the detailed discussion.

Definition of General Matroid

Let E be a set of vectors over some field F . A central result of linear
algebra says that for any given subset of vectors of E, the bases of that
subset have the same cardinality. We abstract from this fact the axioms
for general matroids as follows. A matroid M on a ground set E is a pair
(E, I), where I is a certain subset of the power set of E. The set I is the
set of independent subsets of M . A subset of E that is not in I is called
dependent. The set I must observe the following axioms.

(3.4.1)

(i) The null set is in I.
(ii) Every subset of any set in I is also in I.
(iii) For any subset E ⊆ E, the maximal subsets of E

that are in I have the same cardinality.

The cardinality of any maximal independent subset of any E ⊆ E is
called the rank of E. A base of M is a maximal independent subset of E.
A circuit is a minimal dependent subset of E. A cobase is the set E −X
for some base X . Let I∗ be the set of cobases and their subsets. The
pair M∗ = (E, I∗) is a matroid, as is easily checked. It is called the dual
matroid of M . A cocircuit of M is a circuit of M∗.

One can axiomatize matroids in terms of bases, circuits, and other
subsets of E, or by certain functions, geometries, and operators. It is
usually a simple, though at times tedious, exercise to prove equivalence of
these systems. Here we just include the axioms that rely on bases, circuits,
and the rank function.

Axioms Using Bases, Circuits, Rank Function

For bases, the axioms are as follows. Let B be a set of subsets of E. Suppose
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B observes the following axioms.

(3.4.2)

(i) B is nonempty.
(ii) For any sets B1, B2 ∈ B and any x ∈ (B1 − B2),

there is a y ∈ (B2−B1) such that (B1−{x})∪{y}
is in B.

Then B is the set of bases of a matroid on E.
Via circuits, we may define matroids as follows. Let C be the empty

set, or be a set of nonempty subsets of E observing the following axioms.

(3.4.3)

(i) For any C1, C2 ∈ C, C1 is not a proper subset of
C2.

(ii) For any two C1, C2 ∈ C and any z ∈ (C1 ∩ C2),
there is a set C3 ∈ C where C3 ⊆ (C1∪C2)−{z}.

Then C is the set of circuits of a matroid on E.
With the rank function, we specify a matroid as follows. Let r(·) be a

function from the power set of E to the nonnegative integers. Assume r(·)
satisfies the following axioms for any subsets S and T of E.

(3.4.4)
(i) r(S) ≤ |S|.
(ii) S ⊆ T implies r(S) ≤ r(T ).
(iii) r(S) + r(T ) ≥ r(S ∪ T ) + r(S ∩ T ).

Then r(·) is the rank function of a matroid on E.
We omit the proofs of equivalence of the systems. It is instructive,

though, to express each one of I, B, C, and r(·) in terms of the other ones.
We do this next.

Suppose I is given. Then B is the set of Z ∈ I with maximum car-
dinality. C is the set of the minimal C ⊆ E that are not in I. For any
E ⊆ E, r(E) is the cardinality of a maximal set Z ⊆ E that is in I.

Suppose B is given. Then I is the set of all X ∈ B plus their subsets.
C is the set of the minimal C ⊆ E that are not contained in any X ∈ B.
For any E ⊆ E, r(E) is the cardinality of any maximal set X ∩ E where
X ∈ B.

Suppose r(·) is given. Then I is the set of E ⊆ E where r(E) = |E|.
B is the set of Z ⊆ E for which |Z| = r(E). C is the set of the minimal
C ⊆ E for which r(C) = |C| − 1.

Abstract Matrix

We take a detour to introduce abstract matrices. We want to acquire a good
understanding of such matrices, since they not only represent matroids, but
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also display a lot of structural information about matroids that other ways
do not.

An abstract matrix B is a {0, 1} matrix with row and column indices
plus a function called abstract determinant and denoted by det. The func-
tion det associates with each square submatrix D of the {0, 1} matrix the
value 0 or 1, i.e., det D is 0 or 1. Note that numerically identical square
submatrices with differing row or column index sets may have different
determinants. The reader should not be misled by the symbols 0 and 1.
Indeed, for the moment, we do not view abstract matrices as part of some
algebraic structure. It turns out, though, that 0 and 1 allow a rather ap-
pealing use of linear algebra terms. For example, we call D nonsingular if
det D = 1, and singular otherwise.

The function det must obey several conditions. First, if D is the 1× 1
matrix [ 0 ] (resp. [ 1 ]), then det D = 0 (resp. det D = 1).

Second, for any nonempty submatrix B1 of B, the maximal nonsingu-
lar submatrices must have the same size. This condition may be rephrased
as follows. Start with some nonsingular submatrix of B1. Iteratively add a
row and a column such that each time another nonsingular submatrix re-
sults. Stop when no further enlargement is possible. The above maximality
condition demands that the order of the final nonsingular submatrix is the
same regardless of the choice of the initial nonsingular submatrix and of
the rows and columns added to it. The order of any such final nonsingular
submatrix is called the rank of B1. For the case where B1 is trivial or
empty, we declare rank B1 to be 0. Upon deletion of a column or row, we
demand that the rank drop at most by the rank of that row or column.

Third, the rank function of B must behave much like the rank function
of matrices over fields. In particular, for any partition of any submatrix of
B of the form

(3.4.5)
B11 B12 B13

B21 B23B22

B31 B32 B33

Partitioned submatrix of B

the submatrices

(3.4.6)

B11 B12

B21 B22 ;D1 =
B23B22

B32 B33
D2 =

;B21 B23B22D3 =
B12

B22

B32

D4 =

Submatrices D1, D2, D3, D4
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must observe

(3.4.7) rank D1 + rank D2 ≥ rank D3 + rank D4.

We call this property the submodularity of the rank function.
We summarize the above requirements as follows.

Axioms for Abstract Matrix

(3.4.8)

(i) If D = [Bxy], then det D = Bxy.
(ii) For all submatrices B1 of B: The maximal non-

singular submatrices of B1 have the same size,
called the rank of B1. When a row or column is
deleted from B1, the rank drops at most by the
rank of that row or column.

(iii) The rank function is submodular.

The transpose of an abstract matrix B is Bt with determinants defined as
follows. For any square submatrix B1 of B, det B1 is the determinant value
for the submatrix (B1)t of B. By symmetry of the conditions of (3.4.8),
Bt with its determinants is an abstract matrix, as expected.

We may create abstract matrices in several ways. In the simplest case,
we start with a matrix A over some field F . Then we declare B to be
the support matrix of A. Thus, B is a {0, 1} matrix. We turn B into an
abstract matrix as follows. We declare any square submatrix D of B to
be nonsingular if the corresponding submatrix of A is F -nonsingular, and
to be singular otherwise. Well-known linear algebra results plus Lemma
(2.3.11) imply that the axioms of (3.4.8) are satisfied.

Representation of Abstract Matrix

Suppose an abstract matrix B can be derived by the above construction
from a matrix A over some field F . We say that B is represented by A over
F . As an example, let A be the matrix

(3.4.9)

11d

1
0

f g h

1

0

e
a
b

1

c 1 1
1
1 1

1
0 1

0

Matrix A producing an abstract matrix B
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over GF(2). Then B is numerically identical to A, and the determinants
for the submatrices of B are given by the GF(2)-determinants of A. For
example, the submatrix D of B given by

(3.4.10)
g

a
1
1

h

1b
1

D =

Submatrix D of abstract matrix B

has det D = 0, since the related submatrix of A has GF(2)-determinant 0.
The example may be modified to produce an abstract matrix that is

not representable over any field. Let B and its determinants be as just
defined. Then change the determinant of D of (3.4.10) from 0 to 1. One
may check by enumeration that the new B observes the axioms of (3.4.8).
For a proof that the new B is not representable, suppose A over some field
F represents B. Then one readily shows that the rows and columns of A
can be scaled so that the matrix of (3.4.9) results. For D of (3.4.10) as
submatrix of the scaled A, we have detF D = 0. But for D as submatrix
of B, we have det D = 1, a contradiction.

For certain abstract matrices, the axioms of (3.4.8) completely deter-
mine the rank. For example, by axiom (ii) of (3.4.8), zero matrices have
rank 0. A more interesting instance is given in the next result.

(3.4.11) Lemma. Let B be an m×m triangular abstract matrix. Then
det B = 1 if and only if the diagonal of B contains only 1s.

Proof. The case m = 1 is immediate by (i) of (3.4.8). Thus, consider the
case m ≥ 2.

Assume that the diagonal of B has only 1s. For an inductive proof,
we partition B as

(3.4.12) 01

y Y

B =
BX

x

0
1

Triangular B with 1s on the diagonal

where B is triangular and has only 1s on the diagonal. Apply the sub-
modularity condition (3.4.7) as follows. Declare B22 (resp. B23, B32,
B33) to be the submatrix of B indexed by x and Y (resp. x and y, X
and Y , X and y); all other Bij are trivial or empty. Then by (3.4.6),
rank D1 = rank B22 = 0, rank D2 = rank B, rank D3 = 1, and by induc-
tion, rank D4 = m− 1. By submodularity, rank B ≥ 1 + (m− 1) = m, so
det B = 1.
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Assume now that the diagonal of B contains a 0. Thus, we may
partition B as

(3.4.13) B1X1
x

X2

yY1 Y2

0
0

1

B =

B2

0

Triangular B with a zero on the diagonal

where both B1 and B2 are square. By axiom (ii) of (3.4.8), the rows of B
indexed by X1 ∪ {x} have rank of at most |Y1|. The remaining rows of B
have rank of at most |X2|. Thus, again by axiom (ii) of (3.4.8), the rank
of B is at most |Y1|+ |X2| = |X1|+ |X2| ≤ m− 1. Hence, det B = 0.

(3.4.14) Corollary. The abstract matrices

(3.4.15) ;
0
0

0 ;
0
0

;
0
01

0
;

0
11

0 0
01

1

Small singular abstract matrices

are singular. The matrices

(3.4.16) 1
0

1 ; ;
1
0

0
11

1

Small nonsingular abstract matrices

are nonsingular. The matrix

(3.4.17) 1
1 1

1

Abstract matrix with determinant 0 or 1

may be singular or nonsingular.

Proof. Lemma (3.4.11) handles the cases of (3.4.15) and (3.4.16). A ma-
trix over GF(3) with support given by (3.4.17) may be GF(3)-singular or
GF(3)-nonsingular. This fact validates the claim about (3.4.17).

Note that the GF(2)-determinants of the matrices of Corollary (3.4.14)
agree with the abstract determinants, except possibly for the matrix of
(3.4.17).
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Abstract Matrices Encode Matroids

We claim that abstract matrices are nothing but one way of encoding ma-
troids. For a proof, we first assume that an abstract matrix B with row
index set X and column index set Y is at hand. We want to show that
B encodes some matroid. Define a rank function r(·) on E = X ∪ Y as
follows. Given Z ⊆ E, the sets X2 = Z ∩ X and Y1 = Z ∩ Y induce a
partition of B of the form

(3.4.18) X1
B =

Y1

B1

D1X2

Y2

B2

D2

Partitioned version of B

Then define

(3.4.19) r(Z) = |X2|+ rank B1.

(3.4.20) Lemma. r(·) is the rank function of a matroid.

Proof. We verify the rank axioms (3.4.4). Let S, T ⊆ E. Clearly r(S) ≤
|S|. A simple case analysis and axiom (ii) of (3.4.8) confirm that S ⊆ T
implies r(S) ≤ r(T ). Finally, r(S) + r(T ) ≥ r(S ∪ T ) + r(S ∩ T ) is argued
as at the end of Section 3.3, except that we use the abstract rank function
instead of the GF(2)-rank function.

Matroids Produce Abstract Matrices

Given a matroid M on E with rank function r(·), we want to show that
M may be encoded by some abstract matrix. Define X to be a base of M
and Y = E − X . For any y ∈ Y , the set X ∪ {y} must contain at least
one circuit. Indeed, there must be precisely one circuit in X ∪{y}, say Cy,
since otherwise there is a base X ′ contained in X ∪ {y} with cardinality
|X ′| ≤ |X | − 1. The circuit Cy is called the fundamental circuit that
y creates with X . Declare the characteristic vectors of the fundamental
circuits Cy, y ∈ Y , to be the columns of a matrix B. Thus, we have

(3.4.21)
B

Y

X

Matrix B for matroid M with base X

where for x ∈ X and y ∈ Y , we have Bxy = 1 if and only if x ∈ Cy.
We endow B with determinants as follows. Let B1 be a square submatrix
of B, say indexed by X1 ⊆ X and Y1 ⊆ Y as in (3.4.18). Then declare
det B1 = 1 if X2 ∪ Y1 is a base of M , and to be 0 otherwise.
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(3.4.22) Lemma. B and its determinants constitute an abstract matrix.

Proof. First, det[Bxy] = Bxy for all x ∈ X and y ∈ Y , due to the equiv-
alence of the following statements separated by semicolons: Bxy = 1; x is
in the fundamental cycle Cy; (X ∪ {y}) − {x} does not contain a circuit;
(X ∪ {y})− {x} is a base of M ; det[Bxy] = 1.

Next, let B1 be an arbitrary submatrix of B indexed by some X1 ⊆ X
and Y1 ⊆ Y . Define X2 = X − X1 and Y2 = Y − Y1. We prove that
the maximal square nonsingular submatrices D of B1 have same order.
Any such matrix D corresponds to a base of M that contains X2, that
is contained in X1 ∪ X2 ∪ Y1, and that, subject to these two conditions,
intersects Y1 as much as possible. By the independence axioms (3.4.1), the
cardinality of any such maximal intersection is the same regardless of which
independent subset of Y1 one starts with. We conclude that the maximal
nonsingular submatrices of B1 have same order. That order is the rank of
B1, denoted by rank B1.

The rank function r(·) of M is thus related to rank B1 by r(X2∪Y1) =
|X2| + rank B1. We apply the independence axioms of (3.4.1) to M and
verify that removal of a column or row from B1 reduces the rank at most
by the rank of the removed column or row. Finally, the arguments at the
end of Section 3.3 linking submodularity of r(·) with that of the GF(2)-
rank function are easily adapted to prove that the rank function for B is
submodular.

Thus, the axioms of (3.4.8) are satisfied, and B is an abstract matrix
as claimed.

The constructions of the proof of Lemmas (3.4.20) and (3.4.22) are
inverses of each other in the following sense. Let M be a matroid with a
base X . Define B to be the abstract matrix constructed from M in the
proof of Lemma (3.4.22). The matroid deduced from B in the proof of
Lemma (3.4.20) is M again. For this reason, we say that B represents M .

At this point, we have established an axiomatic link between abstract
matrices and matroids. We could explore the ways in which matroid con-
cepts manifest themselves in abstract matrices. But that discussion would
largely duplicate the material of Section 3.3 about binary matroids. So we
just sketch the definitions and relationships, and omit all proofs. Through-
out, B is an abstract matrix with row index set X and column index set
Y . The related matroid M on E = X ∪ Y has X as a base.

Column y ∈ Y of B is the characteristic vector of Cy −{y}, where Cy

is the fundamental circuit that y forms with X . Row x ∈ X of B is the
characteristic vector of C∗

x − {x}, where C∗
x is the fundamental cocircuit

that x forms with Y . Two parallel (resp. coparallel or series) elements of
M manifest themselves in two nonzero columns (resp. rows) of B of rank
1, or in a column (resp. row) unit vector. A loop (resp. coloop) of M is
indicated by a column (resp. row) of 0s. The transpose of B represents the
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dual matroid M∗ of M . Let U and W be disjoint subsets of E. Assume U
contains no circuit and W contains no cocircuit. Then there is a B where
X ⊇ U and Y ⊇ W . Delete from B the rows of U and the columns of
W , getting an abstract matrix B. Correspondingly, contraction of U and
deletion of W reduce M to the minor M = M/U\W , which is represented
by B. Furthermore, expansion by U and addition of W extend M to M .

Partition B as in (3.4.18). If for some k ≥ 1, |X1 ∪ Y1|, |X2 ∪ Y2| ≥ k
and rank D1 + rank D2 ≤ k − 1, then (X1 ∪ Y1, X2 ∪ Y2) is a k-separation
of B and M . Let k ≥ 2. If B and M have no l-separation, 1 ≤ l < k, then
they are k-connected. M is connected if it is 2-connected. Consistent with
Section 2.3, B is connected if the graph BG(B) is connected.

Abstract Pivot

We introduce pivots in abstract matrices. For comparison purposes, we
rewrite the GF(2)-pivot of (3.2.12) as follows. Given is the pivot element
Bxy = 1.

(3.4.23)

(3.4.23.1) We replace each Buw, u ∈ (X − {x}), w ∈ (Y −
{y}), by det2 Duw, where Duw is the submatrix
of B given by

Buy

Bxy

y w

x

u

Bxw

Buw
Du  =w

(3.4.23.2) We exchange the indices x and y.

Let B be the abstract matrix for M as before. A pivot on Bxy is to
produce the abstract matrix B′ corresponding to the base (X −{x})∪ {y}
of M . We claim that the following procedure generates the desired B′.

(3.4.24)

(3.4.24.1) We replace each Buw, u ∈ (X − {x}), w ∈ (Y −
{y}), by det Duw, where Duw is the submatrix of
B as given above.

(3.4.24.2) We exchange the indices x and y. Let B′ be the
resulting matrix.

(3.4.24.3) We endow the square submatrices D′ of B′ with
determinants. Let U ′ be the row index set of one
such D′, and W ′ be the column index set. Then
det D′ = det D for the submatrix D of B indexed
by U and W as specified below.

If y ∈ U ′, x ∈ W ′: U = U ′−{y}, W = W ′−{x}.
If y ∈ U ′, x 6∈ W ′: U = (U ′−{y})∪{x}, W ′ = W .
If y 6∈ U ′, x ∈ W ′: U = U ′, W = (W ′−{x})∪{y}.
If y 6∈ U ′, x 6∈ W ′: U = U ′ ∪ {x}, W = W ′ ∪ {y}.
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Validity of the procedure is argued as follows. By step (3.4.24.2),
X ′ = (X−{x})∪{y} and Y ′ = (Y −{y})∪{x} index the rows and columns,
respectively, of B′. By step (3.4.24.1), for u ∈ (X−{x}) and w ∈ (Y −{y}),
B′

uw = det Buw. Now det Duw = 1 if and only if (X − {x, u}) ∪ {y, w} is
a base of M . The latter set is (X ′ − {u}) ∪ {w}, so B′

uw is correctly
computed. The entries B′

yw (= Bxw), w ∈ (Y − {y}), are correct since
(X − {x}) ∪ {w} = (X ′ − {y}) ∪ {w}. Similarly, the entries B′

ux (= Buy),
u ∈ (X − {x}), are correct since (X − {u}) ∪ {y} = (X ′ − {u}) ∪ {x}.
Finally, B′

yx (= Byx = 1) since (X ′ − {y}) ∪ {x} = X , the assumed base
of M . Analogous arguments involving the sets U and W , instead of the
elements u and w, validate (3.4.24.3). We conclude that B′ is the abstract
matrix corresponding to the base X ′ = (X − {x}) ∪ {y} of M as claimed.

Except for the computationally tedious step (3.4.24.3), the pivot is
almost identical to the GF(2)-pivot of (3.4.23). Indeed, for 2 × 2 matri-
ces, Corollary (3.4.14) establishes an almost complete agreement between
GF(2)-determinants and abstract determinants. Thus, the step (3.4.24.1)
of an abstract pivot looks very much like the step (3.4.23.1) of a GF(2)-
pivot. Informally, one is tempted to say that general matroids behave
locally to quite an extent like binary matroids.

There remains, of course, the cumbersome step (3.4.24.3). But we can
always imagine that this step is implicitly carried out, without our actually
having to write down the list of determinant values. When we take that
attitude, the pivot operation becomes simple and useful.

Some Matroid Results

The similarity of local behavior of binary and general matroids is easily
demonstrated. We do this here by listing a number of results for general
matroids that by trivial modifications may be obtained from the results
for binary matroids proved in Section 3.3. In each case, the proof as given
in Section 3.3 suffices, or in that proof one simply substitutes an abstract
matrix whenever a binary one is employed. With each result, we cite in
parentheses the related result of Section 3.3.

(3.4.25) Lemma (see Lemma (3.3.6)). Let C (resp. C∗) be a circuit
(resp. cocircuit) of a matroid M . Then |C ∩ C∗| 6= 1.

(3.4.26) Lemma (see Lemma (3.3.12)). Let M be a matroid with a
minor M , and B be an abstract representation matrix of M . Then M has
an abstract representation matrix B that displays M via B and thus makes
the minor M visible.

(3.4.27) Lemma (see Lemma (3.3.13)). The following statements are
equivalent for any matroid M and any minor M of M . Let B be an abstract
representation matrix of M .
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(i) M is a contraction minor of M .
(ii) M has an abstract representation matrix B displaying M via B, where

B is of the form

(3.4.28)
X

U

B 0

WY

B =
0 1

X

Y

Matrix B displaying contraction minor M

(iii) Every abstract representation matrix B of M displaying M via B is
of the form given by (3.4.28).

(3.4.29) Lemma (see Lemma (3.3.15)). The following statements are
equivalent for any matroid M and any minor M of M . Let B be an abstract
representation matrix of M .

(i) M is a deletion minor of M .
(ii) M has an abstract representation matrix B displaying M via B, where

B is of the form

(3.4.30)

Y

B =

Y

U

X B

0

W

X 0
1

Matrix B displaying deletion minor M

(iii) Every abstract representation matrix B of M displaying M via B is
of the form given by (3.4.30).

(3.4.31) Lemma (see Lemma (3.3.19)). Let M be a matroid with an
abstract representation matrix B. Then M is connected if and only if this
is so for B.

(3.4.32) Lemma (see Lemma (3.3.20)). The following statements are
equivalent for a matroid M with set E and an abstract representation
matrix B.

(i) M is 3-connected.
(ii) B is connected, has no parallel or unit vector rows or columns, and

has no partition as in (3.4.18) with rank D1 = 1, D2 = 0, and |X1 ∪
Y1|, |X2 ∪ Y2| ≥ 3.
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(3.4.33) Lemma (see Lemma (3.3.26)). Let M be a matroid on a set
E and with rank function r(·). Suppose E1 and E2 partition E. Then (a)
and (b) below hold.

(a) (E1, E2) is a k-separation of M if and only if

(3.4.34)
|E1|, |E2| ≥ k

r(E1) + r(E2) ≤ r(E) + k − 1

(b) (E1, E2) is an exact k-separation of M if and only if

(3.4.35)
|E1|, |E2| ≥ k

r(E1) + r(E2) = r(E) + k − 1

(3.4.36) Lemma (see Lemma (3.3.31)). Let M be a 3-connected matroid
on a set E. Take z to be any element of E. Then M c©z or M d©z is 3-
connected.

(3.4.37) Lemma (see Lemma (3.3.36)). Let M be a connected matroid
on a set E. Take z to be any element of E. Then M/z or M\z is connected.

Aspects of Representability

In the remainder of this section and in the next one, we examine several
aspects of the representability of abstract matrices. Recall that an abstract
matrix B is represented by a matrix A of the same size and over some field
F if the following holds. For every square submatrix of B, the determinant
of that submatrix is 1 if and only if the F -determinant of the correspond-
ing submatrix of A is nonzero. We want to establish a direct connection
between the matroid M , defined by B, and any matrix A representing B
over some field F . To this end, we partition such A in agreement with the
partition of B of (3.4.18). Thus,

(3.4.38)

Y1

C1

Y2

X1
A =

A1

X2 A2

C2

Partitioned version of matrix A over field F

Evidently, the submatrix A1 of A corresponds to B1 of B. Assume these
submatrices to be square. We know that detF A1 6= 0 if and only if det B1 =
1. We also know that det B1 = 1 if and only if X2∪Y1 is a base of M . Thus,
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det A1 6= 0 if and only if X2 ∪ Y1 is a base of M . When this relationship
holds, we also say that A over F represents M .

We have seen that some abstract matrices are not representable over
any field. By definition, the same holds for some matroids. In particular,
the abstract matrix deduced from (3.4.9) by modifying the determinant of
D of (3.4.10) produces a matroid that is not representable over any field.

Deciding whether or not a matroid is representable over some field
is a nontrivial problem. Usually, one assumes that the matroid is given
by a black box or oracle that in unit time tells whether or not a subset
of E is independent in the matroid. No additional information about the
matroid is available. Under these assumptions, even representability over
GF(2) cannot be tested in polynomial time. Indeed, the same conclusion
can be drawn for a great many representability questions. There is one
extraordinary exception. One can test in polynomial time whether or not
a matroid is representable over every field. That representability problem
is intimately linked to the problem of deciding whether a matrix is totally
unimodular. Details are covered in Chapter 11.

Suppose an abstract matrix B and the related matroid M are repre-
sentable over some field F . Let A be a matrix over F proving this fact.
Then every matrix B′ derivable from B by one or more pivots is also repre-
sentable over F . For a proof, one carries out a pivot in B, say on Bxy = 1,
and a second F -pivot in A on Axy. Let B′ and A′ result. It is easily seen
that A′ establishes B′ to be representable over F . Combine this result with
the trivial observation that every proper submatrix of B and the transpose
of B are representable over F . We conclude that every minor of M and
the dual M∗ of M are representable over F .

It is easy to check that all matroids with at most three elements are
representable over every field. Couple this observation with the fact that
the taking of minors maintains representability. Evidently, a matroid M
not representable over a given field F must have a minor that also is not
representable over F , but all of whose proper minors are representable over
F . We call such a minor a minimal violator of representability over F . Not
much is known about the minimal violators for the various fields F . Com-
plete lists of the minimal violators exist only for the fields GF(2) and GF(3).
There is also a complete description for the case when representability over
every field is demanded. Beyond these cases, only incomplete results are
known.

For the case of GF(2), there is just one minimal violator. It is a
matroid on four elements called U2

4 . In the next section, we define that
matroid and prove the claim we just made. In Chapter 9, we determine
the minimal violators for GF(3) and for the case of representability over
every field. In both cases, there are just two minimal violators plus their
duals. As we shall see, abstract matrices and abstract pivots are useful for
the proof of the results for GF(2) and GF(3).
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3.5 Characterization of Binary Matroids

In this section, we characterize the binary matroids in several ways. In
particular, we prove that a certain matroid on four elements called U2

4 is
the only minimal violator of representability over GF(2). Accordingly, a
matroid is binary if and only if it has no U2

4 minors. To begin, we define,
for 1 ≤ m ≤ n, Um

n to be the matroid on n elements where every subset of
cardinality m is a base. It is easily checked that Um

n is indeed a matroid.
It is the uniform matroid of rank m on n elements.

Let M be a matroid on a set E. For an arbitrary base X of M ,
compute the abstract matrix B. Suppose M is representable over F . By
definition, there is a matrix A over F with B as support matrix, such that
for all corresponding submatrices D of B and D′ of A, detD = 1 if and
only if detF D′ 6= 0. If F is GF(2), evidently A is numerically identical to
B.

Consider Um
n , for 2 ≤ m ≤ n − 2. Since every set of cardinality

m is a base of Um
n , every abstract matrix B for that matroid is of size

m × n, contains only 1s, and has only nonsingular square submatrices. In
the related binary matrix A, all square submatrices of order at least 2
are GF(2)-singular. Thus, Um

n is nonbinary. The smallest nonbinary case
has 2 = m = n − 2, i.e., the matroid is U2

4 . Representability over any
field F is maintained under minor-taking. Thus, a binary matroid cannot
possibly have U2

4 minors. We now prove that absence of U2
4 minors implies

representability over GF(2).
Let M be a nonbinary matroid all of whose proper minors are binary.

Select any abstract representation B for M , and let A be the associated
binary matrix. Then there are minimal submatrices D of B and D′ of A
in the same position such that exactly one of det D and det2 D′ is 0. Since
every proper minor of M is binary, we must have D = B and D′ = A.
Since the entries of B agree with those of A, the order of B must be at
least 2.

If B is a zero matrix, then both det B and det2 A are zero, a contradic-
tion. Thus, B contains a 1, say Bxy = 1. If the order of B is greater than
2, we perform a pivot in B and the corresponding GF(2)-pivot in A. In
both cases, we delete the pivot row and pivot column. Let B′ and A′ result.
By the minimality assumptions on B′ and A′ and the rules (3.4.24.1) and
(3.4.23.1), the two matrices must agree numerically. By (3.4.24.3) and the
analogous rule of linear algebra for A, exactly one of detB′ and det2 A′

is zero. Thus, we have proved that a proper minor of M is not binary, a
contradiction. Hence, B is a 2× 2 matrix. By Corollary (3.4.14), there is
only one choice for B and A. That is, B is the abstract matrix of (3.4.17),
and A is also that matrix when viewed as binary. We include the two ma-
trices below in (3.5.1). Since exactly one of the determinants of B and A
is nonzero and det2 A = 0, we must have det B = 1.
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(3.5.1) 1
1

B =
1
1

;
1
1

A =
1
1

Abstract matrix B of minimal nonbinary matroid
and related binary matrix A

Evidently, M has four elements, and every 2-element subset is a base. Thus,
M is isomorphic to U2

4 . We record this conclusion and state and prove a
related corollary for future reference.

(3.5.2) Theorem. A matroid M is binary if and only if M does not
have U2

4 minors.

(3.5.3) Corollary. Let an abstract matrix B represent a nonbinary
matroid M . Let N be the binary matroid represented by the binary matrix
A that is numerically identical to B. Then M has a base that is not a base
of N .

Proof. Carry out the earlier proof, except that the proper minors of M
are not assumed to be binary. Accordingly, D and D′ may be proper
submatrices of B and A, respectively. By the pivot argument, we know that
det D = 1 and det2 D′ = 0. This implies that the base of M corresponding
to D is not a base of N .

The proof of Theorem (3.5.2) implies the following statement. A ma-
troid M is nonbinary if and only if M has an abstract representation matrix
B with a 2× 2 submatrix D that is nonsingular and that contains only 1s.
This fact leads to an elementary proof of the following theorem.

(3.5.4) Theorem. The following statements are equivalent for a matroid
M on a set E.

(i) M is binary.
(ii) For any circuit C and cocircuit C∗, |C ∩ C∗| is even.
(iii) The symmetric difference of two circuits is a disjoint union of circuits.
(iv) The symmetric difference of two disjoint unions of circuits is a disjoint

union of circuits.
(v) The symmetric difference of two distinct circuits contains a circuit.
(vi) Given any distinct circuits C1 and C2, and any two elements e, f ∈

(C1 ∩ C2), there is a circuit C3 ⊆ [(C1 ∪ C2)− {e, f}].
(vii) For any base X and Y = E − X , any circuit C is the symmetric

difference of the fundamental circuits Cy corresponding to X and with
y ∈ (C ∩ Y ).

Proof. Statement (i) plus Lemmas (3.3.6), (3.3.7), (3.3.8) imply (ii)–(vi).
Statement (vii) follows from (i) by the previous characterization of circuits
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in terms of column submatrices of the representation matrix B. We prove
the converse implications by contradiction. Thus, we assume M to be
a nonbinary matroid. For M , we select an abstract matrix B with the
2× 2 submatrix D as described above and show by inspection and routine
arguments that none of (ii)–(vii) holds.

3.6 References

The basic material on graphic, binary, and general matroids relies on Whit-
ney (1935), and Tutte (1965), (1966b), (1971). Theorem (3.2.25) is proved
in Truemper (1987b). Corollary (3.2.29) was first established in Tutte
(1966b); a short proof appears in Cunningham (1981), together with other
connectivity concepts (see also Inukai and Weinberg (1981), Oxley (1981a),
and Wagner (1985b)). Corollary (3.2.31) and its generalization to general
matroids are included in Cunningham (1973); the results also appear in
Duchamp (1974) and Krogdahl (1977).

The 2-isomorphism results (Lemma (3.2.33) and Theorem (3.2.36)) are
due to Whitney (1933a). Shorter proofs are given in Truemper (1980a),
Wagner (1985a), and Kelmans (1987), together with an upper bound of
n−2 switchings for 2-connected graphs with n vertices. The generalization
to directed graphs is covered in Thomassen (1989). For a variation of the
2-isomorphism problem, define a matroid from the node/edge incidence
matrix of a graph as in Section 3.2, except that the matrix is viewed to be
over IR instead of GF(2). Just as in the GF(2) case, several graphs may
produce the same matroid. A partial analysis of the graphs generating the
same matroid is given in Wagner (1988). Another variation, called vertex
2-isomorphism, is treated in Swaminathan and Wagner (1992).

The graphicness testing subroutine is due to Löfgren (1959). Well im-
plemented, it has led to the presently most efficient algorithms for that
problem (see Fujishige (1980), and Bixby and Wagner (1988)). Other rel-
evant references are Gould (1958), Auslander and Trent (1959), (1961),
Tutte (1960), (1964), Iri (1968), Tomizawa (1976a), Bixby and Cunning-
ham (1980), Wagner (1983), and Bixby (1984a). The first polynomial test
for graphicness of binary matroids was given by Tutte (1960). An effi-
cient graphicness test for matroids not known to be binary is described in
Seymour (1981c); see also Bixby (1982a), and Truemper (1982a).

The notion of submodularity of the rank function as one of the cen-
tral tools of matroid theory is due to Edmonds (see, e.g. Edmonds (1970)).
In this book, we use the submodularity concept rather infrequently. An
excellent survey of the many facets and applications is given in Fujishi-
ge (1984). For optimization and decomposition results, see, e.g., Fujishi-
ge (1983), (1989), (1991), and Frank (1993b). Seymour (1988) analyses
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an unusual way of specifying a matroid. Define the connectivity function
of a matroid on a set E and with rank function r(·) to be the function
c(X) = r(X) + r(E −X)− r(E), X ⊆ E. Clearly, the connectivity func-
tion determines the matroid at most up to duality. In Seymour (1988), it
is shown that the connectivity function generally does not determine the
matroid up to duality, but that this is so when the matroid is binary.

Lemma (3.3.31) and its generalization (Lemma (3.4.36)) have also been
independently proved by others (Seymour (1981b), Bixby (1982b)). The
special case of graphs was first treated in Seymour (1980b).

The concept of abstract matrices is based on that of partial represen-
tation matrices of Truemper (1984). The example of a nonrepresentable
abstract matrix is taken from that reference. Early examples of nonrepre-
sentable matroids are in MacLane (1936), Lazarson (1958), Ingleton (1959),
(1971), and Vamos (1968). Additional references about the representability
problem are included in Section 9.5.

Theorem (3.5.2) is one of the key contributions of Tutte (1958). That
theorem set the stage for and motivated a number of subsequent results on
representability. The proof and Corollary (3.5.3) are taken from Truem-
per (1982b). The conditions of Theorem (3.5.4) are from Whitney (1935),
Rado (1957), Lehman (1964), Tutte (1965), Minty (1966), and Fournier
(1981). Additional characterizations of the binary matroids may be found
in Bixby (1974), Duchamp (1974), and White (1987).

For additional material on binary matroids or matroids representable
over fields with characteristic 2, see Gerards (1988), Hassin (1988), (1990a),
(1990b), (1991), Oxley (1990b), Lemos (1991), and Ziegler (1991).



Chapter 4

Series-Parallel and Delta-Wye

Constructions

4.1 Overview

This chapter is the first of three on matroid tools. Here, we construct graphs
and binary matroids with elementary procedures. For graphs, the construc-
tions involve addition of a parallel edge, or subdivision of an edge into two
series edges, or substitution of a triangle by a 3-star, or substitution of a
3-star by a triangle. We call the first two operations series-parallel exten-
sion steps, for short SP extension steps. Either one of the triangle/3-star
substitution steps is a delta-wye step, for short ∆Y step. These operations
have a natural translation to operations on binary matroids.

The power of SP extension steps is quite limited. Suppose in the graph
case one starts with a cycle with just two edges and applies SP extension
steps. Then rather simple graphs are produced. They are usually called
series-parallel graphs, for short SP graphs. In the binary matroid case,
let us start with a circuit containing just two parallel elements. Then we
produce nothing else but the graphic matroids of the SP graphs. These
results and some related material are described in Section 4.2.

The situation changes dramatically when we mix SP extension steps
with ∆Y steps. In the graph case, suppose we start again with a cycle
with two edges. Then we produce all 2-connected planar graphs and more.
How much more is a difficult open question. Similarly, suppose that in
the binary matroid case we start with a circuit with two edges. Then
we produce the graphic matroids of the just-described graphs, as well as
nongraphic binary matroids. Here, too, the class of matroids so obtained

89
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is not well understood. In Chapter 11, it is proved that every matroid of
that class is regular.

One may, of course, start a sequence of SP extension steps and ∆Y
steps with any collection of graphs, not just from the cycle with two edges.
Little is known about the classes of graphs so obtained. The same goes
for binary matroids, with one exception. The class of almost regular ma-
troids, which we define later, is generated when one starts with two binary
matroids on seven and eleven elements, respectively.

The cited material on SP extension steps and ∆Y steps in graphs and
binary matroids is covered in Sections 4.3 and 4.4, respectively. The final
Section 4.5 contains applications, extensions of some of the matroid results
to general matroids, and relevant references.

The material of this chapter builds upon Chapters 2 and 3.

4.2 Series-Parallel Construction

Start with the cycle with just two edges. In that small graph, replace one
edge by two parallel edges or by two series edges. To the resulting graph
apply either one of these two operations to get a third graph, and so on.
Here is an example with three such extension steps.

(4.2.1)

Series-parallel extension steps

Each iteration is a series-parallel extension step, for short SP extension
step. The class of graphs producible this way are the series-parallel graphs,
for short SP graphs. The inverse of an SP extension step is an SP reduction
step.

In this section, we analyze the structure of SP graphs. In particular,
we characterize them in terms of forbidden minors. We begin with some
elementary lemmas.

(4.2.2) Lemma. Every SP graph is 2-connected and planar. Any minor
of an SP graph is also an SP graph, provided the minor has at least two
edges and is 2-connected.

Proof. The cycle with two edges is 2-connected and planar. An SP exten-
sion step in a graph with at least two edges cannot introduce a 1-separation
or destroy planarity. By induction, the SP graphs are 2-connected and pla-
nar.
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For the proof of the second part, paint in a given SP graph the edges
of a given 2-connected minor red. Reduce the SP graph by SP reduction
steps until the cycle with two edges is obtained. We examine a single
reduction step and apply induction. We must consider two cases for that
step: deletion of a parallel edge, and contraction of one of two edges with
a common degree 2 endpoint. Consider the deletion case. If both edges
are red, then the reduction is also an SP reduction in the minor. If exactly
one edge is not red, then that edge is deleted. The minor must still be
present, since contraction of that edge would turn the red edge into a loop,
contrary to the assumption that the minor is 2-connected. If both edges
are not red, then the minor is still present after deletion of one of these
edges. For if both edges must be contracted to produce the minor, then the
second contraction involves a loop, and thus is a deletion. The contraction
case is handled analogously.

Recall that K4 is the complete graph on four vertices.

(4.2.3) Lemma. Every 3-connected graph G with at least six edges has
a K4 minor.

Proof. Take any cycle C of G of minimal length. Since G is 3-connected
and has at least six edges, it must have a node that does not lie on C.
By Menger’s Theorem, there are three internally node-disjoint paths from
that additional node to three distinct nodes of C. Suitable deletions and
contractions eliminate all other edges and reduce the cycle and three paths
to a K4 minor.

(4.2.4) Lemma. K4 is not an SP graph.

Proof. K4 does not have series or parallel edges.

(4.2.5) Lemma. No SP graph has a K4 minor.

Proof. Presence of a K4 minor would contradict Lemmas (4.2.2) and
(4.2.4).

We are ready to characterize the SP graphs in terms of excluded mi-
nors.

(4.2.6) Theorem. A 2-connected graph is an SP graph if and only if it
has no K4 minor.

Proof. The “only if” part is handled by Lemma (4.2.5). We thus prove
the converse. Let G be a 2-connected graph without K4 minors. Simple
checking validates the small cases with up to five edges. So assume G has
at least six edges. By Lemma (4.2.3), G must be 2-separable. Choose a
2-separation so that for the two corresponding graphs G1 and G2, we have
G1 with minimal number of edges.
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Suppose G1 has exactly two edges. These edges must be parallel or
incident at a degree 2 node of G. Thus, we can reduce and apply induction.
Suppose G1 has at least three edges. Let k and l be the nodes of G1 that
must be identified with two nodes of G2 to produce G. Suppose G1 has an
edge z connecting k and l. That edge can be shifted from G1 to G2. The
corresponding new 2-separation contradicts the minimality assumption on
the edge set of G1. Similarly, the nodes k and l cannot have degree 1 in
G1.

Add an edge e to G1 connecting nodes k and l. The new graph G′
1 is

isomorphic to a proper minor of G. By induction, G′
1 is an SP graph. By

the above discussion, in G′
1 the edge e is not parallel to another edge, and

it does not have an endpoint of degree 2. Thus, any SP reduction step in
G′

1 can be carried out in G as well. We perform one such step in G, and
invoke induction for the reduced graph.

One may reformulate the construction of SP graphs as follows. Start
with some cycle. Iteratively enlarge the graph on hand as follows. Select
a path in the graph where all internal nodes have degree 2. Let k and l
be the endpoints of the path. Then add to the graph a path from k to l.
Evidently, this construction creates precisely all SP graphs. It also allows
a short proof of the following result.

(4.2.7) Lemma. An SP graph without parallel edges either is a cycle
with at least three edges, or has two internally node-disjoint paths with the
following properties. Each path has at least two edges. Each intermediate
node of the two paths has degree 2 in the graph, while the endpoints have
degree of at least 3.

Proof. Consider the alternate construction. The initial cycle must have at
least three edges, since otherwise the final graph has parallel edges. When
the first path is adjoined to the initial cycle, the lemma is satisfied, or the
final graph has parallel edges. The same conclusion holds by induction
after each additional path augmentation.

Lemma (4.2.7) has the following corollary.

(4.2.8) Corollary. An SP graph with at least four edges and without
parallel edges has at least two nonadjacent nodes with degree 2.

Proof. If the SP graph is a cycle, then the conclusion is immediate. So
assume that the SP graph is not a cycle. Then each one of the two paths
postulated in Lemma (4.2.7) has at least one intermediate degree 2 node.
Thus, the graph has two nonadjacent degree 2 nodes.

We introduce two interesting subclasses of the class of SP graphs by
excluding certain graphs as minors. One of the excluded graphs we already
know. It is K2,3, the complete bipartite graph with two vertices on one
side and three on the other one. The second excluded graph is the double
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triangle, obtained from the triangle by replacing each edge by two parallel
edges. We denote that graph by C2

3 . We want to characterize first the SP
graphs without K2,3 minors, and then those without C2

3 minors. To this
end, define a graph to be outerplanar if it can be drawn in the plane so
that all vertices lie on the infinite face.

(4.2.9) Theorem. The following statements are equivalent for a 2-
connected graph G with at least two edges.

(i) G has no K4 or K2,3 minors.
(ii) G is an SP graph without K2,3 minors.
(iii) G is outerplanar.

Proof. By Theorem (4.2.6), G is an SP graph if and only if it has no K4

minors. Thus, (i) ⇐⇒ (ii). To show (ii) =⇒ (iii), let G be an SP graph
without K2,3 minors. Define C to be a cycle of G of maximum length.
Suppose G has a node v that does not lie on C. Since G is 2-connected,
there exist two paths from node v to distinct nodes i and j on C so that
these paths have only the node v in common. If i and j are connected by
an edge of C, then C can be extended to a longer cycle using the two paths,
a contradiction. If i and j are not joined by an edge of C, then C and the
two paths are easily reduced to a K2,3 minor of G, another contradiction.
Thus, all nodes of G occur on C. For the proof of outerplanarity, we may
assume that G has no parallel edges. Draw C in the plane, say using a
circle. Then draw the remaining edges, each time placing the edge inside
the circle as a straight line segment. If any two such edges cross, then
these edges plus C can be reduced to a K4 minor of G, a contradiction.
Thus, no edges cross, and we have produced an outerplanar drawing of G.
For (iii) =⇒ (i), we note that K4 and K2,3 are not outerplanar and that
outerplanarity is maintained under minor-taking.

For the second subclass of the class of SP graphs, we define a suspended
tree to be any graph generated by the following process. Start with a tree.
Create an additional vertex called the non-tree vertex. From that vertex,
add one arc to each tip node of the tree, plus at most one arc to any other
node of the tree. An example is given below. The initial tree is drawn with
bold lines.

(4.2.10)

Suspended tree

We permit the degenerate case where the initial tree is just one node.
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We have the following theorem, which turns out to be nothing but the
dual version of Theorem (4.2.9).

(4.2.11) Theorem. The following statements are equivalent for a 2-
connected graph G with at least two edges.

(i) G has no K4 or C2
3 minors.

(ii) G is an SP graph without C2
3 minors.

(iii) Except for parallel edges, G is 2-isomorphic to a suspended tree.

Proof. We use graphic matroids and duality to link Theorem (4.2.9) and
the one at hand. Specifically, for each of the statements (i)–(iii) of The-
orem (4.2.9), we carry out the following process. From that statement,
we deduce the matroid version, then dualize that matroid statement, and
finally show that the latter statement, when expressed in terms of graphs,
yields the statement of Theorem (4.2.11) with the same number. Then one
reverses the sequence of arguments, going from each statement of Theo-
rem (4.2.11) to the corresponding one of Theorem (4.2.9). The proof is
complete once the following two observations are made. First, the just-
described dualization process takes any K4 (resp. K2,3) minor of one graph
to a K4 (resp. C2

3 ) minor of the other one. Second, the dualization process
takes the property of being an SP graph (resp. of being outerplanar) to the
property of being an SP graph (resp. of being 2-isomorphic to a suspended
tree up to parallel edges), and vice versa.

We relate the above material to binary matroids. We begin with the
following construction. Start with the 1 × 1 binary matrix B = [ 1 ]. It-
eratively enlarge that matrix by adjoining a binary column or row vector
parallel to an existing column or row, or by adjoining a column or row unit
vector. We call each such iteration a matroid SP extension step. Define
the SP matroids to be the binary matroids represented by the matrices
that can be so produced. The inverse of a matroid SP extension step is a
matroid SP reduction step. The similarity of terminology with the graph
case is no accident, as we shall see next.

(4.2.12) Lemma. Every SP matroid is the graphic matroid of an SP
graph, and vice versa.

Proof. The key relationships are provided in Section 3.2. The matrix
B = [ 1 ] represents the graphic matroid of a cycle with two edges. Suppose
after some iterations of the construction process, a matrix B is on hand.
Let B represent the graphic matroid of an SP graph G. Then the adjoining
of a column z parallel to a given column y of B can be translated to adding
an edge z parallel to edge y in G. Similarly, any other extension of B can be
translated in G to an addition of parallel edges or to a subdivision of edges
into series edges. Thus, every matrix produced by matroid SP extension
steps represents the graphic matroid of some SP graph. With similar ease,
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one proves that the graphic matroid of any SP graph is represented by
some B generated by SP extension steps.

With the aid of Lemma (4.2.12), we translate Theorem (4.2.6) to the
following result. Recall that by Corollary (3.2.31), 2-connectedness in a
graph G is equivalent to connectedness in the graphic matroid M(G).

(4.2.13) Theorem. A connected binary matroid is an SP matroid if and
only if it has no M(K4) minor.

Theorems (4.2.9) and (4.2.11) also have an interesting translation.
Since these results are dual to each other, it suffices that we translate The-
orem (4.2.11). To simplify matters, we rule out parallel elements. Observe
that the matrices

(4.2.14)
1

0
0

0
1

1
1

1

1
1

1 0
1

1
1 0

1
;

Representation matrices of M(K4) and M(C2
3 )

represent the graphic matroids M(K4) and M(C2
3), respectively. In the

first case, the corresponding base of M(K4) is a star of K4. In the second
case, the corresponding base of M(C2

3) contains any two nonparallel edges
of C2

3 .

(4.2.15) Theorem. The following statements are equivalent for a con-
nected binary matroid M with at least three elements, no two of which are
parallel.

(i) M has no M(K4) or M(C2
3) minors.

(ii) M is an SP matroid without M(C2
3) minors.

(iii) No representation matrix of M has any one of the matrices of (4.2.14)
as submatrix.

(iv) M is the graphic matroid of a suspended tree.
(v) M is a minor of the matroid M ′ represented by a binary matrix B′

that is the node/edge incidence matrix of a tree.

Proof. Equivalence of (i), (ii), (iii), and (iv) follows directly from Theorem
(4.2.11). To show that (iv) implies (v), let M be the graphic matroid of
a suspended tree G. Add edges, if necessary, so that every tree node is
connected by exactly one arc with the extra node. The graphic matroid
M ′ of that enlarged graph G′ has M as a minor. The edges of G′ incident
at the extra node form a tree X . Thus, X is a base of M . It is easy to
see that the representation matrix B′ of M ′ corresponding to X is nothing
but the node/edge incidence matrix of the tree. Hence, (v) holds. The
arguments are easily reversed to prove that (v) implies (iv).

For subsequent reference, we include the following lemma.
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(4.2.16) Lemma. Let M be a connected binary matroid. Then any bi-
nary matroid obtained by an SP extension step from M is connected.

Proof. By Lemma (3.3.19), connectedness of a binary matroid is equiv-
alent to connectedness of any one of its representation matrices. Clearly,
any SP extension step maintains connectedness of representation matrices.
Thus, the resulting matroid is connected.

4.3 Delta-Wye Construction for Graphs

The simplicity of SP graphs gives way to far more complicated graphs when
we permit two operations in addition to SP extensions. One of them is the
replacement of a triangle by a 3-star, and the second one is the inverse
of that step. Either operation we call a ∆Y exchange. Define a sequence
of SP extensions and ∆Y exchanges to be a ∆Y extension sequence. The
inverse sequence is a ∆Y reduction sequence. A 2-connected graph is ∆Y
reducible if there is a ∆Y reduction sequence that converts the graph to
a cycle with just two edges. In this section, we show that ∆Y extension
sequences applied to such a cycle create all 2-connected planar graphs and
more. Any graph so producible is a ∆Y graph.

As an example for ∆Y reduction sequences, we reduce K5, the com-
plete graph on five vertices, to the cycle with two parallel edges.

(4.3.1)

replace
triangle

replace
triangle

replace
3-star

delete
three
parallel
edges

contract
series
edge,
done

contract
series
edge

replace
3-star

replace
3-star

delete
three
parallel
edges

∆Y reduction sequence for K5

In each graph of the reduction sequence, the triangle or 3-star involved
in a ∆Y exchange is indicated by bold lines. Similarly, we emphasize the
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series or parallel edges of SP reductions. We know from Lemma (3.2.48)
that M(K5) is not cographic. Thus, K5 is nonplanar, and the example
demonstrates that ∆Y graphs may be nonplanar.

A ∆Y exchange may not preserve 2-connectedness. For example, when
a vertex of a triangle in a 2-connected graph has degree 2, then replacement
of that triangle by a 3-star produces a 1-separable graph. The next lemma
gives the conditions under which 2-connectedness is maintained.

(4.3.2) Lemma. Let G be a 2-connected graph. Then a triangle to 3-star
exchange (resp. 3-star to triangle exchange) in G produces a 2-connected
graph G′ if and only if the triangle (resp. 3-star) does not contain two edges
in series (resp. in parallel).

Proof. Consider the triangle to 3-star exchange. The “only if” part has
been argued above. For proof of the “if” part, suppose a triangle does
not contain two series edges. Equivalently, the triangle does not contain a
cocycle. Thus, G has a tree that does not include any edges of the triangle.
With the aid of this tree, it is easy to see that the graph G′ derived from
the 2-connected graph G has no 1-separation.

If a 3-star has two edges in parallel, then a 3-star to triangle exchange
is not possible. Thus, the “only if” part is trivially satisfied. The “if”
part is easily checked, analogously to the case of a triangle to 3-star ex-
change.

The asymmetry of arguments in the proof of Lemma (4.3.2) is due
to the fact that a triangle is always a cycle of a graph, while a 3-star
is not always a cocycle. Note that the conditions of Lemma (4.3.2) are
automatically satisfied in ∆Y reduction sequences where ∆Y exchanges
are done only when an SP reduction is not possible.

Our goal is to show that the class of ∆Y graphs includes all 2-connected
planar graphs. That goal is restated in the next theorem.

(4.3.3) Theorem. Every 2-connected planar graph is ∆Y reducible.

The proof relies on three lemmas. They show, in fact, that any 2-
connected plane graph, i.e., an embedding of a planar graph in the plane,
is ∆Y reducible under the following restriction. We permit a triangle to
3-star exchange only if the triangle bounds a face.

The first auxiliary lemma is the analogue of Lemma (4.2.2).

(4.3.4) Lemma. If a 2-connected graph or plane graph G is ∆Y re-
ducible, then every 2-connected minor H of G is ∆Y reducible as well.

Proof. We confine ourselves to the plane graph case. By omitting ref-
erences to the embeddings of G, one obtains the proof for the general
situation. We induct on the number of SP reductions and ∆Y exchanges
that reduce the planar graph G to the cycle with just two edges. We may
suppose that H has no series or parallel edges. H is then a minor of G
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as well as of any graph derived from G by any SP reductions. Thus, by
induction, we only need to examine the case where the first step of a given
reduction sequence for G is a ∆Y exchange.

Consider a triangle to 3-star exchange. By assumption, the triangle,
say {e, f, g}, bounds a face. Let G′ be the plane graph resulting from
the exchange. Suppose e, f , and g occur in H. Since H is 2-connected,
these edges must form a triangle in H that also bounds a face of H. By
assumption, H has no series or parallel edges, so we may replace the triangle
of H by a 3-star, getting a 2-connected graph H ′. Then H ′ is a 2-connected
minor of G′, and the conclusion follows by induction. Suppose at least one
of the edges of the triangle {e, f, g} does not occur in H. It is easily
seen that we may delete e, f , or g from G while retaining H as a minor.
Regardless of the specific situation, H is isomorphic to a minor of G′, and
once more induction can be invoked.

The case of a 3-star to triangle exchange is handled analogously. In-
deed, in the plane graph case, we may invoke duality.

The next two lemmas involve grid graphs, which are plane graphs of
the form

(4.3.5)

1

2

3

4

m-1

m

1 2 3 4 n-1 n

;    m , n ≥ 2

Grid graph

(4.3.6) Lemma. Every plane graph is a minor of some grid graph.

Proof. (Sketch) We may assume that the given plane graph is 2-connected,
since this can be achieved by the addition of edges. Split each vertex of
that plane graph so that a 2-connected plane graph G results where the
degree of each vertex is at most 3. By a suitable subdivision of edges, G
can be embedded into a grid graph as follows. First embed any one face of
G, but not the outer one. Then embed one face at a time so that each one
of the successive subgraphs of G so embedded is 2-connected.

(4.3.7) Lemma. Every grid graph is ∆Y reducible.

Proof. Two special ∆Y reduction subsequences will be used repeatedly.
For the first case, suppose we have a grid graph plus one edge e so that
e and two edges of a degree 4 vertex of the grid graph form a triangle.
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Consider the two ∆Y exchanges depicted in (4.3.8) below.

(4.3.8)
e

replace
triangle

replace
3-star

e

Moving edge e toward lower left-hand corner
Effectively, the two ∆Y exchanges have moved the edge e one step closer
toward the lower left-hand corner of the grid graph.

The second situation is even simpler. Suppose an edge e forms a
triangle with two edges of a 3-star. Then that edge can be effectively
eliminated via one ∆Y exchange plus a series reduction as follows.

(4.3.9)
contract
series
edge

replace
triangle

e

Removal of edge e

We are ready to describe a ∆Y reduction sequence for grid graphs. By
(4.3.5), the graph is obviously an SP graph if m or n = 2. Hence, suppose
m, n ≥ 3. First we reduce the two pairs of series edges in the upper right
corner and lower left corner of the grid graph to one edge each. Thus, the
upper right-hand corner has become

(4.3.10)

e

Upper right-hand corner after series reduction
By repeated application of (4.3.8), we move the edge e toward the left or
bottom boundary of the graph. When that boundary is reached, e can be
eliminated either by (4.3.9) or by the fact that it has become parallel to
the lower left edge produced in one of the two initial series reductions.

We now have the upper right-hand portion as

(4.3.11)

f

g

Upper right-hand corner after removal of e
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The edge g is in series with f and can be contracted. Then f can be
eliminated analogously to the edge e. By repetition of this process and
suitable adjustment in the last iteration, we effectively eliminate all nodes
of the right-hand boundary of the grid graph. By induction, the lemma
follows.

Proof of Theorem (4.3.3). A given plane graph is by Lemma (4.3.6)
a minor of some grid graph. By Lemmas (4.3.4) and (4.3.7), both graphs
are ∆Y reducible.

By Lemma (4.3.4), the class of ∆Y graphs is closed under the taking
of 2-connected minors. Thus, one is tempted to look for a characterization
of the ∆Y graphs by exclusion of minimal minors that are 2-connected and
not ∆Y reducible. As a first step toward finding these minors, we introduce
the following equivalence relation on the class of 2-connected graphs that
are not ∆Y reducible and that are minimal with respect to that property.
Two such graphs are defined to be related if one can be obtained from
the other one by a sequence of ∆Y exchanges. The above characterization
problem is solved once one finds one member of each equivalence class. It
is easy to see that the graph K6 is one of the desired minimal graphs. By
straightforward enumeration, the equivalence class represented by K6 can
be shown to consist of the following graphs.

(4.3.12)

K6

Petersen Graph

Equivalence class of minimal nonreducible graphs
represented by K6

One might conjecture, and would not be the first person to do so, that
the graphs of (4.3.12) constitute all minimal nonreducible graphs. The
conjecture is appealing but false. A counterexample due to Robertson is
the graph G constructed as follows. We start with the planar graph of
(4.3.13) below. We add to that graph one vertex v, which is connected to
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the circled nodes of the planar graph by one edge each. The graph G is
evidently 3-connected and has no triangles or 3-stars. Thus, it is not ∆Y
reducible. We claim that G does not have any one of the graphs of (4.3.12)
as a minor. By the construction, G can be reduced to a planar graph by
removal of the vertex v. But none of the graphs of (4.3.12) becomes planar
when any one its vertices is removed, as is easily verified. Thus, G is a
counterexample to the conjecture.

(4.3.13)

Planar graph for counterexample G

In the next section, we adapt the concept of ∆Y extension and reduc-
tion sequences to binary matroids.

4.4 Delta-Wye Construction for Binary

Matroids

In this section, we translate the definitions and conditions for ∆Y graphs
given in Section 4.3 to statements about binary matroids. Thus, we obtain
∆Y extension steps, ∆Y reduction steps, ∆Y matroids, etc. Recall from
Lemma (4.2.12) that every SP matroid is the graphic matroid of an SP
graph, and vice versa. In contrast, the yet-to-be-defined ∆Y matroids turn
out to be not just the graphic matroids of ∆Y graphs.

We start with the definitions. From Section 4.2, we already know how
SP extensions are performed in binary matroids. So let us translate the ∆Y
exchange from graphs to binary matroids. To gain some intuitive insight,
we perform a triangle to 3-star step in a 2-connected graph G with edge set
E, then translate that step into matroid language for the graphic matroid
M = M(G) of G. Let the triangle of G be C = {e, f, g}. As in Section 4.3,
we assume that C does not contain a cocycle.

To carry out the triangle to 3-star exchange in G, we first add the
3-star, say C∗ = {x, y, z}, getting a graph G′. A partial drawing of G′ with
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C and C∗ is shown below.

(4.4.1)
e g

f

x

y z

Triangle and 3-star

Then we delete the triangle C, getting the desired graph G′′. Since C
contains no cocycle, the graph G has a tree X and a cotree Y = E −X so
that C ⊆ Y . The representation matrix B of M for this X is assumed to
be

(4.4.2)
XB =

Y
e f g

a b cB

Matrix B for M = M(G)

Clearly, X∪{y} is a tree of the graph G′. We claim that the representation
matrix B′ for M ′ = M(G′) corresponding to that tree must be

(4.4.3) X
B' =

Y
e f g x z

0y 1 1

a b c a bB

Matrix B′ for M ′ = M(G′)

The proof of this claim is as follows. First, the edges x and z of G′ produce
the only fundamental circuits with X∪{y} that contain y. This fact justifies
the last row of B′. Second, contraction of y in G′ makes the edge x (resp.
z) parallel to e (resp. f). Correspondingly, upon deletion of row z from B′,
the columns x and e (resp. z and f) must be parallel. These facts uniquely
determine B′ as shown in (4.4.3).

Deletion of the columns e, f , and g from B′ yields the desired repre-
sentation matrix B′′ for M ′′ = M(G′′), i.e.,

(4.4.4) a bB'' =  ; Y−{e,f,g}
0 1 1

zx  Y
~

y

X B   Y =
~

Matrix B′′ for M ′′ = M(G′′)
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Instead of X ∪{y}, we could also have chosen X ∪{x} or X ∪{z} as tree of
G′. Correspondingly, the column vectors a and b explicitly shown in (4.4.4)
would have been a and c, or c and b. Each one of the latter matrices may
also be obtained by a GF(2)-pivot in row y of B′′.

The above translation of a triangle to 3-star exchange in G to a triangle
to triad exchange in M may be rephrased as follows. The latter exchange in
M is allowed only if the triangle does not contain a cocyle. In the exchange,
we first find a representation matrix B where the triangle elements are
nonbasic. Next we delete one of the columns corresponding to the triangle.
Then we add a row that has 1s in the remaining two columns of the triangle,
and 0s elsewhere. Finally, we re-index the two columns formerly indexed
by triangle elements. The diagram below summarizes this particular ∆Y
exchange process. For clarity, the diagram omits indices other than e, f , g
and x, y, z.

(4.4.5)
c

g

a b

e f

0 1 1

x z

a b

y
B

B

∆Y exchange, case 1

Note that a + b + c = 0 (in GF(2)). There are other ways to display the
triangle to triad exchange. Specifically, when we select a B with exactly
one element of the triangle, say f , basic, we get a case of the form

(4.4.6)

1
a

a

b b

e g

0f

b

x

a 1z
0y

B B

∆Y exchange, case 2

When we select a B with two elements of the triangle basic, say e and f ,
we get the third possible case

(4.4.7)

c
bz

y

ax

b

0

g

a 1e
1f

B
B

∆Y exchange, case 3

where a+b+c = 0 (in GF(2)). Simple checking, analogous to that proving
(4.4.5), confirms these claims. We emphasize that in each situation, the
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symbols B, a, b, and c refer to different matrices and vectors. However,
the relationships between the triangle elements e, f , and g and the triad
elements x, y, and z are displayed in agreement with (4.4.1).

The definition of a triangle to triad exchange of a binary but not
necessarily graphic matroid M is as follows. We require that the triangle,
say {e, f, g}, does not contain a cocycle. Let B be any representation matrix
of M . Then B is one of the left-hand matrices of (4.4.5), (4.4.6), or (4.4.7).
The matroid resulting from the exchange is given by the corresponding
right-hand matrix. Suppose we select B of (4.4.7) to carry out the triangle
to triad exchange, as we always may. Then the cocycle condition on the
triangle is equivalent to the requirement that the row vectors a and b of
B be nonzero and distinct. Hence, the row vectors a, b, and c = a + b
(in GF(2)) in the resulting matrix of (4.4.7) are distinct, and {x, y, z} is
indeed a triad in the corresponding matroid. The triad trivially does not
contain a cycle since the resulting matrix indicates x, y, and z to be part
of a basis.

For the definition of a triad to triangle exchange, we invert the above
process. We demand that the triad not contain a cycle. The exchange
is specified by (4.4.5), (4.4.6), and (4.4.7) when we start with the matrix
on the right hand side and derive the one on the left hand side. By tak-
ing transposes of the matrices involved in (4.4.5), (4.4.6), and (4.4.7), we
see that a triangle to triad exchange in M is precisely a triad to triangle
exchange in M∗. Thus, these two operations are dual to each other.

We define ∆Y extension sequence, ∆Y reduction sequence, and ∆Y
reducibility for binary matroids by the obvious adaptation of the same terms
for graphs. Later, we need the following lemma about ∆Y exchanges.

(4.4.8) Lemma. Let M be a connected binary matroid. Then any ∆Y
exchange in M produces a connected binary matroid.

Proof. By duality, we only need to consider the triangle to triad exchange
depicted in (4.4.5). By Lemma (3.3.19), M is connected if and only if any
representation matrix B of M is connected. The left-hand matrix of (4.4.5)
is thus connected. Since the vectors a, b, c of that matrix are nonzero and
a + b + c = 0 (in GF(2)), the right-hand matrix is easily verified to be
connected as well. Thus, the related matroid is connected.

Suppose we start with the connected, binary, and graphic matroid
having just two parallel elements, with representation matrix B = [ 1 ]. Let
the ∆Y matroids be the binary matroids that may be produced from that
matroid by ∆Y extension sequences. Due to Lemmas (4.2.16) and (4.4.8),
SP extensions and ∆Y exchanges maintain connectedness. Thus, the ∆Y
matroids are connected. By definition, the smallest ∆Y matroid is graphic.
Furthermore, all graphic matroids of ∆Y graphs are ∆Y matroids, as are
the duals of these matroids. By (4.3.1), the nonplanar graph K5 is ∆Y
reducible, as is, evidently, K3,3. Thus, the graphic matroids M(K5) and
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M(K3,3) are ∆Y-reducible, as well as M(K5)∗ and M(K3,3)∗. By Lemma
(3.2.48), the latter matroids are not graphic. Thus, ∆Y matroids need not
be graphic. Indeed, there are ∆Y matroids that are not graphic and not
cographic. For example, the nongraphic and noncographic matroid R12

introduced later in Chapter 10 via the representation matrix

(4.4.9)

0
0

0

1
1

0

0
1
0
1

1
1
0

1

1
0
1
0

1

0
1
0
1

1 1
1 1
1
0 1

1 0 0
1 0 0

B12 =

Matrix B12 for R12

is a ∆Y matroid. It would take up too much space to describe the SP
reduction and ∆Y exchange steps that prove this claim. But with the
machinery introduced in Chapter 10, we have deduced B = [ 1 ] from B12

of (4.4.9) using eight ∆Y exchange steps and ten SP reduction steps.
Analogously to Lemma (4.3.4), we now show that the class of ∆Y-

matroids is closed under the taking of connected minors. The proof mimics
that of Lemma (4.3.4).

(4.4.10) Lemma. If a connected binary matroid M is ∆Y reducible,
then every connected minor N of M is ∆Y reducible as well.

Proof. Select a representation matrix B for M that displays the minor N

by a submatrix B. Thus,

(4.4.11)
Y

B = X

Y

0
1

BX

Matrix B for M displaying minor N by B

We induct on the number of SP reductions and ∆Y exchanges that reduce
M to the matroid with just two parallel elements. We may assume that N
has no series or parallel elements. N is then a minor of M as well as of any
minor derived from M by SP reductions. Thus, by induction and duality,
we only need to examine the case where the first step of a given reduction
sequence for M is a triangle to triad exchange. Let the triangle of M be
{e, f, g}.

Three cases are possible, depending on the number of elements of
{e, f, g} that index rows of B. In the first case, that number is 0. Thus,
e, f, g ∈ Y . Suppose at most two of the columns e, f , g of B intersect
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B. Then according to (4.4.5), we drop from B one column that does not
intersect B, and add a row with two 1s. The matrix B is still a submatrix
of the matrix so derived from B, and we are done by induction. Suppose
all three columns e, f , g of B intersect B. Then the change of B given
by (4.4.5) may also be viewed as a triangle to triad change involving B,
provided we can prove that {e, f, g} is a triangle of N that does not contain
a cocycle. But the assumption that N is connected and has no series or
parallel elements implies these two conditions, and once more we are done
by induction. With similar ease one argues the case where one or two
elements of {e, f, g} index rows of B.

In Chapter 11, it is shown that the class of ∆Y matroids is a subset of
the class of regular matroids, which we define in a moment. But otherwise
that class is not well understood. Consider a slightly more complicated
situation. This time, a class of binary matroids is produced by ∆Y exten-
sion steps from a given connected binary matroid, or possibly from several
such matroids. In the remainder of this section, we cover an interesting
instance.

We need a few definitions concerning regular and almost regular ma-
troids. These matroids are treated in depth in Chapters 9–12. We confine
ourselves here to a rather terse introduction. A real {0,±1} matrix is to-
tally unimodular if every square submatrix has real determinant equal to
0 or ±1. A binary matrix is regular if its 1s can be signed to become ±1s
so that the resulting real matrix is totally unimodular. A binary matroid
is regular if M has a regular representation matrix. It is not so difficult to
see, and is also proved in Chapter 9, that for a given binary matroid either
none or all representation matrices are regular.

A binary matroid M is almost regular if it is not regular, and if for
any element z of the matroid, at least one of the minors M/z and M\z is
regular. In addition, we demand the existence of a label for each element z
so that we can identify at least one of the minors M/z or M\z as regular.
The label must be “con” or “del.” If the label for element z is “con” (resp.
“del”), then M/z (resp. M\z) must be regular. We still have a rather
technical condition that must be satisfied by the labels. They must be
so chosen that every circuit (resp. cocircuit) of M has an even number of
elements with “con” (resp. “del”) labels. Finally, there must be at least
one “con” element and at least one “del” element.

The reader is likely to be puzzled by the strange parity condition and
the existence condition. In Chapter 12, it is shown how they come about,
and why one might want to define and investigate almost regular matroids.
So for the time being, we suggest that the reader simply accept or at least
tolerate these seemingly strange requirements.

One way to construct some almost regular matroids is as follows. We
take any square {0,±1} real matrix A that is not totally unimodular but



4.4. Delta-Wye Construction for Binary Matroids 107

all of whose proper submatrices do have that property. Call any such
matrix minimal non-totally unimodular. There is a rather simple subclass
of these matrices where every row and every column has exactly two ±1s.
We assume that A is not of this variety. Let B be the support matrix of
A. View B as the binary representation matrix of a binary matroid M . To
the elements of M corresponding to the rows (resp. columns) of B, assign
“con” (resp. “del”) labels. Then M is an almost regular matroid, a fact
proved in Chapter 12. An example is the minimal non-totally unimodular
matrix

(4.4.12) 1
1

1

0
1

1

0
0

1
1
0

1

0
1

1
0A =

Minimal non-totally unimodular matrix

The binary support matrix B of A represents an almost regular matroid
when labels are assigned as described above. The class of minimal non-
totally unimodular matrices is quite rich. Thus, the class of almost regular
matroids is interesting as well.

Here are the representation matrices of two almost regular matroids
that cannot be produced by the above process. Instead of row and column
indices, we record for each row and column the label of the corresponding
element of the matroid.

(4.4.13)
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1 1
1B7 = ;

Labeled Matrices B7 and B11

The matrix B7 should be familiar. It is, up to column/row permutations
and labels, the representation matrix of (3.3.22) of the nonregular Fano
matroid. The reader can easily check that the Fano matroid with the given
labels does satisfy the above-mentioned parity and existence conditions on
labels. The origin of B11 is explained in Chapter 12. At any rate, verifica-
tion of the conditions on labels for B11 requires a moderate computational
effort.

Due to the labels, we want to restrict SP extension steps and ∆Y
exchanges a bit. Specifically, we allow a parallel (resp. series) extension of
M only if the involved element z of M has a “con” (resp. “del”) label. The
new element receives the same label as z. A triangle to triad exchange is
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permitted only if the triangle, say {e, f, g}, has exactly two “con” elements.
The labels of the resulting triad, say {x, y, z}, can be deduced from the
drawing below, which should be interpreted the same way the drawing of
(4.4.1) is linked to (4.4.5), (4.4.6), and (4.4.7).

(4.4.14)
    x
con

    e
con

g
con

f del

y del z del

Triangle and 3-star with labels

Note that the resulting triad has two “del” labels, as demanded by the
parity condition. A triad to triangle exchange is just the reverse of the
above step. It is permitted only if the triad has exactly two “del” labels. A
restricted ∆Y extension sequence is a sequence of restricted SP extensions
and of restricted ∆Y exchanges. It is not difficult to prove that restricted
∆Y extension sequences convert almost regular matroids to matroids with
the same property. We show this in Chapter 12.

We include a short restricted ∆Y extension sequence that starts with
B7 of (4.4.13), and that generates, with appropriate labels, the matrix B
deduced earlier from the minimal non-totally unimodular A of (4.4.12).

(4.4.15)
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Example of restricted ∆Y extension sequence

The next theorem states a rather surprising fact about the power of re-
stricted ∆Y extension sequences.

(4.4.16) Theorem. The class of almost regular matroids has a partition
into two subclasses. One of the subclasses consists of the almost regular
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matroids producible by ∆Y extension sequences from the matroid repre-
sented by B7 of (4.4.13). The other subclass is analogously generated by
B11 of (4.4.13). There is a polynomial algorithm that obtains an appropri-
ate ∆Y extension sequence for creating any almost regular matroid from
the matroid of B7 or B11, whichever applies.

Unfortunately, the existing proof of Theorem (4.4.16) is so long that
we cannot include it here. In this book, it is one of the few results about
binary matroids that we state but do not prove. We outline a proof in
Chapter 12, when we restate Theorem (4.4.16) as Theorem (12.4.8). At
that time, we use the theorem to establish several matrix constructions.

In the final section, we cover applications, extensions, and references.

4.5 Applications, Extensions, and

References

The series-parallel construction is a basic idea of electrical network theory.
The characterization of SP graphs in Theorem (4.2.6) in terms of excluded
K4 minors is given in Dirac (1952). Another proof and basic results about
SP graphs are provided in Duffin (1965). Theorem (4.2.9) is due to Char-
trand and Harary (1967). The dual of that result, Theorem (4.2.11), is
proved directly in Truemper and Soun (1979), and Soun and Truemper
(1980). Decomposition results for SP graphs and outerplanar graphs are
described in Wagner (1987).

One may attempt to generalize SP matroids by dropping the restriction
that the matroids be binary. One still starts with the matroid having
just two parallel elements. The SP extensions are defined via addition of
parallel elements and expansion by series elements. These steps can be
nicely displayed by abstract matrices. With that approach, one very easily
proves that the supposedly more general procedure generates nothing but
the graphic matroids of SP graphs. By Theorems (3.5.2) and (4.2.13), a
connected matroid with at least two elements is thus an SP matroid if and
only if it has no U2

4 or M(K4) minors. Additional material on combinatorial
aspects of series-parallel networks may be found in Brylawski (1971).

Akers (1960) and Lehman (1963) contain the following conjecture. Let
G be a 2-connected graph that is a plane graph plus one edge called the
return edge. Then G is conjectured to be ∆Y reducible to a cycle with just
two edges, one of which must be the return edge. Note that the return
edge is not allowed to participate in any ∆Y exchange. The conjecture
was first proved in Epifanov (1966) by fairly complicated arguments. A
simple proof is given in Truemper (1989a), which also contains the proof
of Theorem (4.3.3) given here. An interesting but not simple proof of
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Theorem (4.3.3) is provided in Grünbaum (1967). That reference relies on
Theorem (4.3.3) to derive a very elementary proof of Steinitz’s Theorem
linking 3-connected graphs and 3-dimensional polytopes. Computational
aspects of ∆Y graphs are treated in Feo (1985), and Feo and Provan (1988).
Gitler (1991) characterizes ∆Y reducible planar graphs where k specified
nodes, k ≥ 3, may not be removed. That is, none of the k nodes may be
eliminated by Y-to-∆ exchanges or series reductions. The return edge case
discussed above is equivalent to the situation with k = 2.

The counterexample graph G defined via the planar graph of (4.3.13)
is due to Robertson (1988). The class of ∆Y graphs may be specialized by
demanding that all ∆Y exchanges are either ∆-to-Y exchanges or Y-to-∆
exchanges. The ∆Y graphs so created, we call ∆-to-Y graphs and Y-to-∆
graphs. The two classes are completely characterized in Politof (1988a),
(1988b).

The special structure of SP graphs, ∆Y graphs, ∆-to-Y graphs, and Y-
to-∆ graphs has been exploited for numerous applications, in particular for
combinatorial optimization and reliability problems. Relevant references
are Moore and Shannon (1956), Akers (1960), Lehman (1963), Nishizeki
and Saito (1975), (1978), Rosenthal and Frisque (1977), Monma and Sid-
ney (1979), Farley (1981), Farley and Proskurowski (1982), Takamizawa,
Nishizeki, and Saito (1982), Wald and Colbourn (1983a), (1983b), Agrawal
and Satyanarayana (1984), (1985), Satyanarayana and Wood (1985), Arn-
borg and Proskurowski (1986), Politof and Satyanarayana (1986), (1990),
Colbourn (1987), and El-Mallah and Colbourn (1990).

The class of almost regular matroids is defined in Truemper (1992a).
Theorem (4.4.16) is taken from that reference.



Chapter 5

Path Shortening Technique

5.1 Overview

In this chapter, we introduce a matroid tool called the path shortening
technique. It is an adaptation of an elementary graph method to matroids.
In Section 5.2, we first motivate that technique, then use it to prove several
results concerning the existence of certain separations and of certain minors
in binary matroids. In subsequent chapters, we rely a number of times on
these results.

In Section 5.3, we employ the technique to devise a polynomial al-
gorithm that solves the following problem. Given are two matroids M1

and M2 on a common set E. One must find a maximum cardinality set
Z ⊆ E that is independent in both M1 and M2. This problem is called
the cardinality intersection problem, for short, intersection problem. Corre-
spondingly, the algorithm is called the intersection algorithm. That scheme
also solves the following problem, which is called the partitioning problem.
As before, two matroids M1 and M2 on a common set E are given, say
with rank functions r1(·) and r2(·). One must partition E into two sets,
say E1 and E2, such that r1(E1) + r2(E2) is minimized. The intersection
algorithm also provides a constructive proof of a max-min theorem that
links the intersection problem with the partitioning problem. The results
of Section 5.3 and many more on the intersection and partitioning of ma-
troids are almost entirely due to Edmonds. They constitute some of the
most profound results of matroid theory.

The results of Section 5.3 are related to the remaining chapters as
follows. There we frequently must find certain separations of matroids.

111
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The intersection algorithm may be employed to do this. But one may also
locate the desired separations with the separation algorithm of the next
chapter. Thus, in principle, we do not require the intersection algorithm for
the remainder of the book. As a consequence, the material of Section 5.3
may be just scanned or even skipped on a first reading without loss of
continuity.

The final section, 5.4, contains extensions and references. The chapter
utilizes the material of Chapters 2 and 3.

5.2 Shortening of Paths

Consider the following simple graph problem. Given is a 2-connected
graph G with at least two edges, among them edges e and f . We are asked
to prove that G has a 2-connected minor consisting of just e and f . The
solution is straightforward. As stated in Section 2.2, any two edges of a
2-connected graph lie on some cycle. In particular, the edges e and f lie
on some cycle C of G. Evidently, C consists of e, f , and two node-disjoint
paths, say P1 and P2. We obtain the desired minor by deleting all edges
not in C and contracting all edges of P1 and P2. One could call the second
step a shortening of the paths P1 and P2.

The path shortening operation has numerous uses in graph theory
involving far more complicated situations than the trivial example treated
above. The method also has an interesting translation to matroid theory,
where we will refer to it as the path shortening technique. In this section,
we describe that technique while proving the matroid analogue of the just-
used fact that in a 2-connected graph any two edges lie on some cycle.
Subsequently, we rely on the path shortening technique to establish other
matroid results that will be repeatedly invoked in later chapters. We begin
with the matroid version of the cited graph result.

(5.2.1) Lemma. A binary matroid M is connected if and only if for
every two elements x and z of M , there is a circuit containing both x and
z.

Proof. Let B be a binary representation matrix of M . First we prove the
“if” part by contradiction. If M is not connected, then by Lemma (3.3.19),
B is not connected. Evidently, M then has elements x and z that cannot
both be in any circuit.

We turn to the “only if” part. Thus, we assume M , and hence B,
to be connected. If the rank of M is 0, then due to the connectedness
assumption, M has at most one element, and the desired conclusion holds
vacuously. So assume that the rank of M is at least 1. Correspondingly, B
has at least one row. Let x and z be two elements of M . We must show
that some circuit of M contains both x and z.
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Since B is connected, by at most one GF(2)-pivot we can assure that x
indexes a row of B. Suppose that z indexes a column of B. If the element
Bxz of B is a 1, then x is in the fundamental circuit of M given by the
column z of B, and we are done. If Bxz = 0, then any GF(2)-pivot in
column z produces the case where z also indexes a row. Thus, from now
on we may assume that both x and z index rows of B.

At this point, we switch from the connected matrix B to the connected
bipartite graph BG(B). The analysis of BG(B) consists of the following
elementary step. We examine a shortest path from row node x to row node
z. Suppose that the row nodes of the path are x, r1, r2, . . . , rm, z, for
some m ≥ 1, and that the column nodes are y, s1, s2, . . . , sm. The nodes
are encountered in the given order as one moves along the path from x to
z. We claim that B can be partitioned as

(5.2.2) .
. .

. .
.

s1
. . .

1

1
x

z

r1

rm

y sm

1B =

0 1

1
1

11

Shortest path from x to z displayed by B

In the submatrix B of B indexed by x, r1, r2, . . . , rm, z and y, s1, s2, . . . ,
sm, the 1s, circled or not, correspond to the edges of the path. Recall a
convention of Section 2.3 about the display of matrices: If a submatrix or
region of a matrix contains explicitly shown 1s while leaving the remaining
entries unspecified, then the latter entries are to be taken as 0s. Accord-
ingly, the display of the submatrix B implies that B does not contain any
1s beyond those corresponding to the edges of the path. We must prove, of
course, that this is the case. So suppose there are additional 1s in B. Then
one readily confirms that the path has a chord, and thus is not shortest, a
contradiction.

By GF(2)-pivots on the circled 1s of B of (5.2.2), we derive from B
the following matrix B′.

(5.2.3) . . . .

. . .

.

. 1s1

1y

z
sm

x r1 rm

all
1s

B' =

0 1
1
1

Matrix B′ obtained by path shortening pivots
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The matrix B′ proves that z is contained in the fundamental circuit that
x forms with the base producing B′, and we have proved x and z to be in
some circuit of M as desired.

Note that in BG(B), the path connecting x and z has at least two
edges. In contrast, the graph BG(B′) has an edge connecting x and z.
Thus, the GF(2)-pivots transforming B to B′ have reduced the path of
BG(B) to a shorter path in BG(B′). For this reason, we call the above
method the path shortening technique. Evidently, the proof procedure of
Lemma (5.2.1) can be implemented in a polynomial algorithm that de-
termines a circuit containing two given elements in any connected binary
matroid.

We now prove additional matroid results using the path shortening
technique. They concern the existence of certain separations or of certain
minors. In each case, the proof procedure has an obvious translation to
a polynomial algorithm that very effectively locates one of the claimed
separations or minors.

The first case concerns the existence of connected 1-element extensions
of a given minor in a binary matroid.

(5.2.4) Lemma. Let N be a connected minor of a connected binary
matroid M . Define z to be an element of M not present in N . Then M
has a connected minor N ′ that is a 1-element extension of N by z.

Proof. By Lemma (3.3.12), M has a representation matrix B that displays
N via a submatrix B. Let the rows of B be indexed by X and the columns
by Y . Since M and N are connected matroids, both B and B are connected
matrices. Suppose the element z indexes a column in B. We thus have B
given by (5.2.5) below. If the subvector e of column z of B is nonzero, then
the connected submatrix [B | e] represents the desired connected minor N ′

with z.

(5.2.5)

z

e

B =

0 1

BX

Y

Matrix B displaying minor N by B

So suppose e = 0. We know that the bipartite graph BG(B) is connected.
Thus, that graph contains a path from X ∪ Y to z. Take a shortest path,
say with row nodes r1, r2, . . . , rm and column nodes s1, s2, . . . , sn, z, for
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some m, n ≥ 1. The increasing indices indicate the order in which the
nodes are encountered as one moves along the path from X ∪ Y to z. The
endpoint of the path in X ∪ Y is r1 or s1, whichever applies. Below, we
display B. The explicitly shown 1s correspond to the edges of the path.
Two cases are possible, depending on whether r1 or s1 is the endpoint of
the path in X ∪ Y .

(5.2.6)

...

s1
. . .

or .
.
.

.....
.

s1
. . Y

1 1
1

sn z

B =

B

Y

X

0 1

01

111

r1

rm

r1

1111

01 1
1 1

1

sn z

BX

0 1

rm

.

Case 1 of B: Case 2 of B:
r1 = endpoint of path s1 = endpoint of path

In each matrix of (5.2.6), the unspecified entries, which by our convention
are 0s, are justified as follows. Suppose such an entry is instead a 1, for
example in a row x ∈ X and column sj, j ≥ 2. Then the path does not
have minimal length since there is a path starting at node x that is shorter.
All other unspecified entries are argued similarly.

Assume case 1 of (5.2.6) applies. Then pivots on the circled 1s of B
produce the already-discussed instance with e 6= 0. For case 2 of (5.2.6),
pivots on the circled 1s produce a B′ with a submatrix [B/d], where the
vector d is nonzero and indexed by z. That submatrix represents the desired
N ′. The case where z indexes a row of B is handled by duality.

So far, we have explained each step of the path shortening technique
in detail. In the proofs to follow, we skip such details since the arguments
are identical or at least very similar to those above.

The next result concerns the presence of minors that are isomorphic
to the graphic matroids of wheels. Recall from Section 2.2 that for n ≥ 1,
the wheel Wn is constructed from a cycle with n nodes as follows. Add one
extra node and link it with one edge each to the nodes of the cycle. Small
wheels are as follows.

(5.2.7)

W1 W2 W3 W4

Small wheels
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The spokes of each wheel Wn form a tree. With that tree as base of
M(Wn), we obtain from (5.2.7) the following representation matrices for
M(W1), . . . , M(W4).

(5.2.8)
0

1

00
1 1

1

1 1 00
0 0 1

1
0

0
1 1 0
1 0 1

110
1
1 1

1

M(W1) M(W2) M(W3) M(W4)
Representation matrices

Indeed, for n ≥ 3, M(Wn) is represented by the n× n matrix

(5.2.9) 1 .. ..

1
1 1

1

1

1 1

Representation matrix for M(Wn), n ≥ 3

Clearly for n ≥ 3, Wn is 3-connected. Thus, by Theorem (3.2.36), Wn is
the unique graph producing M(Wn).

The graphic matroids of wheels are cited very often in the remainder
of this book. We adopt an abbreviated terminology and simply call them
wheels. The double meaning of “wheel” should not cause a problem. The
context invariably makes it clear whether we mean a matroid or a graph.
At any rate, we use wheel graph and wheel matroid if there is even a slight
chance of confusion.

A basic result about wheels is as follows.

(5.2.10) Lemma. Let M be a binary matroid with a binary represen-
tation matrix B. Suppose the graph BG(B) contains at least one cycle.
Then M has an M(W2) minor.

Proof. Since the graph BG(B) has at least one cycle, it has a cycle C
without chords. Now BG(B) is bipartite, so C has at least four edges. The
submatrix B of B corresponding to C evidently is up to indices either the
2× 2 matrix for M(W2) of (5.2.8), or for some n ≥ 3, the n× n matrix of
(5.2.9) for M(Wn). Path shortening pivots on 1s of B convert the latter
case to the former one.

Lemma (5.2.10) and another application of the path shortening tech-
nique lead to a proof of the following result.



5.2. Shortening of Paths 117

(5.2.11) Lemma. Let M be a connected binary matroid with at least
four elements. Then M has a 2-separation or an M(W3) minor.

Proof. Let B be a binary representation matrix of M . Since M is con-
nected, the bipartite graph BG(B) is connected. Suppose BG(B) does not
contain a cycle. Thus, that graph is a tree. Any tip node of the tree corre-
sponds to a row or column unit vector in B. Thus, M has parallel or series
elements. Since M has at least four elements, M has a 2-separation.

We turn to the remaining case where BG(B) has a cycle. By Lemma
(5.2.10), M has an M(W2) minor. We may assume that B displays that
minor via the 2 × 2 matrix of (5.2.8), with four 1s. Enlarge that 2 × 2
matrix to a maximal submatrix of B containing only 1s. Let D be that
submatrix, say with rows indexed by a set R and columns indexed by a set
S. We use these sets to partition B as shown in (5.2.12) below. In B, each
row of the submatrix U and each column of the submatrix V is assumed
to be nonzero. By the maximality of D, at least one 0 must be contained
in each row of U and in each column of V .

(5.2.12)
D V 0

U

0

R

PB =

S Q

0
1

Partitioned matrix B

Let F be the graph obtained from BG(B) by deletion of the edges corre-
sponding to the 1s of the submatrix D. Suppose no path of F connects
a node of R with one of S. Let X1 (resp. Y1) be the row (resp. column)
nodes of F that are connected by some path with some node of R. Since
X1 ⊇ R, we have |X1 ∪ Y1| ≥ 2. Define X2 = X −X1 and Y2 = Y − Y1.
Since Y2 ⊇ S, we have |X2 ∪ Y2| ≥ 2. By derivation of F from BG(B),
any arc of BG(B) connecting a node of X1 ∪ Y1 with one of X2 ∪ Y2 must
correspond to a 1 of D. But X1 ⊇ R and Y2 ⊇ S, so the partitioning of B
according to X1, X2, Y1, and Y2 must result in

(5.2.13)
D

0

0

R

X2

B =

S Y1

0
1

0
1

Y2

X1

Matrix B with 2-separation (X1 ∪ Y1, X2 ∪ Y2)
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Since GF(2)-rank D = 1, (X1 ∪ Y1, X2 ∪ Y2) is a 2-separation of B, and we
are done. So suppose a path in F does connect a node of R with one of S.
Choose a path of minimal length. Evidently, the length must be odd and
at least 3.

Assume the length to be 3. Then the center edge of the path corre-
sponds in B of (5.2.12) to a 1 in some row p ∈ P and some column q ∈ Q.
Now row p of U contains a 0 and a 1, say in columns s1 ∈ S and s2 ∈ S,
respectively. Similarly, column q of V has a 0 and a 1, say in rows r1 ∈ R
and r2 ∈ R, respectively. Then in B of (5.2.12), the submatrix indexed by
r1, r2, p and s1, s2, q is

(5.2.14) r1
r2
p

s1 s2 q

0
1 1 1
1 1 0

11

Submatrix of B representing M(W3) minor

A GF(2)-pivot on the 1 in row p and column q produces up to indices the
matrix for M(W3) of (5.2.8). Thus, M has an M(W3) minor.

Finally, suppose the shortest path in F from R to S has length greater
than 3. With the path shortening technique, we reduce that path to one
of length 3. The related GF(2)-pivots in B of (5.2.12) do not affect the
submatrices D, U , or V . Thus, the pivots produce the earlier situation
with length 3.

Lemma (5.2.11) supports the following conclusion about 3-connected
binary matroids.

(5.2.15) Corollary. Every 3-connected binary matroid M with at least
six elements has an M(W3) minor.

Proof. By Lemma (5.2.11), M has a 2-separation or an M(W3) minor.
Since M is 3-connected, the former case is not possible.

At times, one would like to claim that a given matroid M has a certain
minor containing a specified element. A simple case is given in the following
result.

(5.2.16) Lemma. Let M be a connected binary matroid with an M(W3)
minor. Then for every element z of M , there is an M(W3) minor of M
that contains z.

Proof. Let N be the assumed M(W3) minor of M , and z be any element
of M . If z is an element of N , we are done. Otherwise, by Lemma (5.2.4),
M has a connected minor of the form N+z or N&z. Consider the first
case. We may assume N+z to be represented by the matrix of (5.2.8) for
M(W3), plus one nonzero column indexed by z. A straightforward case
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analysis proves that for each possible column z, the matroid N+z has an
M(W3) minor with z. Thus, M has an M(W3) minor containing z as well.
The situation for N&z is handled analogously, or by duality.

In the next section, we investigate the intersection and partitioning
problems. The subsequent chapters do not rely on the material of the
section, so it may be skipped without loss of continuity.

5.3 Intersection and Partitioning of

Matroids

Let M1 and M2 be two arbitrary matroids defined on a common set E and
with rank functions r1(·) and r2(·), respectively. The cardinality intersec-
tion problem demands that we find a maximum cardinality set Z ⊆ E that
is independent in M1 and M2. The partitioning problem requires that we
locate a partition of E into E1 and E2 such that r1(E1) + r2(E2) is mini-
mized. In this section, we present an algorithm that simultaneously solves
both problems. We call it the intersection algorithm. The method consists
of repeated applications of the path shortening technique, though carried
out in a rather unusual fashion. The algorithm also provides a constructive
proof of a max-min theorem that links the two problems in an unexpected
way.

We have elected to describe the intersection algorithm for general ma-
troids instead of just binary ones, since in many, if not most, applications,
at least one of the two matroids M1, M2 is nonbinary. Correspondingly,
the algorithm makes use of abstract matrices. Thus, the reader should be
familiar with the material on abstract matrices in Section 3.4, in particular
with Lemma (3.4.11). That result says that any triangular submatrix of
an abstract matrix is nonsingular if and only if the submatrix has only 1s
on its diagonal.

We begin with the intersection problem. As stated above, we have
two matroids M1 and M2 on a common set E. The algorithm must find a
maximum cardinality set Z that is independent in both M1 and M2. The
scheme begins with any set Z that is independent in both matroids. For
example, Z = ∅ will do. The method iteratively replaces the given set Z
by a larger one that is also independent in both matroids, until a set of
maximum cardinality is found. It suffices that we describe one iteration.
It consists of three steps, which we summarize next.

In step 1, we deduce two matrices from certain abstract matrices for
M1 and M2. We combine the two matrices to a new matrix C that has a
strange form, but that actually is a handy encoding of the initial abstract
matrices of M1 and M2.
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In step 2, we derive a graph from C and search in that graph for
a certain path. Suppose a path of the desired kind can be located. We
interpret that path in terms of the abstract matrices for M1 and M2 and
deduce a set Z ′ that is larger than Z and independent in M1 and M2. With
the set Z ′ in hand, we terminate the iteration. If a path of the desired kind
cannot be found, we go to step 3.

In step 3, we conclude that the absence of paths of the desired kind
implies a certain partition of the matrix C. We interpret that partition
in terms of the abstract matrices for M1 and M2 and conclude that Z is
optimal. Thus, we stop. The proof of optimality for Z also shows that the
partition of C implies a partition of the set E into two sets, say E1 and
E2, that solve the partitioning problem. In addition, the proof establishes
the previously mentioned max-min theorem that connects the intersection
problem with the partitioning problem.

We begin the detailed description. In step 1, we first find for i = 1, 2, a
base Xi of Mi that contains the set Z. This is possible since Z is indepen-
dent in M1 and M2. Let Bi be the abstract matrix of Mi corresponding
to the base Xi. Thus, Bi has row index set Xi and column index set
E −Xi. We adjoin an identity to Bi, getting [I | Bi]. In agreement with
the indexing rules introduced in Section 2.3, we index the columns of the
submatrix I of [I | Bi] by Xi. Next we permute the columns of [I | B1]
and [I | B2] such that the columns of the two matrices in same position
have the same column index. Furthermore, the columns indexed by Z are
to become the leftmost columns. Finally, we add zero rows if necessary, so
that both matrices have the same number of rows. For i = 1, 2, let Ai be
the matrix so obtained from [I | Bi], and define Y = E − Z. Then the
matrix Ai is of the form

(5.3.1) Ai = Z

Z Y

0

1
1

1 0 1 ; i = 1, 2

Matrix Ai obtained from [I | Bi]

The rows of Ai without index either are rows of [I | Bi] indexed by Xi−Z,
or are added zero rows.

Before going on, we would like to establish a simple lemma about the
matrix Ai of (5.3.1). The result will allow easy verification that certain
subsets of Mi are independent.

(5.3.2) Lemma. For some k ≥ 1, let Z be a subset of E with k elements.
If the column submatrix of Ai indexed by Z contains a k × k triangular
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submatrix that has only 1s on the diagonal, then Z is independent in
Mi.

Proof. Except possibly for column permutations and additional zero rows,
Ai is the matrix [I | Bi]. Thus, the postulated k × k triangular submatrix
of Ai has block triangular form, where one of the blocks is an identity
submatrix of I, and where the other block is a triangular submatrix of Bi

with only 1s on the diagonal. By Lemma (3.4.11), the set Z must be a
subset of a base of Mi, and thus is independent in Mi.

We continue with step 1. In the matrix A1 (resp. A2), we replace each
1 by α (resp. β), getting a matrix Ã1 (resp. Ã2). We compute a matrix
C = Ã1 + Ã2 by adding entries termwise according to the following rule:
0 + 0 = 0, α + 0 = α, 0 + β = β, and α + β = γ. By (5.3.1), the matrix C
is of the form

(5.3.3) C = Z

Z

P

Y

0

γ
γ

γ α  β  γ0

Matrix C = Ã1 + Ã2

Note the row index subset P in (5.3.3). The rows of P arise from the rows
of A1 and A2 shown in (5.3.1) without index. We consider P to be a new
index set that is disjoint from the index sets of A1 and A2. This concludes
step 1.

In step 2, we first examine C of (5.3.3) for a trivial way of augmenting
the set Z to a larger set Z ′ that is independent in M1 and M2. Specifically,
assume that C contains a column z that in rows indexed by P has both an
α and a β, or a γ. Then in the matrices A1 and A2, the column submatrices
A

1
and A

2
indexed by Z ′ = Z ∪ {z} have triangular submatrices that via

Lemma (5.3.2) prove Z ′ to be independent in M1 and M2. Thus, we can
stop the iteration. So from now on, we assume that C has no such column
z. Thus, each column of C contains in the rows indexed by P either just 0s
and αs, or just 0s and βs, or just 0s. Let Q1 (resp. Q2) index the columns
of the first (resp. second) kind. Using these two index sets, we partition
C of (5.3.3) further as shown in (5.3.4) below. From the submatrix C
defined by the row index set Z and the column index set Y of C of (5.3.4),
we construct the following directed bipartite graph G. We start with the
undirected bipartite graph BG(C). Let (i, j) be an edge of BG(C) where i
is a row node of Z and j is a column node of Y . If the entry of C producing
that edge is an α (resp. β), then we direct that edge from i to j (resp. j
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to i). If that edge corresponds to a γ, then we replace it by two directed
edges of opposite direction.

(5.3.4)
C =

Q1 Q2

Z

Z

P

Y

0 0

γ
γ

γ
each
column
has  α

each
column
has  β

C

Matrix C partitioned by Q1 and Q2

Using any convenient shortest route algorithm, we locate a shortest path
from Q1 to Q2, or determine that no such path exists. A case of the latter
variety is on hand, for example, if Q1 or Q2 is empty.

If a shortest path does not exist, we go to step 3, to be covered shortly.
Otherwise, let such a path connect a node q1 ∈ Q1 with a node q2 ∈ Q2.
Let C be the submatrix of C defined by the nodes of that path. We claim
that C either is the matrix

(5.3.5)

q2q1

U

W

β
β
α

α

β αno β, γ

no α, γ

C =

Matrix C defined by the nodes of the path

or is obtained from the matrix of (5.3.5) by replacing any number of the
explicitly shown αs and βs by γs. In C of (5.3.5), the statements “no α, γ”
and “no β, γ” are valid since any violating entry would permit a shorter
path from Q1 to Q2, a contradiction. For the same reason, we have for
i = 1, 2, Qi ∩ W = {qi}. We use the index sets U and W of C to define
Z ′ = (Z − U) ∪W . By (5.3.5), |W | = |U |+ 1, so |Z ′| = |Z|+ 1. We claim
that Z ′ is independent in M1 and M2. For a proof, we examine the column
submatrix C′ of C indexed by Z ′. By (5.3.4) and (5.3.5), the corresponding
column submatrices of A1 and A2 contain triangular matrices that confirm
the claim. Thus, we have completed the iteration.

As an aside, consider one pivot in B1 and B2, each time on a particular
1 in column q1. Specifically, in B1 the 1 corresponds to an α entry of C in
column q1 and in a row of P , and in B2 to the β entry of C explicitly shown
in column q1 and in the first row, say x, of C. Correspondingly, we drop
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the element x from Z and add the element q1, getting, say, a set Z̃. The
sets Z and Z̃ have the same cardinality, but if we repeat the above process
for Z̃ instead of Z, we discover a shorter path. By suitable repetition of
the above procedure, the path becomes ever shorter until we finally just
add an element to obtain the set Z ′.

Finally, we discuss step 3. We enter that step when a path from Q1

to Q2 does not exist. Let Z2 ⊆ Z and Y2 ⊆ Y be the nodes reachable from
the nodes of Q1, and define Z1 = Z − Z2 and Y1 = Y − Y2. The sets Z1,
Z2, Y1, Y2 induce the following partition in C of (5.3.3).

(5.3.6)

Y2Z2

Z2

C =

Y1Z1

Z1

P

YZ

Z

0

0

0

0 0 0

γ
γ

γ
γ α  β  γ0

each
column
has  α

each
column
has  β

no β, γ

α  β  γ0 no α, γ

Matrix C when a path does not exist

In particular, the statements “no α, γ” and “no β, γ” in the submatrices
indexed by Z2, Y1 and Z1, Y2, respectively, are correct since otherwise at
least one additional node could be reached from Q1. For i = 1, 2, define
Ei = Zi ∪ Yi. By definition, E1 and E2 partition E. From C of (5.3.6),
it is obvious that Ei as subset of the matroid Mi has rank equal to |Zi|.
Furthermore, since Z = Z1 ∪ Z2, we have

(5.3.7) |Z| = r1(E1) + r2(E2)

Now for any set Z independent in M1 and M2, and for any partition of E
into any sets E1 and E2, we must have for i = 1, 2, |Z ∩Ei| = ri(Z ∩Ei) ≤
ri(Ei). Adding over i = 1, 2, we obtain

(5.3.8) |Z| = |Z ∩E1|+ |Z ∩E2| ≤ r1(E1) + r2(E2)

By (5.3.7) and (5.3.8), the set Z on hand in step 3 solves the intersec-
tion problem, and the sets E1 and E2 found at that time solve the partition
problem. Thus, the algorithm has solved both problems simultaneously.
Clearly, the algorithm is polynomial — indeed, very efficient.

The preceding arguments also prove the following theorem due to Ed-
monds.

(5.3.9) Theorem (Matroid Intersection Theorem). Let M1 and M2 be
two matroids on a set E and with rank functions r1(·) and r2(·). Then

(5.3.10) max |Z| = min{r1(E1) + r2(E2)}
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where the maximization is over all sets Z that are independent in both M1

and M2, and where the minimization is over all partitions of E into sets
E1 and E2.

We describe two representative example applications. The first exam-
ple involves an undirected bipartite graph G, say with edge set E connecting
the nodes of a set V1 with those of a set V2. Define a matching to be a
subset Z of E such that every node of G has at most one edge of Z incident.
For i = 1, 2, let Mi be the matroid on E where a subset Z is independent
if the nodes of Vi have at most one edge of Z incident. It is easily checked
that Mi is the disjoint union of |Vi| uniform matroids of rank 1, and thus is
a matroid. Clearly, the matchings of G are precisely the subsets of E that
are independent in both M1 and M2. Define a node cover to be a node
subset such that every edge has at least one endpoint in that subset. We
now reformulate the matroid intersection Theorem (5.3.9) to a basic result
of graph theory due to König.

(5.3.11) Theorem. The cardinality of a maximum matching of a bipar-
tite graph is equal to the cardinality of a minimum node cover.

We leave it to the reader to prove that Theorem (5.3.11) follows from
Theorem (5.3.9).

The second application concerns separations in matroids. Suppose we
want to know whether a given matroid M on a set E has a k-separation
with at least k + l elements on each side, for some nonnegative integers
k and l. How can we find such a separation or prove that none exists?
Suppose we can efficiently solve the following, more restricted, problem.
We are given two disjoint subsets F1 and F2 of E, each of cardinality k + l.
We must decide whether M has a k-separation (E1, E2) such that E1 ⊇ F1

and E2 ⊇ F2. If we can solve the restricted problem, then we can solve
the original one by enumerating all possible choices of the sets F1 and F2.
The overall algorithm is polynomial if the possible values of k + l can be
uniformly bounded by some constant.

We analyze the restricted problem. Define r(·) to be the rank function
of M . We need to find a pair (E1, E2) such that

(5.3.12)
E1 ⊇ F1; E2 ⊇ F2

r(E1) + r(E2) ≤ r(E) + k − 1

or prove that such a pair does not exist. An answer to the following prob-
lem,

(5.3.13) min
(E1,E2)

E1⊇F1,E2⊇F2

{r(E1) + r(E2)}

obviously suffices. We want to eliminate the conditions E1 ⊇ F1 and E2 ⊇
F2 from (5.3.13) by some matroid construction. Let M1 = M/F1\F2 and
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M2 = M/F2\F1, with respective rank functions r1(·) and r2(·). Define
E = E − (F1 ∪ F2), and for i = 1, 2, Ei = Ei ∩E. Then for i = 1, 2, r(Ei)
is nothing but r(Fi) + ri(Ei). Thus, r(E1) + r(E2) = r(F1) + r1(E1) +
r(F2)+r2(E2) = r1(E1)+r2(E2)+ a constant. Thus, equivalent to (5.3.13)
is the problem

(5.3.14) min
(E1,E2)

{r1(E1) + r2(E2)}

which can be solved by the intersection algorithm. For uniformly bounded
k + l, the above scheme is polynomial. But from a practical standpoint,
even small bounds on k + l, such as 4 or 5, are likely to make the scheme
practically unusable. So one might want to explore other avenues to find k-
separations. In the next chapter, we learn about a method for a particular
case that turns out to be very important for several settings. Specifically,
we will have k = 3 and l ≤ 3.

In the next section, we point out additional material about intersection
and partitioning problems, and list references.

5.4 Extensions and References

The path shortening technique is introduced in Truemper (1984). As we
have seen in Section 5.3, the technique fully applies to abstract representa-
tion matrices of general matroids. Thus, virtually all results of Section 5.2
can be translated to almost identical ones for general matroids. One ad-
ditional class of nonbinary matroids must be introduced, though. It is the
class of whirls Wn. We define these matroids next. A whirl of rank n ≥ 1
is derived from the wheel matroid with same rank by declaring the circuit
containing the elements of the rim edges to be independent. Small whirls
are represented over GF(3) by the matrices of (5.4.1) below. In general, for
n ≥ 3, Wn is represented over GF(3) by the matrix of (5.4.2) below, where
α ∈ {+1,−1} is so chosen that the GF(3)-determinant of the matrix is −1.
Equivalently, the real sum of the entries must be 2(mod 4). Note that W2

is also U2
4 , the uniform matroid of rank 2 on four elements.

(5.4.1)
0

1

00
1 1

1

1 1 00
0 0 -1

1
0

0
1 1 0
1 0 1

111
1
1 1

-1

W1 W2 W3 W4

Representation matrices over GF(3) for whirls W1–W4
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(5.4.2)
1
1 .. ..

1
1

1

α

1 1

Representation matrix over GF(3) for whirl Wn, n ≥ 3

Lemmas (5.2.1) and (5.2.4) are valid for general matroids. Lemmas (5.2.10)
and (5.2.11) and Corollary (5.2.15) are readily extended to the general case
by allowing occurrence of the whirl W2 as possible minor besides the given
wheel matroids. All these results, including the extensions to nonbinary
matroids, are implicit in Whitney (1935) and Tutte (1958), (1965), (1971).

We have no reference for Lemma (5.2.16), but that result is well known.
The nonbinary version of that lemma is proved in Bixby (1974). It involves
U2

4 instead of M(W3), and claims the existence of a U2
4 minor with z, as

follows.

(5.4.3) Lemma. Let M be a connected matroid with a U2
4 minor. Then

for every element z of M , there is a U2
4 minor of M that contains z.

The proof is virtually identical to that of Lemma (5.2.16) except that ab-
stract matrices are used here. The result motivated a long series of papers
concerning the presence of specified elements in given minors (Seymour
(1981e), (1985b), (1986a), (1986b), Oxley (1984), (1987a), (1990a), Kahn
(1985), Coullard (1986), Coullard and Reid (1988), Oxley and Row (1989),
Oxley and Reid (1990), and Reid (1990), (1991a), (1991b), (1993), (1996)).

The matroid intersection and partitioning results of Section 5.3 are
just a small sampling of a wealth of material. The roots of these problems
can be traced back to several matching results of which Theorem (5.3.11),
due to König (1936), is an example. Lovász and Plummer (1986) give a
very complete account of these developments. Other early results related
to matroid intersection and partitioning are the solution of the problem of
partitioning a graph into forests in Nash-Williams (1961), (1964) and Tutte
(1961), and the solution of the so-called optimum branching problem, first
in Chu and Liu (1965), and later in Edmonds (1967a), Bock (1971), and
Karp (1971).

Edmonds (1965a), (1970), (1979) introduced and solved the matroid
intersection and partitioning problems, as well as generalizations to ma-
troids with weighted elements and to so-called polymatroids. He proved
that these problems can be converted to structurally simple linear programs
since certain polytopes have only integer vertices. In the terminology of
linear programming, the intersection problem is then the linear program-
ming dual of the partitioning problem. This work and Edmonds’s profound
results for matching problems (for a complete coverage, see Lovász and
Plummer (1986)) establish Edmonds as the founder of polyhedral combi-
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natorics. For applications, generalizations, and other algorithms, see Leh-
man (1964), Edmonds (1965b), (1967b), Edmonds and Fulkerson (1965),
Lawler (1975), (1976), Frank (1981), Hassin (1982), Lawler and Martel
(1982a), (1982b), Grötschel, Lovász, and Schrijver (1988), and Fujishige
(1989), (1991). Schrijver (1984) houses many of the problems treated in
those references under one roof.

As far as we know, the graph formulation of the intersection algorithm
described in Section 5.3 is due to Krogdahl (see Lawler (1976)), except
for our use of abstract matrices to simplify the arguments. In Cunning-
ham (1986) a considerably faster version of the algorithm is given. The
improvement rests on Menger’s Theorem and the observation that the path
used to derive the set Z ′ from the given set Z should be chordless, but
need not be shortest. Incidentally, Menger’s Theorem may also be used to
determine, for the given set Z, a set R ⊆ (E−Z) of minimum cardinality so
that Z becomes an independent set of maximum cardinality in the minors
M1\R and M2\R of M1 and M2. The graph approach may also be used
to improve the already very appealing algorithm of Frank (1981) for the
intersection problem with weighted elements.

The second application cited at the end of Section 5.3, which involves
certain k-separations of a matroid, is due to Cunningham (1973), and Cun-
ningham and Edmonds (1978).

Finally, we should mention that the intersection case involving at least
three matroids, is in general NP-hard since it includes the NP-complete
Hamiltonian cycle problem (see Garey and Johnson (1979)).



Chapter 6

Separation Algorithm

6.1 Overview

So far, we have described two simple matroid tools: the series-parallel and
delta-wye constructions of Chapter 4, and the path shortening technique of
Chapter 5. In this chapter, we introduce a third tool called the separation
algorithm. Before we summarize that method and some of its uses, let
us recall from Section 3.3 some definitions and results concerning matroid
separations. Let M be a binary matroid on a set E and with rank function
r(·). Furthermore, let B be a binary representation matrix of M with row
index set X and column index set Y . Suppose two sets E1 and E2 partition
E. For i = 1, 2, define Xi = Ei ∩X and Yi = Ei ∩ Y . Then (E1, E2) is a
k-separation of M , provided the matrix B when partitioned as

(6.1.1) X1
B =

Y1

B1

D1X2

Y2

B2

D2

Partitioned version of B

satisfies

(6.1.2)
|X1 ∪ Y1|, |X2 ∪ Y2| ≥ k

GF(2)-rank D1 + GF(2)-rank D2 ≤ k − 1

128
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The separation is exact if the inequality of (6.1.2) involving the GF(2)-rank
of D1 and D2 holds with equality. In terms of E1, E2, E, and the rank
function r(·), the conditions of (6.1.2) are

(6.1.3)
|E1|, |E2| ≥ k

r(E1) + r(E2) ≤ r(E) + k − 1

In the case of an exact separation, the inequality involving the rank function
holds with equality. Finally, for k ≥ 2, the matroid M is k-connected if it
does not have an l-separation for any 1 ≤ l < k.

We are ready to summarize the material of this chapter. In Section 6.2,
we describe and validate the just-mentioned separation algorithm. The
scheme solves the following problem. Given is a binary matroid M with a
minor N . For some k ≥ 1, an exact k-separation (F1, F2) is known for N .
We want to decide whether or not M has a k-separation (E1, E2) where
for i = 1, 2, Ei ⊇ Fi. In the affirmative case, we say that (F1, F2) induces
the k-separation (E1, E2).

The problem of finding induced separations may seem rather technical.
But several important matroid results can be derived from its solution.
Two such results are included in Sections 6.3 and 6.4. The first result
provides sufficient conditions for the existence of induced separations. In
later chapters, we rely upon these conditions to prove the existence of a
number of decompositions. The second result builds upon the first one.
It concerns the existence of certain extensions of 3-connected minors in
3-connected binary matroids. We use that result in the next chapter to
establish the so-called splitter theorem and the existence of some sequences
of minors. Finally, in Section 6.5, we sketch extensions of the results to the
nonbinary case and provide references.

The chapter relies on the material of Chapters 2, 3, and 5.

6.2 Separation Algorithm

Suppose we are given a binary matroid M on a set E. Let N be a minor
of M on a set F ⊆ E. Assume that N has, for some k ≥ 1, an exact k-
separation (F1, F2). We want to know whether or not M has a k-separation
(E1, E2) where for i = 1, 2, Ei ⊇ Fi. If such (E1, E2) exists, we declare
it to be induced by (F1, F2). In this section, we describe a simple method
called the separation algorithm for deciding the existence of (E1, E2).

We begin with an informal discussion that relies on a particular binary
representation matrix BN of N . Let X2 be a maximal independent subset
of N contained in F2. Then select a subset X1 from F1 so that X1 ∪ X2

is a basis of N . For i = 1, 2, let Yi = Fi −Xi. The desired representation
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matrix BN of N corresponds to the base X1 ∪X2 of N . By the derivation
of that base, BN is of the form

(6.2.1)

Y1 Y2

X1
BN =

A1

DX2 A2

0

Partitioned version of BN

for some A1, A2, and D. Indeed, the zero submatrix indexed by X1 and
Y2 is present since X2 is a maximal independent subset of F2, and since
Y2 = F2 −X2. By assumption, (F1, F2) is an exact k-separation of N , so
we have by (6.1.2)

(6.2.2)
|X1 ∪ Y1|, |X2 ∪ Y2| ≥ k

GF(2)-rank D = k − 1

We embed BN into a representation matrix of M , and thus make the minor
N visible, as follows. Since X1 ∪ X2 is independent in N , that set is also
independent in M . Thus, we can find a set X3 ⊆ E−F so that X1∪X2∪X3

is a base of M . Let Y3 = (E−F )−X3. The representation matrix B of M
for this base contains BN as submatrix. We depict B below. For reasons
to become clear shortly, we have placed A1, A2, D, and the 0 submatrix of
BN into the corners of B.

(6.2.3)

Y1

A2

A1

D

Y2Y3

X3B =

X2

X1 0

0 1

Matrix B for M displaying partitioned BN

Recall that we want to find a k-separation (E1, E2) of M where for i = 1, 2,
Ei ⊇ Fi, or to prove that no such k-separation exists. In terms of the index
sets of (6.2.3), we want to partition the set X3 into X31, X32, and the set
Y3 into Y31, Y32 so that the correspondingly refined matrix B of (6.2.3) is
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of the form

(6.2.4)   A1~

Y1 Y31 Y32

A2

B =

A1

D

Y2

Y3

X3

X31

X32

X2

X1

0

0

  D
~

  A2~

Partition of B induced by that of BN

with GF(2)-rank D̃ ≤ k − 1, or we are to prove that such partitions of X3

and Y3 do not exist. In the affirmative case, D is a submatrix of D̃, and
since GF(2)-rank D = k − 1, we must have GF(2)-rank D̃ = k − 1. Put
differently, if an induced k-separation of M exists at all, then it must be
an exact induced k-separation.

We employ a recursive scheme to decide whether or not an induced
k-separation exists. As the measure of problem size for the recursion, we
use |X3∪Y3|. If |X3∪Y3| = 0, then M = N , and for i = 1, 2, Ei = Fi gives
the desired induced k-separation of M . Suppose |X3 ∪ Y3| ≥ 0. Redraw B
of (6.2.3) so that an arbitrary row x ∈ X3 and an arbitrary column y ∈ Y3

are displayed as follows.

(6.2.5)

Y2Y1 y

A2

B =

g

α

h

A1

e

D

Y3

X3

x

X2

X1 0

f

Matrix B for M with partitioned BN ,
row x ∈ X3, and column y ∈ Y3

The recursive method relies on the analysis of the following three cases of
B of (6.2.5). Collectively, these cases cover all situations.

In the first case, we suppose that for some row x ∈ X3, the subvector e
is not spanned by the rows of D. We claim that in any induced k-separation,
we must have x ∈ X31. For a proof, take any such separation as depicted
by (6.2.4). If x ∈ X32, then the subvector e of row x occurs in D̃. Since e
is not spanned by the rows of D, we have GF(2)-rank D̃ > GF(2)-rank D,
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which contradicts the condition GF(2)-rank D̃ = GF(2)-rank D. Thus, x
must be in X31 as claimed. We now examine the subvector f of row x.
Suppose that subvector is nonzero. Using (6.2.4) once more, we see that
in any induced k-separation, the nonzero f forces x to be in X32. But the
latter requirement conflicts with the one determined earlier for x. Thus, an
induced k-separation cannot exist, and we stop with that conclusion. So
we now assume the subvector f of row x to be zero. We know already that
x must be in X31 in any induced k-separation. Suppose in B of (6.2.5), we
adjoin e to A1 and f to the explicitly shown 0 submatrix, getting a new A1

and a new 0 submatrix. Correspondingly, we extend N by x to N&x and
redefine N to be the extended matroid. Evidently, (X1∪{x}∪Y1, X2∪Y2)
is a k-separation of the new N , and that k-separation induces one in M if
and only if this is so for the k-separation (X1 ∪ Y1, X2 ∪ Y2) of the original
N . Thus, we may replace the original problem by one involving the new
N . By our measure of problem size, the new problem is smaller than the
original one, and we may apply recursion.

In the second case, we suppose that for some column y ∈ Y3, the
subvector g is nonzero. Arguing analogously to the first case via (6.2.4), we
conclude that y must be in Y31 in any induced k-separation. Furthermore,
suppose that the column subvector h of column y is not spanned by the
columns of D. Using (6.2.4) once more, we see that y must also be in Y32 in
any induced k-separation. Thus, an induced k-separation cannot exist, and
we stop with that conclusion. So suppose that h is spanned by the columns
of D. Then we adjoin g to A1, h to D, and correspondingly redefine N to
become N+y. Then the k-separation (X1 ∪ Y1 ∪ {y}, X2 ∪ Y2) of the new
N induces a k-separation of M if and only if this is so for the k-separation
(X1∪Y1, X2∪Y2) of the original N . Once more, we may replace the induced
k-separation problem involving the original N by one with the new N . The
latter problem is smaller, and we may invoke recursion.

For the discussion of the third and final case, we suppose that neither
of the above cases applies. Equivalently, for all x ∈ X3, the subvector e of
row x is spanned by the rows of D, and for all y ∈ Y3, the subvector g of
column y is zero. By (6.2.5), (X1 ∪Y1, X2 ∪X3 ∪Y2 ∪Y3) is a k-separation
of M induced by the one of N , and we stop with that conclusion.

We call the above recursive method the separation algorithm. It clearly
has a polynomial implementation. For later reference, we summarize the
algorithm below.

Separation Algorithm

1. Suppose B of (6.2.5) has a row x ∈ X3 with the indicated row sub-
vectors e and f such that GF(2)-rank [e/D] > GF(2)-rank D. Then x
must be in X31. Suppose, in addition, that f is nonzero. Then x must
also be in X32, i.e., B cannot be partitioned, and we stop with that
declaration. On the other hand, suppose f = 0. Since x must be in
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X31, we adjoin e to A1, and f to the explicitly shown 0 matrix. Then
we start recursively again with the new B and the new BN .

2. Suppose B of (6.2.5) has a column y ∈ Y3 with the indicated column
subvectors g and h such that g is nonzero. Then y must be in Y31.
Suppose, in addition, GF(2)-rank [D | h] > GF(2)-rank D. Then y
must also be in Y32, i.e., B cannot be partitioned, and we stop with
that declaration. On the other hand, suppose GF(2)-rank [D | h] =
GF(2)-rank D. Since y must be in Y31, we adjoin g to A1, and h to
D. Then we start recursively again with the new B and the new BN .

3. Finally, suppose that for all rows x ∈ X3, the row subvector e satisfies
GF(2)-rank [e/D] = GF(2)-rank D, and that for all columns y ∈ Y3,
the column subvector g is 0. Then X31 = Y31 = ∅, Y32 = Y3, Y32 = Y3

gives the desired partition of B.

In the next two sections, we put the separation algorithm to good use.
Preparatory to that discussion, we establish in the next lemma that certain
extensions of binary matroids are 3-connected.

(6.2.6) Lemma. Let N be a 3-connected binary matroid on at least six
elements. Suppose a 1-, 2-, or 3-element binary extension of N , say M ,
has no loops, coloops, parallel elements, or series elements. Then M is
3-connected.

Proof. Let C be a binary representation matrix of M that displays a
representation matrix, say B, for N . By assumption, B is 3-connected.
Suppose C is not connected. A straightforward case analysis proves C to
contain a zero vector or unit vector. Thus, M has a loop, coloop, parallel
elements, or series elements, a contradiction. Hence, C is connected. If C
is not 3-connected, then by Lemma (3.3.20), there is a 2-separation of C
with at least five rows/columns on each side. Then, necessarily, the matrix
B has a 2-separation with at least two rows/columns on each side, another
contradiction. We conclude that C, and hence M , are 3-connected.

From Lemma (6.2.6), we deduce the following result for 1-edge exten-
sions of 3-connected graphs.

(6.2.7) Lemma. Let H be a 3-connected graph with at least six edges.
Then a connected 1-edge extension of H is 3-connected if and only if it is
producible as follows: Either two nonadjacent vertices of H are connected
by a new edge, or a vertex of degree at least 4 is partitioned into two
vertices, each of degree at least 2, and the two new vertices are connected
by a new edge.

Proof. The described extension steps are precisely the ways in which H
can be extended by one edge to a larger connected graph that does not
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have loops, coloops, parallel edges, or series edges. Thus, the “only if”
part is obvious. The “if” part follows from Lemma (6.2.6).

We are prepared for the next section, where we derive sufficient con-
ditions for the existence of induced separations under various assumptions.

6.3 Sufficient Conditions for Induced
Separations

In this section, we employ the separation algorithm to establish sufficient
conditions under which induced separations can be guaranteed. Before
we begin with the detailed discussion, we describe the general setting in
which these conditions will be invoked. To this end, let M be a class of
binary matroids. The class is assumed to be closed under minor-taking and
isomorphism.

We select a matroid N ∈ M, say on set F . Suppose by some method
we find, for some k ≥ 2, an exact k-separation (F1, F2) for N . At that
point, we would like to claim the following.

(6.3.1)


Suppose an M ∈M has an N minor, say N ′ . Let (F ′

1, F
′
2)

be a k-separation of N ′ that corresponds to (F1, F2) under
one of the isomorphisms between N ′ and N . Then the k-
separation (F ′

1, F
′
2) of N ′ induces a k-separation of M .

Results of type (6.3.1) are valuable if an M ∈M is known to have an
N minor, and if the induced k-separation of M may be employed to effect
a useful decomposition of M . In Chapters 10–13, we will see that these two
assumptions are satisfied in a number of cases. Thus, nontrivial instances
of (6.3.1) are indeed useful.

The technique for proving (6.3.1) is in principle straightforward. With
machinery yet to be described, we compute all minimal binary matroids
satisfying the assumptions of (6.3.1) but not its conclusion. If no such
matroid is in M, then (6.3.1) indeed holds.

Application of the technique entails two difficulties. First, M, N , and
(F1, F2) must be properly selected. Second, we need structural insight and
computational tools to prove that M has no M for which (6.3.1) fails.
In this section, we ignore the first aspect. It will be treated in depth
in Chapters 10–13. Instead, we concentrate on the development of the
structural insight and of the computational tools.

We break down that development into two phases. In the first one,
we accomplish the following task, where N is the previously mentioned
matroid with exact k-separation (F1, F2).
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(6.3.2)


Find computationally tractable properties of minimal bi-
nary matroids M that have N as a minor, but that do
not have a k-separation induced by the exact k-separation
(F1, F2) of N .

An M satisfying the conditions of (6.3.2) we simply call minimal. In
the second phase, we expand the task of (6.3.2) to the task (6.3.3) below. It
essentially says that the requirements of (6.3.2) are to hold for some minor
isomorphic N , and that M is to be minimal with respect to that condition.
The precise statement is as follows.

(6.3.3)



Find computationally tractable properties of binary ma-
troids M satisfying the following conditions: M must have
at least one N minor. Some k-separation of at least one
such minor corresponding to (F1, F2) of N under one of the
isomorphisms must fail to induce a k-separation of M . The
matroid M is to be minimal with respect to those condi-
tions.

We say that an M satisfying the conditions of (6.3.3) is minimal under
isomorphism. Evidently, minimality under isomorphism demands more
than the previously defined minimality.

Answers to (6.3.3) give sufficient conditions so that (6.3.1) holds. That
is, if none of the binary matroids M with the yet-to-be-determined prop-
erties of (6.3.3) is in M, then necessarily (6.3.1) must hold. Thus, answers
to (6.3.3) effectively supply sufficient conditions under which (6.3.1) is sat-
isfied.

We begin with the task (6.3.2). We are given a binary matroid N
on a set F . In the next lemma, we rely on rank functions instead of
representation matrices. Thus, we let rN (·) be the rank function of N . For
some k ≥ 1, we have an exact k-separation (F1, F2) of N . Thus, by (6.1.3),

(6.3.4)
|F1|, |F2| ≥ k

rN (F1) + rN (F2) = rN (F ) + k − 1

Let M be any binary matroid on a set E and with rank function rM (·).
Assume that M has N as a minor, and that (F1, F2) does not induce a k-
separation of M . Thus, the system

(6.3.5)
E1 ⊇ F1; E2 ⊇ F2

rM (E1) + rM (E2) ≤ rM (E) + k − 1
has no solution. Assume M to be minimal as defined above. Thus, every
proper minor M ′ of M with N as a minor has a solution for an appropriately
adapted (6.3.5). First, we show that there is a unique partition of the set
E − F into Z1 and Z2 so that N = M/Z1\Z2.
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(6.3.6) Lemma. Let M , E, N , F , and (F1, F2) be as defined above.
Suppose (6.3.5) has no solution and that M is minimal. Then for all z ∈
(E − F ), M/z or M\z does not have N as a minor.

Proof. Suppose both M/z and M\z have N as a minor. By the minimal-
ity of M , they both have induced separations, say (U1, U2) for M/z and
(W1, W2) for M\z. Let r

M/z
(·) and rM\z(·) be the rank functions of M/z

and M\z. According to (6.3.5),

(6.3.7)

U1, W1 ⊇ F1; U2, W2 ⊇ F2

r
M/z

(U1) + r
M/z

(U2) ≤ r
M/z

(E − {z}) + k − 1

rM\z(W1) + rM\z(W2) ≤ rM\z(E − {z}) + k − 1

By the minimality of M , z cannot be a loop or coloop of M . Thus, the two
inequalities of (6.3.7) imply the inequalities

(6.3.8) rM (U1 ∪ {z}) + rM (U2 ∪ {z}) ≤ rM (E) + k
rM (W1) + rM (W2) ≤ rM (E) + k − 1

We add the two inequalities of (6.3.8) and apply submodularity to get

(6.3.9)
rM (U1 ∪ {z} ∪W1) + rM ((U1 ∪ {z}) ∩W1)

+ rM (U2 ∪ {z} ∪W2) + rM ((U2 ∪ {z}) ∩W2)
≤ 2rM (E) + 2k − 1

But each one of (U1 ∪ {z} ∪ W1, (U2 ∪ {z}) ∩ W2) and (U2 ∪ {z} ∪
W2, (U1 ∪ {z}) ∩ W1) is a pair (E1, E2) satisfying E1 ⊇ F1 and E2 ⊇ F2.
Since (6.3.5) cannot be satisfied, we have

(6.3.10)
rM (U1 ∪ {z} ∪W1) + rM ((U2 ∪ {z}) ∩W2) ≥ rM (E) + k

rM (U2 ∪ {z} ∪W2) + rM ((U1 ∪ {z}) ∩W2) ≥ rM (E) + k

Summing the latter two inequalities, we obtain a contradiction of
(6.3.9).

For further insight into the structure of a minimal M , we employ the
separation algorithm of Section 6.2. That is, we have the representation
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matrix B of (6.2.5) for M , repeated here for ease of reference.

(6.3.11)

Y2Y1 y

A2

B =

g

α

h

A1

e

D

Y3

X3

x

X2

X1 0

f

Matrix B for M with partitioned BN ,
row x ∈ X3, and column y ∈ Y3

The submatrix of B composed of A1, A2, D, and the explicitly shown 0
matrix is BN of (6.2.1), which we also repeat here. The latter matrix
represents N .

(6.3.12)

Y1 Y2

X1
BN =

A1

DX2 A2

0

Partitioned version of BN

We apply the separation algorithm to search for a partition as given by
(6.2.4). Since (6.3.5) cannot be satisfied, the algorithm terminates in step 1
or 2 announcing that no partition with the desired properties exist. Below,
we list that algorithm again, with references adapted to the just-defined
matrices.

Separation Algorithm

1. Suppose B of (6.3.11) has a row x ∈ X3 with the indicated row sub-
vectors e and f such that GF(2)-rank [e/D] > GF(2)-rank D. Then
x must be in X31. Suppose, in addition, that f is nonzero. Then x
must also be in X32, i.e., B cannot be partitioned, and we stop with
that declaration. On the other hand, suppose f = 0. Since x must be
in X31, we adjoin e to A1, and f to the explicitly shown zero matrix.
Then we start recursively again with the new B and the new BN .

2. Suppose B of (6.3.11) has a column y ∈ Y3 with the indicated column
subvectors g and h such that g is nonzero. Then y must be in Y31.
Suppose, in addition, GF(2)-rank [D | h] > GF(2)-rank D. Then y
must also be in Y32, i.e., B cannot be partitioned, and we stop with
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that declaration. On the other hand, suppose GF(2)-rank [D | h] =
GF(2)-rank D. Since y must be in Y31, we adjoin g to A1, and h to
D. Then we start recursively again with the new B and the new BN .

3. Finally, suppose that for all rows x ∈ X3, the row subvector e satisfies
GF(2)-rank [e/D] = GF(2)-rank D, and that for all columns y ∈ Y3,
the column subvector g is 0. Then X31 = Y31 = ∅, Y32 = Y3, Y32 = Y3

gives the desired partition of B.

By (6.3.11), for any x ∈ X3 and any y ∈ Y3, the minors M/x and M\y
of M have N as a minor. Thus, by the minimality of M , the separation
algorithm does find a partition if we delete any row x ∈ X3 or any column
y ∈ Y3 from B.

We now prove some results about the structure of a matrix B produced
by a minimal M . We start with the special case where B of a minimal M
contains just one row or column beyond that of BN . Consider the case of a
single additional row x. In the notation of (6.3.11), X3 = {x} and Y3 = ∅.
By step 1 of the separation algorithm, the row subvectors e and f of row
x satisfy

(6.3.13)
e is not spanned by the rows of D, and
f is nonzero

Similarly, we deduce for the case of a single additional column y, i.e., when
X3 = ∅ and Y3 = {y},

(6.3.14)
g is nonzero, and
h is not spanned by the columns of D

We now treat the remaining cases, where B has at least two additional
rows or columns beyond those of BN . Thus, |X3 ∪ Y3| ≥ 2. We want to
show that both X3 and Y3 are nonempty, and that there exist x ∈ X3 and
y ∈ Y3 so that the subvectors e, f of row x, and g, h of column y, as well
as the scalar α, obey certain conditions. First we prove the following fact
about the subvectors e of the rows x ∈ X3 and about the subvectors g of
the columns y ∈ Y3.

(6.3.15) Lemma. Exactly one of the two cases (i) and (ii) below applies.

(i) There is exactly one row x ∈ X3 such that the subvector e is not
spanned by the rows of D. In that row x, the subvector f is zero.
Furthermore, for all y ∈ Y3, the subvector g of column y is zero.

(ii) There is exactly one column y ∈ Y3 such that the subvector g is
nonzero. In that column y, the subvector h is spanned by the columns
of D. Furthermore, for all x ∈ X3, the subvector e of row x is spanned
by the rows of D.
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Proof. If the condition about f or h does not hold, then we have the
smaller case of (6.3.13) or (6.3.14), a contradiction.

To prove the claims about e and g, we apply the separation algo-
rithm to B. Consider each application of steps 1 and 2 except for the
last application, when the algorithm stops. In each such application, a
row x ∈ X3 or column y ∈ Y3 is moved to X31 or Y31, and the re-
lated row subvector f satisfies f = 0, or the column subvector h satisfies
GF(2)-rank [D | h] = GF(2)-rank D. Exactly one of these conditions is vi-
olated in the last iteration. The rows and columns moved to X31 and Y31,
plus the row or column encountered in the last application, suffice to prove
that B has no induced partition. Thus, by the minimality of M , these rows
and columns comprise the rows and columns that B has beyond those of
BN . We conclude that in each row x ∈ X3, the row subvector f is zero
except for at most one such vector, and that in each column y ∈ Y3, the
column subvector h is spanned by D except for at most one such vector.
Furthermore, if there is a nonzero f , then all vectors h are spanned by D,
and if there is an h not spanned by D, then all vectors f are zero. To
prove the claims about e and g, we use duality, or equivalently, we apply
the above arguments to Bt. Then g plays the role of f above, and e that of
h. The conditions just proved for f and h establish the statements about
e and g of the lemma.

We investigate the two cases of Lemma (6.3.15) further. We begin
with the situation where a unique row x ∈ X3 has a subvector e that is
not spanned by the rows of D, and where for all y ∈ Y3, the subvector g of
column y is zero. The next lemma tells more about the columns y ∈ Y3.

(6.3.16) Lemma. Suppose case (i) of Lemma (6.3.15) applies. Then
there exists a y ∈ Y3 such that the scalar α of column y is 1 and the
subvector h is nonzero.

Proof. As in the proof of Lemma (6.3.15), we apply the separation algo-
rithm to B. By the assumptions, in the first iteration the row x is moved
to X31. By Lemma (6.3.15), in the next recursive application of the sep-
aration algorithm, step 2 must apply. Thus, a column y ∈ Y3 is moved
to Y31. By Lemma (6.3.15), the subvector g of that column is zero. Then
α = 1 since otherwise step 2 could not move column y to Y31.

Suppose h is zero. Since g is also zero, we can pivot on α = 1 with-
out disturbing the submatrix BN . This implies that both M\y and M/y
have N as a minor, in violation of Lemma (6.3.6). Thus, h must be
nonzero.

Consider now the second case of Lemma (6.3.15). Thus, B has a
unique column y ∈ Y3 with nonzero subvector g, and the subvector h is
spanned by the columns of D. Furthermore, for all x ∈ X3, the subvector
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e of row x is spanned by the rows of D. Analogously to Lemma (6.3.16),
we have the following result.

(6.3.17) Lemma. Suppose case (ii) of Lemma (6.3.15) applies. Then
there exists an x ∈ X3 such that the subvector e is spanned by the rows of
D. If the subvector f is zero, then the subvector e is nonzero. Furthermore,
the subvector [e | α] is not spanned by the rows of [D | h].

Proof. Apply the separation algorithm to B. In the first iteration, the col-
umn y is moved to Y31. In the next recursive application of the separation
algorithm, step 1 must apply. Thus, a row x ∈ X3 is moved to X31. The
subvector e must be spanned by the rows of D, but the subvector [e | α] of
row x is not spanned by the rows of [D | h].

Suppose f is zero. If e is also zero, then necessarily α = 1. A pivot on
α does not disturb the submatrix BN . Thus, both M/x and M\x contain
N as a minor, a contradiction of Lemma (6.3.6). Thus, e is nonzero.

With (6.3.13), (6.3.14), and Lemmas (6.3.16) and (6.3.17), we assemble
the following theorem.

(6.3.18) Theorem. Let M be minimal, and let B be the representation
matrix of (6.3.11) for M .

(a) Suppose X3 = {x} and Y3 = ∅. Then the subvector e of row x is not
spanned by the rows of D, and f is nonzero.

(b) Suppose X3 = ∅ and Y3 = {y}. Then the subvector g of column y is
nonzero, and h is not spanned by the columns of D.

(c) Suppose |X3 ∪ Y3| ≥ 2. Then either (c.1) or (c.2) below applies for
some x ∈ X3 and y ∈ Y3.

(c.1) The subvector e of row x is not spanned by the rows of D, and
f is zero. The subvector g of column y is zero, α = 1, and the
subvector h is nonzero.

(c.2) The subvector g of column y is nonzero, and the subvector h is
spanned by the columns of D. The subvector e is spanned by
the rows of D. If the subvector f is zero, then the subvector e
is nonzero. The subvector [e | α] is not spanned by the rows of
[D | h].

Proof. Statements (6.3.13) and (6.3.14) establish (a) and (b). Lemmas
(6.3.15), (6.3.16), and (6.3.17) prove parts (c.1) and (c.2).

For our purposes, Theorem (6.3.18) suffices as answer for the task
(6.3.2). Thus, we turn to the task (6.3.3). That problem demands that we
find computationally tractable properties of binary matroids M that are
minimal under isomorphism. That is, any such M has a minor isomorphic
to N . For at least one such minor the following holds. Some k-separation
of that minor corresponds to (F1, F2) of N under one of the isomorphisms,
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and fails to induce a k-separation of M . We want M to be minimal with
respect to these conditions.

Let B of (6.3.11) be the representation matrix of an M that is minimal
under isomorphism. Since minimality under isomorphism implies the min-
imality defined for (6.3.2), B observes the conditions of Theorem (6.3.18).
Evidently, minimality under isomorphism is a stronger requirement than
minimality. Thus, we expect e, f , g, h, and α of Theorem (6.3.18) to obey
additional conditions. The next lemma supplies computationally tractable
ones. The notation is that of Theorem (6.3.18).

(6.3.19) Lemma.
(c.1) If case (c.1) of Theorem (6.3.18) applies, then the following holds.

(c.1.1) The subvector e of row x of B is not parallel to a row of the
submatrix A1.

(c.1.2) Suppose column z ∈ Y1 of A1 is nonzero. Then the subvector
e of row x of B is not a unit vector with 1 in column z of B.

(c.2) If case (c.2) of Theorem (6.3.18) applies, then the following holds.

(c.2.1) Suppose D, the matrix obtained from D by deletion of a
column z ∈ Y1 of D, has the same GF(2)-rank as D. Then
the subvector [g/h] of column y of B is not parallel to column
z of [A1/D].

(c.2.2) Suppose the rows of D do not span a row z ∈ X1 of A1.
Then [g/h] is not a unit vector with 1 in row z.

Proof. (c.1.1): For a proof by contradiction, suppose the subvector e of
row x of B is parallel to a row z ∈ X1 of A1. In B, we exchange the
rows x and z, and appropriately adjust X1 to X ′

1 = (X1 − {z}) ∪ {x} and
X3 to X ′

3 = (X3 − {x}) ∪ {z}. By (c.1) of Theorem (6.3.18), f is zero.
Thus, the submatrix of B indexed by X ′

1, X2, Y1, and Y2 is BN except
for the change of the index z to x. Let N ′ be the corresponding minor
of M . We know that N&x does not induce a k-separation of M . Thus,
N ′&z = N&x does not induce one either. The same conclusion applies to
N ′, since row z contains e. Now M is minimal under isomorphism, so M
must be minimal with respect to N ′. We show that the latter conclusion
leads to a contradiction. For the proof, let us examine the effect of the
exchange of rows x and z on column y ∈ Y3. By that exchange, the role of
the zero subvector g indexed by X1 is taken on by a vector g′ indexed by
X ′

1. By (c.1) of Theorem (6.3.18), the entry α in row x is nonzero. Thus,
the vector g′ is nonzero. Apply Lemma (6.3.15) to N ′ and the subvectors
e and g′. Since e is not spanned by the rows of D and since g′ is nonzero,
these subvectors violate the conclusions of that lemma, and thus provide
the desired contradiction.
(c.1.2): Suppose that column z ∈ Y1 of A1 is nonzero, and that e is a unit
vector with 1 in column z of B. Perform a pivot in column z ∈ Y1 of A1.
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Then the subvector e becomes parallel to a row of A1, and the above case
(c.1.1) applies.
(c.2.1): Suppose D, the matrix obtained from D′ by deletion of a column
z ∈ Y1 of D, has the same GF(2)-rank as D. Further assume that the
subvector [g/h] of column y of B is parallel to column z of [A1/D]. Ex-
change columns y and z of B. Adjust Y1 to Y ′

1 = (Y1 − {z}) ∪ {y} and
Y3 to Y ′

3 = (Y3 − {y}) ∪ {z}. The swap of columns effectively replaces N
by an isomorphic minor N ′ and modifies D to D′ and e to e′. A simple
rank calculation confirms that under the assumption on D, the rows of D′

do not span e′. Arguing analogously to the case (c.1.1), M is not minimal
under isomorphism.
(c.2.2): By a pivot in row z of A1, this case becomes (c.2.1), as is readily
checked.

We summarize the preceding conclusions in the next theorem, which
finishes the task (6.3.3). The statement of the theorem is rather detailed
to simplify its application.

(6.3.20) Theorem. Let M be minimal under isomorphism. Then one
of (a), (b), or (c) below holds.

(a) M is represented by

(6.3.21)
x

Y2Y1

X1

B =

A1

DX2 A2

e f

0

Matrix B for M minimal
under isomorphism, case (a)

In row x, e is not spanned by the rows of D, and f is nonzero.

(b) M is represented by

(6.3.22)
B

Y1

X2

Y2

X1 A1

D A2

0
=

y

g

h

Matrix B for M minimal
under isomorphism, case (b)

In column y, g is nonzero, and h is not spanned by the columns of D.
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(c) M has a minor M with representation matrix

(6.3.23)

Y1

x

Y2

X1 A1

DX2 A2

e f

0

y

g

h

αB =

Matrix B for minor M
of M minimal under isomorphism

Either (c.1) or (c.2) below holds for e, f , g, h, and α.

(c.1) e is not spanned by the rows of D; f = 0; g = 0; h 6= 0; α = 1; e is
not parallel to a row of A1. If column z ∈ Y1 of A1 is nonzero, then
e is not a unit vector with 1 in column z of B.

(c.2) g 6= 0; h is spanned by the columns of D; e is spanned by the rows of
D; f = 0 implies e 6= 0; [e | α] is not spanned by the rows of [D | h].
If D, the matrix obtained from D by deletion of a column z ∈ Y1,
has the same GF(2)-rank as D, then [g/h] is not parallel to column
z of [A1/D]. If the rows of D do not span a row z ∈ X1 of A1, then
[g/h] is not a unit vector with 1 in row z.

Proof. The statements follow directly from Theorem (6.3.18) and Lemma
(6.3.19).

Recall our main goal for this section: We want to determine sufficient
conditions for induced separations. In the next corollary, we deduce such
conditions from Theorem (6.3.20).

(6.3.24) Corollary. Let M be a class of binary matroids that is closed
under isomorphism and under the taking of minors. Suppose that N given
by BN of (6.3.12) is in M, but that the 1- and 2-element extensions of N
given by (6.3.21), (6.3.22), (6.3.23), and by the accompanying conditions
are not in M. Assume that a matroid M ∈M has an N minor. Then any
k-separation of any such minor that corresponds to (X1 ∪ Y1, X2 ∪ Y2) of
N under one of the isomorphisms induces a k-separation of M .

Proof. Take M ∈ M satisfying the assumptions. We know M to be
closed under isomorphism. Thus, we may suppose that the N minor of
M is N itself. Suppose the k-separation of N does not induce one in M .
Then M , or a minor of M containing N , is minimal under isomorphism.
By Theorem (6.3.20), M has a minor represented by one of the matrices
of (6.3.21), (6.3.22), (6.3.23). Since M is closed under minor-taking, any
such minor of M is in M. But presence of such a minor in M is ruled out
by assumption, a contradiction.
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Sometimes an abbreviated version of Corollary (6.3.24) suffices to pro-
duce the desired conclusion of induced separations. The following result is
one such version.

(6.3.25) Corollary. Let M be a class of binary matroids that is closed
under isomorphism and under the taking of minors. Suppose a 3-connected
N given by BN of (6.3.12) is in M. Assume that N/(X2∪Y2) has no loops
and that N\(X2 ∪ Y2) has no coloops. Furthermore, assume for every 3-
connected 1-element extension of N in M, say by an element z, that the
pair (X1 ∪ Y1, X2 ∪ Y2 ∪ {z}) is a k-separation of that extension. Then for
any 3-connected matroid M ∈ M with an N minor, the following holds.
Any k-separation of any such minor that corresponds to (X1 ∪Y1, X2∪Y2)
of N under one of the isomorphisms induces a k-separation of M .

Proof. Suppose the conclusion is false. By Corollary (6.3.24), M con-
tains a matroid M represented by one of the matrices (6.3.21), (6.3.22),
or (6.3.23). We first dispose of the cases (6.3.21) and (6.3.22). The as-
sumed 3-connectedness of BN and the conditions of Theorem (6.3.20) on
the matrices of (6.3.21) and (6.3.22) imply that these matrices do not con-
tain zero vectors, unit vectors, or parallel vectors. Then by Lemma (6.2.6),
these matrices represent 3-connected 1-element extensions of N . By as-
sumption, any 3-connected 1-element extension of N does have an induced
k-separation. Hence, the cases (6.3.21) and (6.3.22) cannot occur.

Consider (6.3.23), case (c.1). Delete column y from that matrix. The
reduced matrix represents N&x. We claim that N&x is 3-connected. By
(c.1), the subvector e of row x is not spanned by the rows of D. It also is
not parallel to a row of A1. Now N/(X2 ∪ Y2) has no loop, so A1 has no
zero columns. Then by (c.1), e is not a unit vector. By Lemma (6.2.6),
N&x is 3-connected as claimed. Since e is not spanned by the rows of D,
(X1 ∪ Y1, X2 ∪ Y2 ∪ {x}) is not a k-separation of N&x. By assumption,
N&x cannot be in M. Yet N&x is a minor of M ∈M, a contradiction.

Consider (6.3.23), case (c.2). We first establish an auxiliary result.
Suppose that for some z ∈ Y1, deletion of column z from D reduces the
GF(2)-rank, or that for some z ∈ X1, the rows of D span row z of A1.
We claim that z is a coloop of N\(X2 ∪ Y2), contrary to assumption. For
a proof, we delete from [I | BN ] the columns indexed by X2 ∪ Y2. By a
simple rank calculation, every basis of the reduced matrix contains column
z. This establishes the claim.

By (c.2) and the auxiliary result, g and h of (6.3.23) satisfy the fol-
lowing conditions: g 6= 0, and [g/h] is not parallel to a column of [A1/D]
and is not a unit vector. Then by Lemma (6.2.6) and (6.3.23), N+y is
3-connected, and (X1 ∪ Y1, X2 ∪ Y2 ∪ {y}) is not a k-separation of N+y.
Thus, N+y cannot be in M. Yet N+y is a minor of M ∈M, a contradic-
tion.

In Chapter 10, we require the graph version of Corollary (6.3.25) for
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k = 3. For that situation, we adapt the above matroid language as follows.
Suppose we have 3-connected graphs G and H. On hand is a 3-separation
(F1, F2) for H. Then that 3-separation of H induces one for G if the latter
graph has a 3-separation (E1, E2) where E1 ⊇ F1 and E2 ⊇ F2. Here is
the special graph version of Corollary (6.3.25) for k = 3.

(6.3.26) Corollary. Let G be a class of connected graphs that is closed
under isomorphism and under the taking of minors. Let a 3-connected
graph H ∈ G have a 3-separation (F1, F2) with |F1|, |F2| ≥ 4. Assume
that H/F2 has no loops and H\F2 has no coloops. Furthermore, assume
that for every 3-connected 1-edge extension of H in G, say by an edge z,
the pair (F1, F2 ∪ {z}) is a 3-separation of that extension. Then for any
3-connected graph G ∈ G with an H minor, the following holds. Any 3-
separation of any such minor that corresponds to (F1, F2) of H under one
of the isomorphisms induces a 3-separation of G.

Proof. By the assumptions and Corollary (6.3.25), (F1, F2) is a 3-separ-
ation of M(H), and that 3-separation induces (in the matroid sense) a
3-separation (E1, E2) in M(G). For i = 1, 2, Ei ⊇ Fi, and thus |Ei| ≥
|Fi| ≥ 4. By Theorem (3.2.25), part (c), (E1, E2) is a 3-separation of G as
desired.

We touch upon the complexity of finding a minor that prevents an
induced k-separation. We consider this problem in the following setting.
We are given a binary matroid M , a minor N of M, and a k-separation of
N . We would like to obtain a k-separation of M induced by that of N . If
that is not possible, we want to find a minor M represented up to indices
by one of the matrices of (6.3.21)–(6.3.23). The next theorem says that
this problem can be solved in polynomial time.

(6.3.27) Theorem. There is a polynomial algorithm for the following
problem. The input consists of a binary matroid M , a minor N of M ,
and a k-separation of N . The output is to be either a k-separation of M
induced by that of N , or a minor of M that is isomorphic to one of the
matroids represented by the matrices of (6.3.21)–(6.3.23).

Proof. If an induced k-separation does exist, then one such k-separation is
found by the separation algorithm. Suppose there is no such k-separation of
M . Then we use a polynomial implementation of the constructive proofs of
Lemmas (6.3.15)–(6.3.17) and (6.3.19) to locate a minor of M represented
up to indices by one of the matrices of (6.3.21)–(6.3.23).

Sometimes a class M of matroids under investigation is only closed
under restricted isomorphism and under special minor-taking. We want
sufficient conditions under which the above results for induced decomposi-
tions remain valid in the new setting. We state one such instance following
a definition.
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Let L be a set of elements. Assume that two binary matroids contain
the set L. We say that the two matroids are L-isomorphic if there is an
isomorphism that is an identity on the set L. The conditions on M are as
follows. Each matroid of M contains L. Furthermore, M is closed under
L-isomorphism and under the taking of minors, provided the minors are
connected and contain L. Analogous definitions apply to graphs, or to the
term “minimal under L-isomorphism.”

As before, let N be a binary matroid with a k-separation (F1, F2). We
also assume that N is in M, and that L ⊆ F2. The next theorem says that
Corollaries (6.3.24) and (6.3.25) remain valid under the additional condi-
tions. Under a suitable change to graph terminology, the same conclusion
applies to Corollary (6.3.26). Finally, Theorem (6.3.27) remains valid when
L-isomorphisms replace isomorphisms.

(6.3.28) Theorem. Corollaries (6.3.24) and (6.3.25) remain valid when
M and N satisfy the following two conditions for some set L contained in
the set F2 of N . First, each matroid of M contains the set L. Second, M
is closed under L-isomorphism and under the taking of minors, provided
the minors are connected and contain L. Corollary (6.3.26) remains valid
when the above conditions on M and N are applied to the class G and to
the graph H. Theorem (6.3.27) remains valid when L-isomorphisms are
claimed instead of isomorphisms.

Proof. The cited results rely on Theorem (6.3.20), which is nothing but
Theorem (6.3.18) plus Lemma (6.3.19). Now Theorem (6.3.18) is a state-
ment about a minimal M , and thus does not involve any isomorphism. But
in the proof of Lemma (6.3.19), the matroid N is replaced by an isomorphic
matroid N ′. However, N ′ can be derived from N by a relabeling of some
elements of F1 = X1 ∪ Y1. Thus, the elements of F2 are not affected, and
N ′ is F2-isomorphic to N . Since L ⊆ F2, N ′ is also L-isomorphic to N . We
apply these observations to rewrite Theorem (6.3.20) so that it becomes
a statement about a matroid minimal under L-isomorphism. Indeed, we
only need to change the claims about the matrices of (6.3.21), (6.3.22), and
(6.3.23) by allowing for a relabeling of indices other than those of L to get
the desired theorem. It is now an easy matter to verify that the theorem so
derived from Theorem (6.3.20) implies the claimed results for Corollaries
(6.3.24), (6.3.25), and (6.3.26), and Theorem (6.3.27).

An example application of Theorem (6.3.20) is covered in the next
section. There we prove the existence of certain extensions of 3-connected
binary minors in 3-connected binary matroids. In Chapters 10, 11, and 13,
we use Corollaries (6.3.24)–(6.3.26) and Theorem (6.3.28).
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6.4 Extensions of 3-Connected Minors

An important matroid problem is as follows. We are given a 3-connected
binary matroid M with a 3-connected minor N . The minor has at least
six elements. We want to obtain a 3-connected minor N ′ of M that, for
some small k ≥ 1, is a k-element extension of an N minor of M . In this
section, we show that an N ′ with k = 1 or 2 can always be found. Our
main tool for establishing this result is Theorem (6.3.20) of the preceding
section. In Chapter 7, we refine the conclusion proved here to obtain the
so-called splitter theorem.

The precise statement of the above claim about N ′ and k is as follows.

(6.4.1) Theorem. Let M be a 3-connected binary matroid with a 3-
connected proper minor N . Suppose N has at least six elements. Then M
has a 3-connected minor N ′ that is a 1- or 2-element extension of some N
minor of M . In the 2-element case, N ′ is derived from the N minor by one
addition and one expansion.

Proof. Let z be any element of M that is not in N . Lemma (5.2.4)
says that the connected M has a connected minor N ′ that is a 1-element
extension of N by z. Now Theorem (6.4.1) holds for M and N if and only
if it holds for M∗ and N∗. Hence, by duality, we may assume that the
extension is an addition. Let N be represented by a matrix B. Thus, for
some vector a, the minor N ′ of M is represented by the matrix

(6.4.2)
B a

zY

X

Matrix for 1-element extension N ′ of N

Since N ′ is connected, the vector a must be nonzero. If a is not a unit
vector and is not parallel to a column of B, then by Lemma (6.2.6), N ′ is
3-connected and we are done. Otherwise, due to at most one GF(2)-pivot
in B, we may assume a to be a unit vector, say with 1 in row u ∈ Y . Let
d be the row vector of B indexed by u. Partition B into d and B, and also
partition X into {u} and X = X − {u}. We thus can rewrite [B | a] of
(6.4.2) as

(6.4.3) 0

1

zY

du

BX

Partitioned version of matrix of (6.4.2) for N ′
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The partition in (6.4.3) corresponds to the 2-separation (X ∪ Y , {u, z})
of N ′. Since M is 3-connected, that 2-separation of N ′ does not induce
one in M . There must be a minor M ′ of M that proves this fact and
that is minimal under isomorphism. The matroid M ′ has an N ′ minor. If
necessary, we change the element labels of M ′ so that N ′ itself is that N ′

minor.
We apply Theorem (6.3.20). The just-defined M ′ plays the role of M

of the theorem. The submatrices B, d, and [ 1 ] of (6.4.3) correspond to
A1, D, and A2, respectively, of the theorem. We list enough conditions of
parts (a), (b), and (c) of Theorem (6.3.20) to derive the desired conclusion.
At the same time, we substitute B, d, and [ 1 ] for A1, D, and A2. On the
other hand, the indices x and y, the subvectors e, f , g, h, and the scalar α
employed below should be interpreted exactly as in Theorem (6.3.20).

(a) M ′ is represented by

(6.4.4) 0

f
1

zY

e
d

x
u

BX

Case (a) of Theorem (6.3.20)

In row x, the subvector e is not spanned by d, and f = 1.
We evaluate this condition. Evidently, e is nonzero and not parallel to

d. Indeed, one easily verifies that the matrix of (6.4.4) has no zero vectors,
unit vectors, or parallel vectors. By Lemma (6.2.6), the matroid M ′ is
therefore 3-connected, and hence is a 3-connected 2-element extension of
N produced by one addition and one expansion.

(b) M ′ is represented by

(6.4.5) g 0

h 1

y zY

du

BX

Case (b) of Theorem (6.3.20)

In column y, the subvector h is not spanned by the columns of d.
This condition is clearly incompatible with the fact that d is a nonzero

vector. Thus, this case cannot occur.

(c) M ′ has a minor M with representation matrix



6.4. Extensions of 3-Connected Minors 149

(6.4.6) g 0

α
h

f
1

y zY

e
d

x
u

BX

Case (c) of Theorem (6.3.20)

From the conditions (c.1) and (c.2) of Theorem (6.3.20), we extract the
following.

(c.1) The vector e is not spanned by d and is not parallel to a row of B.
Furthermore, e is not a unit vector with 1 in a column t ∈ Y for which
column t of B is nonzero.

We evaluate these conditions. Since the matrix B = [B/d] for N is
3-connected, each column of B is nonzero. Thus, the above conditions on
e imply that the matrix composed B, d, and e has no zero vectors, unit
vectors, or parallel vectors. By Lemma (6.2.6), that matrix represents a
3-connected 1-element extension of N .

(c.2) The vector g is nonzero. If d, the subvector obtained from d by
deletion of an element t ∈ Y , has the same GF(2)-rank as d, then [g/h] is
not parallel to the column t of [B/d]. If d does not span a row t ∈ X of B,
then [g/h] is not a unit vector with 1 in row t.

We interpret these conditions. By the 3-connectedness of N , the vector
d has at least two 1s and does not span any row of B. Thus, the above
conclusions about [g/h] hold for all t ∈ Y and all t ∈ X. Put differently,
[g/h] must be nonzero, cannot be a unit vector, and cannot be parallel to a
column of [B/d]. By Lemma (6.2.6), the matrix composed of B, d, g, and
h represents a 3-connected 1-element extension of N .

The minor N ′ of Theorem (6.4.1) may be efficiently found. Indeed,
one only needs to implement the preceding constructive proof. The precise
complexity claim is as follows.

(6.4.7) Theorem. There is a polynomial algorithm for the following
problem. The input is a connected binary matroid M , and a 3-connected
proper minor N of M on at least six elements. The output is either a 2-
separation of M , or a minor N ′ of M that is a 3-connected 1- or 2-element
extension of an N minor of M . In the 2-element case, N ′ is derived from
the N minor by one addition and one expansion.

Proof. We implement the proof of Theorem (6.4.1), using as subrou-
tine the polynomial algorithm of Theorem (6.3.27) to produce either a
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2-separation of M or one of the matrices (6.3.21)–(6.3.23). It is easy to see
that a polynomial algorithm can thus be assembled for the stated prob-
lem.

In the next section, we discuss extensions of the results of this chapter
and include references.

6.5 Extensions and References

The results of Section 6.3 overlap significantly with results of Seymour
(1980b) for general matroids, even though the terminology is quite differ-
ent. The precise relationships are as follows. Lemma (6.3.6) is the binary
version of a result taken from Seymour (1980b). That reference proceeds
to describe a number of properties of matroids called minimal here. These
results are then used to deduce a version of Corollary (6.3.24). In contrast,
the approach taken here is based on properties that can be efficiently ver-
ified for matroids that are minimal or minimal under isomorphism. Such
properties are investigated via abstract matrices for general matroids in
Truemper (1986). The sufficiency conditions and testing algorithms so ob-
tained are substantially stronger than those relying on Corollary (6.3.24)
or on the even weaker Corollary (6.3.25). The simpler results given here
suffice for the proofs in the chapters to come. Truemper (1986) contains ad-
ditional material about induced decompositions. For example, it is shown
that the number of non-isomorphic minimal matroids is finite for a given
N , provided all matroids under consideration are representable over a given
finite field.

Truemper (1988) treats in detail the case of graphs, which we have
skipped here entirely except for the specialized Corollary (6.3.26).

Theorem (6.4.1) may be viewed as a weak version of the splitter the-
orem of Seymour (1980b). We use Theorem (6.4.1) in the next chap-
ter to prove that result. Upon slight modification, the approach of Sec-
tion 6.4 yields other important theorems about 3-connected extensions of
3-connected matroids. We sketch the main ideas and provide related refer-
ences in Section 7.5 of the next chapter.



Chapter 7

Splitter Theorem and Sequences of

Nested Minors

7.1 Overview

Chapters 4, 5, and 6 cover three basic matroid tools: the series-parallel
and delta-wye constructions, the path shortening technique, and the sep-
aration algorithm. The chapters also include a number of basic matroid
results whose proofs rely on these tools. With this foundation, we derive
in this chapter and the next one several fundamental results about the
decomposition and composition of matroids. Specifically in this chapter,
we define matroid splitters, characterize them, and deduce consequences of
that characterization.

The concept of splitters and their characterization is due to Seymour.
The idea can be summarized as follows. LetM be a class of binary matroids
that is closed under isomorphism and under the taking of minors. Then
a 3-connected matroid N ∈ M on at least six elements is declared to be
a splitter of M if every matroid M ∈ M with a proper N minor has a
2-separation. Some researchers define graph or matroid 2-separations to
be splits. The term “splitter” is in agreement with that notion.

The concept of splitters may seem rather abstract. But in subsequent
chapters, we rely on it a number of times, and without doubt it is one of the
central ideas for the decomposition of matroids. We characterize splitters
in Section 7.2 in the so-called splitter theorem.

Define two minors of a graph or matroid to be nested if one of them is a
minor of the other one. In Section 7.3, we derive from the splitter theorem
several existence theorems about sequences of nested minors, among them

151
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Tutte’s wheel theorem for graphs. A special case of nested minor sequences
is used in Section 7.4 to prove Kuratowski’s characterization of planar
graphs. According to that result, a graph is planar if and only if it does not
have K3,3 or K5 minors. In the final section, 7.5, we point out a number
of extensions and list references.

The chapter requires familiarity with the material of Chapters 2, 3, 5,
and 6.

7.2 Splitter Theorem

Let M be a class of binary matroids that is closed under isomorphism and
under the taking of minors. Recall that a splitter of M is a 3-connected
matroid N ∈ M such that every matroid M ∈ M with a proper N minor
is 2-separable. We employ the same terminology for graphs. For example,
if G is a class of graphs that is closed under isomorphism and under the
taking of minors, then a splitter of G is a 3-connected graph G ∈ G such
that every graph of G with a proper G minor is 2-separable.

In this section, we derive surprisingly simple necessary and sufficient
conditions for a given N ∈ M to be a splitter. The next theorem stating
these conditions is the splitter theorem due to Seymour.

(7.2.1) Theorem (Splitter Theorem). Let M be a class of binary ma-
troids that is closed under isomorphism and under the taking of minors.
Let N be a 3-connected matroid of M on at least six elements.

(a) If N is not a wheel, then N is splitter of M if and only if M does not
contain a 3-connected 1-element extension of N .

(b) If N is a wheel, then N is a splitter of M if and only if M does not
contain a 3-connected 1-element extension of N and does not contain
the next larger wheel.

Proof. If N is a splitter of M, then the 3-connected extensions cited
in (a) or (b) obviously cannot occur in M. We prove the converse by
contradiction. Thus, we suppose that M does not contain the 3-connected
extensions cited in (a) or (b), whichever applies, and that nevertheless N
is not a splitter of M. Thus, M contains a 3-connected matroid M with
a proper N minor, and M is not one of the cases excluded under (a) or
(b). Since M is closed under isomorphism, we may assume N itself to
be that N minor. To M and N we apply Theorem (6.4.1). According to
that theorem, M has a 3-connected minor N ′ that is a 3-connected 1- or
2-element extension of an N minor. In the 2-element extension case, N ′ is
derived from the N minor by one addition and one expansion. Again, since
M is closed under isomorphism and minor taking, we may take N itself to
be that N minor. The 1-element extension case has been ruled out by (a)
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and (b). Thus, N ′ is derived from N by one addition and one expansion.
Suppose a binary matrix B with row index set X and column index set
Y represents N . Then N ′ can be represented by a binary matrix C that
displays B, and thus N , as follows.

(7.2.2)

qY

αbp

C = aX B

Matrix C representing N ′

We now show either that N ′ contains a 3-connected 1-element extension
of an N minor, a case ruled out by both (a) and (b), or that N is a wheel
and N ′ is the next larger wheel, a case ruled out by (b). We accomplish
this by the following investigation into the structure of C of (7.2.2).

Since N ′ is 3-connected, the matrix C does not contain zero vectors,
unit vectors, or parallel vectors. In particular, the subvectors a and b of
C must be nonzero. Furthermore, the submatrices [B | a] and [B/b] of C,
which represent 1-element extensions of N , cannot be 3-connected since
otherwise we have an eliminated case of (a) and (b). Thus, the subvector
a (resp. b) is a unit vector or is parallel to a column (resp. row) of B.

Because of pivots in B and row exchanges in C, we may assume that
a is a unit vector with 1 in the topmost position, and that b is parallel to
a row of B. Since C is 3-connected, we necessarily have α = 1. We then
may partition C as follows.

(7.2.3)

q

C =

Y

c 1

0

1bp

0 1X

Initial partition of C with a = unit vector

In the subsequent processing of C of (7.2.3), we introduce a number of row
and column exchanges and pivots that affect the index sets substantially.
Since M is closed under isomorphism, we do not have to keep track of such
index changes. So, instead, we just make sure that the matrix obtained
from the current C by deletion of the rightmost column and bottom row
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does represent N up to a relabeling of the elements. We always refer to
that matrix as the current B. With this convention, we can freely introduce
new indices or reuse old ones.

Suppose during the subsequent processing of C of (7.2.3), we detect
that the current C contains the current B plus a nonzero row or column
that is not parallel to a row or column of B and that is not a unit vector.
Then by Lemma (6.2.6), B plus that row or column up to indices represents
a 3-connected 1-element extension of N , which has been ruled out. Thus,
we assume below that this case does not occur. The proof of the theorem
is complete once we show N to be a wheel and N ′ to be the next larger
wheel. We are now ready to process C of (7.2.3).

We know that the vector b of C of (7.2.3) is parallel to a row of B.
That vector of B cannot be c, for otherwise, C is 2-separable. So assume
b is parallel to the second row of B, say row v. An exchange of rows v and
p of C produces

(7.2.4)

c

p
1

b 1

0

0bv

0 1

Matrix C after exchange of rows p and v

Except for the replacement of the row index p by v, that row exchange
does not affect the submatrix B. The column vector to the right of the
current B must be parallel to, say, the first column of B. Exchange the
first column and the last column of C. By the 3-connectedness of N ′, we
must have

(7.2.5)

11
1

00

0 1

0 1

1 b

b

c

Matrix C after exchange of first and last column

Pivot on the circled 1 of (7.2.5). That pivot produces the matrix of (7.2.6)
below.

Inductively, assume that the current C is given by (7.2.7) below. Sup-
pose that the subvector b of row x is a unit vector, say with 1 in col-
umn z ∈ Y2, and that column z of the submatrix B is zero. Then we
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have (X1 ∪ Y1 ∪ {x, y, z}, (X2 ∪ Y2) − {z}) as a 2-separation of C unless
|(X2 ∪ Y2)−{z}| ≤ 1. If |(X2 ∪ Y2)−{z}| = 1, then C contains a zero row
indexed by X2, or C has a zero or unit vector column indexed by Y2−{z}.
Either case is a contradiction of the 3-connectedness of N ′.

(7.2.6)

01
1 1

00

0 1

0 1

b

b

c ’

Matrix C after pivot

(7.2.7)
1

.

.

.

.

.

.

Y1 Y2 y

X1

X2

x

1 0 0

0

1

00

b

0

c

0 1
1

10 b

B

Matrix C for inductive proof

Thus, |(X2 ∪ Y2) − {z}| = 0, i.e., X2 = ∅ and Y2 = {z}, which implies
b = [ 1 ]. Since the columns z and y of C must be distinct, we also have
c = [ 1 ]. Then C is

(7.2.8) 1 .
.
.
.
.
.
.
.
.
.

Y1 yz

X1

x

1 1
1

1
1

1
1

1

0
1

10

Matrix C displaying wheel case

Evidently, the current B is a matrix of type (5.2.9). Accordingly, N is
wheel. A pivot in C on the 1 in the bottom right corner confirms that N ′

is a wheel as well.
Once more, assume that in the matrix C of (7.2.7), the row subvector

b is a unit vector with 1 in column z. But this time, suppose that column
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z of B is nonzero. By a pivot in column z of B, we convert the situation to
the third possible case, where b is not a unit vector. In that third case, the
vector b in row x of C must be parallel to a row of B, say row p. Exchange
rows p and x of C. We get

(7.2.9)
1

.

.
.
.
.
.

y

p

x

1 0

0

1
1

0

0

1
1

0
0

0

b
b

c

b
0 1

Matrix C after exchange of rows p and x

The remaining arguments are analogous to those for (7.2.4)–(7.2.6). They
produce an instance of (7.2.7) where |Y1| has been increased by 1. By
induction, the case already discussed must eventually be encountered where
N is a wheel and N ′ is the next larger wheel.

When specialized to graphs, the splitter Theorem (7.2.1) becomes the
following result.

(7.2.10) Corollary. Let G be a class of connected graphs that is closed
under isomorphism and under the taking of minors. Let H be a 3-connected
graph of G with at least six edges.

(a) If H is not a wheel, then H is a splitter of G if and only if G does
not contain any graph derived from H by one of the following two
extension steps:

(1) Connect two nonadjacent nodes by a new edge.

(2) Partition a vertex of degree at least 4 into two vertices, each of
degree at least 2, then connect these two vertices by a new edge.

(b) If H is a wheel, then H is a splitter of G if and only if G does not
contain any of the extensions of H described under (a) and does not
contain the next larger wheel.

Proof. Let M be the collection of graphic matroids produced by the
graphs of G. Define N to be the graphic matroid of the graph H. Lemma
(6.2.7) says that the extensions of H described under (a) are precisely the
3-connected 1-edge extensions of H. Thus, these extensions correspond to
the 3-connected 1-element graphic extensions of N . The result then follows
from the splitter Theorem (7.2.1).

Typically, we will specify M or G by exclusion of certain minors and
of all their isomorphic copies. Clearly, any collection of matroids or graphs
so specified is closed under isomorphism and under the taking of minors.
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Two graph examples of splitters are given in the next theorem. Recall
that Wn is the wheel graph with n spokes.

(7.2.11) Theorem. W3 is a splitter of the graphs without W4 minors,
and K5 is a splitter of the graphs without K3,3 minors.

Proof. There is no 3-connected 1-edge extension of W3. Thus, by part (b)
of Corollary (7.2.10), W3 is a splitter of the graphs without W4 minors.
For the second part, we note that up to isomorphism there is just one 3-
connected 1-edge extension of K5. To obtain it, one partitions one vertex
of K5 into two vertices of degree 2 and connects the two vertices by a new
edge. The resulting graph is readily seen to have a K3,3 minor. Thus, by
part (a) of Corollary (7.2.10), K5 is a splitter of the graphs without K3,3

minors.

We will see a number of other splitter examples in subsequent chapters.
In the next section, we deduce from the splitter Theorem (7.2.1) certain
sequences of nested minors and Tutte’s wheel theorem.

7.3 Sequences of Nested Minors and

Wheel Theorem

Recall from Section 7.1 that two matroids are nested if one of them is a
minor of the other one. In this section, we prove the existence of certain
sequences of nested minors of binary matroids. As a special case, we es-
tablish Tutte’s wheel theorem. Main tools are the splitter Theorem (7.2.1)
and results proved in Chapter 5 with the path shortening technique.

For a given binary matroid, an arbitrary sequence of nested minors is
easy to find. The task becomes difficult and interesting when one imposes
conditions on the sequence. We need a few definitions to express such
conditions.

Suppose two matroids are nested. Define the rank gap between the two
matroids to be the absolute difference in rank between them. Analogously,
define the corank gap. Finally, let the gap be the sum of the rank gap and
the corank gap. Evidently, the gap is the number of elements that occur
only in the larger matroid.

Consider a sequence of nested minors of a given binary matroid. Then
the rank gap of the sequence is the maximum rank gap among the pairs of
successive minors of the sequence. Analogously, define the corank gap and
the gap of the sequence.

We now state the conditions under which we want to find nested minor
sequences. Suppose for some k ≥ 2, we have a k-connected binary matroid
M with a k-connected minor N . In the typical situation, we want to find a
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sequence of nested k-connected minors M0, M1, M2, . . . , Mt = M , where
M0 is demanded to be isomorphic to N . Furthermore, the rank gap, or the
corank gap, or the gap is to be bounded by some given constant. Other
variants are possible. For example, one may require that a given element
of M that does not occur in M0 be present in M1, that a given element
not occurring in M1 be present in M2, and so on.

Sequences of the desired kind are readily determined when k = 2.
The main ingredient for their construction is a recursive application of
Lemma (5.2.4). We skip the details of that simple case, and instead turn
immediately to the much more complicated case with k = 3. Specifically,
we prove the existence of three types of sequences for k = 3, then point out
extensions in Section 7.5.

In each of the cases treated here, we are given a 3-connected binary
matroid M with a 3-connected proper minor N on at least six elements.
In the first case, we desire a sequence of nested 3-connected minors M0,
M1, . . . , Mt = M , where M0 is isomorphic to N and where the gap is small.
The next theorem shows that the gap can be held to 1 or 2.

(7.3.1) Theorem. Let M be a 3-connected binary matroid having a
3-connected proper minor N on at least six elements.

(a) Assume N is not a wheel. Then for some t ≥ 1, there is a sequence
of nested 3-connected minors M0, M1, . . . , Mt = M , where M0 is
isomorphic to N and where the gap is 1.

(b) Assume N is a wheel. Then for some t ≥ 1, there is sequence of nested
3-connected minors M0, M1, . . . , Mt = M with the following features.
M0 is isomorphic to N . For some 0 ≤ s ≤ t, the subsequence M0,
M1, . . . , Ms consists of wheels and has gap 2, and the subsequence
Ms, Ms+1, . . . , Mt = M has gap 1.

Proof. We first establish part (a). Thus, we assume that N is not a wheel.
Indeed, inductively we assume for some i ≥ 0, the existence of a sequence of
nested 3-connected minors M0, M1, . . . , Mi of M , where M0 is isomorphic
to N , where Mi is not a wheel, and where the gap is 1. If Mi = M , we are
done. So assume that Mi is a proper minor of M .

We rely on the contrapositive statement of part (a) of the splitter The-
orem (7.2.1) to find a larger sequence. To this end, we define M to be the
matroid collection containing M , all minors of M , and all matroids isomor-
phic to these matroids. By this definition, M is closed under isomorphism
and under the taking of minors. Since Mi is a 3-connected proper minor
of the 3-connected M ∈ M, it cannot be a splitter of M. Thus, by part
(a) of Theorem (7.2.1), M contains a matroid Mi+1 that is a 3-connected
1-element extension of a matroid isomorphic to Mi. Now every 1-element
reduction of a wheel with at least six elements is 2-separable. Thus, if Mi+1

is a wheel, then Mi is 2-separable, a contradiction. We conclude that Mi+1

is not a wheel.
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If necessary, we relabel M0, M1, . . . , Mi so that they constitute a
sequence of nested minors of Mi+1. These matroids plus Mi+1 satisfy the
induction hypothesis for i + 1. By induction, the claimed sequence exists
for M .

The proof of part (b) is essentially the same, except that we establish
Mi+1 using part (b) of Theorem (7.2.1) when Mi is a wheel.

We have used the splitter Theorem (7.2.1) for a simple proof of The-
orem (7.3.1). Indeed, the two theorems are essentially equivalent, since
one may deduce the splitter Theorem (7.2.1) from Theorem (7.3.1) just as
easily. We sketch the proof.

Let M and N be as specified in the splitter Theorem (7.2.1). Suppose
N is not a wheel. We must show that N is a splitter of M if and only if M
does not contain any 3-connected 1-element extension of N . We prove the
nontrivial “if” part by contradiction. So let M be a 3-connected matroid
of M with N as proper minor. By Theorem (7.3.1), there is a sequence of
nested 3-connected minors M0, M1, . . . , Mt = M , where M0 is isomorphic
to N , and where the gap is 1. Since M is closed under isomorphism, we
may assume M to be so chosen that M0 is equal to N . Then M1 is a
3-connected 1-element extension of N and M1 ∈ M, which contradicts the
assumed absence of such extensions. The case where N is a wheel is treated
analogously.

A direct translation of Theorem (7.3.1) into graph language results in
the following corollary.

(7.3.2) Corollary. Let G be a 3-connected graph having a 3-connected
proper minor H with at least six edges.

(a) Assume H is not a wheel. Then for some t ≥ 1, there is a sequence of
nested 3-connected minors G0, G1, . . . , Gt = G, where G0 is isomor-
phic to H, and where each Gi+1 has exactly one edge beyond those of
Gi.

(b) Assume H is a wheel. Then for some t ≥ 1, there is a sequence of
nested 3-connected minors G0, G1, . . . , Gt = G with the following
features. G0 is isomorphic to H. For some 0 ≤ s ≤ t, the subsequence
G0, G1, . . . , Gs consists of wheels, where each Gi+1 has exactly one
additional spoke beyond those of Gi. Furthermore, in the subsequence
Gs, Gs+1, . . . , Gt = G, each Gi+1 has exactly one edge beyond those
of Gi.

One may combine Corollary (7.3.2) with Corollary (5.2.15) to obtain
Tutte’s wheel theorem, which is listed next.

(7.3.3) Theorem (Wheel Theorem). Let G be a 3-connected graph on
at least six edges. If G is not a wheel, then G has some edge z such that
at least one of the minors G/z and G\z is 3-connected.
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Proof. Corollary (5.2.15) says that a 3-connected graph with at least six
edges, in particular G specified here, has a W3 minor. Thus, G has a largest
wheel minor, say H. Since G is not a wheel, H is a proper minor of G.
We apply Corollary (7.3.2) to G and H. Accordingly, G has a sequence of
nested 3-connected minors G0, G1, . . . , Gt = G, where G0 is isomorphic to
H. Since H is a largest wheel minor of G and since G is not a wheel, the
index s of part (b) of Corollary (7.3.2) must be zero, and t ≥ 1. We also
conclude from that part that G = Gt has exactly one edge beyond those of
Gt−1. Put differently, the 3-connected minor Gt−1 is for some edge z equal
to G/z or G\z, which proves the theorem.

Theorem (7.3.3) can obviously be rewritten so that it becomes a wheel
theorem for binary matroids instead of graphs. The proof relies on Theorem
(7.3.1) instead of Corollary (7.3.2).

From the sequence of nested 3-connected minors M0, M1, . . . , Mt = M
of Theorem (7.3.1), one can derive a number of other interesting sequences.
A particular construction utilizes the representation matrices of these mi-
nors. We present details following some observations.

By Lemma (3.3.12), a binary matroid M with a given minor M has
a representation matrix that displays M . We apply this result inductively
to the sequence of nested minors M0, M1, . . . , Mt = M , and conclude
that M has a representation matrix B that simultaneously displays M0,
M1, . . . , Mt = M , say by nested matrices B0, B1, . . . , Bt = B. Let Ci

be the column submatrix of B that has the same column index set as Bi.
Let bi be a row vector of Ci, say with row index x. Assume that bi is
not a row of Bi. Indeed, assume that bi is nonzero, is not a unit vector,
and is not parallel to a row of Bi. Lemma (6.2.6) shows that under these
assumptions, Bi plus bi represent a 3-connected minor Mi&x of M . There
are other minors Mj without x for which Mj&x is 3-connected. Specifically,
let k be the largest index, i ≤ k ≤ t, such that Mj does not contain x. We
claim that for each i < j ≤ k, Mj&x is 3-connected. The proof consists
of the following observation. Let bj be the row vector of Cj indexed by x.
Since j ≤ k, bj is not part of Bj . Evidently, Bi is a submatrix of Bj, and bi

is a subvector of bj. We know that bi is nonzero, is not a unit vector, and is
not parallel to a row of Bi. Then the latter statement must also hold when
we use j as superscript instead of i. Accordingly, Mj&x is 3-connected.

We use these observations as follows. In the sequence M0, M1, . . . ,
Mt = M , we redefine each Mj , i ≤ j ≤ k, to be Mj&x. Correspondingly,
we redefine the Bj matrices by adjoining the bj row vectors. The result is a
new sequence of nested 3-connected minors. The rank gap of that sequence
is larger than that for the original one. But the corank gap is still the same.
Indeed, since the gap of the original sequence was 1, the corank gap of the
new sequence is 0 or 1.

We repeat the above process, using all possible indices i and x, until
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no further changes are possible. This occurs when each final Bi cannot
be extended to a larger 3-connected matrix within Ci. The final sequence
may contain duplicate minors. In that case, we delete just enough minors
to eliminate all such duplicates. Then we redefine the indices so that M0,
M1, . . . , Mt = M is now the sequence resulting from the above process.
Correspondingly, we redefine the indices of the Bi and Ci matrices.

If M0 and M have same corank, then t = 0, and the outcome is
M0 = Mt = M , an uninteresting case. If M0 and M have different corank,
we must have t ≥ 1. Consider the latter case. Evidently, each Bi+1 is
deduced from Bi by first adjoining any number of row vectors bi to Bi,
and then adjoining a column vector a. We claim that each one of these
vectors bi is a unit vector or is parallel to a row of Bi. Indeed, in any other
case of a nonzero bi, the previously described process would have adjoined
bi to Bi and would have redefined Mi prior to termination, a contradiction.
In the case of a zero vector bi, Bi+1 would have a zero or unit vector, and
thus would be 2-separable, again a contradiction.

In terms of the minors of the final sequence, we thus have proved that
each Mi+1 may be derived from Mi by extensions involving any number of
series elements, possibly none, followed by a 1-element addition.

The above construction is the main ingredient in the proof of the
following variant of Theorem (7.3.1).

(7.3.4) Theorem. Let M be a 3-connected binary matroid with a 3-
connected proper minor N on at least six elements. If M does not contain
a 3-connected 1-element expansion (resp. addition) of any N minor, then M
has a sequence of nested 3-connected minors M0, M1, . . . , Mt = M , where
M0 is an N minor of M , and where each Mi+1 is obtained from Mi by
expansions (resp. additions) involving some series (resp. parallel) elements,
possibly none, followed by a 1-element addition (resp. expansion).

Proof. Clearly, the parenthetic case is dual to the stated one. Thus, we
only consider the case where M does not contain any 3-connected 1-element
expansion of any N minor. We prove the existence of the claimed sequence
of nested minors as follows.

Apply the above construction process to the sequence of nested 3-
connected minors M0, M1, . . . , Mt = M of Theorem (7.3.1). The result is a
new sequence M0, M1, . . . , Mt = M where each Mi+1 may be derived from
Mi by expansions involving any number of series elements, possibly none,
followed by a 1-element addition. Since M does not contain a 3-connected
1-element expansion of any N minor, the construction must have left M0

unchanged. The sequence so produced is the desired one.

Theorem (7.3.4) may be specialized to graphs as follows.

(7.3.5) Corollary. Let G be a 3-connected graph with a 3-connected
minor H on at least six edges.
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(a) Suppose no H minor of G can be extended to another 3-connected
minor of G by the following process: Some node of H of degree at least
4 is partitioned into two nodes, each with degree at least 2, and then
the two nodes are connected by a new edge. Then G has a sequence
of nested 3-connected minors G0, G1, . . . , Gt = G with the following
properties. G0 is an H minor of G. Each Gi+1 may be obtained from
Gi as follows. First, at most two edges of Gi are replaced by paths of
length 2. Next, an edge is added so that the new graph has no degree
2 nodes and no parallel edges.

(b) Suppose no H minor of G can be extended to another 3-connected mi-
nor of G by connecting two nonadjacent nodes by a new edge. Then
G has a sequence of nested 3-connected minors G0, G1, . . . , Gt = G
with the following properties. G0 is an H minor of G. Each Gi+1 may
be obtained from Gi as follows. First, some edges, possibly none, inci-
dent at some vertex are replaced by two parallel edges each. The new
vertex must have degree of at least 4. Next, that vertex is partitioned
into two vertices, each with degree at least 2, such that no two edges
remain parallel. Finally, the two vertices just created are joined by a
new edge.

Proof. Part (a) is a routine translation of the non-parenthetic part of
Theorem (7.3.4) into graph language, in the same sense that Corollary
(7.3.2) is the graph version of Theorem (7.3.1). Part (b) is a translation of
the parenthetic part of Theorem (7.3.4).

We conclude this section by proving that the sequences of nested 3-
connected minors of the above theorems and corollaries can be readily
found. Additional material about nested sequences is contained in Sec-
tion 7.5.

(7.3.6) Theorem. There is a polynomial algorithm for the following
problem. The input consists of M and N of Theorem (7.3.1) or (7.3.4), or
of G and H of Corollary (7.3.2) or (7.3.5). The output is a 2-separation
of M or G, or a sequence of nested 3-connected minors with properties as
specified in the respective theorem or corollary.

Proof. The arguments that prove the cited theorems and corollaries can
be summarized as follows. Theorem (6.4.1) implies the splitter Theorem
(7.2.1), which in turn implies Theorem (7.3.1) and Corollary (7.3.2). The
latter results imply Theorem (7.3.4) and Corollary (7.3.5). The polynomial
algorithm claimed for the stated problems is essentially an efficient imple-
mentation of the constructive proofs of these implications. We first sketch
the details for the matroid case with given M and N . With the polynomial
algorithm of Theorem (6.4.7), we locate a 2-separation of M or produce
the 3-connected 1- or 2-element extensions claimed by Theorem (6.4.1).
We use these extensions plus the proof procedure of the splitter Theorem
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(7.2.1) to derive the sequence of nested minors of Theorem (7.3.1). From
that sequence we construct the sequence of Theorem (7.3.4).

The graph case may be handled by appropriate translation of each
step of the above algorithm into graph language. Alternately, one could
represent the given G and H by graphic matroids M and N , apply the
polynomial algorithm already described, and extract from G the minors
G0, G1, . . . , Gt = G corresponding to the sequence M0, M1, . . . , Mt = M
found by the algorithm.

The remainder of this book includes several demonstrations of the
power and utility of sequences of nested 3-connected minors. The discussion
in the next section may be viewed to be one such demonstration.

7.4 Characterization of Planar Graphs

In this section, we prove Kuratowski’s characterization of graph planarity
in terms of excluded K3,3 and K5 minors. We state that theorem and
describe a proof of beautiful simplicity due to Thomassen.

(7.4.1) Theorem. A graph is planar if and only if it has no K3,3 or K5

minors.

Proof. The “only if” part follows from the fact that planarity is main-
tained under the taking of minors, and that by Lemma (3.2.48) both K3,3

and K5 are not planar. For a proof of the nontrivial “if” part, let G be
a connected nonplanar graph each of whose proper minors is planar. We
need to show that G is isomorphic to K3,3 or K5.

We first prove that G cannot be 1- or 2-separable. The case of 1-
separability is trivial. Suppose G is 2-separable. Let G be produced by
identifying nodes k and l of a graph G1 with nodes m and n, respectively,
of a graph G2. Now G1 plus an edge connecting nodes k and l is planar,
since that graph, say G′

1, is isomorphic to a proper minor of G. The graph
G′

2 similarly defined from G2, is also planar. It is easy to combine planar
drawings of G′

1 and G′
2 to one of G.

Thus, G is 3-connected. According to Lemma (5.2.15), G must have
a W3 minor, say H. Since W3 is also the complete graph K4, no H minor
of G can be extended to another minor of G by addition of an edge that
connects two nonadjacent nodes. Under the latter condition, part (b) of
Corollary (7.3.5) states that G has a sequence of nested 3-connected minors
G0, G1, . . . , Gt = G with the following properties. G0 is an H minor of
G. Each Gi+1 may be obtained from Gi as follows. First, some edges,
possibly none, incident at some vertex are replaced by two parallel edges
each. The new vertex must have degree of at least 4. Next, that vertex is
partitioned into two vertices, each with degree at least 2, such that no two
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edges remain parallel. Finally, the two vertices just created are joined by
a new edge.

By the minimality of G, the graph Gt−1 of the sequence is planar,
while G = Gt is not. Consider a realization of Gt−1 in the plane. Note
that we do not rely on the fact, not proved here, that the drawing of Gt−1

is essentially unique. As just described, G may be derived from Gt−1 by
the replacement of some edges incident at a vertex by some parallel edges,
followed by a partitioning of that new vertex, etc. Define G′

t−1 to be the
graph on hand when the first step has been carried out — that is, when in
Gt−1 some edges incident at a vertex have been replaced by two parallel
edges each. Let v be the vertex of G′

t−1 to be partitioned, say into vertices
v1 and v2. By the connectivity conditions, a partial drawing of G′

t−1 that
emphasizes vertex v is either

(7.4.2)

en

e2

e1

f2

fn
f1

v

Vertex v of G′
t−1

or is deduced from that drawing by deletion of any number of the paral-
lel edges f1, f2, . . . , fn. The dashed segments represent internally node-
disjoint paths. The vertex v is so partitioned into v1 and v2 that the
resulting graph G is nonplanar. This implies that we cannot replace v of
the assumed drawing for G′

t−1 by v1 and v2, and then join these two nodes
by an edge, while retaining a planar drawing. There are two possible causes
for the nonplanarity. First, some of the edges e1, e2, . . . , en may cross when
they are attached to v1 and v2. In fact, no matter which particular situa-
tion occurs, just four edges can always be selected to produce the graph of
(7.4.3) below.

(7.4.3) v1 v2

Partition of vertex v producing K3,3 minor
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The graph contains a subdivision of K3,3, so we are done. In the second
case, the ei edges can be attached to v1 and v2 so that they do not cross.
However, crossing edges are encountered when we attach the fi edges. We
may suppose this to be so even when we relabel edges such that some ei

become fi, since otherwise we can produce the earlier situation.
This leaves just one case, where n = 3, and where for i = 1, 2, 3, both

ei and fi are present. We then have

(7.4.4)

f2

f3

e1 v1 v2

f1

e2

e3

Partition of vertex v producing K5 minor

which contains a subdivision of K5.

Actually, Kuratowski proved for a nonplanar graph G the presence of
a subgraph that is a subdivision of K3,3 or K5 and not just a K3,3 or K5

minor. Now a K3,3 minor induces a subdivision of K3,3. For a proof, carry
out the expansion steps that convert the K3,3 minor to a subgraph of G.
The same argument applies to a K5 minor, except when an expansion step
splits a vertex of degree 4 into two vertices each of which has degree 3 upon
insertion of the new edge. The graph so produced has a K3,3 minor. Thus,
Theorem (7.4.1) is equivalent to Kuratowski’s original formulation.

In the final section, we cover extensions and references.

7.5 Extensions and References

The splitter Theorem (7.2.1) and its extension to nonbinary matroids is
due to Seymour (1980b); see also Tan (1981) and Truemper (1984). The
extension to the nonbinary case requires the introduction of the whirls given
by (5.4.1) and (5.4.2). The latter matroids constitute a second special
case besides that of wheels. The graph version of Theorem (7.3.1), and
thus effectively Corollary (7.2.10), were independently proved in Negami
(1982). An early splitter example is implicit in Wagner (1937a). A number
of splitters are given in Seymour (1980b), Oxley (1987b), (1987c), (1989a),
(1989b), (1990a), and Truemper (1988).
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Tutte’s wheel Theorem (7.3.3) appeared in Tutte (1966a). The exten-
sion of that result to general matroids is also due to Tutte, and is known
as the wheels and whirls theorem (Tutte (1966b)). Strengthened versions
are in Halin (1969), Oxley (1981b), and Coullard and Oxley (1992).

Theorem (7.3.4) is a binary and slightly weaker version of results in
Seymour (1980b) and Truemper (1984). The related graph result appeared
for the first time in Barnette and Grünbaum (1969). That graph result has
been repeatedly rediscovered.

Kuratowski’s original characterization of planar graphs in terms of
forbidden subgraphs appeared in Kuratowski (1930). The equivalence of
that result to the excluded minor version given by Theorem (7.4.1) is due
to Wagner (1937b). The amazingly short proof of Theorem (7.4.1) is from
Thomassen (1980). The matroid version of Theorem (7.4.1) is proved in
Bixby (1977).

Substantially stronger results about sequences of nested 3-connected
minors exist. Bixby and Coullard (1987) contains the most recent and
strongest one: Let N be a 3-connected proper minor of a 3-connected
matroid M . Then for any element z of M that is not in N , there is a 3-
connected minor N ′ of M that contains z, that has N as a minor, and that
has at most four elements beyond those of N . Note that isomorphisms are
not involved in this result. When the reference to the element z is dropped,
then N ′ can be guaranteed to have at most three elements beyond those of
N instead of four (Truemper (1984)). The latter result can be strengthened
when N has no triangles and no triads (= dual triangles). In that situation,
N ′ need to have at most two elements beyond those of N (Bixby and Coul-
lard (1984)). The sequences of nested 3-connected minors that are implied
by these theorems may be modified by the construction given in Section 7.3
prior to Theorem (7.3.4). Some examples are worked out in Truemper
(1984). For a recursive characterization of 3-connectivity using so-called
separating cocircuits, see Bixby and Cunningham (1979).

The original proofs of the results cited in the preceding paragraph
are by no means simple. But there is a unified way in which they can
be obtained. We sketch the main idea. Recall that the splitter Theorem
(7.2.1) is based on the notion of induced 2-separations and on Theorem
(6.3.20), which deals with minors called minimal under isomorphism in
Section 6.3. Similarly, the theorems cited in the preceding paragraph may
be derived using the notion of induced 2-separations plus the following
result of Truemper (1986) about minors called minimal in Section 6.3:
Suppose that a 2-separation of a matroid N on at least four elements does
not induce a 2-separation of a matroid M containing N , and that M is
minimal with respect to that condition. Then M has at most five elements
beyond those of N .

For k ≥ 4, characterizations of sequences of nested k-connected minors
seem to become very complex. Rajan (1986) and Robertson (1984) contain
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results about the graph case for various kinds of 4-connectivity.
Work cited in Section 5.4 for minors with specified elements (Bixby

(1974), Seymour (1981e), (1985b), (1986a), (1986b), Oxley (1984), (1987a),
(1990a), Kahn (1985), Coullard (1986), Coullard and Reid (1988), Oxley
and Row (1989), Oxley and Reid (1990), and Reid (1990), (1991a), (1991b),
(1993), (1996)) is closely related to the material of this chapter. Several of
these results are readily proved with the earlier mentioned generalization
of Theorem (7.3.1) due to Bixby and Coullard (1987).

Related to the above results are theorems claiming the following pro-
cess to be possible. First, a minor N of a matroid M is replaced by an
isomorphic copy that still contains a specified subset Z of the elements of
N . Second, that isomorphic copy is extended to another minor of M with
certain attractive properties. A theorem of this type is given in Tseng and
Truemper (1986).



Chapter 8

Matroid Sums

8.1 Overview

In this chapter, we describe ways of decomposing or composing binary
matroids, using a class of constructs called k-sums, where k ranges over
the positive integers. Thus, there are 1-sums, 2-sums, 3-sums, etc. In
subsequent chapters, we use k-sums frequently, in particular to analyze or
construct certain graphs or matroids, for example the graphs without K5

minors, the regular matroids, and the max-flow min-cut matroids. The
setting in which k-sums are then invoked is as follows. One wants to un-
derstand or construct a given class of graphs or matroids. Already available
is some insight into several proper subclasses. One conjectures that each
graph or matroid not in any one of those subclasses can be recursively
constructed by composition steps where the elementary building blocks are
taken from the subclasses. It turns out that the k-sums defined in this
chapter are well suited for such a composition process, as well as for the
inverse decomposition process.

Generally, the structural complexity of k-sums grows as k increases.
Thus, 1-sums represent the simplest, indeed trivial, case of decomposition
or composition. We cover that case in Section 8.2. In the same section, we
also discuss the more interesting but still elementary case of 2-sums.

For 3-sums, or generally for k-sums with k ≥ 3, the simplicity of 1-
and 2-sums gives way to a setting of rich structure that permits many
interesting conclusions. In Section 8.3, we explore these k-sums, especially
3-sums. In Section 8.4, we acquire an efficient method for finding 1-, 2-,

168
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and 3-sums. Two alternatives of 3-sums, called ∆-sum and Y -sum, are
covered in Section 8.5.

In the final section, 8.6, we summarize applications of k-sums, list
extensions of the k-sum concept to general matroids via abstract matri-
ces, mention other ways to decompose or compose matroids, and provide
references.

We close this section with a review of the exact k-separations defined
in Section 3.3. They turn out to be the key ingredient for k-sums. Suppose
a binary matroid M on a set E has rank function r(·). Then a pair (E1, E2)
partitioning E is an exact k-separation if |E1|, |E2| ≥ k and r(E1)+r(E2) =
r(E) + k − 1. Given such a separation, let X2 be a maximal independent
subset of E2, then enlarge X2 by a subset X1 of E1 to a base of M . Define
for i = 1, 2, Yi = Ei−Xi. The representation matrix B of M corresponding
to the base X1 ∪X2 must be of the form

(8.1.1) X1
B =

Y1

A1

DX2

Y2

A2

0

Matrix B with exact k-separation

where |X1 ∪ Y1|, |X2 ∪ Y2| ≥ k and GF(2)-rank D = k − 1. Below, we
repeatedly utilize B of (8.1.1) when we work with exact k-separations.

The chapter requires knowledge of Chapters 2, 3, 5, 6, and 7. We also
use the process of ∆Y exchanges of Chapter 4.

8.2 1- and 2-Sums

In this section, we learn how to deduce and manipulate 1- and 2-sum de-
compositions and compositions. We start with the 1-sum case. Let M be
a binary matroid on a set E and with a representation matrix B. Lemma
(3.3.19) says that M has a 1-separation if and only if B is not connected.
Assume the latter case. Then B can clearly be partitioned as shown in
(8.2.1) below, with |X1 ∪ Y1|, |X2 ∪ Y2| ≥ 1. The latter condition is equiva-
lent to demanding that the submatrices A1 and A2 of B are nonempty, i.e.,
they are not 0 × 0 matrices. We declare that the binary matroids repre-
sented by A1 and A2, say M1 and M2, are the two components of a 1-sum
decomposition of M . The decomposition is reversed in the obvious way,
giving a 1-sum composition of M1 and M2 to M . We mean either process
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when we say that M is a 1-sum of M1 and M2, denoted by M = M1⊕1 M2.

(8.2.1) X1
B =

Y1

A1

0X2

Y2

A2

0

Matrix B of 1-separation

Under the assumption of graphicness, the 1-sum has a straightforward
graph interpretation given by the next lemma. We omit the elementary
proof via Theorem (3.2.25), part (a).

(8.2.2) Lemma. Let M be a binary matroid. Assume M to be a 1-sum
of two matroids M1 and M2.

(a) If M is graphic, then there exist graphs G, G1, and G2 for M , M1,
and M2, respectively, such that identification of a node of G1 with one
of G2 creates G.

(b) If M1 and M2 are graphic (resp. planar), then M is graphic (resp.
planar).

Analogously to the matroid case, we call the graph G of Lemma (8.2.2)
a 1-sum of G1 and G2, and denote this by G = G1 ⊕1 G2.

We move to the more interesting case of 2-sums. We assume that the
given binary matroid M is connected and has a 2-separation (E1, E2). Since
M is connected, the 2-separation must be exact. Thus, in any matrix B
of (8.1.1) corresponding to that exact 2-separation, the submatrix D must
have GF(2)-rank 1. Hence, B is the following matrix, where for the moment
the indices x ∈ X2 and y ∈ Y1 are to be ignored.

(8.2.3)

Y1
y

A2

B =

A1

Y2

x

X1

X2

0

0

1
all
1s

Matrix B of exact 2-separation

We refer to the submatrix of B of (8.2.3) indexed by X2 and Y1 as D,
in agreement with (8.1.1). We want to extract from B two submatrices
B1 and B2 that contain A1 and A2, respectively, and that also contain
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enough information to reconstruct B. Evidently, the latter requirement is
equivalent to the condition that we must be able to compute D from B1

and B2. Now D has GF(2)-rank 1. Thus, knowledge of one nonzero row
of D and of one nonzero column of D suffices to compute D.

With this insight, we choose B1 to be A1 plus one nonzero row of D,
say row x, and B2 to be A2 plus one nonzero column of D, say column y.
The two indices x and y are shown in (8.2.3). Below, we display B1 and
B2 so selected.

(8.2.4)
A2B2 =

y Y2
x

X2
1
0

Y1
y

B1 = A1

x

X1

0 1 1

1

Matrices B1 and B2 of 2-sum

We reconstruct D, and thus implicitly B, from B1 and B2 by computing

(8.2.5) D = (column y of B2) · (row x of B1)

Let M1 and M2 be the minors of M represented by B1 and B2. We call
these minors the components of a 2-sum decomposition of M . The reverse
process, which corresponds to a reconstruction of B from B1 and B2, is a
2-sum composition of M1 and M2 to M . Both cases are handled by saying
that M is a 2-sum of M1 and M2, denoted by M = M1 ⊕2 M2. For future
reference, we record in the next lemma that 2-separations of connected
binary matroids produce 2-sums with connected components.

(8.2.6) Lemma. Any 2-separation of a connected binary matroid M
produces a 2-sum with connected components M1 and M2. Conversely,
any 2-sum of two connected binary matroids M1 and M2 is a connected
binary matroid M .

Proof. The above definitions establish the lemma except for the connect-
edness claims. It is easily verified that connectedness of B of (8.2.3) implies
connectedness of B1 and B2 of (8.2.4), and vice versa. By Lemma (3.3.19),
connectedness of representation matrices is equivalent to connectedness of
the corresponding matroids. Thus, connectedness of B, B1, and B2 is
equivalent to connectedness of M , M1, and M2, respectively.

The 2-sum decomposition or composition has the following appealing
graph interpretation.

(8.2.7) Lemma. Let M be a connected binary matroid that is a 2-sum
of M1 and M2, as given via B, B1, and B2 of (8.2.3) and (8.2.4).
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(a) If M is graphic, then there exist 2-connected graphs G, G1, and G2 for
M , M1, and M2, respectively, with the following feature. The graph G
is produced when one identifies the edge x of G1 with the edge y of G2,
and when subsequently the edge so created is deleted. The drawing
below depicts the general case.

(8.2.8) H1H1 H2 x H2y

Graph G Graph G1 Graph G2

(b) If M1 and M2 are graphic (resp. planar), then M is graphic (resp.
planar).

Proof. (a) Given B of (8.2.3) for M , let E1 = X1 ∪ Y1 and E2 = X2 ∪
Y2. We know that the pair (E1, E2) is a 2-separation of M . Select any
graph G for M . Since M is connected, G is 2-connected. Let H1 and
H2 be the subgraphs of G with edge sets E1 and E2, respectively. By
Theorem (3.2.25) part (b), the 2-separation (E1, E2) of M implies that the
connected components of H1 and H2 are connected in cycle fashion. By
the switching operation of Section 3.2, we may rearrange G so that both
H1 and H2 are connected. We may assume that G already is that graph.
Thus, G is as given by (8.2.8), with connected H1 and H2. By Lemma
(8.2.6), the matrices B1 and B2 of (8.2.4) are connected. By (8.2.3) and
the connectedness of B1, contraction in G of the edges of X2 − {x} and
deletion of the edges of Y2 must produce the graph G1 of (8.2.8). Similarly,
contraction of the edges of X1 and deletion of the edges of Y1 − {y} must
produce the graph G2 of (8.2.8). Thus, G1 and G2 are graphs for the
graphic matroids given by B1 and B2 of (8.2.4). The two graphs are 2-
connected since the corresponding matrices are connected.
(b) Let G1 and G2 be 2-connected graphs for M1 and M2. For some H1

and H2, the drawings of (8.2.8) correctly depict G1 and G2. Identify the
edge x of G1 with the edge y of G2, then delete the so-created edge. There
are two ways to accomplish the identification, but either way is acceptable
and produces a graph G as depicted by (8.2.8). Elementary checking of
fundamental cycles of G versus fundamental circuits of M confirms that
G represents the matroid M defined by B of (8.2.3). Thus, M is graphic.
If G1 and G2 are plane graphs, we can carry out the edge identification
so that G becomes a plane graph. Thus, M is planar if M1 and M2 are
planar.

We turn to the more challenging case of general k-sums, with k ≥ 3.
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8.3 General k-Sums

We are given a 3-connected binary matroid M on a set E. For some k ≥ 3,
we also know an exact k-separation (E1, E2). We want to decompose M
in some useful way. We investigate this problem using the matrix B of
(8.1.1). Slightly enlarged, we repeat that matrix below.

(8.3.1)

A2

B =

A1

D

Y1 Y2

X1

X2

0

Matrix B with exact k-separation

Recall that the submatrix D of B has GF(2)-rank k − 1. We want to
decompose M into two matroids M1 and M2 that correspond to two sub-
matrices B1 and B2 of B. As in the 2-sum case, we postulate that B1

and B2 include A1 and A2, respectively. Furthermore, B1 and B2 must
permit a reconstruction of B. The latter requirement can be satisfied by
including in B1 (resp. B2) a row (resp. column) submatrix of D with the
same rank as D, i.e., with GF(2)-rank k − 1. Indeed, the submatrix D of
B can be computed from these row and column submatrices. We provide
the relevant formulas in a moment. Last but not least, we want B1 and
B2 to be proper submatrices of B.

There are numerous ways to satisfy these requirements. In the most
general case, both B1 and B2 intersect all four submatrices A1, A2, D, and
0 of B, and thus induce the following rather complicated-looking partition
of B. We explain the partition momentarily.

(8.3.2)

Y1

A2
DD1

D12 D2

C2

C1
B =

A1

Y2

Y1
Y2

X1

X2

X1

X2

0

0

Partition of B displaying k-sum
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In the notation of (8.3.2), the submatrix B1 of B, which is not explicitly
indicated, is indexed by X1∪X2 and Y1∪Y 2. Furthermore, the submatrix
B2 is indexed by X1 ∪X2 and Y 1 ∪ Y2. Hence, B1 contains A1, intersects
A2 in C2, and intersects D in [D1 | D]. The submatrix B2 contains A2,
intersects A1 in C1, and intersects D in [D/D2]. We assume that C1 (resp.
C2) is a proper submatrix of A1 (resp. A2). This implies that both B1 and
B2 are proper submatrices of B. Observe that D is the submatrix of D
contained in both B1 and B2. We assume that both submatrices [D1 | D]
and [D/D2] of D have GF(2)-rank equal to k−1. By Lemma (2.3.14), this
implies that D has GF(2)-rank k − 1. We display the matrices B1 and B2

below.

(8.3.3)

Y1

DD1 C2

C1
B1 =

A1

Y2

Y1

X1

X2

X1
0

0 A2
D

D2

C2

C1

Y1 Y2

Y2

B2 =

X1

X2
X2

0 0

Matrices B1 and B2 of k-sum

The decomposition of B into B1 and B2 corresponds to a decomposition of
M into two matroids, say M1 and M2, that are represented by B1 and B2.
We call that decomposition of M a k-sum decomposition and declare M1

and M2 to be the components of the k-sum. The decomposition process is
readily reversed. All submatrices of B except for the submatrix D12, which
is indexed by X2 − X2 and Y1 − Y 1, are present in B1 and B2, and thus
are already known. For the computation of D12 from B1 and B2, we first
depict D and its submatrices.

(8.3.4) DD1

D12 D2
D =

X2
X2

Y1

Y1

Partitioned version of D

Since GF(2)-rank D = GF(2)-rank D, there is a matrix F so that [D12 |
D2] = F · [D1 | D]. Thus,

(8.3.5) D2 = F ·D
and

(8.3.6) D12 = F ·D1
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We first solve (8.3.5) for F . The solution may not be unique, but any
solution is acceptable. Then we use F in (8.3.6) to obtain D12.

Suppose D is square and nonsingular. Then from (8.3.5), we deduce
F = D2 · (D)−1. With that solution, we compute D12 according to (8.3.6)
as

(8.3.7) D12 = D2 · (D)−1 ·D1.

The reconstruction of B from B1 and B2 corresponds to a k-sum compo-
sition of M1 and M2 to M . Both the k-sum decomposition of M and the
k-sum composition of M1 and M2 to M , we call a k-sum and denote it by
M = M1 ⊕k M2.

It is a simple exercise to prove that the 1- and 2-sums of Section 8.2
are special instances of the above situation. In the 1-sum case, D is a zero
matrix. Thus, we may select C1, C2, D1, D2, and D to be trivial or empty,
whichever applies. Then by (8.3.3), we have B1 = A1 and B2 = A2, which
is the 1-sum of Section 8.2. In the 2-sum situation, D is the 1 × 1 matrix
[ 1 ], C1 and C2 are trivial matrices, [D1 | D] is row x of D, and [D/D2] is
column y of D. The formula (8.2.5) for D is nothing but (8.3.7) with the
just-defined D1, D2, and D.

The reader is well justified to wonder why we consider such complex
k-sums. We argue in favor of our approach as follows. Suppose we intend to
investigate a certain matroid property that is inherited under minor-taking,
say graphicness. To be even more specific, let us assume that we want to
obtain the minor-minimal matroids that are not graphic. Suppose the
above general conditions for k-sums admit a particular k-sum case where
graphicness of the components implies graphicness of the k-sum. Then no
minor-minimal nongraphic matroid can be such a k-sum. For if such a k-
sum M exists, then its components, smaller as they are, are graphic. But by
the just assumed feature of the k-sum, M is graphic as well, a contradiction.
Thus, we can restrict our search for the minimal nongraphic matroids to
instances that are not k-sums, a possibly very attractive insight. A second
situation is as follows. We want to find a construction for matroids having
a certain property. Indeed, we are willing to allow composition steps to
be part of the construction. In that case, we need composition rules that
preserve the property of interest.

The k-sum compositions described here, complex as they may be, do
preserve a number of interesting matroid properties. Thus, for investi-
gations into these properties, the k-sums are very useful. The evidence
supporting this claim will be presented in subsequent chapters.

So far we have expressed the k-sum decomposition or composition in
terms of representation matrices. It is interesting to consider k-sums in
terms of matroid minors as well. By the very derivation of B1 and B2,
the components M1 and M2 of the k-sum are minors of M . It is easy to
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see from (8.3.3) that B1 and B2 share precisely the submatrix B given by
(8.3.8) below. Define M to be the matroid represented by B. Clearly, M
is a minor of M , but more importantly, of M1 and M2 as well. Indeed,
one may view the composition of M1 and M2 to be an identification of the
minor M of M1 with the minor M of M2. One might also say that M as
minor of M forms the connection between the components M1 and M2 in
M . In agreement with the latter terminology, we call M the connecting
matroid or connecting minor of the k-sum. By (8.3.8) and the fact that
D and D have the same rank, the pair (X1 ∪ Y 1, X2 ∪ Y 2) is an exact
k-separation of M , provided that |X1 ∪ Y 1|, |X2 ∪ Y 2| ≥ k. The latter
condition is satisfied, for example, if both C1 and C2 are nonempty and
nontrivial.

(8.3.8)
D C2

C1X1

X2

0
=B

Y1 Y2

Submatrix B representing the connecting minor M
of the k-sum

Recall that we want important matroid properties to be preserved under
k-sum composition. Evidently, M is the minor of M that decides whether
or not we achieve that goal. Thus, the selection of M requires great care
when one desires k-sums suitable for the investigation of matroid properties.
Note that a particular choice of M imposes constraints on the exact k-
separations that are to be converted to a k-sum. For example, any k-
separation (E1, E2) capable of producing a k-sum with a given M minor
must satisfy for i = 1, 2, |Ei| ≥ |Xi∪Y i|+1, since otherwise the submatrices
C1 and C2 of B are not proper submatrices of A1 and A2. The selection of
M becomes even more complex when computational aspects are considered.
For example, one might demand that the k-sums defined by M can be
located in polynomial time.

For this book, 3-sums are of considerable importance. A good choice
for the matrix B representing M turns out to be

(8.3.9)
1

D C2

C1 0
=B =

D

01
1
1

Matrix B of 3-sum

where D is any 2× 2 GF(2)-nonsingular matrix. If D is the 2× 2 identity
matrix, then by (5.2.8), B represents up to indices M(W3), which is the
graphic matroid of the wheel with three spokes. If D contains exactly three
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1s, the only other choice, then by one GF(2)-pivot, say in C1 = [1 1], we
obtain the former case. Thus, in all instances, M is an M(W3) minor of M .
With B of (8.3.9), the matrix B of (8.3.2) becomes the following matrix.

(8.3.10)

1
1

Y1

A2
DD1

D12 D2

B =

A1

Y2

Y1
Y2

X1

X2

X1

X2

0

01  1

Matrix B of 3-sum

The representation matrices B1 and B2 of the components M1 and M2 are

(8.3.11)
1 1

1

Y1

DD1

B1 =
A1

Y2

Y1

X1

X2

X1
0

0
1

1

1

A2
D

D2

Y1 Y2

Y2

B2 =

X1

X2
X2

0
1
1

0

Matrices B1 and B2 of 3-sum

When does an exact 3-separation (E1, E2) of a binary matroid M lead to
a 3-sum with this M? Appealing sufficient conditions turn out to be 3-
connectedness of M and the restriction that |E1|, |E2| ≥ 4. We state this
result in the next lemma.

(8.3.12) Lemma. Let M be a 3-connected binary matroid on a set E.
Then any 3-separation (E1, E2) of M with |E1|, |E2| ≥ 4 produces a 3-sum,
and vice versa.

Proof. Let (E1, E2) be a 3-separation of M with |E1|, E2| ≥ 4. Since
M is 3-connected, the 3-separation must be exact. Hence, by (8.3.1),
M has a binary representation matrix B given by (8.3.13) below, with
GF(2)-rank D = 2. In particular, any column submatrix of D containing
four or more columns must contain a zero column or two parallel columns.
We claim that the row index subset X1 of B of (8.3.13) is nonempty. As-
sume otherwise. By |X1∪Y1| ≥ 4, we have |Y1| ≥ 4. But then D has a zero
column or two parallel columns, and M is not 3-connected, a contradiction.
Thus, X1 6= ∅, and trivially Y1 6= ∅.
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(8.3.13)

A2

B =

A1

D

Y1 Y2

X1

X2

0

Matrix B with 3-separation

Let A11 be a connected block of A1. There must be at least one such block,
since otherwise M has coloops. To exhibit A11, we partition B of (8.3.13)
further as follows.

(8.3.14)

Y1
Y11

A2

B =
A11

D11

Y2

X1
X11

X2

0
0

0

0 1

0 1

Matrix B of (8.3.13) with partitioned submatrix A1

Note the column submatrix D11 of D corresponding to A11. We claim that
GF(2)-rank D11 = 2. If this is not the case, then the pair (X11 ∪ Y11, E −
(X11 ∪ Y11)) constitutes a 1- or 2-separation of M , a contradiction.

Let us examine the submatrix [A11/D11] of B of (8.3.14) more closely.
Consider the paths in the bipartite graph BG(A11) between all pairs of
nodes y and z in Y11 for which the columns y and z of D11 are GF(2)-
independent. Since A11 is connected and GF(2)-rank D11 = 2, there is at
least one path. In a shortest path, all intermediate nodes in Y11 correspond
to zero columns of D11. Suppose a shortest path has at least four arcs.
With the path shortening technique of Chapter 5, we reduce that path by
pivots in A11 to one with exactly two arcs. Thus, we may assume that a
shortest path of length 2 exists, say connecting nodes y and z in BG(A11).
Put differently, we may assume that A11 contains a row with two 1s in
columns indexed by y, z ∈ Y11 such that the columns of D11 indexed by y
and z are GF(2)-independent. The path shortening pivots, if any, can also
be carried out in B of (8.3.14) without affecting the entries of D and A2.
Thus, we may assume A1 to contain a row with two 1s in columns y and z
such that the columns y and z of D are GF(2)-independent.
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By duality, we may suppose that A2 contains a column having two 1s
in rows u and v such that the rows u and v of D are GF(2)-independent.
By Lemma (2.3.14), GF(2)-rank D = 2 implies that the rows u and v of D
and the columns y and z of D must intersect in a 2× 2 GF(2)-nonsingular
submatrix D of D. When we partition B of (8.3.13) to exhibit the two 1s
of A1, the two 1s of A2, and D, we get an instance of (8.3.10), with the
connecting minor given by B of (8.3.9). Thus, M is a 3-sum.

The converse is obvious, since any 3-sum given by (8.3.10) produces
the 3-separation (X1 ∪ Y1, X2 ∪ Y2) with |X1 ∪ Y1|, |X2 ∪ Y2| ≥ 4.

Let us translate the 3-sum operation of binary matroids to graphs.
For simplicity, we confine ourselves to the case where a given graph G with
edge set E is 3-connected. In agreement with Lemma (8.3.12), we assume
that G has a 3-separation (E1, E2) where |E1|, |E2| ≥ 4. By that lemma,
the graphic matroid M = M(G) has a 3-sum decomposition induced by the
3-separation (E1, E2). The previously discussed results for the connecting
minor M of that 3-sum can be restated for the case at hand as follows: The
graph G has a minor G on edge set E and with a 3-separation (E1, E2)
such that E1 ⊆ E1 and E2 ⊆ E2. Up to indices, G is the wheel W3.

The deletions and contractions reducing G to G evidently involve the
edges of E1 −E1 and E2 −E2. Suppose in G we carry out these deletions
and contractions just for the edges of E2 − E2. Declare G1 to be the
resulting graph. The process producing G1 corresponds to the reduction
of the 3-sum M to the component M1. Thus, M1 = M(G1). By analogous
reductions, this time confined to the edges of E1 − E1, we obtain a graph
G2 for which M2 = M(G2). Examine the representation matrices B1 and
B2 of (8.3.11) for M1 and M2. Clearly, the set X2 ∪ Y 2 is a triangle in
M1, and the set X1 ∪ Y 1 is a triad of M2. Correspondingly, E2 must be a
triangle in G1, and E1 must be a cocircuit of G2 of size 3. Indeed, by the
structure of G and G2, that cocircuit of G2 must be a 3-star. The drawing
below summarizes these conclusions for G, G1, and G2.

(8.3.15) H1 H2
H1 H2

Graph G Graph G1 Graph G2

So far we have described the 3-sum decomposition of G into component
graphs G1 and G2. The composition is even easier. We identify the three
nodes of G1 explicitly shown in (8.3.15) with the three nodes of G2 so that
the triangle of G1 and the 3-star of G2 form a copy of G. The resulting
graph is G plus that copy of G. We delete the edges of that copy of G and
have the desired G.
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We use the term 3-sum to describe the decomposition of G into G1

and G2, as well as the composition of the latter graphs to G. In agreement
with the matroid case, we denote this by G = G1 ⊕3 G2 and call G the
connecting graph or connecting minor of the 3-sum of G1 and G2.

We saw earlier that certain separations can be converted to 1-, 2-, or 3-
sums. In the next section, we discuss how one may locate such separations
and thus 1-, 2-, and 3-sums.

8.4 Finding 1-, 2-, and 3-Sums

Suppose that for a given binary matroid M , we want to either find a 1-, 2-,
or 3-sum decomposition, or conclude that there is no such decomposition.
In this section, we solve this seemingly difficult problem. Main tools are
the separation algorithm of Section 6.2, some results about sequences of
nested minors of Section 7.3, and the lemmas of Section 8.3 that assure us
of a 1-, 2-, or 3-sum decomposition when certain separations are present.

We start with the simplest case, where the given binary matroid M
is not connected. By Lemma (3.3.19), every representation matrix of M
is disconnected. Thus, we easily detect this situation using an arbitrarily
selected representation matrix B of M . From that B, we may deduce a
1-sum decomposition of M as described in Section 8.2. Thus, from now on,
we may assume M to be connected. We also suppose that M has at least
four elements.

To find a 2- or 3-sum decomposition, if it exists, we first rely on Lemma
(5.2.11). That result says that under the above assumptions, M has a 2-
separation or an M(W3) minor. Implicit in the proof of the lemma is a poly-
nomial algorithm that decides which case applies. Suppose a 2-separation
is determined. Then Lemma (8.2.6) tells us that this 2-separation can be
easily converted to a 2-sum decomposition of M . So we now assume that
we detect an M(W3) minor, say N .

To M and N we apply Theorem (7.3.6), which in turn cites The-
orem (7.3.1). Accordingly, there is a polynomial algorithm that finds a
2-separation of M , or that establishes a sequence of nested 3-connected
minors M0, M1, . . . , Mt = M with the following features. M0 is isomor-
phic to N . For some s, 1 ≤ s ≤ t, the subsequence M0, M1, . . . , Ms consists
of wheel matroids and has gap 2, and the subsequence Ms, Ms+1, . . . , Mt

has gap 1. We know already how to handle the 2-separation case. Thus,
we may assume that the prescribed sequence of nested 3-connected minors
is found. The description of that sequence can be simplified by saying that
the sequence starts with an M(W3) minor and has gap 1 or 2. We use that
sequence to find a 3-sum decomposition for M or to prove that there is no
such decomposition. The details are as follows.
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First, we observe that by Lemma (8.3.12), M has a 3-sum decomposi-
tion if and only if it has a 3-separation (E1, E2) with |E1|, |E2| ≥ 4. Indeed,
the decomposition can be efficiently determined from such a 3-separation
using the algorithm implicit in the proof of that lemma. Thus, our task is
finding such a 3-separation or proving that none exists.

From Section 5.3, we know that the intersection algorithm can solve the
latter problem in polynomial time. However, the order of the algorithm is so
large that the scheme is practically unusable unless the matroid M is quite
small. In addition, it presently is not known how one might reduce the order
to an acceptable level. For this reason, we outline below another algorithm
that by suitable refinements and appropriate implementation does become
very efficient. The method is based on the following observations, where
for the moment we assume that M does have a 3-separation (E1, E2) with
the desired property. For j = 0, 1, . . . , t, let Ej be the groundset of Mj . For
each j, and for i = 1, 2, define Ej

i = Ej ∩ Ei. Clearly, each pair (Ej
1, E

j
2)

satisfying |Ej
1|, |Ej

2| ≥ 4 is a 3-separation of Mj . By its very derivation,
any such 3-separation of Mj induces a 3-separation of M with at least four
elements on each side, for example (E1, E2).

For the moment, let j be the smallest index so that |Ej
1|, |Ej

2| ≥ 4.
There is such an index since (Et

1, E
t
2) = (E1, E2) satisfies |Et

1|, |Et
2| ≥ 4.

Note that Mj has necessarily at least eight elements. Since M0 has only
six elements, we conclude that j ≥ 1. Because of the minimality of j, we
must have |Ej−1

1 | or |Ej−1
2 | ≤ 3. Since the gap of the sequence is at most

2, we deduce from the latter fact that |Ej
1| or |Ej

2| ≤ 5. There are only
polynomially many pairs (Ej

1, E
j
2) for Mj where |Ej

1|, |Ej
2| ≥ 4 and |Ej

1| or
|Ej

2| ≤ 5. Indeed, there are only polynomially many pairs satisfying that
condition when we allow j to range over 1, 2, . . . , t.

We use these observations as follows. Note that we still assume M
to have a 3-separation (E1, E2) where |E1|, |E2| ≥ 4. To find such a 3-
separation, we first locate for j = 1, 2, . . . , t all pairs (Ej

1, E
j
2) satisfying

|Ej
1|, |Ej

2| ≥ 4 and |Ej
1| or |Ej

2| ≤ 5. For each pair, we test whether it
is a 3-separation of Mj. We discard the cases where the answer is “no.”
For each remaining pair, say (Ej

1, E
j
2) of Mj , we check with the separation

algorithm of Section 6.2 whether it induces a 3-separation of M . For at
least one such pair, say (Ej

1, E
j
2) of Mj , we must obtain an affirmative

answer. The 3-separation of M so found, say (E′
1, E

′
2), satisfies for i = 1, 2,

E′
i ⊇ Ej

i and thus |E′
i| ≥ |Ej

i | ≥ 4. Hence, (E′
1, E

′
2) is the sought-after

3-separation of M .
So far, we have assumed that M has a 3-separation (E1, E2) where

|E1|, |E2| ≥ 4. If that is not the case, we can still carry out the above
polynomial process, without success of course. But the lack of success
proves that M has no 3-separation (E1, E2) with |E1|, |E2| ≥ 4.

The next theorem summarizes the above discussion.
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(8.4.1) Theorem. There is a polynomial algorithm that accepts any
binary matroid M as input, and that outputs the conclusion that M is
not connected, or that M is connected but not 3-connected, or that M is
3-connected. In the first case, the algorithm also supplies a 1-sum decom-
position, in the second case, a 2-sum decomposition, and in the third case,
a 3-sum decomposition if it exists.

In the next section, we meet close relatives of 3-sums, called ∆-sums
and Y-sums.

8.5 Delta-Sum and Wye-Sum

There are two variations of the 3-sum. We call them delta-sum and wye-
sum, for short ∆-sum and Y-sum. The relationships among 3-, ∆-, and Y-
sums are very elementary. That does not imply that they may be employed
interchangeably. Indeed, for some applications one definitely prefers one
type over another. Both ∆-sum and Y-sum are derived from the 3-sum,
so for convenient reference we repeat to related matrices of (8.3.10) and
(8.3.11) below.

(8.5.1)

1
1

Y1

A2
DD1

D12 D2

B =

A1

Y2

Y1
Y2

X1

X2

X1

X2

0

01  1

Matrix B of 3-sum

(8.5.2)
1 1

1

Y1

DD1

B1 =
A1

Y2

Y1

X1

X2

X1
0

0
1

1

1

A2
D

D2

Y1 Y2

Y2

B2 =

X1

X2
X2

0
1
1

0

Matrices B1 and B2 of 3-sum

We proceed as follows. We first define ∆- and Y-sums. Then we show
that the components of these sums are isomorphic to some minors of the
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sum, provided the sum is 3-connected. Finally, we indicate why one would
want to use one type of these sums over another in certain applications.

We derive the ∆-sum from the 3-sum as follows. Let M be a 3-
connected binary matroid with a 3-sum decomposition into M1 and M2,
with representation matrices B, B1, and B2 given by (8.5.1) and (8.5.2).
Suppose in M2 we perform a ∆Y exchange that replaces the triad X1 ∪Y 1

by a triangle Z2 as specified in (4.4.5). The new matroid, say M2∆, is
represented by

(8.5.3)
X2

Y2Z2

A2d
D

D2

1
1B2 =

Matrix B2∆ for M2∆

where the three columns of B2∆ indexed by Z2 sum to 0 (in GF(2)).
We say that M has been decomposed in a ∆-sum decomposition into

components M1 and M2∆. The reverse process we call a ∆-sum composition
of M1 and M2∆ to M . We refer to both cases as a ∆-sum and denote it
by M = M1 ⊕∆ M2∆. The relevant triangle in M1 or M2∆, i.e., X2 ∪ Y 2

or Z2, is the connecting triangle of M1 or M2∆. It is not difficult to check,
say using the circuits of M , that the ⊕∆ operator is commutative. Thus,
M1⊕∆ M2∆ = M2∆⊕∆ M1. We omit the details of the proof, since we will
make no use of this result.

The graph interpretation of the ∆-sum is as follows. Recall that by
(8.3.15), the 3-sum decomposition of a graph G into component graphs G1

and G2 can be depicted as

(8.5.4) H1 H2
H1 H2

Graph G Graph G1 Graph G2

The ∆Y exchange transforming M2 to M2∆ becomes a replacement of the
explicitly shown 3-star of G2 by a triangle. Let G2∆ be the resulting graph.
We may view the composition of G1 and G2∆ to G to be an identification
of the triangle of G1 with that of G2, followed by a deletion of the so-
created triangle from the resulting graph. Borrowing from the terminology
of the matroid case, we call G a ∆-sum of G1 and G2∆, and denote this by
G = G1 ⊕∆ G2∆.

The Y-sum of binary matroids is defined in an analogous fashion. As
for the ∆-sum, we start with a 3-sum M = M1⊕3 M2. But now we convert
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the triangle X2 ∪ Y 2 of M1 by a ∆Y exchange to a triad Z1, getting
a matroid M1Y. By B1 of (8.5.2) and the ∆Y exchange of (4.4.7), the
following matrix B1Y represents M1Y.

(8.5.5)
1

DD1

A1

Y1

Z1

X1

1

e

B1Y =

Matrix B1Y for M1Y

Here, the three rows of B1Y indexed by Z1 sum to 0 (in GF(2)). We call M
a Y-sum with components M1Y and M2, and write M = M1Y⊕Y M2. The
relevant triad in M1Y or M2 is the connecting triad of M1Y or M2. The
Y-sum operator can be verified to be commutative, as one would expect.

In the graph case of a Y-sum, we replace the explicitly shown triangle
of G1 of (8.5.4) by a 3-star, getting a graph G1Y. G is obtained from
G1Y and G2 as follows. Let i, j, k (resp. p, q, r) be the three nodes of
attachment of the 3-star in G1Y (resp. G2). Assume that i (resp. j, k)
corresponds to p (resp. q, r). Now connect the node i (resp. j, k) of G1Y

minus its 3-star with the node p (resp. q, r) of G2 minus its 3-star, say
using an edge e (resp. f , g). The edges e, f , and g form a cutset in the
new graph, and contraction of that cutset produces the graph G. We call
G a Y-sum of G1Y and G2, and denote this by G = G1Y ⊕Y G2.

The above Y-sum operation may seem cumbersome. In fact, the reader
most likely has an alternate Y-sum composition in mind where the 3-star
of G1Y is identified with that of G2, and where the edges of the resulting
3-star are deleted. Both Y-sum processes produce the same outcome, but
they do differ in the way in which the composition is carried out. We chose
the above, more complicated description because then the ∆-sum and Y-
sum composition steps are dual operations. The reader may want to try
to dualize the alternate Y-sum process to a new ∆-sum process for graphs.
This should turn out to be a difficult task. Indeed, one can show that such
a dual composition process cannot exist for graphs. At any rate, we know
that if M is the ∆-sum M1 ⊕∆ M2∆, then M∗ is the Y-sum M∗

1 ⊕Y M∗
2∆.

The matrices B1 and B2 of (8.5.2) are submatrices of B of (8.5.1).
Thus, by definition, M1 and M2 are minors of M . One cannot expect M1Y

or M2∆ also to be minors of M due to the assigned index sets Z1 and Z2.
However, one would hope that M1Y and M2∆ are isomorphic to minors of
M . The next result supports this notion.

(8.5.6) Lemma. Let M be the 3-connected matroid represented by the
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binary matrix B of (8.5.1). Then M has minors isomorphic to M1Y and
M2∆.

Proof. By duality, it suffices that we prove the claim for M2∆. For this,
we may assume that the nonsingular submatrix D of B of (8.5.1) is a 2× 2
identity matrix, since this can always be achieved by at most one GF(2)-
pivot in B on one of the 1s indexed by X1 and Y 1. Given D as a 2 × 2
identity matrix, we first perform in B two GF(2)-pivots on the 1s of D.
These pivots convert B to the matrix B′ below. We explain the structure
of B′ momentarily.

(8.5.7)

X2

(A2)'

(A1)'

B' =

Y2

Y2

X1

Y1

X1

a
b
c

  Y1
~

  X2
~

  Y1 = Y1 − Y1
~

  X2 = X2 −
~

X2

0 1

0

Matrix B′ derived from B of (8.5.1) by two pivots

Note that the pivots in B are made within the submatrix B2. Thus, the
submatrix of B′ indexed by the rows of X1 ∪ Y 1 ∪ X̃2 and the columns of
X2 ∪ Y2 represents M2. Since (X1 ∪ Y1, X2 ∪ Y2) is a 3-separation of M ,
the submatrix D′ of B′ indexed by X1 ∪ Y 1 and X2 ∪ Y2 has GF(2)-rank
2. Indeed, since X1 ∪ Y 1 is a triad of M2, the row subvectors a, b, c are
nonzero and add (in GF(2)) to the zero vector. By Lemma (8.3.12), pivots
in (A1)′ of B′ are possible so that the new (A1)′ of the new B′ has two 1s
in some column w and in rows u and v for which the rows u and v of D′ are
GF(2)-independent. The submatrix of the new B′ indexed by X̃2 ∪ {u, v}
and X2 ∪ Y2 ∪ {w} then is isomorphic to M2∆ by the rule (4.4.7) for ∆Y
exchanges.

The simple relationships among 3-sum, ∆-sum, and Y-sum may de-
ceive one into thinking that each such sum can be substituted for another
one in all applications. A first warning of the incorrectness of this conclu-
sion comes from applications involving planar graphs. That is, a Y-sum
of two planar graphs must be planar, while a ∆-sum of two planar graphs
need not be planar. Planarity of the Y-sum is most easily seen when one
embeds each component on a sphere and combines the two drawings to one
drawing on another sphere. The ∆-sum need not be planar. For example,
the nonplanar graph K4,3 can be created from two copies of the planar
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graph given below.

(8.5.8) g
f

e

Planar component of nonplanar ∆-sum

The triangle {e, f, g} of one copy is identified with that of the other copy.
Subsequently, the triangle created by the identification process is deleted,
and K4,3 results. Other significant applications where caution is in order
involve the max-flow min-cut matroids and the convex hull of the disjoint
unions of circuits of a binary matroid (the so-called cycle polytope). On the
other hand, when one examines matroid regularity, one may freely switch
among the three types of sums without penalty. Validity of these claims is
proved in Chapters 11 and 13.

In the final section, we link the material of this chapter to related
results and provide references.

8.6 Extensions and References

Basic aspects of the composition or decomposition of matroids have been
explored in a number of references, e.g. in Edmonds and Fulkerson (1965),
Edmonds (1965a), (1979), Nash-Williams (1961), (1964), (1966), Bixby
(1972), (1975), Brylawski (1972), (1975), Cunningham (1973), (1979),
(1982a), (1982b), Cunningham and Edmonds (1978), (1980), Iri (1979), Na-
kamura and Iri (1979), Seymour (1980b), Tomizawa and Fujishige (1982),
Fujishige (1983), (1985), and Conforti and Laurent (1988), (1989). De-
composing highly connected matroids and composing them again has not
been treated extensively. Related to the approach taken here are the de-
composition and composition of the graphs without K5 minors in Wagner
(1937a), the modular constructions of Brylawski (1975), and the decompo-
sition and composition of the regular matroids in Seymour (1980b). The
concept of the connecting minor is taken from Truemper (1985a), where it
is developed for general matroids using abstract matrices, instead of just
for binary matroids as done here. The material of Sections 8.2 and 8.3 is
also derived from general matroid results of that reference. The methods
of Section 8.4 for finding 1-, 2-, and 3-sums are from Truemper (1985a),
(1990).

Locating k-sums for general k ≥ 4 is much more difficult since one must
identify a k-separation and an a priori specified connecting minor. We do
not know how this can be efficiently accomplished for binary matroids, let
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alone for general matroids. Truemper (1985a) treats a particular 4-sum
case where the connecting minors have eight elements.

Most of the material of Section 8.5 is based on Grötschel and Truem-
per (1989b). That reference examines the ∆-sum and Y-sum in much more
detail. The ∆-sum of Section 8.5 is popular in graph theory (e.g., see Wag-
ner (1937a)) and is used in Seymour (1980b) to effect the decomposition of
the regular matroids. Lemma (8.5.6) is proved by a quite different method
in Seymour (1980b).

We have omitted entirely some interesting decomposition results of
Truemper (1985a),(1985b). These references contain a number of basic re-
sults about k-sums and three decomposition classification theorems plus
applications. The theorems cover general matroids, binary matroids, and
graphs, respectively. Each of them says that any given matroid is decom-
posable, or a number of elements can be removed in any order without
loss of 3-connectivity, or the matroid belongs to a small class of matroids
with few elements. The proofs are quite long and are the main reason that
we have omitted these results. Significant applications of the theorems are
rather short proofs of the profound excluded minor theorems for planar
graphs, graphic matroids, and regular matroids due to Kuratowski (1930)
and Tutte (1958), (1965). The latter theorems are proved in this book
using different machinery in Chapters 7, 9, and 10.



Chapter 9

Matrix Total Unimodularity and

Matroid Regularity

9.1 Overview

At this point, we have assembled the basic matroid results and tools for
the remaining developments. We now begin the investigation into the two
main technical subjects, which are matrix total unimodularity and matroid
regularity.

Total unimodularity and its many variants are very important for com-
binatorial optimization. For a long time, matrix techniques evidently did
not permit any profound insight into total unimodularity. That fact mo-
tivated the translation of the matrix property of total unimodularity into
the matroid property of regularity. The translation opened the way for
the application of powerful matroid techniques. After an effort spanning
three decades, matroid regularity and thus total unimodularity were at
last understood. The main results, in historical order, are due to Tutte
and Seymour. The subsequent chapters contain these results as well as
closely related material.

We proceed as follows. In Section 9.2, we define total unimodularity,
sketch important applications, and translate total unimodularity into ma-
troid language, thus getting matroid regularity. Section 9.3 contains the
first major result for regularity, which is Tutte’s characterization of the
regular binary matroids. Recall that F7 is the Fano matroid and F ∗

7 its
dual, and that Um

n is the uniform matroid on n elements where any subset
with at most m elements is independent. The characterization says that a
matroid is regular if and only if it has no U2

4 , F7, or F ∗
7 minors. The origi-

nal proof of that characterization is long and complicated. Here we rely on

188
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a proof of amazing brevity and clarity by Gerards. A minor modification
of the proof produces Reid’s characterization of the ternary matroids, i.e.,
the matroids representable over GF(3). The characterization says that a
matroid is ternary if and only if it has no U2

5 , U3
5 , F7, or F ∗

7 minors. This
result is presented in Section 9.4. The final section, 9.5, contains extensions
and references.

The chapter requires knowledge of the material of Chapters 2 and 3.

9.2 Basic Results and Applications of

Total Unimodularity

In this section, we define matrix total unimodularity and matroid regularity
and establish elementary results about these two properties. We also point
out representative applications of total unimodularity.

A real matrix is totally unimodular if every square submatrix has 0 or
±1 as determinant. Thus, the entries of a totally unimodular matrix must
be 0 or ±1. For example, the zero matrices and the identity matrices are
totally unimodular. Nontrivial examples are given by the next lemma.

(9.2.1) Lemma. Let A be a real {0,±1} matrix where every column
contains exactly one +1 and one −1. Then A is totally unimodular.

Proof. Let D be a square submatrix of A. We induct on the order of D.
In the nontrivial case, D has order k ≥ 2 and has no zero columns. If D has
a column with exactly one ±1, we use cofactor expansion and induction to
calculate the determinant as 0 or ±1. Otherwise, D has exactly one +1
and one −1 in each column, and thus the determinant is 0.

Define F to be the support matrix of the matrix A of Lemma (9.2.1).
View F to be binary. Since A has exactly one +1 and one −1 in each
column, the matrix F has exactly two 1s in each column. Then according
to the definitions of Section 3.2, F is the node/edge incidence matrix of
some graph G. Specifically, each row of F defines a node of G, and each
column g of F , say with 1s in rows i and j, defines an edge connecting
nodes i and j of G. We now declare the matrix A to represent a certain
directed version of G, as follows. Assume that column g of A has a +1
in row i and a −1 in row j. Then we replace the undirected edge of G
connecting the nodes i and j by a directed arc from i to j. Let H be the
resulting directed graph. We call A the node/arc incidence matrix of H.
By Lemma (9.2.1), every node/arc incidence matrix is totally unimodular.

The next lemma summarizes elementary operations that maintain to-
tal unimodularity.
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(9.2.2) Lemma. Total unimodularity is maintained under the taking of
submatrices, transposition, pivots, and the adjoining of zero or unit vectors
or of parallel {0,±1} vectors.

Proof. The pivot is the only nontrivial operation. Let a pivot convert a
totally unimodular matrix A to a matrix A′. Adjoin to A an identity matrix
to get [I | A]. Now A is totally unimodular if and only if every basis matrix
of [I | A] has ±1 as determinant. The latter property is maintained under
the elementary row operations in [I | A] that correspond to the pivot in A,
and that, together with scaling by {±1} factors and a column exchange,
convert [I | A] to [I | A′]. Thus, A′ is totally unimodular.

According to the next lemma, counting may be used to check total
unimodularity for the {0,±1} matrices whose bipartite graph BG(·) is a
chordless cycle, i.e., for the k × k real matrices, k ≥ 2, of the form

(9.2.3) ±1
±1 ±1
±1 ±1

±1
±1±1

.

. .
.

Matrix whose bipartite graph
is a chordless cycle

(9.2.4) Lemma. The real matrix of (9.2.3) is totally unimodular if and
only if its entries sum to 0(mod4).

Proof. Let A be the matrix of (9.2.3). Scaling of a row or column of A by
−1 does not affect total unimodularity and changes the sum of the entries
of A by a multiple of 4. Thus, for the proof of the lemma, we scale A to
the matrix A′ given by

(9.2.5) .-1
-1 1
1 α

1
1-1

. .
.

Particular matrix whose bipartite graph
is a chordless cycle

By cofactor expansion and counting, we confirm that detIR A′ is 2 (resp. 0)
if and only if α = 1 (α = −1), which holds if and only if the entries of A′

sum to 2 (resp. 0). The “only if” part of the proof is then immediate. The
“if” part follows from Lemma (9.2.1).

A matrix B is regular if it is binary and if its 1s can be replaced by
±1s so that a real matrix results that is totally unimodular. By the above
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discussion, every node/edge incidence matrix is regular. The signing of a
regular matrix to achieve a real totally unimodular matrix is essentially
unique, a fact proved next.

(9.2.6) Lemma. Let A and A′ be two totally unimodular matrices with
the same support matrix. Then A′ may be obtained from A by a scaling
of the rows and columns by {±1} factors.

Proof. We may assume A to be connected. Let T be a tree of BG(A), and
let T ′ be the corresponding tree of BG(A′). Because of scaling, we may
suppose that A and A′ agree on the entries corresponding to the edges
of T and T ′. Suppose A and A′ differ, say on the (i, j) element. The
corresponding edges e and e′ of BG(A) and BG(A′) form cycles C and C′

with T and T ′, respectively. Select T and e, and thus T ′ and e′, so that
the cardinality of the cycles is minimum. Suppose C and C′ have chords.
By the minimality condition, the entries of A and A′ corresponding to such
chords must agree. But then C and C′ do not have minimum cardinality, a
contradiction. Thus, C and C′ are chordless cycles of BG(A) and BG(A′),
and the submatrices of A and A′ corresponding to C and C′ are of the
form (9.2.3). The sums of the entries of the two submatrices differ by 2,
since they differ on just one entry. But then one of the sums is 0(mod4),
and the other one is 2(mod4). By Lemma (9.2.4), one of A and A′ is not
totally unimodular, a contradiction.

Lemma (9.2.6) and its proof imply the following result.

(9.2.7) Corollary. There is a polynomial algorithm that by signing
converts any regular matrix B to a real matrix A that is totally unimodular.
The signing can be carried out as follows. First some submatrix is signed.
Then, iteratively, the method signs an arbitrarily selected additional row
or column that is adjoined to the submatrix on hand.

Proof. Use Lemma (9.2.6) and the arguments of its proof to establish the
correct signs for the additional row and column.

A matroid M is regular if it has a regular representation matrix B. The
essentially unique totally unimodular matrix A deduced from the regular
B may be used to represent M as follows.

(9.2.8) Lemma. Let M be a matroid represented by a real totally
unimodular matrix A. Define A′ to be a numerically identical copy of
A, but view A′ to be a matrix over an arbitrary field F . Then M is
represented by A′ over F .

Proof. Since all square submatrices of A have real determinant 0 or ±1,
any such submatrix of A must be IR-nonsingular if and only if the corre-
sponding submatrix of A′ is F -nonsingular. Thus, A over IR and A′ over
F define the same matroid.

Lemma (9.2.8) leads to a short proof of the following theorem.
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(9.2.9) Theorem. The following statements are equivalent for a matroid
M .

(i) M is regular.
(ii) M has a real representation matrix that is totally unimodular.
(iii) M is representable over every field.
(iv) M is representable over GF(2) and GF(3).
(v) M representable over GF(3), and every representation matrix over

GF(3), when viewed as real, is totally unimodular.

Proof. By definition, (i) ⇐⇒ (ii), and by Lemma (9.2.8), (ii) =⇒ (iii).
Trivially, (iii) =⇒ (iv) and (v) =⇒ (ii). We show (iv) =⇒ (v). By (iv),
some matrix C over GF(3) and the binary support matrix B of C represent
M . Declare A to be a copy of C, but view A to be over the reals. We have
shown (v) once we have proved A to be totally unimodular. Suppose A has
a submatrix with real determinant different from 0, ±1. We may assume
that A itself is such a matrix, and that every proper submatrix of A is
totally unimodular. If A is a 2× 2 matrix, then by a trivial case analysis
we must have up to scaling by {±1} factors in A and C,

(9.2.10)
1 1 -1-1

1
1 1

1
B = ;

1 1
A = ;

1 1
C =

A over IR, B over GF(2), and C over GF(3)

Then det2 B = 0 and det3 C = 1. We conclude that B and C represent
different matroids, a contradiction. Suppose the order of A is greater than
2. We produce the 2 × 2 case by pivots in A, B, and C, as follows. We
perform an IR-pivot on any nonzero entry of A and delete the pivot row
and pivot column. In B and C, we carry out the corresponding operations.
Let A′, B′, C′ be so obtained from A, B, and C. It is easy to see that A′

is not totally unimodular, and that every proper submatrix of A′ is totally
unimodular. Furthermore, B′ is the binary support matrix of A′, and A′

and C′ have their 0s, +1s, and −1s in the same positions. By induction,
the contradictory 2× 2 case applies.

The preceding results and arguments yield the following corollaries.

(9.2.11) Corollary. For every regular matroid M , the following holds.

(a) Every binary representation matrix of M is regular.
(b) Every minor of M is regular.
(c) The dual of M is regular.

Proof. Lemma (9.2.2) and Theorem (9.2.9) imply (a), (b), and (c).

(9.2.12) Corollary. The graphic matroids as well as the cographic ones
are regular.
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Proof. By Corollary (9.2.11), we only need to consider the case of graph-
icness. So let G be a graph producing a graphic matroid M . Add a new
node to G and connect it to all other nodes. Let G′ be the resulting graph.
The added edges constitute a spanning tree T ′ of G′. The representation
matrix of the graphic matroid M ′ of G′ is nothing but the node/edge inci-
dence matrix of G, with rows indexed by T ′. By Lemma (9.2.1), the latter
matrix is regular. Thus, M ′ is regular. By Corollary (9.2.11), the minor
M ′\T ′, which is M , is regular as well.

We know that the transpose of a graphic matrix need not be graphic.
Examples are the representation matrices of M(K5) and M(K3,3) given by
(3.2.38) and (3.2.41). By 1-sum composition, we thus can create regular
matrices B that are not graphic and not cographic. For example, we may
choose as one block of B the matrix B′ of (3.2.38), and as the second block
of B the transpose of B′. There are less trivial ways of creating regular
nongraphic and noncographic matrices. We present them in Chapter 11. At
this time, we introduce two regular nongraphic and noncographic matrices,
called B10 and B12, that play a very special role in Chapters 10 and 11.
The matrix B10 is

(9.2.13)

1

1
1

B10 =
0

0
0

0

1
0
1

1
1

1
1

0

0
1
1

1
1
1

1 1
0 1

Matrix B10 of regular matroid R10

To prove regularity, we declare B10 to be over IR and check that all square
submatrices have real determinant equal to 0 or ±1. Brute-force checking
turns out to be quite tedious. But in Chapter 12, we learn much about
minimal {0,±1} matrices that are not totally unimodular. The conditions
presented there almost immediately prove B10 to be totally unimodular.
The regular matroid represented by B10 is called R10. We prove nongraph-
icness and noncographicness of R10 as follows. Delete the last column from
B10. Up to indices, the matrix of (3.2.41) results. Hence, R10 has an
M(K3,3) minor. The matrix B10 is also its transpose. Thus, R10 also
has an M(K3,3)∗ minor. We conclude that R10 is not graphic and not
cographic.

We have met the matrix B12 already in (4.4.9). Below we include
that matrix in (9.2.14) in partitioned form, for reasons explained shortly.
Following that matrix, we display a signed version of B12 in (9.2.15). We
claim that the matrix of (9.2.15) is totally unimodular, which implies that
B12 is regular. Analogously to the B10 case, one may verify the claim using
the results of Chapter 12.
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(9.2.14) B12 =

0

0

1
1

0

0
1
0
1

1
1
0

1

1
0
1
0

1

0
1
0
1

1 1
1 1
1 0
0 1

1 0 0
1 0 0

Matrix B12 of regular matroid R12

(9.2.15)

0

0

1
1

0

0
-1
0

-1

1
1
0

1

1
0
1
0

1

0
-1
0

-1

1 1
1 1
1 0
0 1

1 0 0
1 0 0

Totally unimodular version of B12

An easier method for verifying total unimodularity of the matrix of (9.2.15)
uses decomposition, as follows. By (8.3.10) and (8.3.11), the partition of
the matrix B12 of (9.2.14) induces a 3-sum decomposition with component
matrices B1 and B2 given by (9.2.16) below. A GF(2)-pivot on the 1 in the
lower right corner of B2 converts that matrix, up to indices, to the matrix
of (3.2.41). The latter matrix represents up to indices M(K3,3), and so
does B2. The matrix B1 is the transpose of B2. Thus, the matroid of B1

is isomorphic to M(K3,3)∗.

(9.2.16) B1 = ;

11
1

0

1
1

0

0
1

1
0

1
0

1

0
1

1 0
1 0 B2 =

1
1
0 1
1
0 1

0

0

1 1
1 1
1 0
0 1

1 0 0

Component matrices B1 and B2 of B12

These facts imply that R12 is not graphic and not cographic. They also
establish that R12 is a 3-sum of a copy of the regular M(K3,3) with one of
the regular M(K3,3)∗. In Chapter 11, we see that any 3-sum of two regular
matroids is also regular. This fact proves R12 to be regular. The simple
signing algorithm implicit in the proof of Corollary (9.2.7) confirms that
the signed version of B12 given by (9.2.15) is indeed totally unimodular.
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Total unimodularity is an important property for combinatorial opti-
mization. Numerous problems of that area of mathematics can be expressed
as an integer program of the form

(9.2.17)

min dt · x
s. t. A · x ≤ b

0 ≤ x ≤ c
x integer

where A is a given integral matrix, b, c, and d are given integral column
vectors, and x is a column vector representing the solution. The dimensions
of the arrays are such that the indicated multiplications and inequalities
make sense. The abbreviation “s. t.” stands for “subject to.” In general,
(9.2.17) is not easy. But if A is a totally unimodular matrix, then one
can effectively drop the integrality requirement from (9.2.17) and solve
the resulting linear program. In this book, we do not dwell on details and
implications of this approach, which has been treated extensively elsewhere.
In Section 9.5, we provide appropriate references.

A special class of the problems (9.2.17) involves as A the node/arc
incidence matrices of directed graphs, or matrices derived from node/arc
incidence matrices by pivots and deletion of rows and columns. Any prob-
lem of (9.2.17) in that class is called a network flow problem. That class has
also been treated extensively, and numerous special algorithms and famous
inequalities exist. That these algorithms work and that the inequalities
are valid can almost always be traced back to the total unimodularity of
node/arc incidence matrices. Again, we must resist an even cursory treat-
ment and must point to Section 9.5 for references. However, in Section 10.6
of the next chapter, we do present an efficient algorithm for testing whether
or not a given {0,±1}matrix A is the matrix of some network flow problem.

The importance of total unimodularity naturally leads us to ask a
number of questions. How can we recognize a totally unimodular matrix?
Is there a simple construction of the entire class of totally unimodular
matrices? What are the characteristics of the matrices that are not totally
unimodular, but all of whose proper submatrices are totally unimodular?
Are there other well-behaved problem classes of type (9.2.17) where A is
not totally unimodular, but where A is related to some totally unimodular
matrix?

Theorem (9.2.9) links matrix total unimodularity and matroid regu-
larity. Thus, one may pose the following related matroid questions. Is
there a simple construction of the entire class of regular matroids? Which
are the nonregular binary matroids all of whose proper minors are regular?
Which are the nongraphic binary matroids all of whose proper minors are
graphic? The latter two questions make sense since regularity as well as
graphicness are maintained under minor-taking. Are there other classes of
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binary matroids that are not regular, but that are closely related to the
regular matroids?

The above questions have complete answers, all of which are provided
in the sequel. The answer to the question concerning the minimal nonreg-
ular binary matroids is given in the next section.

9.3 Characterization of Regular Matroids

By Theorem (9.2.9), every regular matroid is binary. We already have
a characterization of the binary matroids: Theorem (3.5.2) says that a
matroid is binary if and only if it has no U2

4 minors. Thus, a regular matroid
has no U2

4 minors. By Corollary (9.2.11), regularity is maintained under
minor-taking and dualizing. For a complete characterization of regularity,
we thus must identify the minimal binary matroids M that are not regular.
In this section, we prove the famous theorem of Tutte according to which
there is just one such M up to isomorphism and dualizing. That matroid
is the Fano matroid F7 represented by the matrix B7 of (9.3.1) below. The
name is due to the fact that the matroid is the Fano plane, which is the
projective geometry PG(2, 2). The seven elements of the matroid are the
points of the geometry. We saw the Fano matroid earlier in Sections 3.3
and 4.4, under (3.3.22) and (4.4.13). In the latter case, “con” and “del”
labels were assigned to its elements. We have no such labels here.

(9.3.1)
0

1

1 1
1B7 = 1 10

0 1 1

1

Matrix B7 of Fano matroid F7

The matrix B7 cannot be signed to become totally unimodular, as follows.
The last three columns of B7 give a totally unimodular submatrix. If B7

is regular, then by Corollary (9.2.7), we can sign the first column of B7 to
achieve a totally unimodular matrix. But for all such ways, a 2×2 or 3×3
matrix with real determinant equal to +2 of −2 is created. Thus, B7 is
not regular. Tutte’s theorem is as follows. The amazingly simple proof is
due to Gerards.

(9.3.2) Theorem. A binary matroid is regular if and only if it has no
F7 or F ∗

7 minors.

Proof. For proof of the nontrivial “if” part, let M be a nonregular binary
matroid all of whose proper minors are regular. Evidently, any binary
representation matrix B of M must be connected. BG(B) cannot be a
single cycle or a path, for the first case corresponds to a wheel matroid,
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and the second one to a minor of a wheel matroid; both matroids are
regular. Thus, BG(B) is connected and has a node of degree 3, and hence
has a spanning tree with a degree 3 node. Such a tree has at least three tip
nodes, and hence has at least two tip nodes that correspond to two rows
or to two columns of B. Thus, deletion of two columns or of two rows,
say indexed by p and q, reduces B to a connected matrix B. Because of
dualizing of M , we may assume the former case. Thus,

(9.3.3)
g

p

h

q

B = B

Binary Matrix B of minimal nonregular matroid M

where the submatrices B, [g | B], and [h | B] are connected. By Corollary
(9.2.7), we may sign B so that a real matrix A of the form

(9.3.4)
a

p

b

q

A = A

Matrix A derived from B of (9.3.3) by signing

results where both [a | A] and [b | A] are totally unimodular. Since M is not
regular, A is not totally unimodular. By the construction, any submatrix
of A proving the latter fact must intersect both columns p and q. Let D be
a minimal such submatrix. If D is not a 2×2 matrix, we may convert it to
one by real pivots in A. The corresponding binary pivots in B must lead
to a matrix that is the support of the one deduced from A, for otherwise,
at least one of the matrices [a | A], [b | A] is not totally unimodular.
Furthermore, by Lemma (9.2.2), the pivots convert [a | A] and [b | A] to
some other totally unimodular matrices, and do not affect connectedness of
A. Thus, we may assume the 2× 2 D to be already present in A of (9.3.4).
That is, the columns a and b of A contain a 2× 2 matrix with determinant
equal to +2 or −2, say in rows v and w.

Up to scaling, A can thus be further partitioned as shown in (9.3.5)
below. The submatrix A has been subdivided into A, c, and e. The vectors
a and b have become a and b plus the explicitly shown ±1s. The latter
entries make up D.
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(9.3.5)

v

1
1

w

1
-1

p q

A =

e
c

a b A

Partition of matrix A displaying
non-totally unimodular 2× 2 submatrix

Examine the row subvectors c and e in rows v and w. Suppose both sub-
vectors have ±1 entries in some column y 6= p, q. Then those two entries
plus the two ±1s of column p or column q must form a non-totally unimod-
ular 2 × 2 matrix, a contradiction that both [a | A] and [b | A] are totally
unimodular. None of the subvectors c and e can be zero, since otherwise A
is not connected. By scaling, we thus can assume c and e to be as indicated
below.

(9.3.6)

1. .-1w 1 0 1
1v 1 1 1 0

p q

A =
b

Y1 Y2

A

. .

a

Further partitioning of matrix A

Since A is connected, there is a path from some r ∈ Y 1 to some s ∈ Y 2 in
the bipartite graph of the submatrix A. By the path shortening technique
of Chapter 5, we may assume the path to have exactly two edges. Thus,
we can refine A of (9.3.6) to

(9.3.7)

c
u

v

-1w 1
1
α

1 1
1
0

0

β

p q r s

A =

A

±1±1

e

a b

Final partitioning of matrix A

By scaling in row u, we may presume the entry in row u and column r to be
a +1. We now concentrate on the submatrix A′ of A indexed by {u, v, w}
and {p, q, r, s}. We show that submatrix below. The entries α and β of the
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submatrix are yet to be determined.

(9.3.8) ±1

w

u α β
q

01
1 -1

11v

srp

0

1

1
A' =

Submatrix A′ of A displaying F7 minor

If α = β = 0, then by Lemma (9.2.4), the 3 × 3 column submatrix of
A′ indexed by {p, r, s} or the one indexed by {q, r, s} is not totally uni-
modular. But then one of [a | A] and [b | A] is not totally unimodular, a
contradiction. Suppose both α and β are nonzero. Due to column r and
total unimodularity of [a | A] and [b | A], we have α = β = 1. But due to
column s and rows u and w, the entries α and β must have opposite sign,
a contradiction. Thus, exactly one of α and β is zero. Then A′ of (9.3.8)
has up to index sets the matrix B7 as support. We conclude that M or
M∗ is isomorphic to F7.

During a first reading of the book, the next section may be skipped.
There we characterize the ternary matroids.

9.4 Characterization of Ternary Matroids

The proof of Theorem (9.3.2) of the preceding section can be extended to
establish the following characterization by R. Reid of the ternary matroids,
i.e., the matroids representable over GF(3). Recall from Section 3.4 that
representability over a given field is maintained under minor-taking and
dualizing.

(9.4.1) Theorem. A matroid is representable over GF(3) if and only if
it has no F7, F ∗

7 , U2
5 , or U3

5 minors.

Proof. We assume that the reader is quite familiar with the material on
abstract representations of Section 3.4. It is easy to check that the excluded
minors are not representable over GF(3). Indeed, it suffices to verify this
for F7 and U2

5 , since F ∗
7 and U3

5 are the duals of these matroids. Thus,
the “if” part holds. For proof of the converse, we argue as in the proof
of Theorem (9.3.2), except that B is an abstract matrix representing M .
The graph BG(B) cannot be a cycle or path, since otherwise M is a GF(3)-
representable wheel or whirl matroid or a minor of such a matroid. Thus, up
to dualizing of M , B can be partitioned as in (9.3.3), where B is connected.

We need the following auxiliary result: Two matrices over GF(3) and
with the same support represent the same matroid if and only if either
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one of the two matrices may be obtained from the other one by scaling
of rows and columns by {±1} factors. The proof is identical to that of
Lemma (9.2.6), except that the final sentence of the proof is replaced by
the observation that a matrix of (9.2.3) has the GF(3)-determinant equal
to 0 if and only if its entries sum (in IR) to 0(mod 4).

Because of the auxiliary result and its proof, the signing of an abstract
matrix to achieve a representation matrix over GF(3) can be done column
by column, provided of course the matroid is GF(3)-representable. This
observation is the GF(3)-analogue of Corollary (9.2.7). Thus, for the case
at hand, we may deduce from B, which is partitioned as in (9.3.3), a matrix
A of (9.3.4) over GF(3) where [a | A] represents M\q and where [b | A]
represents M\p. Since M is not representable over GF(3), A does not
represent M .

Due to abstract pivots in B of B and corresponding GF(3)-pivots in
A of A, we may assume that B and A satisfy the following two additional
conditions. First, A is the matrix of (9.3.5), except that the explicitly
shown −1 in row w and column q is a +1 or −1. We denote that entry by
γ. Second, the GF(3)-determinant of the 2× 2 submatrix of rows v, w and
columns p, q is not correct for M . That is, the GF(3)-determinant of that
submatrix is zero (resp. nonzero), i.e., γ = 1 (resp. γ = −1), if and only if
the related 2× 2 submatrix of B has abstract determinant 1 (resp. 0). Let
us include the just-described matrix A for easy reference.

(9.4.2)
v

1
1

w

1
γ

p q

A =

e
c

a b A

Partition of matrix A displaying 2× 2 submatrix
with incorrect determinant

Due to the γ entry, the ensuing arguments are a bit more subtle than those
proving Theorem (9.3.2). Assume that both row subvectors c and e in rows
v and w of A have ±1s in a column y 6= p, q. Extract from A of (9.4.2) the
submatrix A′ indexed by {v, w} and {p, q, y}, i.e.,

(9.4.3) 1
1

±1
±1w γ

1v

q yp

A' =

Submatrix A′ of A displaying U2
5 minor

That submatrix corresponds to a minor M ′ of M . According to the previ-
ous discussion, p and q are parallel in M ′ if and only if γ = −1. Assume
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γ = −1. By (9.4.3), one of {p, y}, {q, y}, say {p, y}, contains two parallel
elements of M ′, and the other one is a base of M ′. Since γ = −1, p and q
are parallel in M ′. But “is parallel to” is an equivalence relation, so y and
q must also be parallel in M ′, a contradiction. Thus, γ = +1. Arguing by
contradiction as in the previous case, both {p, y} and {q, y} must be bases
of M ′. Then M ′ is isomorphic to U2

5 , and we are done.
We return to A of (9.4.2), knowing now that it can be further parti-

tioned as in (9.3.6), except that the explicitly shown −1 in (9.3.6) must
be replaced by γ. By path-shortening GF(3)-pivots in A and subsequent
deletion of rows and columns, we get the following analogue of the small
case (9.3.8).

(9.4.4)

w

u α β δ ε
q

01
1 γ

11v

srp

0 1
A' =

Submatrix A′ of A displaying U2
5 , U3

5 , or F7 minor

Here δ, ǫ = ±1, while α and β are as-yet-undetermined {0,±1} entries.
We examine the possible cases for α and β. Let M ′ be the minor of M
corresponding to A′.

Case 1: α, β = ±1. Suppose the 2× 2 submatrix A′ of A′ indexed by u, v
and p, q has incorrect GF(3)-determinant for M ′. Then the rows u, v and
the columns p, q, r are up to indices an instance of (9.4.3). Thus, M ′ has a
U2

5 minor. Hence, we may assume the determinant of A′ to be correct for
M ′. Similarly, the GF(3)-determinant of the 2× 2 matrix indexed by u, w
and p, q may be assumed to be correct for M ′. But then up to indices, the
columns p, q constitute the transpose of the case (9.4.3), thus giving an U3

5

minor.

Case 2: α = β = 0. We GF(3)-pivot in A′ on the 1 in row w and column s
to obtain case 1.

Case 3: α = 0, β 6= 0: This is the last case, since α 6= 0, β = 0 is
symmetric to it by scaling. We may assume β = 1 because of scaling of
row u. If δ = −1 (resp. ǫ 6= γ), we GF(3)-pivot on the 1 in row v (resp.
w) and column r (resp. s) of A′ to get case 1. Hence, assume δ = 1 and
ǫ = γ. If γ = 1, a GF(3)-pivot on the 1 in row v and column r of A′,
followed by a GF(3)-pivot on the 1 in row w and column s, produces case
1. If γ = −1, then a simple analysis of the GF(3)-determinants proves M ′

to be isomorphic to F7.
The conclusions drawn via the preceding GF(3)-pivot arguments are

valid for the following reasons. Let one of the above GF(3)-pivots transform
A′ of (9.4.4) to A′′. Let B′ be the abstract matrix that represents M ′ and
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that corresponds to A′. We claim that the related abstract pivot in B′ pro-
duces a B′′ that is linked to A′′ as follows. First, the 2×2 submatrix in the
lower left corner has determinant 0 in B′′ if and only if the corresponding
submatrix of A′′ has a nonzero GF(3)-determinant. Thus, that submatrix
of A′′ has incorrect GF(3)-determinant for M ′ as does that of A′. Second,
let deletion of the first or second column reduce A′′ and B′′ to A′′′ and B′′′,
respectively. Then any square submatrix of B′′′ has determinant 0 if and
only if the corresponding square submatrix of A′′′ has GF(3)-determinant
0. Thus, that submatrix of A′′′ has a correct GF(3)-determinant for M ′.
In particular, A′′′ and B′′′ have the same support. The preceding claims
follow directly from the pivot rules for abstract determinants as described
in Section 3.4.

Theorem (9.4.1) implies Theorem (9.3.2) by elementary arguments.
By Theorem (9.2.9), a binary matroid M is regular if and only if it is
representable over GF(3). By Theorem (9.4.1), a matroid is representable
over GF(3) if and only if it has no U2

5 , U3
5 , F7, F ∗

7 minors. But U2
5 and U3

5

are not binary, and thus Theorem (9.3.2) follows.
In the final section, we indicate extensions and cite references.

9.5 Extensions and References

The prior work on total unimodularity can be roughly divided into two
categories. The first one contains papers investigating the structure of
totally unimodular matrices, of minimal {0,±1} matrices that are not to-
tally unimodular, and of closely related matrix classes. Relevant references
are Cederbaum (1957), Ghouila-Houri (1962), Camion (1963a), (1963b),
(1965), (1968), Heller (1963), Veinott and Dantzig (1968), Chandraseka-
ran (1969), Commoner (1973), Gondran (1973), Padberg (1975), (1976),
(1988), Brown (1976), (1977), Tamir (1976), Truemper (1977), (1978),
(1980b), (1982b), (1990), (1992b), Kress and Tamir (1980), de Werra
(1981), Cunningham (1982a), Chandrasekaran and Shirali (1984), Fonlupt
and Raco (1984), Seymour (1985a), Yannakakis (1985), Crama, Hammer,
and Ibaraki (1986), Conforti and Rao (1987), and Hempel, Herrmann, Höl-
zer, and Wetzel (1989).

The second category concerns applications of total unimodularity. Per-
tinent references are Dantzig and Fulkerson (1956), Hoffman and Kruskal
(1956), Hoffman and Kuhn (1956), Motzkin (1956), Heller and Tompkins
(1956), Heller (1957), Hoffman (1960), (1974), (1976), (1979), Ford and Ful-
kerson (1962), Heller and Hoffman (1962), Rebman (1974), Lawler (1976),
Baum and Trotter (1978), Hoffman and Oppenheim (1978), Truemper and
Chandrasekaran (1978), Truemper and Soun (1979), Soun and Truemper
(1980), Maurras, Truemper, and Akgül (1981), Bixby (1982a), (1984a),
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Schrijver (1983), Tamir (1987), Recski (1989), and Ahuja, Magnanti, and
Orlin (1989). A comprehensive treatment is given in Schrijver (1986).

Lemma (9.2.1) is well known, while Lemmas (9.2.2) and (9.2.4) are
implicit in most references of the first category. Lemma (9.2.6) is taken
from Camion (1963b). It also follows from Brylawski and Lucas (1973).
Lemma (9.2.8) and Theorem (9.2.9), though with a quite different proof,
are from Tutte (1958), (1965), (1971).

References given above for the second category contain numerous re-
sults about problems of the form (9.2.17).

The matroids R10 and R12 are the two central matroids in the proof of
the regular matroid decomposition theorem in Seymour (1980b). The ma-
troid R10 had appeared earlier in Hoffman (1960). See also Bixby (1977).
Contrary to sometimes-voiced claims, the matroids R10 and R12 do arise
from well-known combinatorial problems. We present two examples. The
first one involves the real constraint matrices of two-commodity flow prob-
lems on directed graphs. In Soun and Truemper (1980) it is shown that an
infinite subclass of such problems has constraint matrices that give rise to
regular matroids that are nongraphic and noncographic. Indeed, it can be
shown that these matroids have R12 minors.

The second example is due to Chvátal (1986). It involves the graph G
below.

(9.5.1)

Graph G

Construct the following real matrix B from G. Each column of B corre-
sponds to a node of G, and each row to a clique (= maximal complete
subgraph) of G. Each row i of B is then the incidence vector of the nodes
in clique i. The matrix B is the clique/node incidence matrix of G. The
clique/node incidence matrices of graphs are very useful for the solution of
the so-called independent vertex set problem. For the graph G at hand, the
clique/node incidence matrix B can be proved to be totally unimodular.
Indeed, it is not difficult to verify that the regular matroid represented by
B is nongraphic and noncographic and has an R12 minor.

Theorem (9.3.2) is Tutte’s famous characterization of the regular ma-
troids (Tutte (1958), (1965), (1971)). The beautiful proof is due to Gerards
(1989a). Variations of the theorem appear in Bixby (1976) and Truemper
(1982b), (1992a). Related is work on extremal matroids in Murty (1976).

Theorem (9.4.1) is due to R. Reid, who never published his proof.
Other proofs of that result appear in Bixby (1979), Seymour (1979a),
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Truemper (1982b), Kahn (1984), and Kahn and Seymour (1988). As re-
marked in Section 9.4, any proof of Theorem (9.4.1) essentially constitutes
a proof of Theorem (9.3.2) as well. A characterization of the matroids rep-
resentable over GF(3) in terms of circuit signatures is given in Roudneff
and Wagowski (1989).

Representability over GF(3) and GF(q) is treated in Kung (1990b),
and Kung and Oxley (1988). Ternary matroids without M(K4) minors are
covered in Oxley (1987c). Partial results for representability over GF(4)
are given in Oxley (1986), (1990a) and Kahn (1988). The difficult charac-
terization of representability over GF(4) in terms of the excluded minors is
provided by Geelen, Gerards, and Kapoor (1998). Early examples of non-
representable matroids are in MacLane (1936), Lazarson (1958), Ingleton
(1959), (1971), and Vamos (1968). It has been conjectured (Rota (1970))
that for any finite field F , the number of matroids that are not repre-
sentable over F , and that are minimal with respect to that property, is
finite.

General questions concerning representability are discussed in Vamos
(1978), Kahn (1982), and Ziegler (1990).

The complexity of representability tests using various oracles is ex-
amined in Robinson and Welsh (1980), Seymour (1981c), Seymour and
Walton (1981), Jensen and Korte (1982), and Truemper (1982a). Virtu-
ally every such test requires exponential time when the matroid is given
by an oracle that decides independence of sets. An exception is the test of
representability over every field. A polynomial algorithm for that problem
is given in Truemper (1982a). The algorithm relies on the regular matroid
decomposition theorem of Seymour (1980b), which is covered in Chapter
11.



Chapter 10

Graphic Matroids

10.1 Overview

At this point, we are ready to investigate the first complicated class of
binary matroids treated in this book: the class of graphic matroids. Recall
the following definitions and results. Kn is the complete graph on n nodes,
and Km,n is the complete bipartite graph with m nodes on one side and
n nodes on the other side. For any graph G, the corresponding graphic
matroid is regular and is denoted by M(G). F7 denotes the nonregular
Fano matroid. Finally, the asterisk is used as dualizing operator.

In this chapter, we first identify certain minimal regular matroids that
are not graphic, or that are not graphic and not cographic. Specifically, in
Section 10.2, we characterize the planar regular matroids, i.e., the matroids
produced by planar graphs. In Section 10.3, we investigate the behavior of
nongraphic regular matroids with M(K3,3) minors. We build upon these
results in Section 10.4. There we prove two profound theorems of matroid
theory: Tutte’s theorem that M(K5)∗ and M(K3,3)∗ are the minimal reg-
ular matroids that are not graphic, and Seymour’s theorem that the two
matroids R10 and R12 defined in Section 9.2 are the minimal regular, 3-
connected matroids that are not graphic and not cographic. The latter
theorem is one of the two central ingredients in the proof of Seymour’s pro-
found decomposition theorem for regular matroids. We take up the latter
theorem and its proof in Chapter 11.

In Section 10.5, we introduce a simple but very useful decomposition
scheme that will be used repeatedly in Chapters 11–13. Indeed, the scheme
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is the second ingredient in the proof of the just-mentioned decomposition
theorem for regular matroids. In Section 10.5, we employ the scheme to
deduce some graph decomposition theorems, among them Wagner’s famous
decomposition theorem for the graphs without K5 minors.

In Section 10.6, we present an efficient algorithm for deciding graph-
icness of binary matroids and for deciding whether or not a real {0,±1}
matrix A is the coefficient matrix of a network flow problem. Finally, in
Section 10.7, we indicate extensions and provide references.

The chapter requires knowledge of Chapters 2, 3, and 5–8. We also
make use of the easy part of Theorem (9.3.2), according to which the Fano
matroid is nonregular.

10.2 Characterization of Planar Matroids

In this section, we prove that a regular matroid is planar if and only if it has
no M(K3,3), M(K3,3)∗, M(K5), or M(K5)∗ minors. The result constitutes
one of two preparatory steps toward proofs of the theorems by Tutte and
Seymour cited in the introduction to this chapter. The latter results are
established in Section 10.4.

Definition of Graph with T Nodes

For the arguments of this section and the next one, we need a convenient
way to encode and manipulate 1-element binary additions of any graphic
matroid N . Let B be a binary representation matrix of N , say with row
index set X and column index set Y . Thus, the matroid M = N+z is
represented by the following matrix B.

(10.2.1)
b

z

B = X

Y

B

Matrix B for matroid M = N+z

Let G be any connected graph for N , i.e., M(G) is N . The graph G need
not be unique. The row index set X of B is a tree of G. Suppose we
premultiply the matrix [I | B | b] with the node/edge incidence matrix of
the tree X . By the results of Section 3.2, that multiplication turns the
submatrix [I | B] into the node/edge incidence matrix, say F , of G. The
column vector b becomes some vector, say d. Evidently, F and [F | d] have
the same GF(2)-rank. Accordingly, since every column of F has exactly
two 1s or none, the vector d must have an even number of 1s. Since each
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row of F corresponds to a node of G, we can associate the 1s of d with a
node subset T of G. Each node of T we call a T node. In drawings of G, we
denote each T node by a square box. By the construction, M is completely
represented by G and the set T .

Section 3.2 contains the following alternate way of representing M via
G. Each 1 of the vector b of (10.2.1) corresponds to an edge of the tree
X . To single out these edges, we temporarily paint them red. In general,
the red edges form a red subgraph X of G without cycles. The following
lemma links that subgraph to the set T .

(10.2.2) Lemma. A node of G is a T node if and only if the node has
an odd number of red edges incident.

Proof. In the matroid M , the element z forms a fundamental circuit C
with X . Indeed, C−{z} is nothing but the red subgraph X . That subgraph
indexes a column submatrix F of F . Thus, the columns of [F | d], which
are indexed by C, are GF(2)-mindependent, i.e., the columns are GF(2)-
dependent, but any proper subset of the columns is GF(2)-independent.
This is so if and only if the 1s of d are in the rows of F with an odd number
of 1s. Equivalently, a node of G is in T if and only if the node has an odd
number of red edges incident.

Lemma (10.2.2) implies a convenient method for determining the T
nodes. Suppose we have B of (10.2.1) and a graph G for the matroid N of
B. For each 1 in the vector b, say in row x ∈ X of B, we temporarily paint
the edge x of G red. Then we define the nodes of G with odd number of
red edges incident to be the T nodes. Finally, we declare the red edges to
be unpainted again.

We claim that M is graphic if |T | = 2. Indeed, the red subgraph X
is then a red path, say from node u of G to node v. We thus may add an
edge z connecting u and v to get a graph representing M .

Example Graphs with T Nodes

Below, we carry out the derivation of T for a few nongraphic matroids
that are important for our purposes. We depict each instance using the
following scheme.

(10.2.3)

b

z

B = X

Y

B

Matrix B

−→

Graph G
with red
subgraph X
(indicated by
bold edges)

−→

Graph G
with T nodes
(indicated by
squares enclo-
sing nodes

Representation of M by matrix B, by graph G
with red edges, and by graph G with T nodes
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Here are the example matroids M .

(10.2.4)

a

b

e

d

c

fa

b

e

d

c

f1
1
1

0
1
1

1
0
1

d e f z
a
b
c

1
1
0

Fano Matroid F7 (defined by (9.3.1))

(10.2.5)

b

d

a

e

c

f

b

d

a

e

c

f

e
1a

b
c
d

1 1 0
110

1 1 1

0 1
f z

Fano Dual F ∗
7

(10.2.6)

a h

d

f

e

g

b

c

a h

d

f

e

g

b

c

1
1
0
0 0 1 1 1

1
1 1 0

0 0
0 0

1 1
1
1

a
b
c
d

e f g h z

M(K3,3)∗ (defined by (3.2.46))

(10.2.7)

a

b

e

d

c

h

i

g f

a

b

e

d

c

h

i

g f

0
0
0
1
1
1

0
1
1
0
1
0

1
0
1
0
0
1

g h i z
a
b
c
d
e
f

1
1
0
1
0
0

M(K5)∗ (defined by (3.2.44))
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(10.2.8)

i
c e

h

d

a
g

b

f

i
c e

h

d

a
g

b

f

1
1
0
0 0 1 1 1

11111

1 1 0 1
1 0 0 1
0 0 1 1a

b
c
d
e

f g h i z

R10 (defined by (9.2.13))

(10.2.9)

f

i
h

d

a

e
c

b g

k j

i

a

f

h

d

e
c

b g

k j

a
b
c
d
e
f

0
0

0

1
1

0

0
1
0
1

1
1
z g h i j k

0

1

1
0
1
0

1

0
1
0
1

1 1
1 1
1
0 1

1 0 0
1 0 0

R12 (defined by (9.2.14); note that
column z is the first column)

In each of the example cases, we have established the set T via a
particular tree X of G. Since T was originally defined via the matrix
[F | d], any other tree of G would have produced the same set T . For this
reason, we may always select a particularly suitable tree X when discussing
some matroid operation and its impact on G and T . We have three such
operations in mind: deletion of an element y 6= z of M that is not a coloop
of G, contraction of an element x 6= z of M that is not a loop of G, and
the switching operation of Section 3.2. We take up these operations next.

Deletion, Contraction, and Switching in Graphs
with T Nodes

Suppose we delete from M an element y 6= z that is not a coloop of G.
Thus, G has a tree X that is also a tree of G\y. Then G\y with the original
T node labels represents M\y.

Suppose in M we contract an element x 6= z that is not a loop. We
may assume that the tree X of G contains x. Then X − {x} is a tree of
G/x and a base of M/x. We claim that the red edges of X − {x} plus z
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constitute the fundamental circuit that z forms with X −{x} in M/x. For
a proof, we delete row x ∈ X from the matrix B to obtain a representation
matrix for M/x. Inspection of the column z of the latter matrix verifies
the claim. Thus, we may use the red edges of X − {x} to represent the
element z of M/x by a node subset T ′ of G/x analogously to the use of the
red edges of X to define the node subset T of G. We deduce T ′ directly
from T by the following rules. Let i be any node of G different from the
two endpoints u and v of x. Then i is in T ′ if and only if i is in T . Define
w to be the node of G/x created from u and v of G when x is contracted,
i.e., w = (u ∪ v)− {x}. Then w is in T ′ if and only if exactly one of u and
v is in T . Validity of these rules follows directly from the just-mentioned
fact about the red edges of X − {x}, and from a simple parity argument
involving the red edges of G incident at nodes u or v.

Recall the switching operation of Section 3.2. On hand must be a
2-separation of G, say involving subgraphs G1 and G2. The graph G1 is
removed, turned over, and reattached to G2. The resulting graph G′ is
2-isomorphic to G. Thus, G′ also represents M\z. We want to deduce the
set T ′ for G′ from the set T of G. That is, G′ and T ′ are to represent M
analogously to G and T . Evidently, any tree X of G is one of G′, and the
red edges of X may be used to deduce T ′ for G′. Thus, any node different
from the two nodes joining G1 and G2 is in T ′ if and only if it is in T .
The rules for the latter two nodes are also quite simple. For the general
situation, we leave their derivation to the reader. Instead, we just examine
the special case where the graph G has two series edges e and f with a
common endpoint w ∈ T with degree 2. Let u be the second endpoint of
edge e, and let v be that of edge f . Assume u 6= v. The switching operation
resequences e and f . Thus, u becomes u′ = (u−{e})∪ {f} and v becomes
v′ = (v − {f}) ∪ {e}. For the derivation of T ′ of G′ from T of G, we may
suppose that the tree X of G includes both e and f . Since w ∈ T , exactly
one of the edges e and f is red. Correspondingly, the parity of the number
of red edges at u (resp. v) in G is different from the parity of the number
of red edges at u′ (resp. v′) in G′. Thus, u′ (resp. v′) is in T ′ if and only
if u (resp. v) is not in T . An example case is depicted below. As before,
nodes of T are indicated by squares.

(10.2.10)
vu

we f u'
wf e

v '
switching

Graph G Graph G′

Effect of switching on T nodes

The set T ′ produced by any switching may have cardinality different from
that of T . Thus, we are justified in assuming for convenience that |T | is
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minimal under switchings. In that case, M is graphic if and only if |T | is
0 or 2. The 0 case corresponds to z being a loop of M . It cannot occur
when M is connected.

Characterization of Planar Matroids

We now have sufficient machinery to prove the main result of this section,
which characterizes planarity of regular matroids in terms of excluded mi-
nors.

(10.2.11) Theorem. A regular matroid M is planar if and only if M
has no M(K3,3), M(K3,3)∗, M(K5), or M(K5)∗ minors.

Proof. The “only if” part holds since planarity is maintained under minor-
taking and since M(K3,3), M(K3,3)∗, M(K5), and M(K5)∗ are not planar.
For the proof of the nontrivial “if” part, let M be a regular matroid all
of whose proper minors are planar. Thus, M is minimally nonplanar with
respect to the taking of minors. We must show that M is isomorphic to
M(K3,3), M(K3,3)∗, M(K5), or M(K5)∗.

If M is graphic or cographic, then the desired conclusion is provided
by Theorem (7.4.1), which characterizes nonplanar graphs by exclusion of
K3,3 and K5 minors. Thus, we may assume from now on that M is not
graphic and not cographic.

We claim that M is 3-connected. If that is not the case, then M has
a 1- or 2-separation. By Lemma (8.2.2) or (8.2.6), M is a 1- or 2-sum. In
either case, the components of the sum are proper minors of M and thus
planar. But by Lemma (8.2.2) or (8.2.7), the latter conclusion implies M
to be planar as well, a contradiction.

By the census of Section 3.3, every 3-connected regular matroid on at
most eight elements is planar. Thus, M has at least nine elements.

We apply the binary matroid version of the wheel Theorem (7.3.3)
to the 3-connected, nongraphic, and noncographic M on at least nine ele-
ments. Accordingly, M must have an element z so that at least one of the
minors M/z and M\z is 3-connected. If the M/z case applies, we replace
M by its dual. Since all assumptions made so far for M are invariant under
dualizing, this change does not affect the proof. Thus, we may assume that
M\z is 3-connected. By the minimality of M , the 3-connected minor M\z
is planar. Let G be the corresponding planar graph. We extend G to a
representation of M by selecting an appropriate subset T of nodes of G for
the element z. Recall that the cardinality of T is necessarily even. Since
M is not graphic, |T | ≥ 4.

Suppose G is a wheel. It is easily verified that one can delete spokes
from G and contract rim edges so that the wheel with four spokes and with
four T nodes results. Then we either have, up to indices, the M(K3,3)∗

case of (10.2.6) and are done, or we can delete one spoke and contract one
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rim edge to obtain an instance of the F7 case of (10.2.4), which contradicts
the regularity of M .

We are left with the case where G is not a wheel. By the wheel
Theorem (7.3.3), G has an edge e so that G/e or G\e is 3-connected.
Assume the latter case. The deletion of the edge e from G leaves the number
of T nodes unchanged. Note that G\e plus these T nodes represents M\e.
Since G\e is 3-connected and |T | ≥ 4, the minor M\e must be 3-connected
and nongraphic, a contradiction of the minimality of M . Thus, the case
of a 3-connected G/e must be at hand. We claim that the contraction of
the edge e in G must reduce the number of T nodes to 2. If this is not
the case, then arguments analogous to those for M\e prove M/e to be
3-connected and nongraphic, a contradiction. Since G/e has exactly two
T nodes, the graph G must have exactly four T nodes, two of which must
be the endpoints of e, say u and v. Define i and j to be the other two T
nodes of G.

By the 3-connectedness of G and Menger’s theorem, there is a path P
from i to u and a second path Q from j to u such that these paths have
only node u in common and do not involve node v. Imagine G drawn in
the plane. Then deletion of node u would create a new face. The boundary
would be a cycle, say C. Clearly, v has become a node of C. If in G the T
node i does not lie on C, then we contract the edge of the path P incident
at i. After suitable repetition of this process, the T node has become a
node of C. Then we declare that T node to be i again. Similarly, we make
the T node j a node of C. At that time, the edges incident at node u
and those of the cycle C constitute a subdivision of a wheel with at least
three spokes. The rim of that wheel subdivision contains the T nodes v, i,
and j. The latter nodes induce a partition of the rim into three paths, say
P1 from i to v, P2 from j to v, and P3 from i to j. Simple case checking
confirms that the arguments made earlier for the wheel case of G apply
here fully unless every edge incident at node u has its second endpoint in
just one of the paths P1 or P2, say P1. Below, we show a typical instance
of that exceptional case, together with an additional path P4. That path is
nothing but a portion of the previously defined path Q that in G connected
nodes j and u. In the general case, the path P4 connects an interior node
of the path P2 ∪ P3 with an interior node k of the path P1.

(10.2.12) u

i j

k

l

vP1

P2

P3P4

Wheel subdivision plus path P4
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The drawing does not show any edges of the previously defined path P .
But there are still enough edges left from that path so that node u can
be reached from node i while avoiding all nodes of P4. This fact and the
planarity of G imply that an interior node l of the subpath of P1 from i to
k must be connected with node u, as depicted in (10.2.12).

Evidently, we can contract enough edges of the paths P1–P4 and delete
some edges incident at node u so that node k becomes the center node of
a wheel graph with four spokes and with four T nodes on its rim. Thus,
up to indices, we have an instance of the M(K3,3)∗ case of (10.2.6).

Related to Theorem (10.2.11) is the following pioneering combinatorial
characterization of planar graphs due to Whitney. It constitutes the first
matroid result about graph planarity.

(10.2.13) Corollary. A graph G is planar if and only if M(G)∗ is
graphic.

Proof. The “only if” part is clear. For proof of the “if” part, let M =
M(G). Since M∗ = M(G)∗ is graphic, M∗ has no M(K5)∗ or M(K3,3)∗

minors. Thus, M has no M(K5) or M(K3,3) minors. Since M is graphic,
M has no M(K5)∗ or M(K3,3)∗ minors. Thus, by Theorem (10.2.11), M
and G are planar.

One may derive Corollary (10.2.13) directly from Theorem (7.4.1),
without use of Theorem (10.2.11). Indeed, Theorem (7.4.1) is the graph
version of Corollary (10.2.13). Whitney’s contribution is the deduction
of this result from Kuratowski’s original planarity characterization, which
involved subdivisions of K5 and K3,3.

In the preceding chapters, we took great care when we dualized planar
graphs. Each time, we embedded a given planar graph in the plane, then
dualized that plane graph. Corollary (10.2.13) frees us from this adherence
to planar embeddings. We now may take the following viewpoint. Given
a planar graph G, let H be any graph for M(G)∗. Thus, the matroids
M(G) and M(H) are duals of each other. We declare H to be a dual
graph of G. For our purposes, any H satisfying M(H)∗ = M(G) will
do. By this definition, any two such graphs are 2-isomorphic. Thus, by
Theorem (3.2.36), H is unique if it, or equivalently G, is 3-connected, the
case typically of interest to us. In that situation, we are justified to call H
the dual of G. Suppose H is 2-connected. By Theorem (3.2.36), any other
graph for M(G)∗ is related to H by switchings. We leave it to the reader
to explore this issue further. Whitney first recognized these relationships
among embeddings, 2-isomorphism, and switchings.

We move on to the next section, where we investigate regular matroids
with M(K3,3) minors.
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10.3 Regular Matroids with M(K3,3) Minors

The title of this section may seem strange. Why would one be interested
in M(K3,3) minors of regular matroids? Early in this section, we give a
partial answer in the form of two lemmas. More satisfactory as answer are
the arguments of the next section, which prove M(K3,3) to play a central
role in the analysis of regular matroids.

Following the two lemmas and some other preparatory material, we
introduce the main theorem of this section. It says that any 3-connected,
regular, nongraphic and noncographic matroid with an M(K3,3) minor has
a minor isomorphic to one of the nongraphic and noncographic matroids
R10 and R12. This profound result is due to Seymour. In the next section
we combine it with Theorem (10.2.11) to obtain two important character-
izations of nongraphic regular matroids by Seymour and Tutte.

To start, we recall the splitter definition of Section 7.2. Let M be a
class of binary matroids that is closed under isomorphism and under the
taking of minors. Let N be a 3-connected matroid of M on at least six
elements. Then N is a splitter of M if every connected matroid M ∈ M
with a proper N minor is 2-separable. Intuitively and informally speaking,
the presence of an N minor forces M to split. By Theorem (7.2.11), the
graph K5 is a splitter of the graphs without K3,3 minors. That result has
the following matroid extension.

(10.3.1) Lemma. M(K5) is a splitter of the regular matroids without
M(K3,3) minors.

Proof. By Theorem (7.2.1), we only need to show that every 3-connected
regular 1-element extension of M(K5) has an M(K3,3) minor. This is
accomplished by a straightforward case analysis. To assist the reader, we
sketch one way of checking.

By (3.2.38), the matrix

(10.3.2) 1

0

0
0

0

1
0

1
1

1
1

0

0
1

1 0
0 1

1 1 0
0 0 1B =

Matrix B for M(K5)

represents M(K5). Suppose we adjoin a column vector b that represents
an added element z. If b has at most two 1s, then z is a coloop or a parallel
element. If b has three or four 1s, then [B | b] contains a submatrix repre-
senting the Fano matroid F7, which is nonregular. Thus, no 3-connected
regular 1-element addition is possible.

Now assume we adjoin a row vector c that represents a 1-element
regular and 3-connected expansion by an element e. We may view B as
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the node/edge incidence matrix of a graph H that is isomorphic to K4. It
is convenient to encode each 1 of the row vector c by a red edge of H. Since
M(K5)&e is 3-connected, H must have at least two red edges. We analyze
the possible configurations of red edges.

Suppose that H contains exactly two red edges, and that these edges
share an endpoint. Then M(K5)&e is easily confirmed to be graphic, with
an M(K3,3) minor. Next, suppose H contains exactly four red edges that
form a cycle C. Let y and z be the edges of H that are not in C. Then
(M(K5)&e)\{y, z} is isomorphic to M(K3,3).

For the remaining configurations of red edges, one proves the presence
of an F ∗

7 minor. Specifically, if the red edges form a triangle, then the
columns of [B/c] corresponding to that triangle establish the presence of
an F ∗

7 minor. The other cases are slightly more difficult to prove. As an
example case, let us examine the 1-element expansion M of M(K5) by the
element e given by

(10.3.3)
1a

b
c
d
e

f g h i j k

1

1 1

0
0 0

0 0 00
0

1 1
1 1 1

0 01
1 0 0 0 1
0 0 1 1 0

Matrix of 1-element expansion M of M(K5)

It turns out that we can prove nonregularity without using the last column
k. So let us consider that column deleted. One readily verifies that the
remaining matrix is represented by

(10.3.4)
a

c

d

g

b
f e h

i

Graph plus T nodes for M\k

where the T nodes correspond to the element j. From the graph of (10.3.4),
we delete the edges a and c, and contract the edge b. The resulting graph
with adjusted T set is given by (10.3.5) below. By (10.2.5), that graph
represents an F ∗

7 minor. Thus, the matroid given by the matrix of (10.3.3)
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is nonregular.

(10.3.5)

d

e

i

f

h

g

Graph plus T nodes for M/{b}\{a, c, k}

The remaining open cases are handled the same way.

For later reference, we include another lemma about M(K3,3). We
omit the elementary case analysis via graphs plus T sets.

(10.3.6) Lemma. Every 3-connected binary 1-element expansion of
M(K3,3) is nonregular.

The proof of the next result about M(K3,3) requires a bit of prepara-
tion. Recall from Section 3.3 the following definition. Let M be a binary
matroid and z be an element of M . Then M c©z is the matroid obtained
from M/z by deletion of all elements but one from each parallel class. The
minor M d©z is derived from M\z by contraction of all elements but one
in each series class. For convenient reference, we restate Lemma (3.3.31),
which links M c©z and M d©z to 3-connectedness.

(10.3.7) Lemma. Let M be a 3-connected binary matroid on a set E.
Take z to be any element of E. Then M c©z or M d©z is 3-connected.

Define a line of a graph to be a path of maximal length where all
internal nodes have degree 2. A corner node of a graph is a node of degree
at least 3. Let G be a subdivision of a 3-connected graph with at least
four corner nodes. Evidently, each line of G is a series class and vice
versa. We emphasize the latter fact, since generally a series class of a
graph need not be a line. This is due to the definition of Section 2.2, where
two edges are declared to be in series if they form a cocycle. A priori,
the same subtle point needs to be considered when one specializes Lemma
(10.3.7) to graphs. In that case, the notation G c©z and G d©z is interpreted
analogously to that of M c©z and M d©z.

We now show that the just-mentioned complications concerning series
edges do not arise when we apply Lemma (10.3.7) to graphs. Let G be
3-connected, and let z be an edge of G, say with endpoints u and v. Recall
that u and v are edge subsets. By Lemma (10.3.7), one of G c©z, G d©z is
3-connected. Let G c©z be that graph. The contraction of z may introduce
parallel edges only at the new vertex (u ∪ v)− {z}. Thus, G c©z is readily
determined. Now let G d©z be 3-connected. We claim that G\z contains
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series classes with more than one edge only if u or v has degree 3, and
that such series classes correspond to paths with two edges. Indeed, if u
has degree 3, then u − {z} is one such class. Similarly, v may produce
a second series class. No other series class is possible, since 2-connected
series expansions of a 3-connected graph can only produce a subdivision of
that graph. Thus, G d©z is readily determined.

The above conclusion is valid only if G d©z is 3-connected. Indeed, if
G d©z is not 3-connected, then G\z may have a series class that is not a
line. Fortunately, we never deal with the latter case since we make use of
G d©z only when that graph is 3-connected.

Here is a second preparatory lemma about G c©z and G d©z.

(10.3.8) Lemma. Let H be a subdivision of a 3-connected graph. As-
sume H has at least four corner nodes. Let G be any graph derived from
H by the addition of nonloop edges. No such added edge is to connect two
nodes of a line of H. Also, G is not allowed to have parallel or series edges.
Then (a)–(c) below hold.

(a) G is 3-connected.

(b) G d©z is 3-connected for every arc of G that is not in H.

(c) G c©z is 3-connected for every arc of H both of whose endpoints have
degree 2 in H.

Proof. Clearly, G of part (a) is 2-connected. Suppose G has a 2-separation.
We know that H is a subdivision of a 3-connected graph. Thus, any 2-
separation of H has on one side a subset of one line of H. Assume that the
2-separation of G induces one in H. Then G has series edges, or G has an
edge that is not in H and that connects two nodes of one line of H. Both
cases contradict the assumptions. If the 2-separation of G does not induce
one in H, then G must have parallel edges, again a contradiction. Thus, G
is 3-connected.

Under the given assumptions, G d©z and G c©z of parts (b) and (c)
satisfy the construction rules imposed on G. By (a), these minors are
3-connected.

The next result concerns graphs with K3,3 minors.

(10.3.9) Theorem. Let G be a 3-connected graph with a K3,3 minor.

(a) If G contains a triangle formed by edges e, f , and g, then G has one
of the graphs of (10.3.10) below as a minor. The bold edges denote e,
f , and g.

(b) If G has a node u of degree 3, then G has as subgraph a subdivision
of K3,3 that has u as corner node.
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(10.3.10)

Two extensions of K3,3 containing a triangle

Proof. First we show part (a). Due to minor-taking, we may assume that
every proper minor of G is not 3-connected, or does not have a K3,3 minor,
or does not contain the triangle {e, f, g}. We say that G is minimal to
denote this fact. Let u, v, and w be the nodes of the triangle. Denote by
H any subgraph of G that is a subdivision of K3,3.

Suppose u is not a node of some H, say of H1. Thus, u has an arc
z 6= e, f, g incident that is not in H1. By Lemma (10.3.7), one of G c©z,
G d©z is 3-connected. Assume G c©z to be 3-connected. In G/z we can
delete parallel edges so that the triangle {e, f, g} is retained. Now suppose
G d©z is 3-connected. If u has degree 3, then in G\z two edges of e, f , g
are in series, and G d©z has two edges of e, f , g in parallel, a contradiction.
Thus, u has degree of at least 4, and G d©z contains the triangle {e, f, g}.
Clearly, both G c©z and G d©z have K3,3 minors. But these facts contradict
the minimality of G.

We conclude that u, v, and w are nodes of every H. If all three nodes
occur on one line of some H, then there exists another H that avoids one
of the three nodes. Therefore, at most two of the nodes occur on any one
line of any H. Accordingly, we can always delete and contract edges in G
such that e, f , g are retained and such that their endpoints become corner
nodes of some K3,3 minor. That process produces one of the graphs of
(10.3.10).

For part (b), we once more define H to be any subgraph of G that is a
subdivision of K3,3. Suppose the given degree 3 node u of G is not a corner
node of some H. Then by a ∆Y exchange (see Section 4.3), the 3-star u
can be replaced by a triangle {e, f, g}. It is easily seen that upon deletion
of edges parallel to e, f , or g, we have a 3-connected graph with a K3,3

minor. Apply part (a) to the latter graph. Thus, that graph has as minor
one of the graphs of (10.3.10). Now replace {e, f, g} by the 3-star u again.
The resulting graph is a minor of G and is readily verified to have a K3,3

minor G with u as a corner node. In straightforward fashion, we extend G
to a subgraph of G that is a subdivision of K3,3 and that has u as a corner
node.

We are ready to state and prove the main result of this section.
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(10.3.11) Theorem. Let M be a 3-connected regular matroid with an
M(K3,3) minor. Assume that M is not graphic and not cographic, but that
each proper minor of M is graphic or cographic. Then M is isomorphic to
R10 or R12.

Proof. Let M be a smallest regular matroid that satisfies the assumptions
of the theorem but not its conclusion. By Lemma (10.3.6), M does not
have a 3-connected 1-element expansion of any M(K3,3) minor. Take N to
be any M(K3,3) minor of M . Apply Theorem (7.3.4) to M and N . That
theorem establishes the existence of a certain nested sequence of minors.
In particular, the result implies that M has an element z for which the
minor M\z is a series extension of a 3-connected matroid with an M(K3,3)
minor. The proof of Theorem (10.3.11) consists of a thorough analysis of
M\z and of the role of the element z. We begin with two simple claims
about M\z.

First, we claim that each series class of M\z has at most two elements.
Suppose otherwise. Thus, the connected M\z has a representation matrix
with three parallel rows. Adjoin a column z to that matrix to get a repre-
sentation matrix for M . Regardless of the entries of column z, the matrix
for M has two parallel rows. Thus, M is not 3-connected, a contradiction.

Second, we claim that M\z is graphic. This is so since each proper
minor of M is graphic or cographic, and since M\z has an M(K3,3) minor,
which is not cographic.

By the first claim, a graph G for M\z is obtained from a 3-connected
graph by subdividing each edge at most once. Hence, each line of G has one
or two edges. We represent M by G plus a node subset T that handles the
extra element z. Recall that |T | is even. Choose G so that |T | is minimal.
Since M is not graphic, we have |T | ≥ 4.

The strategy in the remainder of the proof is as follows. We attempt
to reduce G and T to G′ and T ′, where G′ has fewer edges than G or
|T ′| < |T |. The graph G′ is to have an M(K3,3) minor, and |T ′| ≥ 4 is to
hold. Indeed, G′ and T ′ must represent a nongraphic matroid. At times,
we simply say that we reduce G to denote this process. Evidently, any such
reduction contradicts the minimality of M or T , and thus is not possible.
The reduction attempts reveal enough structural information about M to
prove that matroid to be isomorphic to R10 or R12, contrary to the initial
assumption. We present the details.

Claim 1. G is 3-connected.

Proof. Suppose G is not 3-connected. We know that G is a subdivision
of a 3-connected graph. Indeed, each line of G with at least two edges has
exactly two edges. Let G have m such lines. If a midpoint of one of these
lines is not in T , then in M the elements corresponding to the two edges of
that line are in series. Thus, M is not 3-connected, a contradiction. Hence,
the midpoints of the m lines are in T .



220 Chapter 10. Graphic Matroids

If m ≥ 4, we contract in one of the m lines an edge. By switchings,
the set of T nodes may now be reduced, say to T ′. But the midpoints of
the remaining m − 1 lines must remain in T ′, so |T ′| ≥ 4. Thus, G has
been reduced. Similarly, one may handle the cases m = 1 and 2, and also
m = 3 when the three lines do not form a cycle.

Consider the remaining case, where m = 3 and where the three lines
form a cycle. If any node other than those of the three lines is in T , again we
can reduce G. Thus, all such nodes are not in T . Temporarily contract one
edge of each line, getting a graph G. The three lines have become a triangle.
According to Theorem (10.3.9), the graph G has a minor isomorphic to one
of the two graphs of (10.3.10). The bold lines of those graphs are those of
the triangle. We can further reduce each one of the two graphs to

(10.3.12)

Minor of the two graphs of (10.3.10)

where again the bold lines indicate the triangle. The graph of (10.3.12) is
still a minor of G if we replace each triangle edge by the corresponding line
with appropriate designation of T nodes. By the minimality of |T |, this
substitution must result in

(10.3.13)
e f

Minor of G with three lines

which is not graphic. Contract the edges labeled e and f in (10.3.13). The
resulting G′ and T ′ has |T ′| = 2 and represents a matroid with an M(K3,3)
minor. Thus, the matroid of (10.3.13) is not cographic. But that matroid
is a proper minor of M since the graph of (10.3.12) is a proper minor of the
two graphs of (10.3.10). Thus, we have a contradiction of the minimality
of M . Q. E. D. Claim 1

Denote by H any subgraph of G that is a subdivision of K3,3. Re-
call that G c©e is obtained from G by contraction of edge e and deletion
of parallel edges. Similarly, G d©e is produced by deletion of edge e and
contraction of each line with two edges to just one edge. Indeed, in G\e, at
most two lines of length 2 may exist. In each such line, we may choose the
edge to be contracted as is convenient. This aspect is important when we
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want to preserve T nodes. As was done before, we use squares to denote
nodes in T . We assign a question mark to a node if that node may or may
not be in T . We say that a node is cubic if it is a 3-star.

Claim 2. Every node v of G that is not part of some H is cubic, and
that node and two of its neighbors are in T . Furthermore, |T | = 4 in that
case.

Proof. Let e be an edge incident at v, and u be its other endpoint. If
G d©e is 3-connected, one of the situations below must prevail; otherwise a
reduction is possible, as is readily checked.

(10.3.14)

e

v u

? e

v u

?

u

e

v

Case (i) Case (ii) Case (iii)
u cubic v cubic Both u, v cubic
|T | = 4 |T | = 4 |T | = 6

If G c©e is 3-connected, then u, v ∈ T and |T | = 4, since otherwise G c©e
with adjusted T set is a smaller case. We call the last situation case (iv).
Thus, we have a total of four possible cases for the edge e.

Suppose v 6∈ T . Apply the above arguments to every edge e incident
at v. In each instance, case (i) of (10.3.14) must apply, since cases (ii),
(iii), and (iv) demand v to be in T . Thus, |T | = 4, and all neighbors of v
and their neighbors (except v) must be in T . In addition, the neighbors of
v must be cubic. A simple case analysis shows that these conditions imply
G to be 2-separable. Thus, v ∈ T .

Suppose v is not cubic. Again by arguments for each edge e incident
at v, we have |T | = 4, and v and all neighbors of v must be in T . By
assumption, there are at least four neighbors, so this is not possible.

So far we know v to be cubic and to be in T . If |T | > 4, then case (iii)
of (10.3.14) must hold for every edge e incident at v, and |T | = 6. Once
more, a case analysis shows that G is not 3-connected. Thus, |T | = 4.

Suppose v and its three neighbors are in T . Then no other node of G
is in T . Take any node w different from these four nodes. There exist three
internally node-disjoint paths in G from v to w. Then clearly G and T
can be reduced to a graph isomorphic to that of (10.2.5). The latter graph
represents the nonregular matroid F ∗

7 , a contradiction. Q. E. D. Claim 2

Claim 3. There exists an H such that

(i) G has no node beyond those of H, and
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(ii) no edge of G that is not an edge of H connects two nodes of a line of
H.

Proof. Suppose some H violates (ii). We then can find another one vio-
lating (i). Thus, G has a node u not in some H. By Claim 2, u is cubic,
u and precisely two of its neighbors are in T , and |T | = 4. By Theorem
(10.3.9), there is another H with u as corner node. Pick a minimal such H,
say H1. Clearly, H1 satisfies (ii) of Claim 3. We now prove that (i) holds
as well. If not, then G has, again by Claim 2, a cubic node v not in H1

such that v and precisely two of its neighbors are in T . Thus, G has the
following subgraph, where dashed lines represent internally node-disjoint
paths.

(10.3.15)

v

u

w = u

Graph H plus node v

By Menger’s Theorem, there is a path from w to a non-T node of the dashed
graph. Thus, we can reduce G to produce one of the following graphs.

(10.3.16)

uuu
v

e

f

v

v

Graph G1 Graph G2 Graph G3

From G1, delete the edge e and contract the edge f . This produces the
graph

(10.3.17) u

v

Graph for R12
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which by (10.2.9) represents R12. It is easily checked that both G2 and G3

can be reduced to the graph

(10.3.18)

Graph for F7

which by (10.2.4) represents the nonregular F7. Q. E. D. Claim 3

Claim 4. |T | ≤ 6. Take any H that satisfies (i) and (ii) of Claim 3.
Suppose G has an edge e that is not in H. Then at least one endpoint v
of e is cubic, and v and the neighbors linked to v by edges of H are in T .

Proof. Suppose an edge e exists that is not in H. By part (b) of Lemma
(10.3.8), G d©e is 3-connected. If |T | ≥ 8, or if the remaining conclusions
of Claim 4 do not hold, then G d©e provides a smaller case. If G has no
edges beyond those of H, then G is isomorphic to K3,3, and |T | ≤ 6 holds
trivially. Q. E. D. Claim 4

Claim 5. There is an H satisfying (i) and (ii) of Claim 3 such that H
contains all edges of G but at most one.

Proof. Let H be the graph of Claim 3. Simple case checking confirms that
H must contain all edges of G except for possibly two edges. Assume there
are two such edges. By Claim 4, one of these arcs has a cubic endpoint,
say u, such that u and the neighbors linked to u by arcs of H are in T .

Now select a minimal H, say H2, that has u as corner node. By the
proof of Claim 3, H2 may be assumed to satisfy (i) and (ii) of that claim.
Suppose again there are two edges in G, say e and f , that are not in H2.
Let v and w be the cubic endpoints of e and f that have the properties
described in Claim 4. Clearly |T | = 6. If v and w are on one line of H2,
we can contract an intermediate arc of that line, and by part (c) of Lemma
(10.3.8) have a smaller case. Otherwise, one endpoint of e or f , say of e,
is not in T , and G d©e produces a smaller case. Thus, H2 is the desired
graph. Q. E. D. Claim 5

Let H be the graph of Claim 5. If every edge of G is in H, then G and
H are isomorphic to K3,3. If |T | = 6, we have the graph of (10.2.8), and M
is isomorphic to R10. If |T | = 4, then G can be reduced to the nonregular
instance of (10.3.18).

Finally, assume just one edge of G, say e, is not in H. By Claim 4, at
least one endpoint of e, say u, is cubic, and u and the neighbors linked to
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u by arcs of H are in T . If the second endpoint v of e is cubic or |T | ≥ 6,
then we can reduce G to a smaller case. If v ∈ T , then G can be reduced
to the nonregular case of (10.3.18). Thus, G must be

(10.3.19)

u
v = r, s or t

r

s t

Graph H plus one arc

If v = r or s, then the nonregular case of (10.3.18) can be produced. If
v = t, we have by (10.2.9) an instance of R12.

We are prepared for the next section, where we prove two profound
excluded minor theorems of Seymour and Tutte.

10.4 Characterization of Graphic Matroids

We prove profound characterizations of two classes of regular matroids in
terms of excluded minors. The first characterization is due to Tutte. It
says that a regular matroid is graphic if and only if it has no M(K3,3)∗ or
M(K5)∗ minors. The second characterization is due to Seymour. Accord-
ing to that result, a 3-connected regular matroid is graphic or cographic if
and only if it has no R10 or R12 minors. The latter matroids are defined
by (10.2.8) and (10.2.9). In this section, we prove these characterizations
and deduce some related material. Given the results of the preceding two
sections, it is advantageous for us to start with the second characterization.

(10.4.1) Theorem. A 3-connected regular matroid is graphic or co-
graphic if and only if it has no R10 or R12 minors.

Proof. The graphs, T sets, and representation matrices of (10.2.8) and
(10.2.9) for R10 and R12 prove these matroids to be nongraphic and isomor-
phic to their respective duals. Thus, R10 and R12 are also not cographic.
These observations establish the easy “if” part.

For proof of the converse, let M be a 3-connected regular matroid
that is not graphic and not cographic. Thus, M is not planar, and by The-
orem (10.2.11) has a minor isomorphic to M(K5), M(K3,3), M(K5)∗, or
M(K3,3)∗. By Lemma (10.3.1), M(K5) is a splitter for the regular matroids
without M(K3,3) minors. By these results, M has a minor isomorphic to
M(K3,3) or M(K3,3)∗, or M is isomorphic to M(K5) or M(K5)∗. The
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latter case is a contradiction. Thus, M or M∗ has an M(K3,3) minor. By
Theorem (10.3.11), M or M∗ has an R10 or R12 minor. Since R10 and R12

are isomorphic to their duals, M itself has an R10 or R12 minor.

We turn to the characterization of regular matroids that are graphic.

(10.4.2) Theorem. A regular matroid is graphic (resp. cographic) if and
only if it has no M(K5)∗ or M(K3,3)∗ minors (resp. M(K5) or M(K3,3)
minors).

Proof. Lemma (3.2.48) implies the easy “only if” part. For proof of the
converse, let M be a nongraphic regular matroid all of whose proper minors
are graphic. If M is 1- or 2-separable, then arguments analogous to those of
the proof of Theorem (10.2.11) establish M to be graphic, a contradiction.
Thus, M is 3-connected.

Suppose M is not cographic. By Theorem (10.4.1), M has an R10

or R12 minor. The drawings of (10.2.8) and (10.2.9) clearly establish that
both R10 and R12 have proper M(K3,3) minors. Now R10 and R12 are
isomorphic to their duals. Thus, M has an M(K3,3)∗ minor.

Now consider M to be cographic, i.e., consider M∗ to be graphic. If
M∗ is planar, then M is planar, and hence graphic, a contradiction. If
M∗ is nonplanar, then by Theorem (7.4.1), M∗ has an M(K5) or M(K3,3)
minor. Thus, M has an M(K5)∗ or M(K3,3)∗ minor, as desired.

The parenthetic claim of the theorem follows by duality.

We complete this section with two corollaries. The first one effectively
restates Corollary (10.2.13).

(10.4.3) Corollary. A matroid is planar if and only if it is graphic and
cographic.

Proof. Apply Corollary (10.2.13), or compare the excluded minors of The-
orems (10.2.11) and (10.4.2) to obtain the conclusion.

For the second corollary, we need the following auxiliary result.

(10.4.4) Lemma. Every 1-element reduction of R10 or R12 produces a
matroid with an M(K3,3) or M(K3,3)∗ minor.

Proof. For R10, the proof is easy. One first shows that R10 is highly
symmetric as follows. Consider a binary matrix D with five rows. Each
column of D has exactly three 1s, with each possible case occurring. Thus,
D has

(
5
3

)
= 10 columns. Index the columns of D by a 10-element set

E. We claim that E and the subsets of E indexing GF(2)-independent
columns of D define a matroid isomorphic to R10. For a proof, we perform
row operations in D until a 5× 10 matrix [I | B] results. Simple checking
confirms that the matrix B is either up to indices the matrix of (10.2.8)
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for R10, or is the matrix of (10.4.5) below. A pivot on the 1 in the (1, 2)
position of the latter matrix converts it to the former one.

(10.4.5)

1
1 1 1 0 0

011
1 1 11

11001

10
0 0

1 0 0 1

Alternate matrix for R10

By (10.2.8), the minor R10\z of R10 is isomorphic to M(K3,3). By the just-
proved symmetry and duality, every 1-element deletion (resp. contraction)
in R10 produces a matroid isomorphic to M(K3,3) (resp. M(K3,3)∗).

The proof for R12 is about as easy. That matroid is also isomorphic to
its dual. Thus, we can confine ourselves to the contraction case. With the
aid of (10.2.9), one can prove presence of an M(K3,3) or M(K3,3)∗ minor
after each 1-element contraction.

The proof of Lemma (10.4.4) contains the following result about R10.

(10.4.6) Lemma. Up to indices, the matrices of (10.2.8) and (10.4.5)
are the only binary representation matrices for R10.

Related to Lemma (10.4.4) is the following theorem about 1-element
regular extensions of planar matroids. The proof of the theorem relies on
Theorem (10.4.1), Lemma (10.4.4), and two results of Chapter 11: Theo-
rem (11.3.2), which establishes R10 to be a splitter of the class of regular
matroids, and Theorem (11.3.14), which is the regular matroid decompo-
sition theorem.

(10.4.7) Theorem. Every regular 1-element extension of a 3-connected
planar matroid is graphic or cographic.

Proof. Let N be a 3-connected planar matroid and M be a regular exten-
sion of N by an element z. By duality, we may assume that N = M/z.

If M is not 3-connected, then by the 3-connectivity of N , the element
z is a loop, coloop, or series element of M , and planarity of N implies
planarity of M . Hence, assume that M is 3-connected.

If M is not graphic and not cographic, then by Theorem (10.4.1), M
has an R10 or R12 minor. If M itself is that minor, then by Lemma (10.4.4),
N = M/z must have an M(K3,3) or M(K3,3)∗ minor and cannot be planar.
Hence, assume that M has a proper R10 or R12 minor.

Theorem (11.3.2) establishes R10 to be a splitter of the class of regular
matroids. Hence, the 3-connected M cannot have a proper R10 minor.

In the remaining case, M is 3-connected and has a proper R12 minor.
By Theorem (11.3.14), M has an R12 minor whose 3-sum decomposition
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as displayed by B12 of (11.3.11) and shown here for ready reference,

(10.4.8)
B12 =

X1

X2

Y2Y1

0

0

1
1

0

0
1
0
1

1
1
0

1

1
0
1
0

1

0
1
0
1

1 1
1 1
1 0
0 1

1 0 0
1 0 0

Matrix B12 for R12

induces a 3-separation, indeed a 3-sum decomposition, of M . Thus, a
representation matrix B of (8.3.10) of the 3-sum M exists that displays
B12 of (10.4.8) such that each index set Xi or Yi of B of (8.3.10) contains
the corresponding set Xi or Yi of B12 of (10.4.8).

We use the matrix B to analyze the 1-element contractions of M that
result in a 3-connected minor. Straightforward arguments show that each
such minor has an M(K3,3) or M(K3,3)∗ minor. That conclusion contra-
dicts the fact that N = M/z is 3-connected and planar.

The assumption of 3-connectivity of N in Theorem (10.4.7) is essential.
For a proof, adjoin to the matrix B12 of (10.4.8) the column [0, 0, 0, 1, 0, 1]t

and assign z as index to that column. Define M to be the matroid repre-
sented by the resulting matrix. It is easily checked that M is 3-connected,
regular, not graphic, and not cographic, and that N = M/z is planar and
connected, but not 3-connected. Hence, the assumption of 3-connectivity
of N in Theorem (10.4.7) cannot be reduced to connectivity.

In the next section, we introduce a major switch of topic. We examine
a simple yet powerful idea that produces interesting graph decomposition
theorems. In Chapters 11–13, we rely on the matroid generalization of this
idea to prove profound matroid decomposition theorems.

10.5 Decomposition Theorems for Graphs

In subsequent chapters, we make repeated use of a recursive construction of
matroid decomposition theorems. In this section, we use a graph example
to motivate and explain that construction. In the process, we deduce by
rather elementary checking a famous decomposition theorem of Wagner
about the class of graphs without K5 minors.

The basic idea of the construction is as follows. Given is a class G of
connected graphs. The class is closed under isomorphism and under the
taking of minors. On hand are also two subclasses L and H of G. The two
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subclasses are so selected that each graph G ∈ G is in L or has, for some
H ∈ H, an H minor.

One iteration of the construction is as follows. We select a graph H
of H and use one of the decomposition theorems of Chapter 6 or 7 to
establish a result of the following type: If a graph G ∈ G has an H minor,
then G has a certain decomposition caused by H, or G is a member of a
certain collection of graphs, say {L1, L2, . . . , Lm}, or G has a minor that is
a member of a certain second collection of graphs, say {H1, H2, . . . , Hn}.
We now derive from L the set L′ = L ∪ {L1, L2, . . . , Lm}, and from H
the set H′ = (H − H) ∪ {H1, H2, . . . , Hn}. By the derivation of L′ and
H′, we have established the following theorem: Each graph G ∈ G can be
decomposed, or belongs to L′, or has an H ′ minor for some H ′ ∈ H′.

At this point, we have completed one iteration of the construction.
If H′ is empty, we stop; most likely the cited theorem is an interesting
decomposition result for the graphs of G. If H′ is nonempty, we have two
choices: We may stop, or we may carry out another iteration by declaring
L′ to be L and H′ to be H. Evidently, the recursive construction is nothing
but a concatenation of decomposition results, each of which is deduced from
suitably selected theorems of Chapters 6 and 7.

An example will help to clarify the construction. We want a decom-
position theorem for the graphs without K5 minors. That class of graphs
turns out to be important for a number of combinatorial problems. Details
are included in Section 10.7. We ignore the applications for the time being,
and concentrate on the construction of a decomposition theorem for that
class. In agreement with the preceding outline, we define G to be the set
of connected graphs without K5 minors. The subclass L is the collection
of connected planar graphs, and H is the set {K3,3}. By Theorem (7.4.1)
and the exclusion of K5 minors from the graphs of G, each graph G ∈ G is
planar or has a K3,3 minor. Thus, L and H do satisfy the condition stated
earlier, i.e., each graph G ∈ G is in L or has an H minor for the single
graph H = K3,3 of H.

We are ready for the first iteration of the construction. We will rely
on the splitter theorem for graphs of Section 7.2, listed there as Corollary
(7.2.10). We repeat that result below.

(10.5.1) Theorem. Let G be a class of connected graphs that is closed
under isomorphism and under the taking of minors. Let H be a 3-connected
graph of G with at least six edges.

(a) If H is not a wheel, then H is a splitter of G if and only if G does
not contain any graph derived from H by one of the following two
extension steps:

(1) Connect two nonadjacent nodes of N by a new edge.

(2) Partition a vertex of degree at least 4 into two vertices, each of
degree at least 2, and connect these two vertices by a new edge.
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(b) If H is a wheel, then H is a splitter of G if and only if G does not
contain any of the extensions of H described under (a) and does not
contain the next larger wheel.

The application of the splitter theorem involves several graphs, which
we define next. The graphs are K3,n, n ≥ 3, as well as certain variants
of K3,n, called K1

3,n, K2
3,n, and K3

3,n. The graph K3
3,n is given by (10.5.2)

below. The other graphs are obtained from K3
3,n by deletion of some edges.

In the notation of (10.5.2), K2
3,n is the graph K3

3,n\c, and K1
3,n is the graph

K3
3,n\{b, c}. At times, we refer to K3,n as K0

3,n. We collect the graphs just
defined in a set K = {Ki

3,n | 0 ≤ i ≤ 3, n ≥ 3}.

(10.5.2)

1

2

n

a

b

c

Graph K3
3,n

We need one additional graph V defined by

(10.5.3)

v1

v2

v4

v3

v5

v6

v7

Graph V

For the moment, the reader should ignore the dashed line in the drawing
of V . It indicates a 3-separation that we will utilize later. Note that V has
no K5 minors. Indeed, V has eleven edges and seven vertices, and if V has
a K5 minor, then such a minor must be produced by a single contraction
or deletion. But any such reduction results in a graph with at least six
vertices.

The splitter Theorem (10.5.1) involves 3-connected 1-edge extensions
of graphs. The next lemma supplies information about such extensions for
the graphs of K.
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(10.5.4) Lemma. For any graph G of K, any 3-connected 1-edge exten-
sion of G is isomorphic to another graph of K, or has a K5 minor, or has
a V minor.

Proof. The proof involves a simple checking of cases for the graphs Ki
3,n,

0 ≤ i ≤ 3, with n fixed, plus induction. As examples, we cover the cases
of K3,3 and K1

3,3. Since every vertex of K3,3 has degree 3, any 3-connected
1-edge extension must be an addition. Indeed, just one addition case exists,
the graph K1

3,3. We depict that graph below.

(10.5.5)

v1

v2

v3

v4

v5

v6

Graph K1
3,3

The 3-connected 1-edge extensions of K1
3,3 are as follows. We start with the

expansion cases. By symmetry, all cases are isomorphic to the following
one, where we split the vertex v1. The resulting graph is isomorphic to V ,
as is evident from the next drawing.

(10.5.6)

v11

v12

v2

v3

v4

v5

v6

=

v4

v5

v12

v2

v3

v11

v6

3-connected 1-edge expansion of K1
3,3

We turn to the addition cases. All such instances are isomorphic to two
graphs, one of which is K2

3,3, while the second one becomes K5 upon
contraction of one edge. We leave the verification of this claim to the
reader.

With these preparations, we carry out the first iteration of the con-
struction process. We must select the single graph K3,3 of H as H. From
the splitter Theorem (10.5.1) and Lemma (10.5.4), we deduce the following
decomposition result.



10.5. Decomposition Theorems for Graphs 231

(10.5.7) Theorem. Every connected graph without K5 minors is 1-
or 2-separable, or is planar, or is isomorphic to one of the graphs Ki

3,n,
0 ≤ i ≤ 3, n ≥ 3, or has a V minor.

Proof. Let G be any graph without K5 minors. In the nontrivial case, G
is nonplanar. By Theorem (7.4.1), we know that G has a K3,3 minor, and
thus a Ki

3,n minor with an edge set of maximum cardinality. If G itself is
that minor, we are done. Otherwise, we apply the splitter Theorem (10.5.1)
to the class of graphs consisting of all minors of G and their isomorphic
versions. The graph Ki

3,n plays the role of the splitter. Thus, G is 2-
separable, or is 3-connected and has a 3-connected 1-edge extension of a
Ki

3,n minor. In the first case, we are done. In the second case, we know by
Lemma (10.5.4) and the assumed maximality of the edge set of Ki

3,n that
G has a V minor.

We have reached the end of the first iteration. In the notation of the
general construction process, the current set L′ contains the planar graphs,
and all graphs Ki

3,n plus their isomorphic versions. The set H′ contains
just one graph, V .

We begin the second iteration. The current H, i.e., the set H′ of
iteration 1, contains just V . Thus, that graph is selected as H. We intend
to invoke the induced separation result for graphs of Section 6.3, listed
there as Corollary (6.3.26). We include that result below.

(10.5.8) Theorem. Let G be a class of connected graphs that is closed
under isomorphism and under the taking of minors. Let a 3-connected
graph H ∈ G have a 3-separation (F1, F2) with |F1|, |F2| ≥ 4. Assume that
H/F2 has no loops and H\F2 has no coloops. Furthermore, assume that
for every 3-connected 1-edge extension of H in G, say by edge z, the pair
(F1, F2∪{z}) is a 3-separation of that extension. Then for any 3-connected
graph G ∈ G with an H minor, the following holds. Any 3-separation of any
such minor that corresponds to (F1, F2) of H under one of the isomorphisms
induces a 3-separation of G.

We need a 3-separation (F1, F2) of V of (10.5.3) for the application of
Theorem (10.5.8). Thus, we define F1 to be the set of edges of V incident
at node v1 or v2, and declare F2 to be the set of the remaining edges. The
3-separation (F1, F2) of V is informally indicated in (10.5.3) by the dashed
line.

We will encounter one additional graph G8 given by (10.5.9) below.
For the moment, the unusual indexing of the node labels of G8 should be
ignored. It will make sense shortly. The graph G8 has twelve edges, and
every vertex has degree 3. We claim that G8 does not have K5 minors;
otherwise, the contraction of two suitably selected edges could produce a
graph where at least five vertices have degree of at least 4. But that is not



232 Chapter 10. Graphic Matroids

possible.

(10.5.9)

v1
v5

v7

v6

v3

v2
v42

v41

Graph G8

The decomposition result for the second iteration is as follows.

(10.5.10) Theorem. Let G be a 3-connected graph without K5 minors,
but with a V minor. Then the 3-separation of that minor defined from
(F1, F2) of V induces a 3-separation of G, or G has a G8 minor.

Proof. We apply Theorem (10.5.8) with the class of connected graphs
without K5 minors as G, and with the graph V of (10.5.3) as H. We readily
verify that V /F2 has no loops and that V \F2 has no coloops. Thus, by
Theorem (10.5.8), the claimed induced 3-separation exists, or V can be
extended by one edge z to a 3-connected graph for which (F1, F2 ∪ {z}) is
not a 3-separation. We consider all such 3-connected extensions of V by
an edge z.

We start with the expansion case. Since V &z is to be 3-connected, we
must split the single degree 4 vertex v4 of V and insert z. There are three
ways to do this. The corresponding graphs V1, V2, V3 are given below.

(10.5.11)

v1

v2

v3

z

v41

v42

v5

v6

v7

z

v1

v2

v3

v41

v42

v5

v6

v7

z

v1

v2

v3

v41

v42

v5

v6

v7

Graph V1 Graph V2 Graph V3

Evidently, (F1, F2 ∪ {z}) is not a 3-separation for V1 or V2, but this is so
for V3. Thus, V1 and V2 are the graphs of interest to us. The graphs V1

and V2 are isomorphic. Indeed, one isomorphism from the vertices of V1

to those of V2 is an identity except that it takes v3, v5, v6, v7 of V1 to v5,
v3, v7, v6 of V2, respectively. Furthermore, a comparison of V1 with G8 of
(10.5.9) proves these two graphs to be identical.
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We turn to the addition case. Since V +z is to be 3-connected, the
added edge z cannot be parallel to another edge. Also, (F1, F2∪{z}) is not
to be a 3-separation of V +z. Thus, one endpoint of z must be v1 or v2.
The second endpoint must be v1, v2, v6, or v7. Suppose v1 is one endpoint
and v2 the second one. Contract in V +z the edges (v3, v6) and (v5, v7).
A K5 minor results, which is a contradiction. Suppose v1 is one endpoint
and v6 is the second one. Contract in V +z the edges (v2, v3) and (v5, v7).
Again a K5 minor results. The remaining cases are isomorphic to the latter
one.

We conclude that in each case G has a G8 minor as desired.

We combine Theorems (10.5.7) and (10.5.10) to the following result.

(10.5.12) Theorem. Every connected graph without K5 minors is 1- or
2-separable, or has a 3-separation with at least four edges on each side, or
is planar, or is isomorphic to a graph Ki

3,n, 0 ≤ i ≤ 3, n ≥ 3, or has a G8

minor.

Proof. By Theorem (10.5.7), we may assume G to have a V minor. Then
Theorem (10.5.10) establishes presence of the 3-separation or of a G8 mi-
nor.

We have reached the end of the second iteration. In terms of the
general description of the construction, the current set L′ contains the
planar graphs, and all graphs Ki

3,n plus their isomorphic versions. The set
H′ contains just one graph, G8.

The third iteration involves an application of the splitter Theorem
(10.5.1). The result so produced is as follows.

(10.5.13) Theorem. G8 is a splitter for the graphs without K5 minors.

Proof. We only need to show that every 3-connected 1-edge extension of
G8 has K5 minors. Since every vertex of G8 has degree 3, a 3-connected 1-
edge expansion is not possible. Up to isomorphism, just two addition cases
are possible. Both cases have K5 minors. We leave the easy verification of
this claim to the reader.

We combine Theorems (10.5.12) and (10.5.13) with the results for 1-,
2-, and 3-sums of Chapter 8 to obtain Wagner’s famous decomposition
theorem for the graphs without K5 minors.

(10.5.14) Theorem. Every connected graph without K5 minors is a 1-,
2-, or 3-sum, or is planar, or is isomorphic to K3,3 or G8.

Proof. Assume G to be a connected graph without K5 minors. Theo-
rems (10.5.12) and (10.5.13) imply that G is 1- or 2-separable, or has a
3-separation with at least four edges on each side, or is planar, or is iso-
morphic to G8 or to a graph Ki

3,n, 0 ≤ i ≤ 3, n ≥ 3. If G is isomorphic to a
graph Ki

3,n different from K3,3, then by (10.5.2), G has a 3-separation with
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at least four edges on each side. We apply some results of Chapter 8. If G
is 1- or 2-separable, then according to Section 8.2, G is a 1- or 2-sum. If
G has a 3-separation with at least four edges on each side, then by Lemma
(8.3.12) and the discussion following that lemma, G is a 3-sum. Thus, we
may conclude that G is a 1-, 2-, or 3-sum, or is planar, or is isomorphic to
K3,3 or G8, as claimed in the theorem.

Note that at the end of the third iteration, the set H′ is empty. Thus,
the construction process stops.

Recall the ∆-sum decomposition of Section 8.5. In a connected graph
G, such a decomposition is carried out as follows. Given is a 3-separation of
G with at least four edges on each side. Let H1 and H2 be the corresponding
subgraphs of G. Thus, both H1 and H2 are connected subgraphs of G.
Identification of three connecting nodes of H1 with three connecting nodes
of H2 produces G. For i = 1, 2, we enlarge Hi by attaching a triangle to
the three connecting nodes. Let Gi be the resulting graph. Then G is a
∆-sum of G1 and G2, denoted by G = G1⊕∆ G2. The components G1 and
G2 of a 3-connected ∆-sum G1 ⊕∆ G2 are 3-connected, except possibly for
edges parallel to the edges of the connecting triangle in G1 or G2.

Also recall the 2-sum decomposition of Section 8.2. The graphs H1 and
H2 have two connecting nodes each. For i = 1, 2, we enlarge Hi by joining
the connecting nodes by an edge. Let Gi be the resulting graph. Then G
is a 2-sum of G1 and G2, denoted by G = G1 ⊕2 G2. The components G1

and G2 are 2-connected if G is 2-connected.
By inverting the above operations, we obtain the ∆-sum and 2-sum

compositions. At times, one may desire to construct a graph recursively
by these operations. Initially, one combines two graphs G1 and G2 in a 2-
or ∆-sum. Then one composes the resulting graph in a 2- or ∆-sum with
a graph G3. Continuing in this fashion, one recursively enlarges the graph
on hand by G4, G5, etc. We call the Gi, i ≥ 1, the building blocks of this
process.

We may use Theorem (10.5.14) to establish such a construction process
for the graphs without K5 minors. The details are specified in the next
theorem.

(10.5.15) Theorem. Any 2-connected graph without K5 minors is pla-
nar, or isomorphic to K3,3 or G8, or may be constructed recursively by
2-sums and ∆-sums. The building blocks of that construction are as fol-
lows.

2-sums: planar graphs, and graphs isomorphic to K3,3 or G8.
∆-sums: planar graphs.

The proof of Theorem (10.5.15) utilizes the following two lemmas.

(10.5.16) Lemma. Let G be a 3-connected nonplanar graph without K5

minors and not isomorphic to K3,3 or G8. Assume G to have a triangle C.
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Then G has a 3-separation (E1, E2) where |E1|, |E2| ≥ 4 and where one of
E1, E2 contains C.

Proof. We use induction. If G has ten edges, the smallest case, then direct
checking proves the lemma. Otherwise, G is by Theorem (10.5.14) a 3-sum,
and thus has a 3-separation (E1, E2) where |E1|, |E2| ≥ 4. If one of E1, E2

contains C, we are done. Thus, we may assume that just one edge of C,
say c, is in E2. If |E2| ≥ 5, we shift the edge c from E2 to E1 and have the
case where one side of a 3-separation contains C. Thus, we assume that
|E2| = 4. It is easy to see that G must be of the form

(10.5.17)

e
c
f
g

E1 E2

3-separation (E1, E2) of G with |E2| = 4 and c ∈ E2

If G has an edge that forms a triangle with the explicitly shown edges e and
g, or with f and g, then we exchange c and such an edge between E1 and
E2, and again have the desired 3-separation. Otherwise, the minor G/g
has no parallel edges. Note that {e, f, c} is a triangle of G/g. Indeed, G/g
is isomorphic to one of the components of the ∆-sum induced by (E1, E2),
and thus is 3-connected. We consider two cases, depending on whether
G/g is planar.

If G/g is planar, draw it in the plane. If the triangle {e, f, c} lies on
one face, then it is easily seen that G itself is planar, a contradiction. Thus,
{e, f, c} partitions the plane into two regions, both of which contain at least
one vertex of G/g. Then we readily confirm that G/g, and hence G, has a
3-separation of the form claimed in the lemma.

For the second case, we assume G/g to be nonplanar. Since G/g has
a triangle while K3,3 and G8 do not, G/g cannot be isomorphic to either
one of the latter graphs. We apply induction and see that G/g as well as
G have the desired 3-separation as well.

(10.5.18) Lemma. Let G be a 3-connected nonplanar graph without
K5 minors and not isomorphic to K3,3 or G8. Assume G to have either a
designated triangle C or a designated edge e. Then G is a ∆-sum G1⊕∆G2,
where G1 contains C or e, whichever applies, and where G2 is planar.

Proof. We prove the case for the triangle C and leave the easier situation
with the edge e to the reader. We use induction. The smallest case, which
has ten edges, is handled by direct checking. For larger G, we apply Lemma
(10.5.16). Thus, G is a ∆-sum G1⊕∆ G2 where C is part of the component
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G1. If the second component G2 is planar, we are done. Otherwise, we
may assume G2 to be 3-connected. We define C′ to be the triangle of
G2 involved in the ∆-sum. Due to the presence of the triangle C′, the
graph G2 cannot be isomorphic to K3,3 or G8. By induction, G2 has a
∆-sum decomposition G21 ⊕∆ G22 where C′ is in G21, and where G22 is
planar. Evidently, G1 ⊕∆ G21 and G22 are the components of a ∆-sum
decomposition of G of the desired form.

Proof of Theorem (10.5.15). Let G be any 2-connected graph without
K5 minors and not isomorphic to K3,3 or G8. If G is 3-connected, the result
follows from Lemma (10.5.18). Otherwise, G is a 2-sum. Choose the 2-sum
decomposition, say G1 ⊕2 G2, so that G2 has a minimal number of edges.
Evidently, any 2-separation of G2 contradicts the minimality assumption,
so G2 is 3-connected. If G2 is planar or isomorphic to K3,3 or G8, we are
done. Otherwise, let e be the edge of G2 that is identified with an edge
of G1 in the 2-sum composition creating G. By Lemma (10.5.18), G2 is a
∆-sum G21⊕∆G22, where G21 contains e and where G22 is planar. Clearly,
G is a ∆-sum where one component is G1 ⊕2 G21, and where the second
component is the planar G22, as demanded in the theorem.

The recursive construction scheme described at the beginning of this
section produces a number of additional decomposition theorems. We in-
clude two example theorems that may be obtained that way. The first
theorem refers to the graph G9 of (10.5.19) below, and to K5\y, which is
K5 minus an arbitrarily selected edge y.

(10.5.19)

Graph G9

(10.5.20) Theorem. Every 3-connected graph G with at least six edges
and without K5\y minors is, for some k ≥ 3, isomorphic to the wheel Wk,
or is isomorphic to G9 or K3,3.

Proof. One first shows that each 3-connected 1-edge extension of any
wheel graph with at least four spokes has a K3,3 or G9 minor. Then one
suitable application of the splitter Theorem (10.5.1) proves the result.

The next theorem is much more complicated. We omit the proof, since
it involves rather tedious calculations. The theorem refers to a number of
graphs, which are listed subsequently under (10.5.22).

(10.5.21) Theorem. Every connected graph without G12 minors is a 1-,
2-, or 3-sum, or is planar, or is isomorphic to K5, K3,3, G8, G13, G1

14, G2
14,

G1
15 G2

15, G3
15, or G4

15.
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Here are the graphs mentioned in Theorem (10.5.21).

(10.5.22)

G12

G15
1

G14
1

G15
3 G15

4

G14
2G13

G15
2

Graphs of Theorem (10.5.21)

The graph G4
15 is the well-known Petersen graph.

From Theorems (10.5.20) and (10.5.21), one may deduce the following
2- and ∆-sum construction results.

(10.5.23) Theorem. Any 2-connected graph on at least two edges and
without K5\y minors may be constructed recursively by 2-sums. Each
building block is a cycle with two or three edges, or is isomorphic to Wk,
k ≥ 3, G9, or K3,3.

Proof. Let G be a 2-connected graph on at least two edges and without
K5\y minors. If G is not isomorphic to one of the listed graphs, then G
has by Theorem (10.5.20) a 2-sum decomposition G1 ⊕2 G2. Choose the
decomposition so that G2 has a minimum number of edges. Then G2 must
be 3-connected, and by Theorem (10.5.20) must be one of the prescribed
building blocks.

(10.5.24) Theorem. Any 2-connected graph without G12 minors is
planar, or isomorphic to K5, K3,3, G8, G13, G1

14, G2
14, G1

15, G2
15, G3

15,
or G4

15, or may be constructed recursively by 2-sums and ∆-sums. The
building blocks are as follows.

2-sums: planar graphs, and graphs isomorphic to K5, K3,3, G8, G13,
G1

14, G2
14, G1

15, G2
15, G3

15, or G4
15.

∆-sums: planar graphs and graphs isomorphic to K5.

Proof. We use appropriately modified Lemmas (10.5.16) and (10.5.18),
and the proof of Theorem (10.5.15). Below, we indicate the necessary
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adjustments. First, the graphs K3,3 and G8 must throughout be replaced
by K5, K3,3, G8, G13, . . . , G4

15. We note that no graph of that new list
has a triangle except for K5. Second, the proof of the modified Lemma
(10.5.16) must be adjusted as follows. In the case of a nonplanar graph
G/g, that graph cannot be isomorphic to K5, K3,3, G8, G13, . . . , G4

15,
except for K5. For the exceptional case, one directly shows G to have a 3-
separation of the type demanded by the modified Lemma (10.5.16). Third,
in the modified Lemma (10.5.18) and its proof, one now permits the graph
G2 to be isomorphic to K5. The analogous change applies to the graph
G22 of the proof of Theorem (10.5.15).

The decomposition tools provided in this section plus those cited in the
references should enable the reader to construct additional decomposition
theorems as they are needed. We sketch representative applications for the
preceding decomposition theorems in Section 10.7.

Once more we switch topics, and turn to the problem of deciding
graphicness of a binary matroid.

10.6 Testing Graphicness of Binary

Matroids

Chapters 3, 5, 7, and 8 implicitly contain a quite efficient algorithm for
testing graphicness of binary matroids, the topic of this section. Thus, this
section is mainly a synthesis of material gleaned from those chapters. We
also cover the related problem of deciding whether or not a real {0,±1}
matrix is the coefficient matrix of a network flow problem.

We start with the graphicness test. Let B be a binary representation
matrix of the matroid M to be tested. Small instances are easily decided,
so assume that M has at least six elements. If B is not connected, then it
clearly suffices that we test each connected component of B for graphicness.
Indeed, for some m ≥ 2, let G1, G2, . . . , Gm be the graphs corresponding
to the connected components of B. From each Gi, we select some vertex
vi. Then we combine G1, G2, . . . , Gm to a connected graph G for M and
B by identifying the vertices v1, v2, . . . , vm to one vertex.

Suppose that B is connected, and that we know of a 2-separation of B.
By Lemma (8.2.6), M is a 2-sum of two matroids M1 and M2. Let B1 and
B2 be the respective submatrices of B representing the latter matroids.
By Lemma (8.2.7), M is graphic if and only if B1 and B2 are graphic.
Thus, we may analyze B1 and B2 instead of B. Indeed, let G1 and G2

be graphs for B1 and B2, respectively. Then the 2-sum composition of G1

and G2 displayed in (8.2.8) produces a graph G for B. In general, G is not
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unique. But by Theorem (3.2.36), we know that any other graph for B can
be obtained from G by a sequence of switchings.

The case remains where B is 3-connected. By Corollary (5.2.15),
M has an M(W3) minor. Furthermore, by Theorem (7.3.4), M has a
3-connected 1-element expansion of an M(W3) minor, or has a sequence of
nested 3-connected minors M0, M1, . . . , Mt = M , where M0 is an M(W3)
minor, and where each Mi+1 is obtained from Mi by some series expansions,
possibly none, followed by a 1-element addition.

By the census of Section 3.3, every 3-connected 1-element expansion of
an M(W3) minor must be an F ∗

7 minor, which is not regular, and hence not
graphic. Thus, evidence of such a minor proves M to be nongraphic. On
the other hand, graphicness of each matroid of the sequence M0, M1, . . . ,
Mt can be efficiently decided as follows. Clearly, the M(W3) minor M0 is
graphic, and a graph for it is readily found. Suppose for given 0 ≤ i < t,
we know Mi to be graphic. By Theorem (3.2.36), the 3-connectedness of
Mi implies that just one graph exists for M , say Gi. We assume that we
have that 3-connected graph on hand. Now Mi+1 is obtained from Mi by
some series expansions and a 1-element addition. The expansions steps
can also be done in Gi, so they preserve graphicness. By Lemma (3.2.49),
there is a polynomial, indeed very simple, subroutine for deciding whether
the addition step preserves graphicness as well. In the affirmative case, the
subroutine also produces the graph for Mi+1.

So far, we have assumed that we can locate 2-separations and M(W3)
minors, as well as a 3-connected 1-element expansion of a given M(W3)
minor or the sequence M0, M1, . . . , Mt. But these tasks can be efficiently
accomplished by the path shortening technique of Chapter 5 and by the effi-
cient method sketched in the proof of Theorem (7.3.6). These two methods
plus the simple graphicness testing subroutine of Lemma (3.2.49) constitute
an efficient way of deciding whether a given binary matroid is graphic.

We turn to the second testing problem covered in this section. We are
to decide whether or not a real {0,±1} matrix is the coefficient matrix of
a network flow problem. Recall from Section 9.2 that a node/arc incidence
matrix of a directed graph is a real {0,±1} matrix where each column has
only 0s or exactly one +1 and one −1. Furthermore, recall that a real
matrix is defined to be the coefficient matrix of a network flow problem if
it is the node/arc incidence matrix Ã of a directed graph, or is derived from
such a matrix by pivots and deletion of rows and columns. The support
matrix B̃ of Ã is the node/edge incidence matrix of the undirected version
of that graph. View B̃ to be over GF(2).

Lemmas (9.2.1), (9.2.2), (9.2.6), (9.2.8), and Corollary (9.2.7) permit
the following conclusions about Ã and B̃. The matrix Ã is totally unimod-
ular, and B̃ is regular. Any matrix A deduced from Ã by real pivots and
deletion of rows and columns is totally unimodular. The support matrix
B of A can be deduced from B̃ by the corresponding GF(2)-pivots. Thus,
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B is graphic. Finally, an elementary signing process exists by which one
may determine from B the signs of the entries of A, up to a scaling of some
rows and columns by −1.

Because of these results, we may test a given real {0,±1} matrix A for
the network flow property as follows. View the support matrix B of A to
be over GF(2). Test B for graphicness with the efficient method described
earlier in this section. If B is not graphic, then A cannot have the network
flow property, and we stop. Otherwise, sign B to convert it to a totally
unimodular matrix A′. By a simple variation of that signing process, which
effectively is the proof procedure of Lemma (9.2.6), determine whether or
not A′ can be converted to A by scaling. Then A is a network flow problem
if and only if the answer is affirmative. This procedure can be improved
by use of the undirected graph on hand once B has been determined to be
graphic. We leave the details to the reader.

A variation of the preceding problem is as follows. We are given a
real matrix Ã. We are to settle whether by row scaling, or by row and
column scaling, that matrix can be converted to a {0,±1} matrix with the
network flow property. The question can be reduced to the above situation
as follows. If BG(Ã) is not connected, we apply the test given below to the
submatrices of Ã that correspond to the connected components of BG(Ã).
Hence, assume Ã to be connected. First, we determine whether by scaling
under the assumed restrictions (i.e., scaling of rows only, or scaling of rows
and columns), the given Ã can be converted to a {0,±1} matrix. This is
readily accomplished by a scaling of the entries of Ã corresponding to an
arbitrarily selected tree of BG(Ã). We leave it to the reader to fill in the
simple details. If a {0,±1} matrix cannot be produced, then the network
flow property cannot be attained by scaling under the assumed restrictions.
If a {0,±1} matrix is obtained, we test that matrix for the network flow
property. The answer for the original question is affirmative if and only if
the scaled matrix has the network flow property. The conclusion is valid
since the scaled matrix is unique up to scaling of some rows and columns
by −1, as is readily confirmed via the proof of Lemma (9.2.6).

We summarize the above discussion in the following theorem.

(10.6.1) Theorem. There are polynomial algorithms for each one of the
problems (a), (b), and (c) below.

(a) Given is any binary matrix B. Let M be the binary matroid rep-
resented by B. It must be decided whether M is graphic. In the
affirmative case, an undirected graph G must be produced so that
M(G) = M .

(b) Given is any {0,±1} real matrix A. It must be decided whether A has
the network flow property. In the affirmative case, a directed graph G
must be produced so that the node/arc incidence matrix of G can by
row operations be transformed to the matrix [I | A].
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(c) Given is any real matrix A. It must be decided whether A can by row
scaling, or by row and column scaling, be transformed to a {0,±1}
matrix. In the affirmative case, the {0,±1} matrix must be produced,
and for that matrix, problem (b) must be solved.

In the final section, we sketch applications and extensions and cite
relevant references.

10.7 Applications, Extensions, and

References

We link the material of this chapter to prior work, and point out applica-
tions and extensions.

The representation of a binary 1-element addition of a graphic matroid
in Section 10.2 by a graph plus a node subset T is taken from Seymour
(1980b). It is one of the many innovative concepts and ideas of that ref-
erence. The planarity characterization of Theorem (10.2.11) is properly
implied by Tutte’s characterization of the graphic matroids (Tutte (1958),
(1959), (1965)). The same applies to Corollary (10.2.13), which originally
was proved in Whitney (1932), (1933b).

Lemma (10.3.1) is taken from Seymour (1980b). Theorem (10.3.9)
has been generalized to nongraphic 3-connected matroids with triangles in
Asano, Nishizeki, and Seymour (1984). Seymour (1980b) contains the dif-
ficult Theorem (10.3.11). The proof given here is a considerably shortened
version of the one of that reference. The key difference lies in the repeated
application of Theorem (10.3.9).

The profound characterizations of Section 10.4 in historical order are
due to Tutte and Seymour. Theorem (10.4.2) is due to Tutte (1958), (1959),
(1965), and Theorem (10.4.1) is due to Seymour (1980b). The latter the-
orem is one of two main ingredients in the proof of the decomposition
theorem of regular matroids, which is covered in the next chapter. Rea-
sonably short proofs of Theorem (10.4.2) are given in Seymour (1980a),
Wagner (1985a), and Gerards (1995).

The material of Section 10.5 is based on Truemper (1988). That ref-
erence contains details about induced graph decompositions. The famous
Theorem (10.5.14) of Wagner was originally proved by quite different ar-
guments (Wagner (1937a), (1970)). Short proofs are given in Halin (1964),
(1967), (1981), Ore (1967), and Young (1971). When it was first proved,
Theorem (10.5.14) established the equivalence of Hadwiger’s conjecture
about graph coloring and the four-color conjecture for planar graphs (now
a theorem). The details are as follows. A graph G is colorable with n colors
if the vertices can be colored with n colors so that any two vertices with
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same color are not connected by an edge. The chromatic number of a graph
is the least number of colors that permit a coloring of the graph. Hadwiger’s
conjecture (Hadwiger (1943)) says that any graph with chromatic number
n has a Kn minor.

The conjecture is readily seen to be correct for n = 1, 2, and 3. For
n = 4, it was proved in Dirac (1952). Indeed, by Theorem (4.2.6), a 2-
connected graph is a series-parallel graph if and only if it has no K4 minor.
It is an elementary exercise to show that any graph whose 2-connected
components are series-parallel graphs is colorable with three colors. Thus,
a graph with chromatic number equal to 4 must have a K4 minor.

The case n = 5 is more complicated. The first step toward a proof
was accomplished in Wagner (1937a) with Theorem (10.5.14). That result
allows one to prove that the graphs without K5 minors are colorable with
four colors if this is so for all planar graphs, as follows. Suppose the graph,
say G, is 3-connected. By Theorem (10.5.14), G is planar, or is isomorphic
to K3,3 or G8, or has a 3-separation with at least four edges on each side.
The planar case is handled by the assumption. The graphs K3,3 and G8

are colorable with three colors. In the 3-separation case, G is a ∆-sum,
say G1 ⊕∆ G2. By Lemma (8.5.6) or by direct checking, G1 and G2 are
minors of G. By induction, they have a coloring with at most four colors.
In G1, the colors of the nodes of the connecting triangle must be distinct.
The same holds for G2. By a suitable renaming of the colors of G2, the
graph G can thus be colored with four colors. The case of a 2-separable or
1-separable graph G is even simpler.

The second step in the proof of the case n = 5 involves showing that all
planar graphs can be colored with four colors. The conjecture of that result
was open for about one hundred years. It finally was proved in Appel and
Haken (1977), and Appel, Haken, and Koch (1977). An exposition of the
proof is included in Saaty and Kainen (1977). Thus, Hadwiger’s conjecture
is correct for n ≤ 5. For n ≥ 6, the conjecture is still open.

Theorem (10.5.15) is part of Wagner (1937a). Theorem (10.5.20) is
proved in Wagner (1960). Related decomposition results are described in
Halin (1981). Theorem (10.5.21) is taken from Truemper (1988). These
theorems are useful for the solution of combinatorial problems via decom-
position. An interesting instance is the max cut problem. Given is a graph
G with nonnegative edge weights. One must find a disjoint union C of
cocycles such that the sum of the weights of the edges of C is maximum.
This problem is solved in Barahona (1983) for graphs without K5 minors
using Theorem (10.5.15). The same approach applies to graphs without
G12 minors when Theorem (10.5.24) is substituted for Theorem (10.5.15).

There are numerous other ways in which graphs may be decomposed.
The number of results is so large that we cannot even sketch the many
ideas, theorems, and applications. Thus, we cite some representative refer-
ences, but omit details. For example, the ear decomposition reduces a given
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2-connected graph to a cycle by removing one path at a time while main-
taining 2-connectedness. This decomposition is simple, but with its aid
significant results have been proved (e.g., in Lovász and Plummer (1975),
Kelmans (1987), Lovász (1983), and Frank (1993a)).

For some classes of graphs or for particular graph problems, special
decompositions have been developed. Examples are decompositions for
perfect graphs (e.g., in Burlet and Uhry (1982), Bixby (1984b), Burlet
and Fonlupt (1984), Whitesides (1984), Chvátal (1985), (1987), Chvátal
and Hoang (1985), Hoang (1985), Cornuéjols and Cunningham (1985),
Hsu (1986), (1987a), (1987b), (1988), and Chvátal, Lenhart, and Sbihi
(1990)) and circle graphs (e.g., in Gabor, Supowit, and Hsu (1989)), and
for optimization problems (e.g., in Uhry (1979), Boulala and Uhry (1979),
Cunningham (1982c), Edmonds, Lovász, and Pulleyblank (1982), Ratliff
and Rosenthal (1983), Cornuéjols, Naddef, and Pulleyblank (1983), (1985),
Bern, Lawler, and Wong (1987), Lovász (1987), Mahjoub (1988), Coullard
and Pulleyblank (1989), Fonlupt and Naddef (1992), and Barahona and
Mahjoub (1994a)–(1994d)). Diverse graph decomposition ideas are con-
tained in Lovász and Plummer (1986). An axiomatic treatment of graph
decompositions, indeed of decompositions of general combinatorial struc-
tures, is given in Cunningham and Edmonds (1980).

The 3-connected components of a graph can be found in linear time by
an algorithm of Hopcroft and Tarjan (1973). A decomposition of minimally
3-connected graphs is given in Coullard, Gardner, and Wagner (1993).

The first polynomial test for graphicness of binary matroids was given
by Tutte (1960). The graphicness test of Section 10.6 is a simplified version
of a scheme of Truemper (1990). Other relevant references have already
been cited in Section 3.6. The problem of deciding presence of the network
flow property was treated completely and for the first time in Iri (1968).
That material appears also in Bixby and Cunningham (1980). An efficient
method for deciding graphicness of a matroid not known a priori to be
binary was first proposed in Seymour (1981c). The matroid is assumed to
be specified by a black box for deciding the independence of subsets of the
groundset. Related material is included in Bixby (1982a), and Truemper
(1982a). The easier case where all circuits are explicitly given is covered
in Inukai and Weinberg (1979). The recognition problem of generalized
networks, which constitute an extension of directed graphs, is treated in
Chandru, Coullard, and Wagner (1985).

Last but by no means least, we should mention a truly astounding
proof by Robertson and Seymour of the following daring conjecture due to
Wagner: If a given graph property is maintained under minor-taking, then
the number of nonisomorphic minor-minimal graphs that do not have the
property is finite. The proof of that result involves a powerful graph decom-
position concept called tree decomposition that we cannot treat here. The
length of the proof is extraordinary. Together with numerous applications,
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it is being published in a long series of papers (Robertson and Seymour
(1983), (1984), (1985), (1986a)–(1986c), (1988), (1990a)–(1990c), (1991),
(1994), (1995a)–(1995c), (1996), (1998a)–(1998h)). Related to this work
on graphs are the matroid results of Kahn and Kung (1982), and Kung
(1986a), (1986b), (1987), (1988), (1990a), (1990b). A survey of applica-
tions is made in Fellows (1989). There is some evidence supporting the
following conjecture for the matroids that are representable over a given
finite field: For any property that is maintained under minor-taking, the
number of nonisomorphic minor-minimal matroids not having the property
is finite. Truemper (1986) contains an encouraging related result about in-
duced decompositions.



Chapter 11

Regular Matroids

11.1 Overview

Building upon the material on graphic matroids of Chapter 10, we analyze
in this chapter the class of regular matroids. Already, we know that class
quite well, or so at least it seems. By Theorem (9.3.2), a binary matroid
is regular if and only if it has no F7 or F ∗

7 minors. By Corollary (9.2.12),
every graphic matroid is regular. There are also regular matroids that are
not graphic and not cographic. If such a matroid is 3-connected, then by
Theorem (10.4.1), it has an R10 or R12 minor. These results are interesting;
indeed, the first and third one are profound. But they do not tell us how
to construct regular matroids, or how to test binary matroids efficiently
for regularity. That gap in our knowledge is filled by the extraordinary
decomposition theorem of regular matroids due to Seymour. The entire
chapter is devoted to that theorem and to some of its ramifications and
applications.

We proceed as follows. In Section 11.2, we prove that 1-, 2-, and 3-sum
compositions produce regular matroids when the components are regular.
As a lemma for the 3-sum case, we also establish that the ∆Y exchange
defined in Section 4.4 maintains regularity.

Section 11.3 contains the main result of this chapter, the regular ma-
troid decomposition theorem. It essentially says that every regular matroid
can be produced by 1-, 2-, and 3-sums where the building blocks are graphic
matroids, cographic matroids, and copies of R10. Furthermore, only regular
matroids can be generated by this process.

245
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In Section 11.4, we develop efficient tests for regularity of binary ma-
troids and for total unimodularity of real matrices. We obtain the regularity
test by combining the method for finding 1-, 2-, and 3-sums of Section 8.4
with the graphicness test of Section 10.6. That scheme is then rather easily
extended to an efficient test for total unimodularity.

The uses and implications of the regular matroid decomposition the-
orem are far-ranging. In Section 11.5, we describe representative applica-
tions. In the final section, 11.6, we list extensions and references.

The chapter requires knowledge of Chapters 2–10.

11.2 1-, 2-, and 3-Sum Compositions

Preserve Regularity

In this section, we show that any 1-, 2-, or 3-sum with regular components
is regular. This result is the comparatively easy part of the regular matroid
decomposition theorem. We also prove that the ∆Y matroids of Section 4.4
are regular.

The reader may wonder why we confine ourselves to 1-, 2-, and 3-sums,
and do not treat general k-sum compositions. It turns out that the 1-, 2-,
3-sum cases have simple proofs and actually are the only k-sums needed for
the regular matroid decomposition theorem. On the other hand, for k-sums
with k ≥ 4, the situation becomes much more complicated. In Section 11.6
we sketch what is known about that case.

Recall from Section 9.2 that a real matrix is totally unimodular if all of
its determinants are 0,±1. Furthermore, a binary matrix is regular if it can
be signed to become a totally unimodular real matrix. By Lemma (9.2.6)
and Corollary (9.2.7), the signing is unique up to scaling by {±1} factors.
Furthermore, the signing can be accomplished by signing one arbitrarily
selected row or column at a time.

We need some elementary facts about the real {0,±1} matrices that
are not totally unimodular, but each of whose proper submatrices has that
property. We call such a matrix a minimal violation matrix of total uni-
modularity, for short minimal violation matrix. First, a minimal violation
matrix is obviously square, and its real determinant is different from 0,±1.
This fact implies that a 2× 2 minimal violation matrix contains four ±1s.
Next, let a minimal violation matrix have order k ≥ 3. Suppose we per-
form a real pivot in that matrix, then delete the pivot row and column. A
simple cofactor argument proves that the resulting matrix is also a minimal
violation matrix.

We are prepared for the proofs of this section. The first lemma deals
with the case of 1- and 2-sums.
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(11.2.1) Lemma. Any 1- or 2-sum of two regular matroids is also regu-
lar.

Proof. Let M1 and M2 be the given regular components of a 1- or 2-sum
M . We rely on the matrices of (8.2.1), (8.2.3), and (8.2.4), repeated below
for convenient reference.

(11.2.2) X1
B =

Y1

A1

0X2

Y2

A2

0

Matrix B for 1-sum M

(11.2.3)

Y1
y

A2

B =

A1

Y2

x

X1

X2

0

0

1
all
1s

A2B2 =

y Y2
x

X2
1
0

Y1
y

B1 = A1

x

X1

0 1 1

1

Matrices B, B1, and B2 for 2-sum M
with components M1 and M2

In the 1-sum case, M1 and M2 are represented by A1 and A2 of (11.2.2).
Since M1 and M2 are regular, we can convert A1 and A2 by signing to
totally unimodular real matrices, say Ã1 and Ã2. Derive a matrix B̃ from
B of (11.2.2) by replacing A1 and A2 by Ã1 and Ã2. Evidently, B̃ is a
totally unimodular signed version of B. Thus, M is regular.

The 2-sum case is slightly more complicated. Define D to be the
submatrix of B of (11.2.3) indexed by X2 and Y1. We sign B1 and B2 of
(11.2.3) so that totally unimodular matrices B̃1 and B̃2 result. The signing
converts the submatrices A1 and A2 of B1 and B2 to, say, Ã1 and Ã2. Next
we compute a signed version D̃ of D by the formula
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(11.2.4) D̃ = (column y of B̃2) · (row x of B̃1)

Then Ã1, Ã2, and D̃ define a signed version B̃ of the matrix B for M .
By the construction, the submatrices [Ã1/D̃] and [D̃ | Ã2] of B̃ are totally
unimodular.

We complete the proof by showing that the entire matrix B̃ is to-
tally unimodular. Suppose it is not. Then B̃ contains a minimal violation
matrix V that intersects Ã1, Ã2, and D̃. Thus, V also intersects the 0
submatrix of B̃ indexed by X1 and Y2, and accordingly must have order
of at least 3. We perform a real pivot in B̃ on a ±1 that is in both Ã1

and V . The resulting real matrix B̃′ contains a smaller minimal viola-
tion matrix. The pivot changes Ã1 and D̃, say to Ã1′ and D̃′, but leaves
Ã2 unchanged. Since [Ã1/D̃] is totally unimodular, and since, by Lemma
(9.2.2), pivots do not destroy total unimodularity, the matrix [Ã1′/D̃′] is
totally unimodular. If we perform the corresponding GF(2)-pivot in B, we
thus get an unsigned version of B̃′. Furthermore, each column of D̃′ is a
scaled version of a column of D̃. Thus, [D̃′ | Ã2] is totally unimodular. A
suitable repetition of the preceding reduction process eventually produces
the contradictory case of a minimal violation matrix contained in a totally
unimodular matrix.

We turn to the 3-sum case. By (8.3.10) and (8.3.11), we may assume
M , M1, and M2 to be represented by the matrices B, B1, and B2, respec-
tively, as follows.

(11.2.5)

1
1

Y1

A2
DD1

D12 D2

B =

A1

Y2

Y1
Y2

X1

X2

X1

X2

0

01  1

1 1

1

Y1

DD1

B1 =
A1

Y2

Y1

X1

X2

X1
0

0
1

1

1

A2
D

D2

Y1 Y2

Y2

B2 =

X1

X2
X2

0
1
1

0

Matrices B, B1, and B2 for 3-sum M
with components M1 and M2
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We may convert the component M2 by a ∆Y exchange of Section 4.4
to a matroid M2∆ that is represented by the following matrix B2∆, taken
from (8.5.3).

(11.2.6)
X2

Y2Z2

A2d
D

D2

1
1B2 =

Matrix B2∆ for M2∆

We first introduce a lemma that links regularity of M2 to regularity of
M2∆.

(11.2.7) Lemma. M2 of (11.2.5) is regular if and only if M2∆ of (11.2.6)
has that property.

Proof. For the “only if” part, let B̃2 be a totally unimodular version of
B2 so that the two columns of B̃2 indexed by Y 1 do not contain any −1.
This is possible, since we may begin the signing process with these two
columns. Denote by D̃ and D̃2 the submatrices of B̃2 that correspond to
the submatrices D and D2 of B. Declare d̃ to be the real difference of the
two {0, 1} columns of [D̃/D̃2]. Thus, d̃ is a {0,±1} vector that, together
with the submatrices of B̃2, defines a signed version B̃2∆ of B2∆. We are
done once we prove B̃2∆ to be totally unimodular. If this is not the case,
then B̃2∆ contains a minimal violation matrix V . By the construction, the
latter matrix must intersect d̃. The two columns of [D̃/D̃2] and the vector
d̃ are IR-dependent, so V intersects [D̃/D̃2] in at most one column. But in
B̃2, we can produce a scaled version of V as submatrix by a real pivot on
one of the explicitly shown 1s in the first row, as may be readily checked.
The latter fact contradicts the total unimodularity of B̃2.

We prove the “if” part using duality. First we observe that M∗
2 may be

derived from M∗
2∆ by replacing a triad by a triangle. We just established

that such a change maintains regularity. Thus, M∗
2 is regular if M∗

2∆ is
regular.

Lemma (11.2.7) implies the following result.

(11.2.8) Corollary. ∆Y exchanges maintain regularity.

We are ready for the 3-sum case.

(11.2.9) Lemma. Any 3-sum of two regular matroids is regular.

Proof. We start with B, B1, and B2 of (11.2.5) for the assumed 3-sum M
with regular components M1 and M2. By Lemma (11.2.7), the matrix B2∆

of (11.2.6) is regular. Let d be the column vector displayed in B2∆. Then
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up to indices, [d | D | A2] is the regular matrix B2∆ plus possibly parallel
columns. Thus, [d | D | A2] may be signed to become a totally unimodular
matrix [d̃ | D̃ | Ã2]. By the regularity of B1 and duality, [A1/D] is also
regular, and thus can be signed, starting with the submatrix D, to a totally
unimodular matrix [Ã1/D̃]. Clearly, the matrices Ã1, Ã2, and D̃ define a
signed version B̃ of B.

We are done once we show B̃ to be totally unimodular. We accomplish
this by essentially the same arguments as for the 2-sum case. Thus, if B̃
is not totally unimodular, then it has a minimal violation matrix V that
intersects Ã1, Ã2, and D̃. The order of V must be at least 3. In B̃, we
pivot on a ±1 that is in both Ã1 and V . The pivot changes [Ã1/D̃] to
another totally unimodular matrix, say [Ã1′/D̃′]. It is easy to verify that
the columns of D̃′ are nothing but scaled versions of the columns of [d̃ | D̃].
Thus, the matrix [D̃′ | Ã2] is up to scaling and parallel columns a submatrix
of the previously defined [d̃ | D̃ | Ã2], and hence is totally unimodular. By
a suitable repetition of the above reduction process, we eventually get the
contradiction that a minimal violation matrix is contained in a totally
unimodular matrix.

For future reference, we combine Lemmas (11.2.1) and (11.2.9) to the
following theorem.

(11.2.10) Theorem. Any 1-, 2-, or 3-sum of two regular matroids is
regular.

We return to a class of binary matroids introduced in Section 4.4,
the class of ∆Y matroids. Each of these matroids is constructed from the
matroid represented by B = [ 1 ] by repeated SP (= series-parallel) and ∆Y
exchanges. We do not repeat the details of these operations here. Thus,
the reader may want to review Section 4.4 before proceeding. There the
following result is claimed but not proved. We supply the proof next.

(11.2.11) Theorem. The ∆Y matroids are regular.

Proof. We use induction on the number of SP extensions and ∆Y ex-
changes used in the construction of a binary ∆Y matroid M . The binary
matroid represented by B = [ 1 ] is regular. By Lemma (8.2.6), any SP ex-
tension of M can be viewed as a 2-sum composition where M is one of the
components, and where the second component is a regular matroid with
three elements. By Theorem (11.2.10), a 2-sum is regular if its compo-
nents are regular. Thus, SP extensions maintain regularity. By Corollary
(11.2.8), the same conclusion holds for ∆Y exchanges.

Section 8.5 contains two variations of the 3-sum, called ∆-sum and
Y-sum. The latter sum is the dual of the ∆-sum. A ∆-sum decomposition
is obtained from a 3-sum M1 ⊕3 M2 by replacing M2 by M2∆. For the ∆-
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sum composition, we invert this process. Theorem (11.2.10) and Corollary
(11.2.8) thus imply the following corollary for ∆-sums and Y-sums.

(11.2.12) Corollary. Any ∆-sum or Y-sum M of two regular matroids
is regular.

In Section 4.4, it is mentioned that the class of ∆Y matroids includes
3-connected matroids that are nongraphic and noncographic. By Lemma
(4.4.10), every connected minor of a ∆Y matroid is also a ∆Y matroid. By
(10.2.8), the regular matroid R10 has no triangles or triads, and thus is not
a ∆Y matroid. Indeed, R10 is 4-connected. We conclude that no binary
matroid with an R10 minor is a ∆Y matroid. The situation is different for
R12. In (10.2.9), the latter matroid is represented by a graph plus a node
subset T . With the aid of that representation, one easily proves R12 to be
a ∆Y matroid, a fact already claimed in Section 4.4. Specifically, a triangle
of that graph is a triangle of R12, and a 3-star that is not a T node is a
triad. Because of these facts, a ∆Y sequence reducing R12 to the matroid
represented by B = [ 1 ] can be computed by graph operations. First, one
reduces R12 while retaining the T set until a graphic or cographic matroid
is attained. Second, one switches representations by selecting a suitable
graph and finds the remaining reductions. We leave the details to the
reader.

Theorems (11.2.10) and (11.2.11) enable us to construct many regular
matroids from the matroids we already know to be regular, which are the
graphic matroids, their duals, and R10 and R12. In the next section, we see
that we can construct all regular matroids that way. In fact, we require only
a subset of the above initial matroids and a subset of the above construction
steps to produce all regular matroids.

11.3 Regular Matroid Decomposition

Theorem

In this section, we prove Seymour’s profound decomposition theorem for
regular matroids. It essentially says that every regular matroid can be ob-
tained by 1-, 2-, and 3-sums where the building blocks are graphic matroids,
cographic matroids, and matroids isomorphic to R10. The theorem thus
provides an elegant and useful construction for the entire class of regular
matroids.

For the proof of the decomposition theorem, we rely on two ingredi-
ents. The first one we already know. It is Theorem (10.4.1). That result
says that any 3-connected regular nongraphic and noncographic matroid
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has an R10 or R12 minor. The second ingredient consists of decompo-
sition results of Sections 6.3 and 7.2, specifically Corollary (6.3.24) and
the splitter Theorem (7.2.1). We could cast the results of this section in
terms of the recursive construction of decomposition theorems introduced
for graphs in Section 10.5. We will not do so. But we should mention that
finding decomposition theorems such as the one of this section is facilitated
by that recursive construction scheme. We discuss this aspect further in
Chapter 13.

First, we analyze the influence of R10 and R12 minors. So assume R10

to be a minor of a regular matroid. For the analysis, we need the splitter
Theorem (7.2.1), which we repeat next for convenient reference.

(11.3.1) Theorem (Splitter Theorem). Let M be a class of binary
matroids that is closed under isomorphism and under the taking of minors.
Let N be a 3-connected matroid of M on at least six elements.

(a) If N is not a wheel, then N is splitter of M if and only if M does not
contain a 3-connected 1-element extension of N .

(b) If N is a wheel, then N is a splitter of M if and only if M does not
contain a 3-connected 1-element extension of N and does not contain
the next larger wheel.

The matroid N is called a splitter of the class M of matroids. Here is
the result for R10.

(11.3.2) Theorem. R10 is a splitter of the class M of regular matroids.

Proof. By Theorem (11.3.1), we only need to show that every 3-connected
1-element extension of R10 is nonregular. Since R10 is isomorphic to its
dual, it suffices that we consider 1-element additions. The case checking is
conveniently accomplished when we represent R10 by a graph plus a T set
as in (10.2.8), i.e., by

(11.3.3)

Graph plus T set representing R10

Up to isomorphism, just three distinct 3-connected 1-element additions are
possible.

In the first case, we join two nonadjacent nodes of the graph of (11.3.3)
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by an edge shown in bold below.

(11.3.4)

e

1-element addition of R10, case 1

We contract edge e. The two T endpoints of e become a non-T node.
Evidently, the resulting graph contains a subdivision of

(11.3.5)

Graph plus T set representing F7

which by (10.2.4) represents the Fano matroid F7. Thus, that extension of
R10 is nonregular.

The remaining two cases involve 1-element additions that are non-
graphic even when one deletes from R10 the element represented by the set
T . For both cases, we depict the additional element by a subset T ′ of the
node set with |T ′| = 4. The two possible ways are easily reduced to an
instance of (11.3.5), and thus are also nonregular.

Now we assume R12 to be a minor of a regular matroid. This time
we rely on Corollary (6.3.24). We need a bit of preparation before we
can restate that result. Let N be a binary matroid with a k-separation
(X1 ∪ Y1, X2 ∪ Y2) given by

(11.3.6)

Y1 Y2

X1
BN =

A1

DX2 A2

0

Matrix BN for N with k-separation

Consider the following three ways of extending N as depicted by the rep-
resentation matrices below.
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(a) The 1-element expansions represented by

(11.3.7)
x

Y2Y1

X1 A1

DX2 A2

e f

0

Matrix of 1-element expansion of N

In row x, e is not spanned by the rows of D, and f is nonzero.

(b) The 1-element additions given by

(11.3.8)

Y1

X2

Y2

X1 A1

D A2

0

y

g

h

Matrix of 1-element addition of N

In column y, g is nonzero, and h is not spanned by the columns of D.

(c) The 2-element extensions with representation matrix

(11.3.9)

Y1

x

Y2

X1 A1

DX2 A2

e f

0

y

g

h

α

Matrix of 2-element extension of N

Either (c.1) or (c.2) below holds for e, f , g, h, and α.
(c.1) e is not spanned by the rows of D; f = 0; g = 0; h 6= 0; α = 1; e

is not parallel to a row of A1. If column z ∈ Y1 of A1 is nonzero,
then e is not a unit vector with 1 in column z.

(c.2) g 6= 0; h is spanned by the columns of D; e is spanned by the rows
of D; f = 0 implies e 6= 0; [e | α] is not spanned by the rows of
[D | h]. If D, the matrix obtained from D by deletion of a column
z ∈ Y1, has the same GF(2)-rank as D, then [g/h] is not parallel
to column z of [A1/D]. If the rows of D do not span a row z ∈ X1

of A1, then [g/h] is not a unit vector with 1 in row z.

We restate Corollary (6.3.24).
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(11.3.10) Theorem. Let M be a class of binary matroids that is closed
under isomorphism and under the taking of minors. Suppose that N given
by BN of (11.3.6) is in M, but that the 1- and 2-element extensions of N
given by (11.3.7), (11.3.8), (11.3.9), and the accompanying conditions are
not in M. Assume that a matroid M ∈ M has an N minor. Then any
k-separation of any such minor that corresponds to (X1 ∪ Y1, X2 ∪ Y2) of
N under one of the isomorphisms induces a k-separation of M .

We intend to use Theorem (11.3.10) with R12 as N and with the class
of regular matroids as M. For the detailed arguments, we need the binary
representation matrix B12 of (9.2.14) for R12. We include that matrix
below. According to that matrix, the pair (X1 ∪ Y1, X2 ∪ Y2) constitutes a
3-separation of R12.

(11.3.11)
B12 =

X1

X2

Y2Y1

0

0

1
1

0

0
1
0
1

1
1
0

1

1
0
1
0

1

0
1
0
1

1 1
1 1
1 0
0 1

1 0 0
1 0 0

Matrix B12 for R12

Theorem (11.3.10) leads to the following decomposition result for the
regular matroids with R12 minor.

(11.3.12) Theorem. Let M be a regular matroid with an R12 minor.
Then any 3-separation of that minor corresponding to the 3-separation
(X1 ∪ Y1, X2 ∪ Y2) of R12 (see (11.3.11)) under one of the isomorphisms
induces a 3-separation of M .

Proof. We verify the sufficient conditions of Theorem (11.3.10). As a
preparatory step, we calculate all 3-connected regular 1-element additions
of R12. By the symmetry of B12 of (11.3.11), and thus by duality, this
result effectively gives us all 3-connected 1-element expansions as well. The
addition cases are collected as columns in the following matrix C.

(11.3.13)

X2 0

0 0 00

0

1
1

0

1
0
1
0

0

0
1
0
1

0

1
1
1
1

0

C =

X1

Y1

Matrix C of 3-connected regular additions to R12
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Verification of the claim about C involves simple but somewhat tedious case
checking. We omit the details, but should mention that the representation
of R12 by a graph plus T set as in (10.2.9) greatly simplifies the task. The
added element can be represented by a subset T ′ of the node set.

We verify the conditions of Theorem (11.3.10). The cases depicted in
(11.3.13) rule out (11.3.7) and (11.3.8). They also narrow down the case
analysis for (c.1) and (c.2) of (11.3.9), as follows.

According to (c.1), e is not spanned by the rows of D, f = 0, g = 0,
h 6= 0, α = 1, and e is not parallel to a row of A1. If column z ∈ Y1 of A1

is nonzero, then e is not a unit vector with 1 in column z. We apply these
conditions to B12. By (11.3.13) and symmetry of B12, we see that e must
be the vector [0 0 1 1]. Furthermore, h must be a unit vector, or must be
parallel to a column of A2 or D, or must be the subvector of any column of
C of (11.3.13) indexed by X2. All such choices lead to nonregular matroids,
as desired.

Suppose (c.2) applies. We ignore the conditions on e, f , and α. The
remaining conditions are as follows. The vector g is nonzero, and h is
spanned by the columns of D. If D, the matrix obtained from D by deletion
of a column z ∈ Y1, has the same GF(2)-rank as D, then [g/h] is not parallel
to column z of [A1/D]. If the rows of D do not span a row z ∈ X1 of A1,
then [g/h] is not a unit vector with 1 in row z. We apply these conditions
to B12. Thus, we determine that the matrix of (11.3.9) minus row x, which
is B12 of (11.3.11) plus the column vector [g/h], represents a 3-connected
1-element addition of R12. By (11.3.13), any such addition with g 6= 0 is
nonregular.

Thus, all conditions of Theorem (11.3.10) are satisfied. The conclusion
of Theorem (11.3.10) then proves the result.

At long last, we have completed all preparations for the regular ma-
troid decomposition theorem.

(11.3.14) Theorem (Regular Matroid Decomposition Theorem). Every
regular matroid M can be decomposed into graphic and cographic matroids
and matroids isomorphic to R10 by repeated 1-, 2-, and 3-sum decomposi-
tions.

Specifically, if M is 3-connected and not graphic and not cographic,
then M is isomorphic to R10 or has an R12 minor. In the latter case, any 3-
separation of that minor corresponding to the 3-separation (X1∪Y1, X2∪Y2)
of R12 (see (11.3.11)) under one of the isomorphisms, induces a 3-separation
of M .

Conversely, every binary matroid produced from graphic matroids,
cographic matroids, and matroids isomorphic to R10 by repeated 1-, 2-,
and 3-sum compositions is regular.

Proof. Let a regular matroid M be given. Assume M to be nongraphic
and noncographic. If M is 1-separable, it is a 1-sum. If M is 2-separable,
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then it is by Lemma (8.2.6) a 2-sum. Hence, assume M to be 3-connected.
By Theorem (10.4.1), M has an R10 or R12 minor. In the first case, M
must by Theorem (11.3.2) be isomorphic to R10. In the second case, M
has by Theorem (11.3.12) an induced 3-separation, as claimed. By Lemma
(8.3.12), M is a 3-sum. Finally, Theorem (11.2.10) establishes the converse
part.

In Theorem (11.3.14), one may want to rely on ∆-sums or Y-sums
instead of 3-sums. The next corollary supports that substitution.

(11.3.15) Corollary. The claims of Theorem (11.3.14) remain valid
when instead of 3-sums one specifies ∆-sums or Y-sums.

Proof. By Section 8.5, any 3-sum decomposition may be converted to a
∆-sum or Y-sum decomposition by one ∆Y exchange involving one of the
components. By Lemma (11.2.8), such an exchange maintains regularity.
Indeed, if M is 3-connected, then by Lemma (8.5.6), the components of
any ∆-sum or Y-sum decomposition are isomorphic to minors of M . At
any rate, the above arguments prove that we may substitute ∆-sums or
Y-sums for 3-sums in Theorem (11.3.14).

Recall that the graph decomposition theorems (10.5.14) and (10.5.21)
imply a construction of certain 2-connected graphs via 2- and ∆-sums.
Each time, one of the components is a member of a class of building blocks,
and the second component is a graph obtained by prior construction steps.
We establish the analogous result for the connected regular matroids using
Theorem (11.3.14). We treat ∆-sums as well as Y-sums and 3-sums. The
terminology is adapted from that of Section 10.5.

(11.3.16) Theorem. Any connected regular matroid is graphic, co-
graphic, or isomorphic to R10, or may be constructed recursively by 2-
sums and ∆-sums (or Y-sums, or 3-sums) using as building blocks graphic
matroids, cographic matroids, or matroids isomorphic to R10.

The proof of Theorem (11.3.16) is similar to that of Theorem (10.5.15).
We confine ourselves to compositions involving 2-sums and ∆-sums. The
Y-sum case is handled by duality, and the 3-sum case is proved by a simple
adaptation of the proof for ∆-sums. We begin with two lemmas.

(11.3.17) Lemma. Let M be a 3-connected, regular, nongraphic, and
noncographic matroid that is not isomorphic to R10. Assume M to have a
triangle C. Then M has a 3-separation (E1, E2) where |E1|, |E2| ≥ 6 and
where one of E1, E2 contains C.

Proof. By Theorem (11.3.14), M has a 3-separation (E1, E2) induced by
the 3-separation of an R12 minor. The latter 3-separation corresponds to
the one of (11.3.11) for R12, and thus has six elements on each side. Hence,
|E1|, |E2| ≥ 6. If C is contained in E1 or E2, we are done. Otherwise, we
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shift one element of C from one side of the 3-separation (E1, E2) to the
other one, to get a 3-separation (E′

1, E
′
2) where C is contained in E′

1 or
E′

2. It is easily checked that the 3-separation of R12 depicted in (11.3.11)
becomes an exact 4-separation when any one element is shifted from one
side to the other. Thus, the element of C that we have shifted from E1 or
E2 to the other set cannot be an element of the R12 minor inducing the
3-separation (E1, E2). We conclude that |E′

1|, |E′
2| ≥ 6, as desired.

(11.3.18) Lemma. Let M be a 3-connected, regular, nongraphic, and
noncographic matroid that is not isomorphic to R10. Assume M to have
either a designated triangle C or a designated element y. Then M is a
∆-sum M1⊕∆ M2 where M1 contains C or y, whichever applies, and where
M2 is graphic or cographic.

Proof. We prove the case for the triangle C and leave the easier situation
with the element y to the reader. We use induction. The smallest case
involves an M isomorphic to R12. By Lemma (11.3.17), the matroid R12 is a
∆-sum where one component contains C, and where the second component
has nine elements and thus is graphic or cographic. Thus, we are done.
For larger M , we again apply Lemma (11.3.17). Thus, M is a ∆-sum
M1⊕∆ M2 where C is part of the component M1, and where both M1 and
M2 have at least nine elements. If the second component M2 is graphic or
cographic, we are done. Otherwise, we may assume M2 to be 3-connected.
We define C′ to be the triangle of M2 involved in the ∆-sum. Because
of the presence of the triangle C′, or by the splitter result for R10, M2

cannot be isomorphic to the 4-connected R10. By induction, M2 has a ∆-
sum decomposition M21⊕∆ M22 where M21 contains C′, and where M22 is
graphic or cographic. Via a representation matrix for M displaying the 3-
separations involved in the ∆-sums M1⊕∆ M2 and M21⊕∆ M22, we readily
verify that M is a ∆-sum with M1 ⊕∆ M21 and M22 as components. That
∆-sum has the desired properties.

Proof of Theorem (11.3.16). Let M be any connected, regular, non-
graphic, and noncographic matroid that is not isomorphic to R10. If G is
3-connected, the result follows from Lemma (11.3.18). Otherwise, G is a
2-sum. Choose the 2-sum decomposition, say M1 ⊕2 M2, so that M2 has
a minimal number of elements. Evidently, any 2-separation of M2 contra-
dicts the minimality assumption, so M2 is 3-connected. If M2 is graphic,
cographic, or isomorphic to R10, we are done. Otherwise, let y be the el-
ement of M2 that together with an element of M1 defines the 2-sum. By
Lemma (11.3.18), M2 is a ∆-sum M21 ⊕∆ M22 where M21 contains the
element y, and where M22 is graphic or cographic. Via a representation
matrix for M , we confirm that M is a ∆-sum where one component is
M1 ⊕2 M21 and where the second component is the graphic or cographic
M22 as demanded in the theorem.



11.4. Testing Matroid Regularity and Matrix Total Unimodularity 259

An easy generalization of Theorems (11.3.14) and (11.3.16) is possible
by the following splitter result.

(11.3.19) Lemma. F7 (resp. F ∗
7 ) is a splitter of the binary matroids

without F ∗
7 (resp. F7) minors.

Proof. According to the census of small 3-connected binary matroids in
Section 3.3, there are just two 3-connected nonregular matroids on eight ele-
ments, with representation matrices given by (3.3.24) and (3.3.25). Clearly,
both matroids have F7 and F ∗

7 minors. Indeed, the matroids are selfdual.
Thus, every 3-connected 1-element extension of F7 (resp. F ∗

7 ) has both
F7 and F ∗

7 minors. The result then follows from the splitter Theorem
(11.3.1).

We leave it to the reader to rewrite Theorems (11.3.14) and (11.3.16)
so that they become results for the matroids without F7 minors, or for the
matroids without F ∗

7 minors.
One may concatenate matroid decomposition theorems of this section

and graph decomposition theorems of Section 10.5. Later in this chapter,
in Section 11.5, we meet one such case. At any rate, such concatenation is
easy, and the reader may want to try his/her hand at producing potentially
useful theorems.

In the next section, we use Theorem (11.3.14) to assemble efficient
algorithms to decide regularity of binary matroids and total unimodularity
of real matrices.

11.4 Testing Matroid Regularity and

Matrix Total Unimodularity

Prior to the introduction of the regular matroid decomposition Theorem
(11.3.14), no efficient algorithm was known for testing a binary matroid
for regularity, or for deciding total unimodularity of real matrices. We
know from Chapter 9 that these two tests are intimately linked. In fact,
the results of Section 9.2 imply that an efficient test for one of the two
problems can be easily converted to one for the other problem.

In this section, we construct the desired tests, relying, of course, on the
regular matroid decomposition Theorem (11.3.14). In addition, we invoke
the algorithm of Section 8.4 for finding 1-, 2-, and 3-sums, as well as the
graphicness test of Section 10.6.

We begin with the regularity test for binary matroids. Let M be the
binary matroid for which regularity is to be decided. We first apply the
polynomial algorithm of Theorem (8.4.1) to determine whether or not M
is a 1-, 2-, or 3-sum. In the affirmative case, we decompose M into two
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components. Then we apply the algorithm to each component, etc., until
we eventually have a collection of binary matroids, say M1, M2, . . . , Mn,
none of which is a 1-, 2-, or 3-sum. It is not difficult to prove that n, the
number of such matroids, is bounded by a function that is linear in the
number of elements of M .

The regular matroid decomposition Theorem (11.3.14) says that M is
regular if and only if each one of the matroids M1, M2, . . . , Mn is graphic,
or cographic, or isomorphic to R10. We settle graphicness, and if necessary,
cographicness, of each one of the matroids with the polynomial algorithm of
Theorem (10.6.1). Deciding whether or not a matroid is isomorphic to R10

is trivial. If one of the matroids is found to be nongraphic, noncographic,
and not isomorphic to R10, then M is not regular. Otherwise, M has been
proved to be regular.

The preceding algorithm is clearly polynomial. It can be made very ef-
ficient by an appropriate implementation. The algorithm is readily adapted
to test total unimodularity of real matrices as follows. Given is a real matrix
A. If A is not a {0,±1} matrix, we declare A to be not totally unimodular.
So assume A to be a {0,±1} matrix. Let B be the support matrix of A.
We view B to be binary. With the algorithm just described, we test the
matroid M represented by B for regularity. If M is not regular, we know
A to be not totally unimodular. So assume M , and hence B, to be regular.
With the signing algorithm of Corollary (9.2.7), we deduce from B a totally
unimodular matrix A′. By Lemma (9.2.6), A is totally unimodular if and
only if A′ can be obtained from A by scaling of some rows and columns by
−1. Implicit in the proof of the lemma is an algorithm that finds the ap-
propriate scaling factors, or determines that A′ cannot be scaled to become
A. Accordingly, we declare A to be totally unimodular or not.

We just have encountered one very important application of Theorem
(11.3.14). We introduce several others in the next section.

11.5 Applications of Regular Matroid

Decomposition Theorem

The uses of the regular matroid decomposition Theorem (11.3.14) range
from the obvious to the unexpected. In this section, we cover representative
instances.

Construction of Totally Unimodular Matrices

We begin with the most obvious case, the construction of the real totally
unimodular matrices. These matrices represent precisely the regular ma-
troids. To find a construction for them, we only need to translate the
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3-sum version of the construction Theorem (11.3.16) into matrix language.
First, we identify the matrix building blocks. We know that (10.2.8) and
(10.4.5) provide the two possible GF(2)-representation matrices for R10.
With the scheme of Corollary (9.2.7), we sign these two matrices to obtain
the following totally unimodular representation matrices.

(11.5.1) B10.1 = B10.2 =;

1 0 0 1 1
1 1 0 0 1
0 1 1 0 1

00 11 1
1 1 1 1 1

1 1 0 0 1
1 1 1 0 0
0 1 1 1 0

00 11 1
1 0 0 1 1

-
-

-
-

-

The two totally unimodular matrices representing R10

By Lemma (9.2.6), B10.1 and B10.2 are, up to scaling of rows and columns
with {±1} factors, the unique totally unimodular representation matrices
for R10.

By the proof of Corollary (9.2.12), all graphic matroids are minors of
the graphic matroids that are represented by the binary node/edge matri-
ces. The latter matroids are also represented by the real totally unimodular
node/arc incidence matrices, where each nonzero column has exactly one
+1 and one −1. The minor-taking translates to IR-pivots in node/arc inci-
dence matrices and to the deletion of rows and columns. Call any matrix
so produced a network matrix. The effect of the IR-pivots can be readily
established by graph operations. We leave it to the reader to work out the
details.

At this point, we have the matrix building blocks that correspond to
the matroid building blocks of Theorem (11.3.16). We now must under-
stand the 2-sum and 3-sum decomposition/composition. The task is made
complicated by the fact that we must interpret these operations in GF(2)-
representation matrices without the use of GF(2)-pivots. Only that way
can we deduce decomposition rules for totally unimodular matrices that
do not involve IR-pivots. So let us assume B to be an arbitrary GF(2)-
representation matrix of a regular 2- or 3-sum M with components M1 and
M2. The underlying 2- or 3-separation is (X1 ∪ Y1, X2 ∪ Y2). We assume
M , and hence B, to be connected.

We start with the 2-sum case. The 2-separation manifests itself in B
as depicted below, up to a switching of the roles of X1 ∪ Y1 and X2 ∪ Y2.
The submatrix D of B has GF(2)-rank 1.

(11.5.2) X1

Y1

A1

DX2

Y2

A2

0
B =

Matrix B with 2-separation
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Correspondingly, the component matroids M1 and M2 are, by (8.2.3) and
(8.2.4), represented by B1 and B2 below once appropriate indices are as-
signed to the row vector a of B1 and the column vector b of B2. These
two vectors are nonzero vectors of D. Since GF(2)-rank D = 1, the two
vectors are unique up to indices. Indeed, because of permutations of rows
and columns in D, we may assume D = b · a.

(11.5.3) X1

Y1

A1

a
B1 = ; B2 =

Y2

A2bX2

Matrices B1 and B2 of 2-sum

We sign B, B1, and B2 to get totally unimodular matrices. To simplify
the notation, we now assume the matrices B, B1, B2 to be already such
signed totally unimodular versions. We have the following 2-sum matrix
composition rule.

(11.5.4) Matrix 2-Sum Rule. Given are B1 and B2 of (11.5.3). Then
we derive B of (11.5.2) from B1 and B2 by letting D = b · a (in IR).

The 3-sum situation is more complicated, but yields to the same ap-
proach. At the outset, we assume all matrices to be binary. The underlying
3-separation manifests itself in one of two ways, up to a switching of the
role of X1 ∪Y1 and X2 ∪Y2. Below, we indicate by B and B̃ the two cases,
where GF(2)-rank D = 2 and GF(2)-rank R = GF(2)-rank S = 1.

(11.5.5) X1
B = ;

Y1

A1

DX2

Y2

A2

0 X1

Y1

A1

RX2

Y2

A2

S
  B =
~

Matrices B and B̃ with 3-separation

We claim that, correspondingly, the component matroids M1 and M2 are
represented below by B1 and B2, or by B̃1 and B̃2, once the vectors a, b, c,
d, e, f , g, h of these matrices are appropriately defined and missing indices
are added. Specifically, the vectors a and b of B1 (resp. c and d of B2)
are two arbitrarily selected GF(2)-independent row (resp. column) vectors
of D. Let D be the 2 × 2 submatrix of D created by the intersection
of the row vectors a and b of D with the column vectors c and d of D.
By Lemma (2.3.14), D is nonsingular. Because of (8.3.5)–(8.3.7) and row
and column permutations, we may assume D = [c | d] · (D)−1 · [a/b] (in
GF(2)). We define the vector e of B̃1 (resp. g of B̃2) to be a nonzero
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vector of R, and f of B̃1 (resp. h of B̃2) to be a nonzero vector of S. Since
GF(2)-rank R = GF(2)-rank S = 1, the vectors e, g, f , h are unique up to
indices. Furthermore, because of row and column permutations in R and
S, we may assume R = g · e and S = f · h.

(11.5.6) b

0

a 1
1

A1X1

Y1

B1 = ; B2 =
c d

11

Y2

A2

0

X2

f
;

~
B1 =

~
B2 =

X2
g g

01
Y2

A2

h
f

e 0 1

A1X1

Y1

Matrices B1, B2 as well as B̃1, B̃2 of 3-sum
The case of B, B1, and B2 is our customary way of displaying 3-sums.

The second one, with B̃, B̃1, and B̃2, we have not presented before. We
show it to be correct by GF(2)-pivots that transform it to the first case.
Specifically, suppose the submatrix S of B̃ has a 1 in the lower left-hand
corner. Correspondingly, the last element of the leftmost vector f in B̃1

and the first element of h in B̃2 are 1s. Perform GF(2)-pivots on these 1s
in the respective matrices. Each such GF(2)-pivot exchanges a row index
against a column index. After the pivots, one readily confirms that the
3-separation (X1 ∪ Y1, X2 ∪ Y2) of the new B̃ corresponds to the first case,
and that the new B̃1 and new B̃2 are the component matrices for that case.

Consider the case of B, B1, and B2 of (11.5.5) and (11.5.6). We may
sign B to obtain a totally unimodular matrix. In fact, by (11.5.5) and
(11.5.6), the signing may be selected so that in the corresponding signing
of B1 and B2 the explicitly shown 1s are not negated. The same signing
convention may be followed for B̃, B̃1, and B̃2. As a matter of convenience,
let us now assume that B, B1, B2, B̃, B̃1, and B̃2 are the signed totally
unimodular matrices.

The above discussion validates the following matrix 3-sum construc-
tion.

(11.5.7) Matrix 3-Sum Rule. Given are B1 and B2, or B̃1 and B̃2,
of (11.5.6). In the first case, we calculate D = [c | d] · (D)−1 · [a/b] (in IR)
to determine B of (11.5.5). In the second case, we compute R = g · e and
S = f · h (in IR) to find B̃ of (11.5.5).

The next result summarizes the above discussion.

(11.5.8) Lemma. The matrix 2- and 3-sum composition rules (11.5.4)
and (11.5.7) correspond precisely to the regular matroid 2- and 3-sum com-
positions.
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The desired construction theorem for totally unimodular matrices can
now be stated and proved.

(11.5.9) Theorem. Any connected totally unimodular matrix is up to
row and column indices and scaling by {±1} factors a network matrix, or is
the transpose of such a matrix, or is the matrix B10.1 or B10.2 of (11.5.1), or
may be constructed recursively by matrix 2-sums and 3-sums. The rules are
given by (11.5.4) and (11.5.7). The building blocks are network matrices,
their transposes, and the matrices B10.1 and B10.2 of (11.5.1).

Proof. The conclusion follows directly from Theorem (11.3.16) and Lem-
ma (11.5.8).

Construction of {0, 1} Totally Unimodular Matrices

Closely related to the construction of totally unimodular matrices is that of
{0, 1} totally unimodular matrices. So suppose B is a regular matrix that
requires no signing to achieve total unimodularity. The matrix 2-sum rule
obviously can be adopted without modification. The two 3-sum cases with
B and B̃ of (11.5.5) are more troublesome. Even though B or B̃ requires
no signing, the matrices B1, B2, B̃1, or B̃2 of (11.5.6) may not be totally
unimodular without signing of some entries. By Corollary (9.2.7), it is easy
to see that such signing can be confined to the explicitly shown 1s of the
matrices of (11.5.6). Suppose such signing is needed for B1 of (11.5.6). We
may assume that the 1 in the lower right corner of B1 must become a −1.
From now on, let B1 denote that real totally unimodular matrix, with the
just-defined −1. We modify the last column of B1 and add one additional
row and column to get the following real matrix B̂1.

(11.5.10)

b
0

0 0

a 1
0
1

1
1

0

A1X1

Y1

B1 =^

Matrix B̂1 derived from B1

We claim that the B̂1 is totally unimodular. For a proof, we perform an
IR-pivot on the 1 of B̂1 in the lower right hand corner. We obtain B1 as
submatrix. Indeed, we see by the pivot that B̂1 represents a 3-sum. One
component is the matroid of B1. The second component is isomorphic to
M(W4), the graphic matroid of the wheel with four spokes. Similarly, if
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needed, we modify B2 to

(11.5.11) 1

c0 d

1
0

0
1 1

Y2

A2

0
0

X2

B2 =^

Matrix B̂2 derived from B2

Consider the 3-sum case involving B̃1 and B̃2. Assume the explicitly shown
1 in one or both of these matrices requires signing. The modifications are
as follows, where ˆ̃B1 (resp. ˆ̃B2) corresponds to B̃1 (resp. B̃2).

(11.5.12)

0

1

g g

0
0

0
1 1

Y2

A2

h
0

X2

~
B2 =
^~

B1 =
^ f f 0

e
0

0
0

0
1

1
1

A1X1

Y1

Matrix ˆ̃B1 and ˆ̃B2 derived from B̃1 and B̃2

We leave it to the reader to verify by IR-pivots that the modifications are
appropriate. Indeed, ˆ̃B1 (resp. ˆ̃B2) of (11.5.12) represents a 3-sum; one
component is represented by B̃1 (resp. B̃2) of (11.5.6), and the second
component is isomorphic to M(W4).

The reader likely anticipates that the analogue of Theorem (11.5.9)
holds for {0, 1} totally unimodular matrices, where this time we permit for
3-sums the cases of (11.5.10)–(11.5.12) besides the ones of (11.5.6). That
guess is correct. But the proof requires some care. For instance, we must
show that the matrices of (11.5.10)–(11.5.12) are always smaller than the
matrix of (11.5.5) produced by them. We must also establish that any one
of the matrices of (11.5.10)–(11.5.12) is graphic or cographic if the related
matrix of (11.5.6) is graphic or cographic. The latter task may seem very
difficult. Indeed, in general it cannot be accomplished, as we find out in
the proof of the next theorem.

(11.5.13) Theorem. Any connected {0, 1} totally unimodular matrix
is up to row and column indices a {0, 1} network matrix, or the transpose
of such a matrix, or the matrix B10.1 of (11.5.1), or may be constructed
recursively by matrix 2-sums and 3-sums. The 2-sum rule is given by
(11.5.4). The 3-sums are specified by the 3-sum rule (11.5.7), except that we

also allow B̂1, B̂2, ˆ̃B1, ˆ̃B2 of (11.5.10)–(11.5.12) as component matrices.
The building blocks are {0, 1} network matrices, their transposes, and the
matrix B10.1 of (11.5.1).
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Proof. We invoke Theorem (11.5.9) and the above derivation of B̂1, B̂2,
ˆ̃B1, ˆ̃B2. The case of B10.2 is not possible since that matrix cannot be

scaled to become a {0, 1}matrix. Thus, we are done, unless B̂1, B̂2, ˆ̃B1, or
ˆ̃B2 is needed, and is of the same size as B or is not graphic or cographic.

Because of pivots, symmetry, and duality, we may select any one of the
above matrices, say B̂1, to eliminate these concerns.

First, we prove that B̂1 is smaller than B. By the proof of Theorem
(11.3.16), the 3-separation (X1∪Y1, X2∪Y2) of B inducing the 3-sum that
in turn produces B̂1 plus B2 or B̂2 satisfies |X1 ∪ Y1|, |X2 ∪ Y2| ≥ 6. But
B̂1 has length |X1 ∪ Y1|+ 5 and thus is smaller than B.

The second part is more complicated. We want to show that B1

graphic or cographic implies B̂1 graphic or cographic. This goal turns
out to be attainable in all cases but one. That exception we handle by a
switch to a different 3-separation of B.

Suppose B1 is graphic. As stated above, B̂1 represents a 3-sum. One
component is the matroid of B1. The second component is isomorphic to
M(W4). We claim that 3-sum to be graphic. Indeed, any graph G for B1

can be converted to one for B̂1 as follows. By (11.5.6), the edges of G not
indexed by X1 ∪ Y1 form a triangle C, say with vertices u, v, w. Then on
an appropriately selected edge of C, say with endpoints u and v, we place
a midpoint and connect that new node with w by a new edge. One easily
verifies that this construction does produce a graph for B̂1.

We examine the second possibility, where B1 is cographic and not
graphic. Thus, B1 is nonplanar. Let H be any graph for the transpose of
B1. By (11.5.6), the edges of H corresponding to the unlabeled rows and
columns of B1 form a cocircuit C∗ of H of cardinality 3.

Assume C∗ to be a 3-star of H. Analogously to the earlier case, one
confirms B̂1 to be cographic, as desired.

Assume C∗ to be not a 3-star of H. Thus, removal of the three edges
of C∗ transforms H to two connected nonempty graphs H1 and H2. Ac-
cordingly, the minor H\C∗ is not 2-connected. That minor corresponds to
the transpose of the submatrix A1 of B1. Thus, the transpose of A1, and
hence A1, are not connected. Indeed, A1 is a 1-sum of two matrices A11

and A12 where A11 corresponds to H1, and A12 to H2. We derive from H
a graph H̃1 (resp. H̃2) by contracting the edges of H2 (resp. H1). In H̃1

and H̃2, the set C∗ is a 3-star. If both H̃1 and H̃2 are planar, then one
easily verifies H to be planar as well, a contradiction of the fact that B1

is cographic and not graphic. Thus, we may assume H̃1 to be nonplanar,
and hence to have at least nine edges. We now redefine the 3-separation
of B by shifting the submatrix A12 of A1 to A2. For the new 3-separation,
the new B1 corresponds to H̃1, and thus is still cographic and not graphic.
But C∗ is now a 3-star of H̃1, so the earlier case applies.

So far, we have seen two applications that involve a rather obvious



11.5. Applications of Regular Matroid Decomposition Theorem 267

translation of Theorem (11.3.16). The next application makes a more so-
phisticated use of that theorem.

Characterization of Cycle Polytope

Given is a connected binary matroid M with groundset E. To each element
e ∈ E, a real weight we is assigned. We want to find a disjoint union C
of circuits of M so that

∑
e∈C we is maximized. This problem occurs in a

number of settings. We describe one, and reference others in Section 11.6.
Let G be a connected graph with edge set E and real weights we,

e ∈ E. We want to partition the vertex set V of G into sets V1 and V2

such that the sum of the weights of the set C∗ of edges connecting V1 and
V2 is maximized. The set C∗ is readily seen to be a disjoint union of the
cocircuits of the graphic matroid M(G) of G. Conversely, any such disjoint
union of cocircuits of M(G) is the set C∗ for some partition of V . Thus,
the graph problem, which usually is called the max cut problem, becomes
the earlier matroid problem with M = M(G)∗.

The matroid problem can be easy or difficult, depending on M and on
the sign of the weights. In general, the problem is known to be NP-hard.
We sketch a polyhedral approach for a special subclass. Let xC be the
characteristic vector for a disjoint union C of circuits of M . Thus, xC is
indexed by E, and the entry in position e ∈ E of xC is equal to 1 if e ∈ C,
and equal to 0 otherwise. We view the xC vectors to be in IRE . Define
P (M) to be the convex hull of the xC vectors. Usually, P (M) is called the
cycle polytope of M . By results of polyhedral combinatorics, we can solve
the given problem efficiently if we can determine whether or not a vector
x ∈ IRE is in P (M), and if for x /∈ P (M) we can provide a hyperplane
that separates x from P (M). As a first step, we thus strive to find linear
inequalities that are satisfied by all points of P (M). We say that such
inequalities are valid for P (M). Notationally, for any subset E ⊆ E, let
x(E) =

∑
e∈E xe.

Obviously, the inequalities

(11.5.14) 0 ≤ xe ≤ 1; e ∈ E

are valid for P (M). We derive additional valid inequalities as follows.
By Lemma (3.3.6), each circuit of M intersects each cocircuit in an even
number of elements. Let C be a disjoint union of circuits, C∗ be a cocircuit,
and F be a subset of C∗ of odd cardinality. We claim that the following
inequality is valid for P (M).

(11.5.15) x(F )− x(C∗ \ F ) ≤ |F | − 1; F ⊆ C∗ = cocircuit; |F | odd.

Since P (M) is the convex hull of the xC vectors, we may establish validity
of (11.5.15) by proving it for x = xC , C being an arbitrary disjoint union
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of circuits of M . If F is not contained in C, then x(F ) ≤ |F | − 1, and
(11.5.15) clearly holds. So assume F ⊆ C. We know that F ⊆ C∗. Since
|F | is odd and |C∩C∗| is even, C has at least one element in C∗ \F . Thus,
once more (11.5.15) holds. We conclude that (11.5.15) is valid.

Define Q(M) to be the subset of IRE defined by the inequalities of
(11.5.14) and (11.5.15). When is P (M) = Q(M)? We sketch the answer to
this question and its proof. First, one shows that P (M) 6= Q(M) if M has
a minor isomorphic to F ∗

7 , M(K5)∗, or R10. Second, one establishes that
P (M) = Q(M) if M is graphic or isomorphic to F7, M(K3,3)∗, or M(G8)∗,
where G8 is given by (10.5.9). Third, one proves that P (M) = Q(M) if M
is a 2-sum or Y-sum of two matroids M1 and M2 for which P (M1) = Q(M1)
and P (M2) = Q(M2). Fourth and last, one concatenates the dual version
of Theorem (10.5.15) and Theorem (11.3.16) to the following result.

(11.5.16) Theorem. Let M be a connected binary matroid having no
F ∗

7 or M(K5)∗ minors. Then M is graphic or isomorphic to F7, M(G8)∗,
M(K3,3)∗ or R10, or may be constructed recursively by 2-sums and Y-sums.
The building blocks are graphic matroids and matroids isomorphic to F7,
M(G8)∗, M(K3,3)∗, and R10.

The four ingredients clearly imply the following conclusion.

(11.5.17) Theorem. Let M be a connected binary matroid. Then
P (M) = Q(M) if and only if M has no F ∗

7 , M(K5)∗, or R10 minors.

References for additional material about P (M) and Q(M) are included
in Section 11.6.

We describe some additional applications of the regular matroid de-
composition theorem without proofs. The first one concerns the number
of nonzeros in the rows of totally unimodular matrices having fewer rows
than columns.

Number of Nonzeros in Totally Unimodular
Matrices

Let A be a totally unimodular matrix, say of size m× n with m ≤ n. For
i = 1, 2, . . . , m, let pi be the number of nonzeros in row i of A. Define
p∗ = min pi. Trivially, p∗ is bounded from above by n, the number of
columns of A. That upper bound is attained by the m × n matrix A
containing only 1s. The example matrix has parallel columns. Thus, one
may conjecture that a tighter upper bound on p∗ may exist in the absence
of parallel columns. The next theorem confirms this conjecture by proving
m, the number of rows of A, to be an upper bound on p∗ when A has no
parallel columns.
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(11.5.18) Theorem. Let A be a totally unimodular matrix of size m×n
with m ≤ n. For i = 1, 2, . . . , m, let pi be the number of nonzeros in row i
of A, and define p∗ = min pi. If A has no parallel columns, then p∗ ≤ m.

Triples in Circuits

The next theorem addresses the following question. Given are three ele-
ments e, f , g of a binary matroid M . When does some circuit of M include
them all?

It is not difficult to reduce the problem to the case where the matroid
is sufficiently connected. For that situation the answer is as follows.

(11.5.19) Theorem. Let e, f , g be distinct elements of a 3-connected
binary matroid M . Assume that M does not have a 3-separation with at
least four elements on each side. Then there is no circuit of M containing e,
f , and g if and only if {e, f, g} is a cocircuit of M or the following condition
holds. M is graphic, and in the corresponding graph, the edges e, f , and
g are edges with a common endpoint.

Odd Cycles

Given is an undirected graph G. What is the structure of G if every two
cycles of G, each of odd length, have a node in common? Here, too, it
is not difficult to reduce the problem to the situation where the graph is
sufficiently connected. The following theorem provides the answer for that
case.

(11.5.20) Theorem. Let G be a 3-connected graph on at least six
vertices and without parallel edges. Assume that G does not have a 3-
separation with at least four edges on each side. Then every two cycles of
G, each with an odd number of edges, have a common vertex if and only
if G observes (i) or (ii) below.

(i) Deletion of some vertex or deletion of the edges of a triangle from G
results in a bipartite graph.

(ii) G can be drawn in the projective plane so that every region is bounded
by an even number of edges.

Another application concerns the construction of the connected, undi-
rected, and signed graphs without so-called odd-K4 minors. Relevant def-
initions and details of the construction are included in Chapter 13.

In the last section, we point out some extensions and identify relevant
references.
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11.6 Extensions and References

The main reference for the entire chapter is Seymour (1980b), which con-
tains Seymour’s decomposition theorem for regular matroids.

Lemmas (11.2.1) and (11.2.9) constitute the easy part of the regular
matroid decomposition theorem. They are due to Brylawski (1975). For
k ≥ 4, k-sums with regular components are not necessarily regular. An
example for k = 4 is given in Truemper (1985b). Intuitively, one is tempted
to argue that regularity of k-sums must be assured when the connecting
matroid is sufficiently large and structurally rich. Indeed, this notion can be
made precise by sufficient conditions that, for any k ≥ 4, assure regularity
of k-sums with regular components. Because of space limitations, we omit
a detailed treatment.

All decomposition results of Section 11.3 either are taken directly from
Seymour (1980b), or are implied by that reference. We have described them
using 3-, ∆-, and Y-sums. Seymour (1980b) relies on ∆-sums.

A very efficient version of the regularity/total unimodularity test of
Section 11.4 is presented in Truemper (1990). Indeed, the algorithm de-
scribed there has the currently best worst-case bound of all known schemes.
Other polynomial algorithms, using different ideas, are given in Cunning-
ham and Edmonds (1978), Bixby, Cunningham, and Rajan (1986), and
Rajan (1986). We should mention that Seymour (1980b) already contains
implicitly a polynomial, though not very efficient, testing algorithm. A
polynomial test for deciding regularity of matroids a priori not known to
be binary is given in Truemper (1982a).

Theorems (11.5.9) and (11.5.13), which are matrix versions of Theo-
rem (11.3.16), are given without proof in Seymour (1985a), and Nemhauser
and Wolsey (1988). Seymour (1985a) uses the hypergraph terminology of
Berge (1973). The polytope question P (M) ?= Q(M) answered by Theorem
(11.5.17) is just one example of numerous questions concerning flows, cir-
cuits, and cutsets in matroids. Seymour (1981a) contains a wide-ranging
investigation of these issues. One of them concerns the sum of circuits
property first defined in Seymour (1979b). It is shown in Seymour (1981a)
that this property holds for a matroid M if and only if M is binary and
has no F ∗

7 , M(K5)∗, or R10 minors. That result, Theorems (10.5.15) and
(11.3.16), and an amazing symmetry of P (M) allow one to completely re-
solve the P (M) ?= Q(M) question by Theorem (11.5.17), which is due to
Barahona and Grötschel (1986). The proof sketched here is from Grötschel
and Truemper (1989b), which contains additional results about P (M) and
treats computational aspects. Earlier results for special matroid classes and
applications are described in Orlova and Dorfman (1972), Edmonds and
Johnson (1973), Hadlock (1975), Barahona (1983), Barahona and Mahjoub
(1986), and Barahona, Grötschel, Jünger, and Reinelt (1988). Additional
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results for the cycle polytope are given in Grötschel and Truemper (1989a).
Theorem (11.5.18) is proved in Bixby and Cunningham (1987). Theorem
(11.5.19) is from Seymour (1986a). Theorem (11.5.20) is due to Lovász and
is included in Gerards, Lovász, Schrijver, Seymour, and Truemper (1991).
References for the odd-K4 result are given in Chapter 13. Additional ap-
plications of the regular matroid decomposition theorem are described in
Seymour (1981d), (1981f). Bland and Edmonds (1978) have used the de-
composition to reduce linear programs with totally unimodular constraint
matrix to a sequence of maximum flow and shortest route problems.



Chapter 12

Almost Regular Matroids

12.1 Overview

So far in this book, we have always used matrices to understand matroids.
We have selected a base of the matroid to be investigated. Then we have
constructed for that base a representation matrix over some field or even an
abstract matrix. Finally, we have analyzed the matrix structure to deduce
matroid results. In the third step, we have employed pivots, in particular
in the path shortening technique, to modify the matrix in agreement with
some change of the matroid base. We have also deleted or added rows and
columns to represent matroid reductions or extensions.

Occasionally, we have reversed the just-described roles of matroids and
matrices. An example is the test of total unimodularity in Section 11.4 via a
test of matroid regularity. A second example is the analysis of the structure
of totally unimodular matrices in Section 11.5 via the structure of regular
matroids. But generally, it seems to be difficult to answer matrix questions
with matroid techniques. In particular, the taking of matroid minors, a
most useful matroid operation, has a cumbersome translation into matrix
language unless one permits pivots. But the pivot operation almost always
changes the matrix structure rather drastically. Thus, pivots often impede
the understanding of matrix structure.

The preceding arguments seem to lead to the inescapable conclusion
that matrix properties generally cannot be conveniently analyzed with ma-
troids. In particular, one is inclined to accept that conclusion in the follow-
ing setting. The matroid property in question, say P, is inherited under

272
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submatrix-taking. One wants to understand the minimal matrices that do
not have P. We call any such matrix a minimal violation matrix of P.

In this chapter, we show that the above reasoning, flawless as it may
seem, is not valid for the investigation of the minimal violation matrices
of certain properties. Indeed, we describe a general matroid technique
for a class of such problems where P observes certain conditions. We
demonstrate the technique for the case where P is the property of regularity.
The method deduces a matroid formulation that involves a class of binary
matroids called almost regular. An analysis of that class produces the
∆Y matroid construction stated earlier in Theorem (4.4.16). Additional
analysis leads to a number of matrix constructions of surprising simplicity.
Two of the constructions generate the minimal violation matrices for the
following two properties: regularity and total unimodularity.

At the outset, the sections of this chapter may appear to be like the
pieces of a puzzle: diverse and seemingly unrelated. Only toward the end of
the chapter do the relationships and functions of the puzzle pieces emerge.
We sketch now the content of each section.

In Section 12.2, we determine for undirected graphs G the minimal
subgraphs that rule out success for a certain signing of the edges of G. The
signing process is supposed to convert G to a graph G′ with edge labels
“+1” and “−1.” The labels are to be such that in every chordless circuit
of G′, the edge labels sum (in IR) to prescribed values specified in a given
vector α. If such signing is possible, then we call the resulting graph G′

α-balanced. The signing condition is then linked to the set N of the binary
minimal violation matrices of regularity. That way, we determine complete
characterizations for two proper subsets of N . We also find an admittedly
weak characterization of the remaining matrices of N .

In Section 12.3, we shift our attention from graphs and the set N to
several matrix classes. In particular, we define the class U of real comple-
ment totally unimodular matrices, the classes A and B of almost represen-
tative matrices over GF(3) and GF(2), respectively, and the class V of real
minimal violation matrices of total unimodularity. The definitions of these
classes will give the impression that they are quite unrelated. But in a way,
these classes as well as N are different manifestations of one and the same
phenomenon: the absence of matroid regularity plus certain minimality
conditions.

Another puzzle piece is introduced in Section 12.4. There we describe
the previously mentioned technique for the investigation of the minimal
violation matrices of certain matrix properties P. We specialize the general
method to the case where P is the property of regularity. As a result,
we define the class of almost regular matroids. We state and sketch a
proof of the construction of the almost regular matroids via ∆Y extension
sequences. The latter result should be familiar since a summary is included
in Section 4.4.



274 Chapter 12. Almost Regular Matroids

The odd and unrelated puzzle pieces of Sections 12.2–12.4 are merged
to a rather beautiful picture in Section 12.5. The almost regular matroids
are seen to be the matroid manifestation of the matrices of the classes of
A, B, N , U , and V. In particular, the construction of the almost regular
matroids via ∆Y extension sequences produces an elementary construc-
tion of the class U of complement totally unimodular matrices. With U in
hand, we very easily construct the remaining classes A, B, N , and V. We
thus have a construction for the binary minimal violation matrices of reg-
ularity, and for the real minimal violation matrices of total unimodularity.
In the final section, 12.6, we sketch applications and extensions, and cite
references.

The chapter assumes knowledge of Chapters 2, 3, 4, 9, and 10.

12.2 Characterization of Alpha-Balanced

Graphs

We are given an undirected graph G. For each chordless circuit C of G,
we are given an integer number αC = 0, 1, 2, or 3. We collect the αC in a
vector α. To each edge of G, we want to assign the label +1 or −1 so that
in the resulting graph G′ the real sum of the edge labels of each chord-
less cycle C is congruent (mod 4) to αC . When such labels can be found,
we say that G′ is α-balanced. Suppose an α-balanced G′ cannot be pro-
duced. Then G apparently contains a configuration of chordless cycles with
conflicting requirements. In this section, we identify the possible sources
of such conflicts. Specifically, we pinpoint three subgraph configurations
that collectively represent the minimal obstacles to α-balancedness. In the
last portion of the section, we specialize that result for the case when α
is the zero vector. That specialization leads to a characterization of the
binary matrices that may be signed to become so-called balanced {0,±1}
real matrices. From the latter characterization, we deduce a partition of
the class N of the binary minimal violation matrices of regularity. The
partition consist of three subclasses. Two of them are well described, and
indeed are readily constructed. But the third subclass has a rather unsat-
isfactory characterization. One could say that the subsequent sections of
this chapter are devoted to replacing that unsatisfactory description with
a mathematically appealing and practically useful one.

We begin with the detailed technical discussion. We use a number of
terms that we define in the next few paragraphs.

It is convenient for us to consider every graph to be undirected and
to have a priori a +1 or −1 label on each edge. If nothing is said about a
graph, then all labels are assumed to be +1. Thus, the previously described
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assignment of {±1} labels to G becomes a change of some edge labels. That
change we call a signing of G. We scale a star of G by multiplying the edge
labels of that star by −1. We scale G by a sequence of scaling steps, each
one involving some star of G. The label sum of a subgraph G is the real
sum of the labels of the G edges. That sum is denoted by L(G).

The emphasis on nodes in this section demands that we temporarily
abandon our usual viewpoint where nodes are edge subsets. Thus, we view
nodes as points, and consider edges to be unordered node pairs. That
approach is reasonable since we never have to deal with the contraction
operation or with parallel edges. We still view trees, paths, and cycles to
be given by their edge sets. Most subgraphs will be induced by some node
subset. We use n-subgraph to specify that case. Special instances are n-path
and n-cycle. If G is a subgraph of G but not an n-subgraph, then G has
an edge that is not in G, but both of whose endpoints are in G. Such an
edge is a G-chord for G.

Let α be an integer vector whose entries are in one-to-one correspon-
dence with the n-cycles of a graph G. Throughout, it is assumed that each
entry of α is 0, 1, 2, or 3. Then G is α-balanced if for each n-cycle C the la-
bel sum L(C) satisfies L(C) ≡ αC(mod4). Note that scaling in G changes
L(C) by a multiple of 4, and thus does not affect α-balancedness. Suppose
a graph G has only +1s as edge labels and is not α-balanced. Then possi-
bly an α-balanced graph G′ can be deduced from G by signing. The label
changes of edges in an n-cycle C, say producing C′, modify L(C) for some
integer k to L(C′) = L(C) + 2k = |C|+ 2k. Thus, if L(C′) ≡ αC(mod 4) is
to be achieved at all, then necessarily |C| ≡ αC(mod2). From now on, we
assume that any α satisfies this necessary condition.

The relation “is an n-subgraph of” is transitive. In particular, every
n-cycle of an n-subgraph of G is an n-cycle of G. Let α be given for G. By
the above observation, it makes sense to apply the term “α-balanced” not
just to G, but also to n-subgraphs of G. In particular, α-balancedness of
an n-cycle C of G means L(C) ≡ αC(mod4). We also say in that case that
C agrees with α.

One may suspect that signing to achieve α-balancedness is essentially
unique. The next lemma confirms this notion. The proof is almost identical
to that of Lemma (9.2.6).

(12.2.1) Lemma. Let G and G′ be connected α-balanced graphs that
are identical up to edge labels. Then G′ may be obtained from G by scaling.

Proof. Let T be a tree of G, and T ′ be the corresponding tree of G′.
Because of scaling, we may suppose that the labels of G and G′ agree on
the edges of T and T ′. Suppose the labels of G and G′ differ, say on an
edge e of G and on the corresponding edge e′ of G′. The edges e and e′

form fundamental cycles C and C′ with T and T ′, respectively. Select T
and e, and thus T ′ and e′, so that the cardinality of the cycles is minimum.
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Suppose C and C′ have chords. By the minimality condition, the label of
any chord of C must agree with that of the corresponding chord of C′. But
then C and C′ do not have minimum cardinality, a contradiction. Thus,
C and C′ are chordless cycles with labels in agreement except for e and e′.
But then L(C) and L(C′) differ by ±2, and necessarily L(C) 6≡ αC(mod4)
or L(C′) 6≡ αC(mod 4), a contradiction.

In this section, the drawings of graphs follow special rules. A solid
straight line connecting two nodes represents an edge, while a solid line with
a short zigzag segment indicates a path where all intermediate nodes have
degree 2. A broken line represents a path connecting the two endpoints
of the broken line, and two or more such paths may have one or more
intermediate nodes in common. However, the path of a broken line has no
intermediate node in common with any node explicitly shown. The labels
on edges are always omitted.

Of particular interest are the following graphs.

(12.2.2)

etc.

etc.

Q2

Qk Q1

1

2k

3

Q1 Q2 0may
exist

Q3

|Qi| ≥ 3, odd k ≥ 3, odd
H0 H1 H2

Graphs of type H0, H1, and H2

With the aid of the following lemma, it is easy to check whether or not a
graph G of type H0, H1, or H2 may be signed to become α-balanced for a
given α.

(12.2.3) Lemma. The following statements are equivalent for a graph
G of type H0, H1, or H2, and a given α.

(i) G can be signed so that an even (resp. odd) number of n-cycles do not
agree with α.

(ii) G can be signed so that every n-cycle (resp. every n-cycle except a
designated one) agrees with α.

Proof. It is easily seen that one can always sign H0, H1, and H2 such that
at most one designated n-cycle does not agree with α. Now every edge of
H0, H1, and H2 is part of exactly two n-cycles, and hence every signing of
G produces the same number (mod2) of n-cycles that do not agree with
α.
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The main theorem of this section follows. It establishes the central
role of n-subgraphs of type H0, H1, and H2 when one wants to achieve
α-balancedness by signing.

(12.2.4) Theorem. For a given vector α, a graph G may be signed to
become α-balanced if and only if every n-subgraph of type H0, H1, and H2

can be so signed and αC ≡ |C|(mod2) for every n-cycle C of G.

We prove the theorem in a moment. As an aside, we mention a corol-
lary that rephrases the theorem in terms of edge subsets.

(12.2.5) Corollary. Let β be a {0, 1} vector whose entries are in one-
to-one correspondence with the n-cycles of a graph G. Then there exists a
subset F of the edge set of G such that |F ∩C| ≡ βC(mod2), for all n-cycles
C of G, if and only if the latter condition is true for all n-subgraphs of type
H0, H1, and H2 of G.

Proof. For each n-cycle C of G, define αC = 2βC − |C|(mod4). We call
the requirement |F ∩C| ≡ βC(mod2) the β-condition. Obviously, we only
need to prove the “if” part of the corollary. Thus, we assume that the
β-condition can be satisfied for each n-subgraph H of type H0, H1, or
H2, say by edge subset FH of H. Sign H so that precisely the edges of
FH receive a +1. By the definition of α and by the β-condition, for any
n-cycle C of H there are integral lC and kC such that |FH ∩ C| + 2l =
βC = (αC + 4kC + |C|)/2. Because of this equation and the signing rule
for H, L(C) = 2|FH ∩ C| − |C| ≡ αC(mod4). Thus, H is α-balanced. By
Theorem (12.2.4), G can be signed to become α-balanced. Consider G to
be so signed. Let F be the subset of edges of G with +1 label. Since for
any n-cycle C we have L(C) ≡ αC(mod 4), there are integers kC and lC
so that |F ∩ C| = (αC + 4kC + |C|)/2 = βC + 2lC . Thus, F satisfies the
β-condition.

We accomplish the proof of Theorem (12.2.4) in two steps. First we
prove a rather technical lemma. Let G be a graph without parallel edges,
and P0 be a path of G where all intermediate nodes have degree 2. For a
given vector α, the graph G is almost α-balanced with respect to P0 if all
n-cycles of G that do not contain P0 agree with α.

(12.2.6) Lemma. Let G be a graph without parallel edges, and let vector
α be given. Suppose that every n-subgraph of type H0, H1, or H2 of G
can be signed to become α-balanced, and that G is almost α-balanced with
respect to a given P0. Assume C1 and C2 are n-cycles of G that include P0,
and let P3 ⊆ C1 ∩C2 be a path of maximal cardinality satisfying P0 ⊆ P3.
If one of the n-cycles C1, C2 agrees with α, then the other n-cycle agrees
with α as well, provided one of the following conditions is satisfied:

(a) |P3| ≥ 2;
(b) |P3| = 1 and (C1 ∪ C2)− P3 is not an n-cycle of G− P3.
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Proof. The proof is by induction on |P3|. The lemma holds trivially for
the maximal value that |P3| may take on since then C1 = C2. Hence, we
will prove validity for |P3| = l assuming that the lemma holds whenever
|P3| ≥ l + 1. In the nontrivial case, we have C1 6= C2. Thus, the endpoints
u and v of P3 have degree 3 in G = C1∪C2. The graph G is depicted below.
P1, P2, and P3 are the three paths u to v, and for i = 1, 2, Ci = Pi ∪ P3.

(12.2.7)

u

v

P1 P2 P3

Graph G

Note that (C1 ∪ C2) − P3 is the set P1 ∪ P2. Furthermore, |P1| ≥ 2 since
C2 is an n-cycle of G. Similarly, |P2| ≥ 2. It will be convenient to consider
two cases.
(1) |P1| or |P2| = 2.

Without loss of generality, suppose |P1| = 2. Since C2 is an n-cycle,
the intermediate node of P1, say w, cannot be a node of P2. Addition of
all edges of G from w to intermediate nodes of P2 produces the following
n-subgraph G of G.

(12.2.8)

u

v

wP1 P2 P3
etc.

Graph G

If |P3| = 1, then w of G has degree of at least 3 since otherwise (C1∪C2)−P3

is an n-cycle of G − P3. Thus, G is a graph of type H1 or H2, and all n-
cycles of G are α-balanced except possibly for C1 and C2, since G is almost
α-balanced.

By assumption, G can be signed to become α-balanced. So by Lemma
(12.2.3), C2 must agree with α if C1 does, and vice versa.
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(2) Both |P1|, |P2| ≥ 3.

For i = 1, 2, let ai, bi be the vertices of Pi adjacent to u, v, respectively.
Thus, G is as follows.

(12.2.9)

u

v

P1 P2 P3

a1

b1

a2

b2

Graph G

Clearly, u, v, a1, a2, b1, b2 are all distinct. Suppose there is a path in
G−P3 from u to v using only vertices of P1 ∪P2 and also avoiding a2 and
b1. Then there exists an n-path P with these properties, and P ∪ P3 is an
n-cycle C of G. Now C ∩C1 contains a path that in turn properly contains
P3. Thus, by induction and part (a), C agrees with α if and only if C1

does. The same conclusion holds for C and C2, so C1 and C2 both agree
with α or both do not. Hence, we may suppose that there is no such P .
Then P1 and P2 have no vertex in common except for u, v. Also, every
(G−P3)-chord for the cycle P1 ∪P2 is incident with a2 or b1. If there is no
such chord, we must be in case (a) of the lemma, and C1 ∪ C2 is a graph
of type H1. Since P1 ∪ P2 agrees with α, we again have the desired result
by Lemma (12.2.3). Hence, suppose there exists at least one such chord.
Repeat the above argument, but this time try to find a P avoiding a1 and
b2. If again we are unsuccessful, then the (G− P3)-chords for P1 ∪ P2 are
found only at a1 or b2. Thus, there are at most two such chords, one from
a1 to a2, the other from b1 to b2, and C1 ∪C2 must be a graph of type H0.
All n-cycles agree with α except at most C1 and C2, so Lemma (12.2.3)
produces the desired conclusion.

Proof of Theorem (12.2.4). For proof of the nontrivial “if” part, it is
sufficient to consider the case where all edges but those incident at some
node m have been signed such that G−{m} is α-balanced. We want to sign
the edges of G incident at m so that G becomes α-balanced. Let C1 and
C2 be two n-cycles of G, each containing edges (i, m) and (j, m) for some
i and j. Derive G1 from G by deleting all neighbors of m not equal to i or
j. Clearly, C1 and C2 are contained in G1, and G1 is almost α-balanced
with respect to P0 = {(i, m), (j, m)}. Since G1 is an n-subgraph of G,
every n-subgraph of type H0, H1, or H2 of G1 can be signed to become
α-balanced. So by Lemma (12.2.6), C1 and C2 agree with α or they both
do not.
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Define a graph J , also with {±1} arc labels, from G as follows. Each
edge of G incident at node m becomes a node of J . An arc connects two
nodes of J if the corresponding edges of G are part of at least one n-cycle
C of G. This arc is signed +1 if C agrees with α, and −1 otherwise. By the
previous argument, the classification of each arc of J is well-defined. For
clarity we use “arc” (resp. “edge”) in connection with J (resp. G). Suppose
we change the sign of edge (i, m) in G. In J , we must change the sign on
all arcs incident at node (i, m), so this is a scaling step. Conversely, scaling
in J leads to signing of edges in G incident at m. Clearly, it is possible to
scale J such that all arcs of a given forest have +1 labels. Furthermore,
note that a given cycle of J has an even number of −1 arcs if and only if
that is true after scaling.

It is claimed that every cycle of J has an even number of −1 arcs. It
is sufficient to prove the claim for an n-cycle CJ of J . We will consider two
cases depending on k = |CJ |.
(1) k ≥ 4.

By definition of J , the graph G contains the following subgraph G,
where each path Qi forms an n-cycle Ci with edges (i, m) and (i + 1, m)
(k + 1 is interpreted as 1).

(12.2.10)
etc.

etc.

Q2

Qk Q1

1

2k

3
m

Graph G, case (1)

It is claimed that CG =
⋃k

i=1 Qi is an n-cycle of G. We first show that CG

is a cycle. Suppose Q1 and Qj have a node u in common, where u 6= 2 if
j = 2, and where without loss of generality j 6= k. Since Ci is an n-cycle,
for any i we have v 6∈ Qi, where v 6= i, i + 1 is a neighbor of m in G.
Hence, u is not equal to any endpoint of Q1 or Qj . If j 6= 2, define P to
be composed of the paths from 1 to u on Q1 and u to j on Qj . Clearly, P
contains no neighbor v of m except for nodes 1 and j, and we may replace
it by an n-path P observing the same condition. But P and the edges
(1, m), (j, m) form an n-cycle of G. But then, since j 6= k, CJ cannot be
an n-cycle of J . If j = 2, P is composed of paths 1 to u on Q1 and u to 3
on Q2 (= Qj). Again, we conclude that CJ is not an n-cycle of J . Hence,
CG must be a cycle of G. Similar arguments prove that CG is indeed an
n-cycle of G. Since G is an n-subgraph of G of type H2, it can be signed
to become α-balanced. By Lemma (12.2.3), an even number of n-cycles of



12.2. Characterization of Alpha-Balanced Graphs 281

G do not agree with α. CG cannot be one of these, since it is an n-cycle of
G − {m}. The Ci, i = 1, 2, . . . , k, constitute the remaining n-cycles of G.
The fact that an even number of the Ci do not agree with α, results in an
even number of −1 arcs in the n-cycle CJ of J .

(2) k = 3.

Again, G has G of (12.2.10) as a subgraph. If CG =
⋃3

i=1 Qi is an n-
cycle of G, then arguments as for the case k ≥ 4 yield the desired conclusion.
So suppose Q1 and Q2 prevent CG from being an n-cycle, i.e., Q1 and Q2

have a node i 6= 1, 2, 3 in common, or there exists a G-chord for Q1 ∪Q2.
Define P0 = {(2, m)}, P1 = Q1 ∪ {(1, m)}, and P2 = Q2 ∪ {(3, m)}. Graph
G =

⋃2
i=0 Pi is shown below.

(12.2.11)

m

2

P1 P2 P0

1 3

Graph G, case (2)

Derive G1 from G by deleting all neighbors of m not equal to 1, 2, or 3.
Clearly, Ci = P0 ∪ Pi, i = 1, 2, is contained in G1. Because of scaling in
J , we may suppose that the arc of J connecting nodes (1, m) and (3, m)
has a +1 label. This implies that every n-cycle C of G containing edges
(1, m) and (3, m) agrees with α, and G1 is therefore almost α-balanced
with respect to P0. Furthermore, every n-subgraph of G1 of type H0, H1,
or H2 can be signed to become α-balanced. Since P1 ∪P2 is not an n-cycle
of G1 − P0, either part (a) or part (b) of Lemma (12.2.6) holds, and C1

agrees with α if and only if C2 does. But this implies that CJ has an even
number of −1 arcs.

The remainder is simple. We scale J so that all arcs of an arbitrarily
selected forest T of J receive +1 labels. Then all out-of-forest arcs must
also have +1 labels, since otherwise a cycle with an odd number of −1 arcs
has been found. Related signing in G results in an α-balanced graph.

One application of Theorem (12.2.4) is as follows. Call a binary matrix
B balancedness-inducing if its 1s can be replaced by ±1s so that the result-
ing real matrix A satisfies the following requirement. For each k ≥ 2, each
k × k submatrix of A of the form given by (12.2.12) below must have real
determinant 0. By Lemma (9.2.4), the determinant condition is equivalent
to the demand that the entries of the submatrix sum to 0(mod4).
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(12.2.12) ±1
±1 ±1
±1 ±1

±1
±1±1

.

. .
.

Matrix whose bipartite graph
is a chordless cycle

The next theorem characterizes the class of balancedness-inducing bi-
nary matrices. As we shall see, the proof requires one easy application of
Theorem (12.2.4).

(12.2.13) Theorem. A binary matrix B is balancedness-inducing if and
only if B does not have a submatrix B such that BG(B) is one of the
graphs H1 or H2 below.

(12.2.14)
etc.

etc.

Q2

Qk Q1

1

2k

3

Q1 Q2 0
Q3

|Qi| ≥ 3, odd k ≥ 3, odd
H1 H2

Graphs of type H1 and H2

for balancedness-inducing matrix case

Proof. Let B be a binary matrix. Define G to be the bipartite graph
BG(B) with additional +1 labels on the edges. Each n-cycle of G corre-
sponds precisely to a {0, 1} submatrix of B that looks like the matrix of
(12.2.12) except for the signs of the entries. Signing B to produce an A
with the desired property is equivalent to signing G so that each n-cycle
C of the resulting graph has L(C) ≡ 0(mod4). Put differently, an appro-
priate signing of B is possible if and only if G can be signed to become a
0-balanced graph, say G′. We call G′ as well as the related {0,±1} signed
real version of B balanced. By Lemma (12.2.1), G′ is unique up to scaling.
The latter operation corresponds to scaling of some rows and columns of
A by −1 factors. Thus, up to such scaling, the matrix A is unique. The
proof of Lemma (12.2.1) implies a simple scheme to effect the signing if it
is possible at all.

By Theorem (12.2.4), G′ and thus A exist if and only if every n-
subgraph of G of type H0, H1, or H2 (see (12.2.2)) can be signed to become
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balanced. The graph H0 is not bipartite, so it cannot be present in the
bipartite G. For the same reason, the paths Q1, Q2, and Q3 of any H1

n-subgraph must have the same parity. One readily sees that H1 with a +1
label on each edge has an odd number of circuits C with L(C) ≡ 0(mod4)
if and only if for i = 1, 2, 3, |Qi| is odd and at least 3. By Lemma (12.2.3),
the latter condition characterizes the H1 graphs that cannot be signed to
become balanced. Corresponding arguments for H2 show that H2 cannot
be signed to become balanced if and only if k, which is the number of
spokes of the wheel-like graph, is odd and at least 3.

Balancedness-inducing matrices are related to regular ones as follows.

(12.2.15) Lemma. Let B be a regular matrix. Then B is balancedness-
inducing. Furthermore, any balanced {0,±1} real matrix derived from B
by signing is totally unimodular.

Proof. Regularity implies that a totally unimodular matrix A can be de-
duced from B by signing. By Lemma (9.2.4), every k×k, k ≥ 2, submatrix
A equal to the matrix of (12.2.12) must have its entries sum to 0(mod4).
Thus, A is balanced. As observed above, any balanced matrix A′ derived
from B by signing must be obtainable from A by scaling. Thus, A′ is
totally unimodular.

Suppose we want to characterize the class N of binary minimal viola-
tion matrices of regularity. Theorem (12.2.13) and Lemma (12.2.15) bring
us quite close to that goal, as follows.

(12.2.16) Theorem. Let N be the class of binary minimal violation
matrices of regularity. Then N has a partition into the following three
subclasses N1, N2, N3.

(a) N1 (resp. N2) is the set of binary matrices B for which BG(B) is a
graph of type H1 (resp. H2) of (12.2.14).

(b) N3 is the set of binary balancedness-inducing matrices B satisfying
the following condition. Any balanced {0,±1} real matrix A derived
from B by signing is a minimal violation matrix of total unimodularity
with at least three ±1s in some row and in some column.

Proof. Let B be any matrix in N . Thus, B is not regular, but every
proper submatrix of B is regular. Suppose B is not balancedness-inducing.
By Theorem (12.2.13), BG(B) has as n-subgraph a graph H of type H1 or
H2 of (12.2.14). Since H cannot be signed to become balanced, by Lemma
(12.2.15) we must have BG(B) = H. Thus, B ∈ (N1 ∪N2).

Now suppose B to be balancedness-inducing. Let A be any real {0,±1}
balanced matrix obtained from B by signing. Since B is not regular, A can-
not be totally unimodular. Since every proper submatrix of B is regular, by
Lemma (12.2.15) every proper submatrix of A is totally unimodular. Thus,
A is a minimal violation matrix of total unimodularity. The nonregularity



284 Chapter 12. Almost Regular Matroids

of B implies that B is not graphic or cographic. Thus, B has a row and a
column with at least three 1s. Then A has at least three ±1s in some row
or column. We conclude that B ∈ N3.

So far we have shown that N ⊆ N1 ∪ N2 ∪ N3. It is easy to see by
(12.2.14) that any B ∈ (N1 ∪ N2) is a minimal nonregular matrix. Thus,
N1 ∪ N2 ⊆ N . Let B ∈ N3. By definition, every proper submatrix of B is
regular. If B is regular, then by Lemma (12.2.15) any balanced matrix A
induced by B is totally unimodular. But this violates the definition of N3.
Thus, N3 ⊆ N .

At this point, we know N = N1 ∪ N2 ∪ N3. By Theorem (12.2.13),
N1 ∪N2 consist of the minimal binary matrices that are not balancedness-
inducing. The matrices of N3 are by definition balancedness-inducing.
Thus, N1 ∪ N2 and N3 are disjoint. By (12.2.14), N1 and N2 are disjoint
as well. Thus, N1, N2, and N3 partition N as claimed.

Theorem (12.2.16) is a substantial step toward the goal of understand-
ing the class N of binary minimal violation matrices of regularity. Indeed,
the subclasses N1 and N2 of such matrices have a simple and appealing
description. But the characterization of the remaining class N3 in terms
of minimal violation matrices of total unimodularity has little value unless
we understand the latter matrices. In the next section, we take small but
nevertheless useful steps toward understanding those matrices.

12.3 Several Matrix Classes

We define four classes of matrices. Each of them is connected in some way
with the binary minimal violation matrices of regularity. We point out the
relationships as the classes are introduced one by one. Their significance
will become apparent in Sections 12.4 and 12.5.

Complement Totally Unimodular Matrices

We begin with {0, 1} real matrices. For such a matrix U , we may define the
following complement operations. Let k index a row of U . Then the row
k complement of U is the real {0, 1} matrix U ′ derived from U as follows.
For all column indices j with Ukj = 1 and for all row indices i 6= k, replace
the entry Uij by its complement, i.e., 1 by 0, and 0 by 1. Let l index a
column of U . Then the column l complement of U is the transpose of the
row l complement of U t.
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For example, if U is the 4× 4 identity with indices k and l as shown,

(12.3.1)
U =

1k
l

0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Matrix U

then the row k complement of U is the matrix U ′ below.

(12.3.2) U' =

1 0 0 0
1
1
1

1 0 0
0 1 0
0 0 1

Row k complement of U

The column l complement of U ′ is the following matrix U ′′.

(12.3.3) U'' =

1
1 0
1
1

1

1
1

1
1
0
1

1
1
1
0

Column l complement of U ′

How many different matrices, up to indices, may be derived from an m×n
{0, 1} matrix U in a sequence of complement operations? The answer relies
on two readily verified claims. For k 6= l, let U ′ be the row k complement
of U , and let U ′′ be the row l complement of U . Then up to a change of
indices, the row l complement of U can be seen to be U ′′. Suppose one
obtains a matrix from U by a row complement step followed by a column
complement step. Then the same matrix results if one reverses the order
of the two steps. By these two claims, any matrix obtainable from a given
m × n {0, 1} matrix U in a sequence of complement operations may up
to indices be produced by at most one row complement step and/or one
column complement step. Thus, at most (m+1)(n+1) numerically different
matrices may be deduced from U by repeated complement steps.

With respect to total unimodularity, the complement operation can be
very destructive. For example, U of (12.3.1) is the 4× 4 identity, and thus
totally unimodular. Consider the matrix U ′′ of (12.3.3) deduced from U by
two complement steps. In the right-hand corner, U ′′ has a 3× 3 submatrix
with real determinant 2. Thus, U ′′ is not totally unimodular.

We define a real {0, 1} matrix U to be complement totally unimodular
if U and all matrices derivable from U by possibly repeated complement op-
erations are totally unimodular. Clearly, complement total unimodularity
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is maintained under submatrix-taking and complement operations. We col-
lect the complement totally unimodular matrices in a set U . By the above
observation and examination of a few additional examples, one quickly
sees that complement total unimodularity is a very demanding property.
In fact, one is inclined to believe that there are only a few structurally
different complement totally unimodular matrices. But that notion turns
out to be mistaken, as we shall see in Section 12.5.

Complement total unimodularity of U implies that certain extensions
of U are totally unimodular as follows.

(12.3.4) Lemma. Let U be a real {0, 1} matrix that is complement
totally unimodular. Enlarge U to a matrix U ′ by adjoining a row or column
containing only 1s. Then U ′ is totally unimodular.

Proof. Let U be any square submatrix of U ′. We must show that detIR = 0
or ±1. In the nontrivial case, U intersects the vector of 1s adjoined to U . A
real pivot on any 1 of that vector followed by deletion of the pivot row and
column produces a matrix U . One readily confirms that, up to scaling by
{±1} factors, U is a submatrix of a row or column complement of U . Thus,
U is totally unimodular, and hence detIR U = 0 or ±1 as desired.

Almost Representative Matrices

We change fields and consider matrices over GF(3) or GF(2). Let A be a
matrix over GF(3), and B its support matrix. View B to be over GF(2).
Let M be the ternary matroid represented by A over GF(3), and N be the
binary matroid represented by B over GF(2). By the derivation of B from
A, certain sets are bases of both M and N . In fact, the two matroids may
be identical. Suppose they are not. If there is just one set that is a base of
one of the matroids and not of the other one, then we say that A almost
represents N over GF(3), and that B almost represents M over GF(2). One
may re-express the assumption as follows. The GF(3)-determinant of each
square submatrix of A is nonzero if and only if the GF(2)-determinant
of the corresponding square submatrix of B is nonzero, except for one
square submatrix A of A and for the corresponding submatrix B of B. By
Corollary (3.5.3), we know that det3 A 6= 0 and det2 B = 0. The arguments
to come will confirm this fact.

Suppose we perform a GF(3)-pivot on a ±1 of A in A. We also carry
out the corresponding GF(2)-pivot on the related 1 of B in B. In the ma-
trices so deduced from A and B, the difference between M and N manifests
itself by submatrices A and B that are smaller than A and B. Indeed, had
we carried out the respective pivots just in A and B and deleted the pivot
row and column, we would have obtained A and B. Because of this reduc-
tion possibility, we may assume A and B to be of order 2×2. A simple case



12.3. Several Matrix Classes 287

analysis of the 2 × 2 matrices proves that the difference in determinants
between A and B can be produced in essentially one way. That is, we must
have, up to scaling in A,

(12.3.5) 1
1 1

1
B =

-1
1 1

1
A = ;

Submatrices A and B proving M 6= N

Thus, det3 A 6= 0 and det2 B = 0, as predicted by Corollary (3.5.3). Ev-
idently, the same relationship must have held prior to any pivots. The
reader who has covered Section 3.5 surely recognizes the similarity of the
above arguments to those of the proof of Theorem (3.5.2) and Corollary
(3.5.3). Here we have a GF(3)-matrix A instead of the abstract matrix of
Section 3.5.

We continue with A and B given by (12.3.5). We perform one more
GF(3)-pivot on a ±1 of A in A, and also carry out the related GF(2)-pivot
in B. This change effectively reduces A to a 1 × 1 matrix A, and B to a
1 × 1 matrix B, for which det3 A 6= 0 and det2 B = 0. Thus, B = [ 0 ].
Because of scaling of A, we may assume A = [−1].

Before going on, we record the insight attained so far in the following
lemma.

(12.3.6) Lemma. Let A be a matrix over GF(3). View the support
matrix B of A to be over GF(2). Assume that the GF(3)-determinant of
each square submatrix of A is nonzero if and only if the GF(2)-determinant
of the corresponding submatrix of B is nonzero, with the exception of just
one submatrix A in A and the related submatrix B in B, both of order
k ≥ 2. Then by GF(3)-pivots within the submatrix A and scaling, and by
corresponding GF(2)-pivots in B, the matrices A and B can be transformed
to matrices with determinants agreeing analogously to A and B, except for

a submatrix A = [−1] and B = [ 0 ].

For notational convenience, we now redefine A and B to be the ma-
trices produced by the pivots. Thus, A = [−1] is a submatrix of A, and
B = [ 0 ] is the related submatrix of B. We want to analyze the structure
of A and B. To this end, let y be the row index of A and of B, and let
x be the column index. Assume that X (resp. Y ) is the index set of the
remaining rows (resp. columns) of A and B. Also assume that A has no
zero rows or columns. Recall that 1 denotes a column vector containing
only 1s. We claim that up to row and column scaling of A, the matrices A
and B are of the form given by (12.3.7) below, where U is a {0, 1} matrix
viewed to be over GF(3) or GF(2) as needed.



288 Chapter 12. Almost Regular Matroids

(12.3.7) 0y
;

-1
x Y

y

X
A =

U1

1t
x Y

X
B =

U1

1t

Matrix A over GF(3) for M ,
and matrix B over GF(2) for N

The claim plus additional facts make up the next theorem.

(12.3.8) Theorem.
(a) Let A be a matrix over GF(3) without zero rows or columns, and let

B be a matrix over GF(2) of the same size and with the same row and
column indices. Assume that the GF(3)-determinant of each square
submatrix of A is nonzero if and only if the GF(2)-determinant of
the corresponding submatrix of B is nonzero, except for one 1 × 1
submatrix A = [−1] of A and the corresponding submatrix B = [ 0 ] of
B, say with row index y and column index x. Let the remaining rows
of A be indexed by X , and the remaining columns by Y . Then up to a
scaling of rows and columns of A, the matrices A and B are given by
(12.3.7), where U is a {0, 1} matrix to be viewed over GF(3) or GF(2)
as needed. When U is considered to be real, then it is complement
totally unimodular.

(b) Let A and B be the matrices of (12.3.7). The column x and the row
y must be present, but X or Y may be empty. Assume that the
submatrix U of either matrix is a {0, 1} matrix that is complement
totally unimodular when considered real. View A to be over GF(3),
and B to be over GF(2). Then the GF(3)-determinant of each square
submatrix of A is nonzero if and only if the GF(2)-determinant of
the corresponding submatrix of B is nonzero, except for the 1 × 1
submatrix A = [−1] of A indexed by x and y, and the corresponding

submatrix B = [ 0 ] of B.

Proof. We establish part (a). A and B of (12.3.7) correctly display A and
B. Suppose column x of A contains a 0, say in row i ∈ X . Since A has no
zero rows, there is a j ∈ Y with Aij = ±1. From the rows x, i and from
the columns y, j of A and B, we extract the submatrices

(12.3.9) ;-1x
y j

0i

γ
A =

±1 i
x 0

y j

0
δ

B =
1

Submatrices A and B of counterexample
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We ignore the entries γ and δ. Indeed, for any γ and δ, we have det3 A 6= 0
and det2 B = 0, which contradicts the presumed agreement of determi-
nants. Thus, by scaling in A, we may assume that column x of A and
column x of B contain only 1s except for the entry of A or B in row y. By
symmetry, we also may assume that the row y of A and the row y of B
contain only 1s except for the entry in column x.

It remains for us to prove that U is a {0, 1} matrix that occurs in
both A and B, and that U , when viewed as real, is complement totally
unimodular. If U of A contains a −1, say in row i and column j, then rows
x, i and columns y, j of A define a 2 × 2 GF(3)-singular submatrix of A.
But in B, these rows and columns specify a GF(2)-nonsingular submatrix,
a contradiction. Thus, U in A is a {0, 1} matrix. Because of the agreement
of determinants of A and B, the matrix U must also occur in B, this time
considered over GF(2), of course. By Theorem (9.2.9), the agreement of
determinants on U when viewed over GF(3) and GF(2) implies that U as
real matrix is totally unimodular.

Suppose we perform a GF(2)-pivot in column x, row i of B of (12.3.7).
The latter matrix is like B except that the indices x and i have traded
places and U has been replaced by its row i complement U ′. We perform
the analogous GF(3)-pivot in A. That pivot plus some scaling with {±1}
factors produces a matrix A′ that is like A except that the indices x and
i have switched and U has become U ′. The determinants of A′ and B′

agree analogously to A and B, except for the [−1] submatrix in row y and
column i of A′ and the corresponding [ 0 ] submatrix of B. By the preceding
discussion, U ′ must be totally unimodular. Using additional pivots, we see
that U as real matrix is complement totally unimodular.

We turn to part (b). Let C be a square submatrix of A, and let D be
the corresponding submatrix of B. We must show that det3 C is nonzero
if and only if det2 D is nonzero, with the single exception of C = A and
D = B. Suppose C intersects at most one of column x and row y of A. By
the complement total unimodularity of U and Lemma (12.3.4), the matrix
C is totally unimodular. By Theorem (9.2.9), the determinants of C and
D agree as desired. This leaves the case where C and D properly include
A and B, respectively. Carry out a GF(3)-pivot on any 1 in column x of
C. Then delete the pivot row and column. Let a matrix C′ result. Cor-
respondingly, reduce D by a GF(2)-pivot to D′. Up to scaling by {±1}
factors in C′, both reduction steps produce a submatrix of a row comple-
ment of U with an additional row of 1s adjoined. By the above discussion,
the determinants of C′ and D′, and hence of C and D, agree.

The above proof contains an observation that we want to record as a
lemma for future reference.

(12.3.10) Lemma. Let B be the matrix over GF(2) of (12.3.7). Then
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a GF(2)-pivot in column x or row y of B transforms B to a matrix B′

structured like B, except that a row index and a column index have traded
places and U has been replaced by a row or column complement of U .

Collect in sets A and B the possible cases of A and B, respectively,
of part (b) of Theorem (12.3.8). That is, each A ∈ A and each B ∈ B is
given by (12.3.7), and the {0, 1} submatrix U of either matrix when viewed
as real is complement totally unimodular. We permit the extreme cases
where U is trivial or empty. Thus, one of the index sets X and Y , or even
both of them, may be empty.

Let N be the matroid represented by some B ∈ B over GF(2). By part
(b) of Theorem (12.3.8), the corresponding A ∈ A almost represents N
over GF(3). For this reason, we call A a collection of almost representative
matrices over GF(3). Analogously, the matroid M represented by an A ∈ A
over GF(3) is almost represented by the corresponding B ∈ B over GF(2).
Thus, B is a collection of almost representative matrices over GF(2).

Minimal Violation Matrices of Total Unimodularity

So far in this section, we have defined three matrix classes: U , A, and B.
We need one additional class V, which contains the real minimal violation
matrices of total unimodularity. Thus, every V ∈ V is not totally unimod-
ular, but this is so for every proper submatrix of V . Clearly, each V ∈ V
is square. To avoid uninteresting instances, we exclude from V the cases V
of order 1. Thus, each V ∈ V is for some k ≥ 2, a k × k {0,±1} matrix.
Let W be the support matrix of V . Consider V to be real or over GF(3)
as needed below, and W to be over GF(2). We have the following result.

(12.3.11) Theorem. Let V be any matrix of V, and let W be its binary
support matrix. Then by GF(3)-pivots in V and scaling with {±1} factors,
and by corresponding GF(2)-pivots in W , the matrices V and W can be
transformed to matrices A ∈ A and B ∈ B, respectively, of order at least
2.

Conversely, suppose in A ∈ A and B ∈ B of order at least 2, we
perform GF(3)-pivots and related GF(2)-pivots, respectively, so that A′

and B′ result that satisfy the following condition. Let X be the subset of
X ∪ {x} indexing columns of A′ and B′, and Y be the subset of Y ∪ {y}
indexing rows. The condition is that |X| ≥ 2 or |Y | ≥ 2. Then the
submatrix A of A′ indexed by X and Y is in V, and the corresponding
submatrix B of B′ is the support of A.

Proof. We start with the first part, where V and W are given. Let V be
a proper submatrix of V . Then V as real matrix is totally unimodular.
Thus, by Theorem (9.2.9), V as GF(3) matrix has det3 V nonzero if and
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only if the corresponding W of W has det2 W nonzero. By analogous
arguments, exactly one of det3 V and det2 W is nonzero. Thus, V and
W constitute a pair of matrices to which Lemma (12.3.6) can be applied.
Accordingly, V and W can by pivots and scaling be transformed to A over
GF(3) and B over GF(2), respectively, with agreeing determinants, except
for a submatrix A = [−1] of A and B = [ 0 ] of B. By part (a) of Theorem
(12.3.8), we have A ∈ A and B ∈ B.

Reversal of the above arguments essentially proves the converse part.
We only need to show that the matrices A of A′ and B of B′ deduced
from A ∈ A and B ∈ B are the ones with disagreeing determinants. Let
M (resp. N) be the matroid represented by A over GF(3) (resp. B over
GF(2)). In the matroid M , the set X ∪{x} is a base. But that set is not a
base in N . By assumption, the set X with |X| ≥ 2 is the subset of X ∪{x}
indexing columns of A′, and Y is the subset of Y ∪{y} indexing rows. Since
X ∪ {x} is a base of M but not of N , the submatrix A of A′ indexed by X
and Y has det3 A nonzero, while the corresponding submatrix B of B′ has
det2 B = 0.

Several simple but useful results follow from Theorem (12.3.11). Recall
from Section 2.3 that a {0,±1} matrix is Eulerian if in every row and every
column the entries sum to 0(mod 2). Equivalently, each row and column
must have an even number of nonzeros.

(12.3.12) Corollary.
(a) A square {0,±1} matrix of order at least 2 is in V if and only if the

following holds. V can be scaled with {±1} factors to become, for
some square, nonsingular, complement totally unimodular matrix U ,
the matrix

(12.3.13) b = U-1 
α =       U-1      − 2. 1.1t

a =       U-1

;
U-1

aα

b
. 1

.1t

Matrix V up to scaling

(b) For every matrix V ∈ V, the real inverse of V contains only 1
2 entries,

| detIR V | = 2, V is Eulerian, and the real sum of the entries of V in
IR is congruent to 2(mod4).

Proof. We start with part (a). By Theorem (12.3.11), we may deduce V ,
up to scaling with {±1} factors, from a square GF(3)-nonsingular A ∈ A
by GF(3)-pivots. Redefine V so that it is the appropriately scaled version
of the original V . The matrix A is given by (12.3.7). We may recreate
A from V by performing the GF(3)-pivots in reverse order. Suppose we
use real pivots instead. All intermediate real matrices must be numerically
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identical to the GF(3)-matrices in the original GF(3)-pivot sequence, by
virtue of the fact that each 2×2 submatrix of each such real matrix is totally
unimodular. A different conclusion applies to the last pivot. If performed
in GF(3), it would produce A. But carried out in IR, it produces a matrix Ã
containing detIR V as entry where A has the −1. All other entries of Ã must
agree numerically with those of A. Now detIR V is the real determinant of
a 2 × 2 submatrix of the predecessor matrix of the real pivot sequence.
Since detIR V 6= 0,±1, we must have | detIR V | = 2. We know that the final
pivot, when done in GF(3), produces the −1 of A instead of detIR V . Thus,
detIR V is congruent to −1(mod3), and accordingly detIR V = 2.

We just have proved that Ã is the matrix

(12.3.14)
y 2

x Y

X U1  A =
~

1t

Matrix Ã derived by real pivots from V

The submatrix U is complement totally unimodular. By the existence of
the real pivot sequence, detIR U must be nonzero. Thus, | detIR U | = 1.

Suppose we employ the following well-known method for computing
the inverse of V . We begin with the real matrix [I | V ]. Then we carry
out elementary row operations until the submatrix V of [I | V ] has become
an identity matrix. At that time, the submatrix I of [I | V ] has become
V −1. We claim that the matrix Ã of (12.3.14) contains in compact form
the results of most of these row operations. For a proof, we first note that
each one of the real pivots deducing Ã of (12.3.14) from a scaled version
of V involves a ±1 as pivot element. Then by the relationship between
elementary row operations and pivots described in Section 2.3, the pivots
producing Ã correspond to row operations and scaling steps with {±1}
factors in [I | V ] that convert the submatrix I of [I | V ] to the matrix

(12.3.15)
1t1

0 U
  V1 =
~

Matrix Ṽ 1 derived from [I | V ]
by row operations and scaling

and that change the submatrix V of [I | V ] to the matrix

(12.3.16)
02

1
1

1 ..  V2 =
~

Matrix Ṽ 2 derived from V
by row operations and scaling
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Observe that the columns of Ã save the first one occur in Ṽ 1, and that
the first column of Ã is also the first column of Ṽ 2, as is implied by the
discussion of Section 2.3.

We now perform row operations in [Ṽ 1 | Ṽ 2] that convert Ṽ 2 to an
identity matrix. Correspondingly, Ṽ 1 becomes the inverse matrix of a
scaled version of V . Up to scaling, that inverse matrix is

(12.3.17)
1t

  U = 2U − 1 .
-1

1 ;
  U
~  V =

~ 1
2

~ 1t

Inverse matrix Ṽ of scaled version of V

A multiplication check verifies that the matrix of (12.3.13) is Ṽ −1, and thus
is V up to scaling. This fact proves part (a).

Part (b) is now easily shown. We already know | detIR V | = 2. That
V −1 is a {±1

2
} matrix is evident from the scaled version Ṽ of V −1 given

by (12.3.17). The matrix V is Eulerian, since this is clearly so for the
scaled version given by (12.3.13). The latter matrix has its entries sum
to 2(mod4). Scaling does not affect that result, so the same conclusion
applies to V .

Let us summarize the main results of this section for the matrix classes
U , A, B, and V. The class U contains the real {0, 1} complement totally
unimodular matrices. A and B contain the almost representative matrices
over GF(3) and GF(2), respectively, as depicted by (12.3.7). From any one
of the three classes, the remaining two are obtained by trivial operations,
as is evident from (12.3.7). The class V contains the real minimal violation
matrices of total unimodularity of order at least 2. By (12.3.13), each
V ∈ V can be readily computed from a square IR-nonsingular U ∈ U . With
equal ease, we can derive V from A or B. But note that we do not know
how to deduce the entire class U , or A or B, from V. It turns out that
this is not possible by the matrix operations of scaling by {±1} factors,
pivots, submatrix-taking, and change of fields from IR to GF(2) or GF(3).
We prove this fact in Section 12.5. There we construct U , A, B, and V,
taking the following viewpoint. First we construct U by a process yet to
be described. Then we deduce A, B, and V as just mentioned.

Recall that Theorem (12.2.16) establishes a partition of the class N of
binary minimal violation matrices of regularity. Two subclasses labeled N1

and N2 are well described by that theorem. But the third class N3 is not
well explained. Indeed, each B ∈ N3 is the support matrix of a minimal
violation matrix V of total unimodularity with at least three nonzeros in
some row and some column. Thus, V ∈ V. As an aside, the just-mentioned
bound of 3 on the number of nonzeros in some row and some column of
V can now be strengthened to 4 by part (b) of Corollary (12.3.12). At
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any rate, the construction of V via U gives a construction of N3. So the
yet-to-be-described construction process for U effectively brings to an end
the quest for an understanding of the structure of N .

The promised construction of U relies on some matroid results that we
introduce in the next section.

12.4 Definition and Construction of
Almost Regular Matroids

As argued in the introductory section of this chapter, one is tempted to
claim that matroids are not suitable for investigations of minimal violation
matrices. There it is also claimed that this argument is flawed. Here we
show why, by providing a general method for a matroid-based investigation
of the minimal violation matrices of certain matrix properties. We special-
ize the method to a particular instance. In doing so, we define and analyze
the matroids that we called almost regular in Section 4.4. In particular,
we establish the construction for almost regular matroids that was already
listed in Section 4.4. We use that construction to obtain a construction for
the class U of the complement totally unimodular matrices.

We begin with a general discussion about matrix properties and ma-
troids. Let P be a property defined for the matrices over a field F , where
F must be GF(2) or GF(3). Technically, one may consider P to be a
subset of the matrices over F . The property is to be maintained under
submatrix-taking, row and column permutations, scaling with {±1} fac-
tors, and F -pivots, and when a row or column unit vector is adjoined.

Examples for P are regularity, graphicness, cographicness, graphic-or-
cographicness, and planarity, all defined for F = GF(2). Also qualifying is
the following property for F = GF(3). A {0,±1} matrix has the property
when over IR it is totally unimodular.

Suppose we want to understand the matrices over F that are minimal
violation matrices of P. For any matrix A over F , define M(A) to be the
matroid represented by A over F . M(A) may be representable over F by
a number of different matrices A′. If F = GF(2), then all such A′ are
obtainable from A by GF(2)-pivots. By assumption, both A′ and A have
P or they do not. Thus, it is well defined when we declare M(A) to have
P if A has P. The same conclusion applies when F = GF(3). This time
any A′ representing M(A) over GF(3) may, by a slightly modified proof
of Lemma (9.2.6), be obtained from A by GF(3)-pivots and scaling with
{±1} factors. By the assumptions on P, thus A′ and A have P or they
both do not.

Note that series or parallel extensions of M(A) maintain P, for such an
extension corresponds to at most one F -pivot in A followed by adjoining of
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a row or column unit vector. By assumption, the latter operations maintain
P.

We describe a five-step process that leads to insight into the minimal
violation matrices of P over F .

Step 1. Let W be the class of minimal matrices over F that do not have
P. Assign to the indices of each matrix W ∈ W the following additional
labels. If an index z labels a row (resp. column) of W , then assign the label
“con” (resp. “del”). For example, if the rows of W are indexed by X and
the columns by Y , then W with the labels is the matrix of (12.4.1) below.
From now on, we assume each W ∈ W to be so labeled. We also assume
that the elements of the matroid M(W ) are labeled correspondingly.

(12.4.1)

d
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l

d
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l

W

Y

X
con

con

...

. . .

Minimal violation matrix W with labels

The unusual “con” and “del” labels of W and M(W ) tell the following. If
element z of the matroid M(W ) has a “con” label, then z ∈ X . By the
minimality of W , deletion of row z ∈ X from W results in a matrix W ′ with
P. Correspondingly, M(W ′), which is M(W )/z, has P. The “con” label
on z allows us to predict this outcome for M(W )/z. That is, “con”traction
of an element of M(W ) with a “con” label produces a minor having P.
Similarly, “del”etion of an element with a “del” label results in a minor
having P. Note that we cannot tell from the labels whether for an element
z with “con” label the minor M\z has P. Similarly, when z has a “del”
label, we are ignorant about M/z having or not having P.

Collect in a set M1 the matroids M(W ) with W ∈ W. For brevity, we
call an element with “con” (resp. “del”) label simply a “con” (resp. “del”)
element.

Step 2. Establish elementary facts about the matrices W ∈ W. If possible,
translate some of these facts into matroid language so that they apply to
the matroids of M1. Let E be the collection of such matroid facts.

Step 3. At this time, we reverse the sequence of arguments. We use certain
necessary conditions satisfied by the matroids of M1 to define a class M2

of matroids representable over F . The conditions for membership in M2

are as follows. Each M ∈ M2 must not have P. Each one of its elements
must be labeled “con” or “del” in such a way that a “con” (resp. “del”)
label on an element z of M implies M/z (resp. M\z) to have P. Finally,
M must satisfy the conditions of E . Clearly, M1 is a subset of M2.
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Step 4. Enlarge M2 by adding for each member M all proper minors. The
elements of these minors are labeled in agreement with the labels of M .
By definition, M2 is now closed under minor-taking.

Step 5. Analyze the structure of the matroids of M2. Specialize the con-
clusions for M2 to M1. Finally, translate the latter results to statements
about the matrices W ∈ W.

The above procedure is of course more of a recipe than an algorithm.
Let us demonstrate its use by applying it to the case where F is GF(2) and
P is regularity.

Step 1. By Theorem (12.2.16), we have a good understanding of a portion
of the class N of minimal violation matrices of regularity. Indeed, at this
point, only the subclass N3 is poorly characterized. That class consists
of the binary support matrices of the minimal violation matrices of total
unimodularity with at least three (by Corollary (12.3.12), at least four)
nonzeros in some row and some column. Thus, we take W to be N3. We
assign “con” and “del” labels to the rows and columns, respectively, of the
matrices of W. Then we define M1 to be the set of matroids M(W ) with
W ∈ W.

Step 2. By Corollary (12.3.12), each matrix of N3 is Eulerian. That is,
each W ∈ W as given by (12.4.1) has an even number of 1s in each row
and each column. This latter fact has a convenient translation into matroid
language: Each M ∈ M1 has a base such that each fundamental circuit
(resp. cocircuit) has an even number of “con” (resp. “del”) elements. Now
each circuit (resp. cocircuit) of M is the symmetric difference of some of
these fundamental circuits (resp. cocircuits). We conclude that each circuit
(resp. cocircuit) has an even number of “con” (resp. “del”) elements. An-
other fact, trivial yet important, is that M has at least one “con” element
and at least one “del” element. The preceding conditions on circuits, co-
circuits, and labels we declare to be the collection E of matroid facts about
M1.

Step 3. We reverse the arguments and define M2 from facts known for M1.
Specifically, M2 is the class of binary matroids M satisfying the following
conditions. First, M must be nonregular. Second, each element z of M
must be labeled “con” or “del.” The “con” (resp. “del”) label must imply
that M/z (resp. M\z) is regular. Third, the circuits and cocircuits of M
must obey the following parity condition: Each circuit (resp. cocircuit) is
to have an even number of “con” (resp. “del”) elements. Fourth and last,
the following existence condition must be satisfied: There is to be at least
one “con” element and at least one “del” element. The matroids of M2 so
defined we call almost regular.

Step 4. We enlarge M2 by adding all possible minors. Each minor assumes
the labels of the matroid producing it. We claim that each minor so added
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to M2 is regular or almost regular. By duality and induction, we only need
to consider a 1-element deletion of an element z in an almost regular M .
If M\z is regular, we are done. So assume M\z to be nonregular. A “con”
(resp. “del”) label on an element w 6= z of M implies M/w (resp. M\w) to
be regular. Thus, for such w the minor (M\z)/w (resp. (M\z)\w) of M\z
is regular as well. Since M\z is nonregular, z must have a “con” label. By
(3.3.11), each circuit of M\z is a circuit of M , and each cocircuit of M\z is
a minimal member of the collection {C∗−{z} | C∗ = cocircuit of M}. By
the parity condition, each circuit (resp. cocircuit) of M has an even num-
ber of “con” (resp. “del”) elements. Since z has a “con” label, the same
conclusion applies to the circuits and cocircuits of M\z. The parity and
existence conditions for M imply that M has at least two “con” elements
and at least two “del” elements. Thus, M\z satisfies the existence con-
dition. These arguments establish M\z to be almost regular. They also
prove that the enlarged M2 is the class of almost regular matroids plus
their regular minors. As desired, M2 is now closed under minor-taking.

Step 5. We must analyze M2. Then we must specialize the results to M1.
Finally, we must express the latter results in matrix terminology to obtain
conclusions about W, and hence about N3.

In the remainder of this section, we carry out the tasks mandated
by Step 5. We begin with some elementary facts about almost regular
matroids. Let M be such a matroid. We dualize M in the usual way,
but also switch “con” (resp. “del”) labels to “del” (resp. “con”) labels.
As usual, we denote that dual matroid of M by M∗. The next lemma
establishes M∗ to be almost regular and provides some additional facts
about M . A hyperplane of a matroid M is a maximal set of M with rank
equal to the rank of M minus 1. A cohyperplane is a hyperplane in the
dual matroid M∗ of M .

(12.4.2) Lemma. Let M be an almost regular matroid. Then the fol-
lowing holds.

(a) The dual matroid M∗ of M is almost regular.
(b) Every nonregular minor of M is almost regular.
(c) The set of “con” (resp. “del”) elements of M is a cocircuit and a

cohyperplane (resp. a circuit and a hyperplane) of M .

Proof. (a) This is proved by routine checking of the definition of almost
regular matroids given in Step 3 above.
(b) The proof is given under Step 4 above.
(c) Since M is nonregular, it has by Theorem (9.3.2) an F7 or F ∗

7 minor.
By duality and part (a), we may assume presence of F7. The “con” and
“del” labels for F7 are unique up to isomorphism, as may be checked by
a simple case analysis. Indeed, the matrix B7 given by (12.4.3) below is a
representation matrix of F7 with correct “con” and “del” labels.
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(12.4.3) con
del
del

d
e
l

c
o
n

c
o
n

c
o
n

B7 =
0 1 1 1
1 1 0 1
1 0 1 1

Matrix B7 for matroid F7

with “con” and “del” labels

Take B to be any representation matrix of M that displays an F7 minor in
agreement with B7 of (12.4.3). We claim that B can be partitioned as

(12.4.4)
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B =

0 1 1 1
1 1 0 1
1 0 1 1

X1

Y1 Y2

X2 b

a

0/1

Matrix B displaying F7 minor

Note that up to indices, B7 is displayed in the upper left corner of B. For
each x ∈ X2, the minor M/x is nonregular. Thus, x must have a “del”
label. Similarly, for each y ∈ Y2, nonregularity of M\y implies a “con”
label for y. So far, we have justified all labels of B.

We claim that the subvectors a and b of B contain only 1s. If the
subvector b has a 0, say in row x ∈ X2, then the 1s in that row of B
correspond to a cocircuit of M with exactly one “del” element, in violation
of the parity condition. Similarly, a 0 in the subvector a contradicts the
parity condition for a fundamental circuit of M .

At this point, we have shown that the first column and the first row
of B contain only 1s except for the 0 in the (1, 1) position. This fact, plus
the given assignments of labels to B, implies that the elements with “con”
(resp. “del”) labels form a cocircuit and cohyperplane (resp. circuit and
hyperplane) of M , as is easily confirmed by direct checking.

We now review the construction of the almost regular matroids as
described in Section 4.4. The starting point for the construction of an
almost regular matroid is either F7 or a 1-element extension of R10, both
with appropriate “con” and “del” labels. The representation matrix of F7

we have already seen. It is B7 of (12.4.3). The matrix for the extension of
R10 we call B11. It is derived from the matrix of (10.2.8) as follows. We
permute the rows of the matrix of (10.2.8) so that the last row becomes the
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first one. To the resulting matrix, we adjoin a new leftmost column. Then
we assign appropriate “con” and “del” labels. The matrices B7 and B11

have already been listed under (4.4.13). We repeat them here for ready
reference.

(12.4.5)
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1 1
1B7 = ;

Labeled matrices B7 and B11

By now, the reader has acquired enough machinery, in particular that of
graphs plus T sets of Section 10.2, that he/she can quickly verify the ma-
troid of B11 to be almost regular. Thus, we omit details of that check.

As stated above, one of the two matroids represented by B7 or B11 is
the starting point for the construction of an almost regular matroid. The
construction itself consists of a sequence of series or parallel extension steps
and of triangle-to-triad and triad-to-triangle exchanges. The extension
steps we call SP steps, and the exchanges steps, ∆Y exchanges. These
operations are controlled by rules that may be summarized as follows. A
parallel (resp. series) extension is permitted only if the involved element
z has a “con” (resp. “del”) label. The new element receives the same
label as z. The ∆Y exchanges are depicted in terms of representation
matrices by (4.4.5)–(4.4.7). The conditions on labels are summarized by
(4.4.14). Instead of covering all possibilities for the ∆Y exchange as done in
Section 4.4, here we show just one instance based on (4.4.6). All other cases
can be reduced by GF(2)-pivots to the one displayed. In (12.4.6) below,
the matrix on the left represents the matroid with the triangle {e, f, g},
and the one on the right the matroid with the triad {x, y, z}.

(12.4.6)
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B
B

∆Y exchange rule for almost regular matroids

In Section 4.4, we define a sequence of SP extensions and ∆Y exchanges
under the preceding rules to be a restricted ∆Y extension sequence. The
next result justifies our reliance on such sequences.
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(12.4.7) Lemma. Let a matroid M ′ be created from an almost regular
matroid by a restricted ∆Y extension sequence. Then M ′ is almost regular.

Proof. By induction, we may assume M ′ to be derived from M in a single
SP extension or ∆Y exchange step. Consider the first case. Clearly, M ′

has a minor isomorphic to M . Thus, M ′ is nonregular since M is almost
regular. The parity condition for M ′ is readily verified because of the
restriction that a parallel (resp. series) extension is only permitted for a
“con” (resp. “del”) element of M . For the same reason, for each “con”
(resp. “del”) element of M ′, we have M ′/z (resp. M ′\z) regular. Clearly,
both “con” and “del” labels occur in M ′. Thus, M ′ is almost regular.

The ∆Y exchange is almost as easily proved. By Theorem (11.2.11),
such an exchange maintains regularity. Thus, by contradiction, M ′ is non-
regular. The remaining conditions are readily verified with the matrices of
(12.4.6). Thus, M ′ is almost regular.

The surprising fact is that restricted ∆Y extension sequences create
all almost regular matroids from the two matroids given by B7 and B11

of (12.4.5). The precise statement is given in Theorem (4.4.16), which we
repeat here.

(12.4.8) Theorem. The class of almost regular matroids has a partition
into two subclasses. One of the subclasses consists of the almost regular
matroids producible by ∆Y extension sequences from the matroid repre-
sented by B7 of (12.4.5). The other subclass is analogously generated by
B11 of (12.4.5). There is a polynomial algorithm that obtains an appropri-
ate ∆Y extension sequence for creating any almost regular matroid from
the matroid of B7 or B11, whichever applies.

Proof. The existing proof is so long that we cannot include it here. Nev-
ertheless, we sketch the main arguments, since they involve interesting ma-
troid decomposition ideas involving the matroids R10 and R12 of Sections
10.2 and 11.3.

We take M to be a minimal almost regular matroid that cannot be
produced by restricted ∆Y extension sequences from any one of the two
matroids given by (12.4.5). Put differently, M cannot be reduced to one of
the two matroids by restricted ∆Y extension sequences. For short, we say
that M is not reducible.

By the minimality, M obviously cannot have series or parallel elements.
In addition, it turns out that M cannot have a 3-separation with at least
four elements on each side. Indeed, such a 3-separation implies a 3-sum
decomposition of M where one component is a wheel. That 3-sum is readily
proved to be reducible, a contradiction of the minimality of M .

Suppose M does not have R10 or R12 minors. First, one can show that
M must have a “del” element z such that M\z is graphic. Thus, M can
be represented by a graph plus T set. Rather complicated arguments then
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prove M to be isomorphic to F7 or F ∗
7 with appropriate labels. A single

∆Y exchange transforms the F ∗
7 case to F7.

Next, we assume that M has an R10 minor. Rather easily, we reach
the conclusion that M is isomorphic to the matroid of B11 or its dual. The
second case can be transformed to the first one by one ∆Y exchange. The
proof relies on the graph plus T set representation of Section 10.2. That
approach also produces the insight, at present irrelevant but later useful,
that any almost regular matroid with an R10 minor must be labeled in such
a way that the “con” elements do not form a base and the “del” elements
do not form a cobase.

One case remains, where M has an R12 minor but no R10 minors.
By duality and the symmetry of R12, we may assume that M has a “del”
element z such that M\z has an R12 minor. To investigate this case, we
apply the recursive decomposition algorithm of Section 10.5, starting with
H = {R12}. The class of matroids under consideration is M2, defined in
Steps 3 and 4 at the beginning of this section. In the first iteration of the
decomposition algorithm, we use the 3-separation of R12 given by (11.3.11).
We find exactly two matroids that prevent induced 3-separations. They are
duals of each other. Let V13 be one of them. Thus, after the first iteration,
we have H′ = {V13, V

∗
13}, which is the set H for the next iteration. There

we see that both V13 and V ∗
13 induce certain 4-sum decompositions. We

conclude the second iteration with H′ = ∅, and stop the decomposition
algorithm.

We utilize the output of the decomposition algorithm as follows. As
argued at the beginning of the proof, M cannot have a 3-separation with
at least four elements on each side. In particular, the 3-separation of any
R12 minor, as given by (11.3.11), cannot induce a 3-separation of M . By
the results of the decomposition algorithm, M then has a V13 or V ∗

13 minor.
By duality, we only need to pursue the case where M has a V13 minor.

We prove that one component of a certain 4-sum induced by V13 is almost
regular and is represented by a graph plus T set with special structure. In
fact, that graph can be created by a particular ∆Y extension sequence. For
that sequence, the last SP extension step plus the subsequent ∆Y exchanges
can be viewed as final steps of a construction of M , thus contradicting the
minimality of M .

Later we need the following observation made in the preceding proof.

(12.4.9) Lemma. Let M be an almost regular matroid. Then M has
an R10 minor if and only if it is produced from the almost regular matroid
of B11 by some restricted ∆Y extension sequence. Furthermore, if M has
an R10 minor, then the set of “con” elements does not form a base of M ,
and the set of “del” elements does not form a cobase.

At this point, it probably is not apparent how the matrix classes U ,
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A, B, V of Section 12.3 are related to the class of almost regular matroids.
The next section will quickly change that situation.

12.5 Matrix Constructions

Let us pause for a moment to assess our position. In Section 12.3, we have
defined the matrix classes U , A, B, and V. We have seen that knowledge
of just one of the classes U , A, or B permits easy construction of all others.
In Section 12.4, we have established an elementary procedure for creating
the almost regular matroids from two initial matroids given by B7 and B11

of (12.4.5). In this section, we use these results to determine elementary
constructions for U , A, B, and V. From B or V, we obtain the class N3

of Theorem (12.2.16). Thus, we solve the characterization problem of the
minimal binary nonregular matrices.

We could proceed in several ways. Particularly appealing appears to
be the following route. We first tie a subclass of U to the almost regular
matroids. Then we identify the remaining members of U . Finally, we
construct U , A, B, and V , in that order. The first step is accomplished by
the following lemma.

(12.5.1) Lemma. A binary matroid M is almost regular if and only if
M is represented by a binary nonregular matrix of the form

(12.5.2) 1t
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X U1  B =
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Matrix B̃ for almost regular matroid M

where U when viewed over IR is complement totally unimodular.

Proof. We start with the “only if” part. Let M be almost regular. Ac-
cording to some arbitrary choice, partition the set of “del” elements of M
into a singleton set {x} and a remainder X . Similarly, partition the set of
“con” elements into {y} and Y . By Lemma (12.4.2), X ∪ {x} is a circuit
and hyperplane of M , and Y ∪ {y} is a cocircuit and cohyperplane. These
facts imply X∪{y} to be a base of M , and the corresponding representation
matrix to be B̃ of (12.5.2) for some {0, 1} matrix U .

We must show U to be complement totally unimodular. Since element
x of M has a “del” label, M\x is regular. Thus, the column submatrix
of B̃ indexed by Y is regular. Indeed, because of the 1s in row y of that
submatrix, the matrix U when viewed as real must be totally unimodular.
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By GF(2)-pivots in column x or row y of B̃, we can transform U to all
matrices obtainable from U by complement operations. As just argued,
each such matrix when viewed over IR must be totally unimodular. Thus,
U is complement totally unimodular.

For proof of the “if” part, we reverse the above arguments. Thus,
according to the nonregular matrix B̃ and the complement totally unimod-
ular matrix U , the matroid M is nonregular, and each of its “con” (resp.
“del”) labels indicates regularity upon a contraction (resp. deletion). The
parity condition is easily confirmed for the fundamental circuits and co-
circuits displayed by B̃. Thus, that condition holds for all circuits and
cocircuits. Since B̃ is nonregular, it must have at least three rows and
at least three columns. Thus, the existence condition on “con” and “del”
labels is satisfied. We conclude that M is almost regular.

Recall from Section 12.3 that the class B consists of the binary matrices
B of the form

(12.5.3)
1t0

x Y
y

X
B =

U1

Matrix B of class B
where U when viewed over IR is complement totally unimodular. Lemma
(12.5.1) thus implies the following result for B.

(12.5.4) Corollary. The representation matrices B̃ of (12.5.2) of the
almost regular matroids become upon removal of labels precisely the non-
regular matrices of B.

Proof. This follows directly from Lemma (12.5.1) and a comparison of B̃
of (12.5.2) with B of (12.5.3).

By Lemma (12.5.1) and Corollary (12.5.4), we have a characterization
of the subclass of U whose members produce the nonregular matrices of B.
The next lemma establishes the structure of the remaining members of U ,
i.e., those generating the regular matrices of B. To this end, we define any
nonempty square triangular matrix U satisfying for all i ≥ j, Uij = 1, to
be solid triangular. When we add parallel or zero vectors any number of
times to such a matrix, we get a solid staircase matrix. A typical example
of such a matrix is given below.

(12.5.5)
0

1s
..

Solid staircase matrix

We need an auxiliary result about solid staircase matrices.
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(12.5.6) Lemma. A {0, 1} matrix is a solid staircase matrix if and only
if it has no 2× 2 identity as submatrix.

Proof. The “only if” part is elementary. The “if” part is proved by a
straightforward inductive argument. One removes a row with maximum
number of 1s, invokes induction, then adds that row again for the desired
conclusion.

Here is the promised characterization of the regular matrices of B.

(12.5.7) Lemma. A matrix B of B as given by (12.5.3) is regular if and
only if the submatrix U of B is a zero matrix or solid staircase matrix, or
becomes a matrix of the latter type by some complement steps.

Proof. We start with the “if” part. We must show that any B of (12.5.3)
with U as specified is regular. Evidently, this is so when U is a zero
matrix. So assume that by some complement steps, U becomes a solid
staircase matrix. According to the proof of Lemma (12.5.1), any such steps
correspond to GF(2)-pivots in B. Thus, they maintain regularity. Series
and parallel extensions of a binary matroid also retain regularity. Thus, we
may further assume that B has no parallel or unit vectors. By (12.5.3), U
then has no parallel or zero vectors. Thus, U is solid triangular, and B is

(12.5.8)
1t0y

x Y

X
B =

1
1

11s
...

Matrix B with solid triangular U

We claim that B represents the graphic matroid of a wheel, with X ∪ {x}
as set of rim edges, and Y ∪ {y} as set of spokes. The edges x and y are
such that X ∪ {y} is a path. The claim is easily verified. One only checks
that the fundamental cycles for X ∪{y} are displayed by B of (12.5.8). We
conclude that B is regular.

For proof of the “only if” part, we assume B of (12.5.3) to be regular.
Since B is in B, the submatrix U when viewed over IR is complement
totally unimodular. We are done if U is a zero matrix. So assume U to
be nonzero. We may assume that U has no zero or parallel vectors. Thus,
we must show U or a matrix obtained from U by complement steps, to be
solid triangular.

If U has a 3×3 identity submatrix, say indexed by X ⊆ X and Y ⊆ Y ,
then B contains the matrix of (12.5.9) below. A pivot on any 1 of the 3×3
identity submatrix, plus a pivot in the resulting matrix on the 1 in the
(x, y) position, produces a matrix that displays an F7 minor. But then B
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is not regular, a contradiction.

(12.5.9)
1

0 01 1
0y
x

1
1

1

0
0

1
0

1

0
1

Y

X

Nonregular submatrix of B induced
by a 3× 3 identity submatrix of U

Suppose U has a 2× 2 identity submatrix. If U is connected, then U

or its transpose contains the submatrix
[ 1 0 1
0 1 1

]
, say indexed by X ⊆ X

and Y ⊆ Y . By duality, we may assume the former case. Then B contains
the matrix

(12.5.10) 1
0 11 1

0y
x

1

1

0 1

1

1

Y

X

Nonregular submatrix of B induced
by a certain 2× 3 submatrix of U

which represents an F 7 minor, and once more we have a contradiction.
Still assume that U has a 2×2 identity submatrix. As argued above, U

does not contain a 3× 3 identity submatrix and is not connected. Thus, U
has exactly two connected blocks, neither of which contains a 2×2 identity
submatrix. By Lemma (12.5.6) and by the absence of zero or parallel
vectors from U , each block must be solid triangular. Let z index a row of
U with maximum number of 1s. The row z complement of U is then solid
triangular, as desired.

Finally, assume that U has no 2 × 2 identity submatrix. By Lemma
(12.5.6) and by the absence of zero or parallel vectors, U is then solid
triangular.

We are ready to state and validate the following construction of the
complement totally unimodular matrices. The construction relies on four
seemingly strange matrices. Their origin will become clear shortly.

(12.5.11) Construction of U . Define real {0, 1} matrices U0, U1, U7,
and U11 as follows.

(12.5.12) 0 ;U0= 1 ;U1= U11=

1
1 1

0
0
0

0
0 0

1
1
1

0
1

1
1

1
0

1
1

01
0 1 1

1U7= ;

Complement totally unimodular
matrices U0, U1, U7, and U11
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Starting with U = U0, U1, U7, or U11, apply a sequence of operations each
of which is one of (i), (ii), or (iii) below.

(i) Perform a row or column complement operation.
(ii) Add a zero or parallel row or column vector.
(iii) (∆Y exchange) If U is one of the two matrices below, replace U by

the other matrix.

(12.5.13)
1a

b b

0

U

a

b

a 1
0

U

∆Y exchange for complement
totally unimodular matrices

Collect in sets U0, U1, U7, and U11 the matrices that can be so deduced
from U0, U1, U7, and U11, respectively. These sets form a partition of U .

An example matrix constructed from U7 is given by (12.5.25) below.

Proof of Construction (12.5.11). It is easy to see that the steps
(i)–(iii) produce from U0 = [ 0 ] the class of zero matrices, which thus
constitutes U0. Indeed, steps (i) and (iii) never apply. For validation of
the remaining cases, we assign a “con” (resp. “del”) label to each column
(resp. row) of any U produced by Construction (12.5.11) from U1, U7, or
U11. For the moment, these labels are purely formal. Next, we embed U
into the matrix B̃ of (12.5.2), which we repeat here.

(12.5.14) 1t

c
o
n

0

Y

con

del

y

X U1  B =
~

x
d
e
l

Matrix B̃ derived from matrix U

Steps (i)–(iii) of Construction (12.5.11) are then equivalent to the follow-
ing operations on B̃. The complement-taking of step (i) corresponds to a
GF(2)-pivot in row y or column x of B̃. The addition of zero or paral-
lel vectors of step (ii) is the addition of parallel vectors or of unit vectors
with 1 in row y or column x. Finally, the exchange of step (iii) is the ∆Y
exchange depicted by (12.4.6).

We take these observations one step further. Let M be the labeled
matroid represented by B̃. We claim that the operations just specified for
B̃ are equivalent to the operations of restricted ∆Y extension sequences
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in M . Indeed, the addition of parallel vectors or of unit vectors with 1 in
row y or column x of B̃ becomes the restricted SP extension for M . The
GF(2)-pivot in B̃ plus the exchange given by (12.4.6) are equivalent to a
restricted ∆Y exchange in M .

We interpret the matrices U of U1, U7, and U11 in terms of the related
matroid M . We start with U1. The matrix B̃ of (12.5.14) produced by
U = U1 = [ 1 ] is

(12.5.15)
0
1 1

1

d
e
l

c
o
n

con

del

x

y

Y

X

Matrix B̃ derived from U = U1 = [ 1 ]

The corresponding M is the graphic matroid of the wheel with two spokes.
Indeed, the spokes are labeled “con” and form the set Y ∪ {y}. The rim
edges are labeled “del” and constitute the set X ∪ {x}. We interpret re-
stricted ∆Y extension sequences for M as sequences of graph operations
applied to the preceding graph. Each such operation is either a subdivision
of a “del” edge into two “del” edges, or an addition of a “con” edge parallel
to a “con” edge, or an exchange of a triangle by a 3-star, or an exchange of
a 3-star by a triangle. In the latter two operations, the labels are assigned
according to (4.4.14), which we repeat below.

(12.5.16)
    x
con

    e
con

g
con

f del

y del z del

Triangle and 3-star with labels

We leave it to the reader to verify that any graph produced by these op-
erations is obtainable from some wheel graph with at least two spokes by
subdivision of rim edges and addition of edges parallel to spokes. In terms
of M , the rim edges of such an extended wheel form the set X ∪ {x}, and
the spokes constitute Y ∪ {y}. We interpret this result in terms of U as in
the proof of Lemma (12.5.7). Thus, we see that U or some matrix obtained
from U by complement operations, is a solid staircase matrix.

We turn to the cases of U7 and U11. The matrix U7 (resp. U11)
produces as B̃ the matrix B7 (resp. B11) of (12.4.5). In either case, B̃
is nonregular, and M is an almost regular matroid. By Theorem (12.4.8),
restricted ∆Y extension sequences produce all almost regular matroids from
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the two matroids represented by B7 and B11. By Lemma (12.5.1) and
Corollary (12.5.4), the sets U7 and U11 thus contain the complement totally
unimodular matrices that produce the nonregular members of the class B.

By Lemma (12.5.7) and the above characterization of U0 and U1, the
class U0∪U1 contains precisely the complement totally unimodular matrices
U that produce the regular matrices B of B. We have also seen that the
class U7 ∪ U11 generates the nonregular matrices B of B. Thus, U0 ∪ U1 ∪
U7∪U11 is equal to U . The sets U0∪U1 and U7∪U11 are necessarily disjoint.
Evidently, this is also so for U0 and U1. Theorem (12.4.8) says that any
almost regular matroid can be generated from exactly one of the matroids
represented by B7 and B11. Thus, U7 and U11 are disjoint. We conclude
that U0, U1, U7, and U11 form a partition of U as claimed by Construction
(12.5.11).

Construction (12.5.11) has two interesting corollaries.

(12.5.17) Corollary. Let U be a nonempty complement totally uni-
modular matrix without zero or parallel vectors. Then U , or some matrix
obtainable from U by complement operations, contains a unit vector.

Proof. We use the notation of the proof of Construction (12.5.11). By the
assumptions, U is in U1 ∪ U7 ∪ U11. Let U define B̃ of (12.5.14), and M
be the labeled matroid represented by B̃. Now U has no zero or parallel
vectors. Thus, M has no series or parallel elements. M is obtained from
the graphic matroid of (12.5.15) or from the almost regular matroid of B7

or B11 by a restricted ∆Y extension sequence. In all three cases, the initial
matroid has a triangle with two “con” labels and one “del” label, and the
final matroid has a triangle with two “con” labels or triad with two “del”
labels. By duality, we may assume M to have a triangle C with two “con”
labels. In the notation for B̃ of (12.5.14), assume x 6∈ C and y ∈ C. Thus,
y is one of the two “con” elements of C. The second “con” element of C
must be in Y . The third element of C, with “del” label, must be in X .
Then column z ∈ Y of B̃ has exactly two 1s, one of which is in row y.
Thus, column z of U is a unit vector. If x ∈ C or y 6∈ C, we can achieve
the desired configuration by GF(2)-pivots in column x or row y of B̃. The
pivots correspond to complement operations for U . Thus, the corollary
holds in all cases.

(12.5.18) Corollary. If U ∈ U is IR-nonsingular, then U is in U1 or U7,
but not in U0 or U11.

Proof. Candidate classes are the claimed ones and U11. Let U ∈ U11,
and let M be the matroid defined via B̃ of (12.5.14). By the proof of
Construction (12.5.11), M is an almost regular matroid produced by some
restricted ∆Y extension sequence from the matroid represented by B11.
Lemma (12.4.9) says that the set Y ∪ {y} of “con” elements of M does
not form a base, and the set X ∪ {x} of “del” elements does not form a
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cobase. By assumption, U is IR-nonsingular. Since U is complement totally
unimodular, U when viewed as binary is GF(2)-nonsingular as well. But
then, by B̃ of (12.5.14), the set Y ∪{y} is a base of M , a contradiction.

At this point, it is a simple matter to construct the classes A, B, and
V. For completeness, we include details. We start with A and B. Recall
that A (resp. B) is the class of almost representative matrices over GF(3)
(resp. GF(2)).

(12.5.19) Construction of A and B. The classes A and B are deduced
from U as follows. Each matrix of A (resp. B) is precisely a matrix of the
form

(12.5.20)
1tα

U1

Matrix of A or B

For A (resp. B), the matrix is over GF(3) (resp. GF(2)), with α = −1
(resp. α = 0). The submatrix U is a {0, 1} matrix that, when considered
over IR, is in U .

Proof. Validity of the construction follows directly from the definition of
A and B following Lemma (12.3.10).

Next we give a construction for V, the class of minimal violation ma-
trices of total unimodularity.

(12.5.21) Construction of V. The class V is deduced from U as follows.
Each matrix V of V is up to scaling by {±1} factors of the form

(12.5.22) b = U-1 
α =       U-1      − 2. 1.1t

a =       U-1

;
U-1

aα

b
. 1

.1t

Matrix V up to scaling

The matrix U is a square IR-nonsingular matrix of U1 or U7. If U ∈ U1,
then V has exactly two nonzeros in each row and in each column; indeed,
the bipartite graph BG(V ) is a cycle. If U ∈ U7, then V has at least four
nonzeros in some row and in some column.

Proof. Validity of the construction follows from Corollaries (12.3.12) and
(12.5.18).

Corollary (12.5.17) and Construction (12.5.21) yield an interesting re-
sult.
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(12.5.23) Corollary. Every matrix V ∈ V has a row or column with
exactly two nonzeros.

Proof. The inverse of V is, up to scaling by {±1} factors, given by Ṽ
of (12.3.17). The U−1 occurring in V of (12.5.22) is the inverse of the U
defining Ṽ of (12.3.17). A simple check confirms that replacement of U
by a matrix deduced from U by complement operations effectively may be
viewed as scaling in Ṽ . Thus, up to scaling, U and all matrices obtainable
from U by complement operations produce the same V . Since U is nonsin-
gular, it cannot contain zero or parallel vectors. By Corollary (12.5.17), U ,
or some matrix deduced by complement operations from U , contains a unit
vector. Let U ′ be that matrix. The inverse of U ′ contains a unit vector as
well. By (12.5.22) and the above discussion, V must have a row or column
with exactly two nonzeros.

At long last, we can fill the gap left by Theorem (12.2.16) and com-
plete the characterization of minimal nonregular submatrices. The desired
theorem is as follows.

(12.5.24) Theorem. Let N be the class of binary minimal violation
matrices of regularity. Then N has a partition into three subclasses N1,
N2, N3 as follows.

(a) N1 (resp. N2) is the set of binary matrices B for which BG(B) is a
graph of type H1 (resp. H2) of (12.2.14).

(b) N3 is the set of binary support matrices of V ∈ V produced via
(12.5.22) from the IR-nonsingular matrices U ∈ U7.

Proof. Part (a) is taken from Theorem (12.2.16). Part (b) follows from
that theorem and Construction (12.5.21) of V.

The above constructions are readily performed by hand. That way
one can rapidly produce structurally interesting matrices. An example of a
complement totally unimodular matrix U and a minimal violation matrix
V of total unimodularity generated that way is as follows. We first obtain
by Construction (12.5.11) the following complement totally unimodular
matrix U .

(12.5.25)

1a
g
h
j
k
d

1 1 1

U =

fbiz e c
1 1

0 1 0 1 1 1
0 0 11 1 1

0 0 0 0 1 1
1 0 11 0 1

1 0 01 0 1

Complement totally unimodular matrix U
representing R12
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The labels may be used to verify that U represents the regular matroid
R12 of (10.2.9). One only needs to check via the graph plus T set of
(10.2.9) the fundamental circuits for the base {a, d, g, h, j, k}, which is the
index set of the rows of U . The indicated partition of U corresponds to
the 3-separation ({a, b, g, h, i, z}, {c, d, e, f, j, k}) of R12. Straightforward
computations confirm that U is IR-nonsingular, and that up to scaling by
{±1} factors and row and column exchanges, U is its own inverse. Thus,
for this special case, we are tempted to use U instead of U−1 in the formula
for V of (12.5.22). But U−1 is a scaled and permuted version of U . Because
of the scaling, the formula (12.5.22) cannot be used. But we may rely on
part (b) of Corollary (12.3.12). According to that result, V is Eulerian and
its entries sum in IR to 2(mod 4). Using these two facts, we determine the
following V from U .

(12.5.26)
1
11

0
0
0
0
0

0 0 0 0 0
1 1 1a

g
h
j
k
d

V =

fbiz e c

1 1
0 1 0 1 1 1
0 0 11 1 1

0 0 0 0 1 1
1 0 11 0 1

11 0 01 0 1

Matrix V deduced from U of (12.5.25)

The above example supports the following result.

(12.5.27) Lemma. The regular matroid R12 has a real nonsingular {0, 1}
representation matrix that is complement totally unimodular.

Construction (12.5.11) and the matrix V of (12.5.26) permit us to
relate V to the regular matroids R10 and R12 of (10.2.8) and (10.2.9), as
follows.

(12.5.28) Lemma. Let M be the binary matroid represented by the
binary support matrix W of a minimal non-totally unimodular matrix V ∈
V. Then M does not have R10 minors, but may have an R12 minor.

Proof. By Theorem (12.3.11), M is represented not just by W as stated,
but also by some B ∈ B given by (12.5.20). Indeed, the submatrix U−1 of
V of (12.5.22) is the inverse of the matrix U defining B. By Construction
(12.5.21) for V, we have U ∈ U1 ∪U7. Thus, U 6∈ U11. By the proof of Con-
struction (12.5.11) for U , U 6∈ U11 implies that M has no R10 minor. The
matrix V of (12.5.26) demonstrates that M may have an R12 minor.

Lemma (12.5.28) implies the claim made toward the end of Section 12.3
that none of the classes U , A, and B can be produced from V by the matrix
operations of scaling by {±1} factors, pivots, submatrix taking, and change
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of fields from IR to GF(2) or GF(3). In particular, the matrix U11 of
(12.5.12) cannot be obtained that way.

In the last section, we discuss applications and extensions, and include
references.

12.6 Applications, Extensions, and

References

The entire Section 12.2 is taken from Truemper (1982b). Variations of the
graph signing problem of Section 12.2 are treated in Zaslavsky (1981a),
(1981b), (1982), (1987), (1989), (1991). The notion of α-balancedness ex-
tends the concept of {0, 1} balanced matrices covered extensively elsewhere
(see Berge (1972), (1973), (1980), Fulkerson, Hoffman, and Oppenheim
(1974), and Anstee and Farber (1984)). Profound decomposition results for
balanced matrices are proved in Conforti and Rao (1989), (1992a)–(1992d),
Conforti and Cornuéjols (1990), and Conforti, Cornuéjols, and Rao (1997).
In Truemper and Chandrasekaran (1978), balancedness of {0, 1} matrices
is tied to total unimodularity by the exclusion of certain minimal violation
matrices of total unimodularity. That result motivated the search for a
construction of V.

A {0, 1} matrix is perfect if the polyhedron {x | A · x ≤ 1, x ≥ 0}
has only integer vertices. A graph is perfect if its clique/node incidence
matrix is perfect. Any {0, 1} balanced matrix is perfect, but the converse
does not hold. The so-called strong perfect graph conjecture says that the
minimal nonperfect graphs, and thus the minimal nonperfect matrices, have
a certain simple structure (see, e.g., Padberg (1974)). There are numerous
partial results with regard to that conjecture. Approaches based on graph
decomposition have been cited in Section 10.7. Padberg (1974) contains a
very interesting matrix-based attack on the problem.

The concept of complement total unimodularity of Section 12.3 is de-
fined in Truemper (1980b). Almost representative matrices are character-
ized in Truemper (1982b). A number of papers explicitly or implicitly in-
clude properties of the class V (see Ghouila-Houri (1962), Camion (1963a),
(1963b), (1965), Chandrasekaran (1969), Gondran (1973), Padberg (1975),
(1976), Tamir (1976), Kress and Tamir (1980), Truemper (1977), (1978),
(1980b), (1982b), and de Werra (1981)). But none of the results captures
the complexity of V. Indeed, the cited results do not contain a single clue
to how one might construct even a small subset of structurally different
matrices of V.

Section 12.4 relies on Truemper (1992a), (1992b). The analysis tech-
nique applies not just to the cited properties, but also to certain repre-
sentability questions. An important case is treated in Truemper (1982b),



12.6. Applications, Extensions, and References 313

where the minimal violation matrices of abstract matrices not representable
over GF(2) or GF(3) are characterized.

Section 12.5 is entirely based on Truemper (1992b). That reference
also contains alternate constructions using pivots. The constructions do
not have descriptions as brief as the ones included here, but they are well
suited for hand calculations. Truemper (1992b) also includes a proof that
every 3-connected almost regular matroid different from F7 and F ∗

7 has a
binary representation matrix that is balanced. An example is the matrix
V of (12.5.26). The proof relies on an extension of an efficient algorithm of
Fonlupt and Raco (1984) that proves existence of a balanced binary repre-
sentation matrix for any regular matroid. The algorithm is a modification
of a scheme due to Camion (1968) where the latter existence result was
first established.



Chapter 13

Max-Flow Min-Cut Matroids

13.1 Overview

Concepts, theorems, or algorithms in one area of mathematics often inspire
new approaches in another area. In turn, the ensuing new developments in
the latter area may lead to new ideas in the former one. In this chapter,
we describe an interesting instance of this cyclic process.

We start with the max flow problem for undirected graphs, which may
be defined as follows. Given is a connected and undirected graph G. One
of the edges of G, say l, is declared to be special. To each edge e of G other
than l, a nonnegative integer he is assigned and called the capacity of e.
Define G to have flow value F if there are F cycles, not necessarily distinct,
that satisfy the following two conditions. Each cycle of the collection must
contain the special edge l, and any other edge e of G is allowed to occur
altogether in at most he of the cycles. The max flow problem demands that
one solve the problem maxF . The solution value must be accompanied by
a collection of cycles producing that value.

A companion of the max flow problem is the following min cut problem.
For any cocycle D of G containing the special edge l, define the capacity of
D to be the sum of the capacities of the edges in D other than l. Denote the
capacity of D by h(D). The min cut problem asks one to solve minh(D).
The solution value must be accompanied by a cocycle D containing the
edge l and having the solution value as capacity.

The famous max-flow min-cut theorem for graphs says that maxF =
min h(D) no matter how the nonnegative integral edge capacities are se-
lected.

314
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The max flow and min cut problems for graphs have obvious matroid
translations. In the above description, one replaces the graph G by a ma-
troid M and specifies elements instead of edges, and circuits and cocircuits
instead of cycles and cocycles. One might conjecture that the max-flow
min-cut theorem still holds in the expanded setting. But this is not so in
general. Counterexamples can be produced with small matroids, in partic-
ular with U2

4 , the rank 2 uniform matroid on four elements, and with F ∗
7 ,

the Fano dual matroid. Indeed, because of the symmetry of U2
4 as well as

of F ∗
7 , the conjecture is false for these matroids no matter which element

is declared to be special. In general, there are matroids where the equality
maxF = min h(D) does or does not hold for all capacity vectors h, depend-
ing on the selection of the special element. Thus, we are motivated to define
a matroid M with a special element l to have the max-flow min-cut prop-
erty, or to be a max-flow min-cut matroid, if maxF = minh(D) no matter
which nonnegative integral values are assigned as capacities. Absence or
presence of the max-flow min-cut property for M is evidently governed by
the connected component of M containing the element l. Thus, for the pur-
poses of characterizing the max-flow min-cut matroids, we might as well
restrict ourselves to connected matroids.

Using an ingenious but complicated induction hypothesis, Seymour
proved in a long paper that the connected max-flow min-cut matroids are
precisely the connected binary matroids where the special element l is not
contained in any F ∗

7 minor. In this chapter, we prove Seymour’s result using
a quite different approach. Let us define M to be the class of connected
binary matroids where each matroid has a special element l such that l is
not contained in any F ∗

7 minor. In Section 13.2, we establish 2- and ∆-sum
decomposition theorems for the matroids of M. In Section 13.3, we use
these theorems to prove Seymour’s result that M is precisely the class of
connected max-flow min-cut matroids. In Section 13.4, we use a part of the
proof to validate a construction for M that involves certain 2- and ∆-sums.
We show that the construction can be determined for any matroid of M
in polynomial time, and thus conclude that one can test for the max-flow
min-cut property of binary matroids in polynomial time. We also describe
polynomial algorithms for the following problems involving the matroids
of M: the max flow problem, the min cut problem, and a certain shortest
circuit problem.

In Section 13.5, we examine an interesting graph application of the
above results for M. Let H be an undirected graph each of whose edges
is declared to be odd or even. Recall that K4 is the complete graph on
four vertices. Declare a K4 minor of H to be an odd-K4 minor if it has
a certain property that is defined via the relative position of its even and
odd edges. Then let G be the class of 2-connected graphs without odd-K4

minors. The graphs of G have pleasant properties, so an understanding
of their structure is desirable. It turns out that the graphs of G can be
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linked to the class M. As a result, we can apply the cited construction
for M to understand the structure of the graphs of G. In that way, we
obtain a construction for the graphs of G. At the same time, we produce a
polynomial test for membership in G. Evidently, we have moved from the
max-flow min-cut property of graphs to the max-flow min-cut matroids,
and then to the graphs without odd-K4 minors. Thus, we have an instance
of the cyclic process mentioned in the introductory paragraph.

The final section, 13.6, contains additional applications, extensions,
and references.

The chapter makes use of Chapters 2, 3, and 5–11. It is also assumed
that the reader has a basic knowledge of linear programming. Relevant
references are included in Section 13.6.

13.2 2-Sum and Delta-Sum Decompositions

Recall that M is the class of connected binary matroids where each matroid
has a special element l such that l is not contained in any F ∗

7 minor. In
this section, we first show that any 2-separable matroid of M has a certain
2-sum decomposition where both component matroids are also in M. Then
we establish that any 3-connected nonregular matroid ofM has a particular
∆-sum decomposition where again the components are in M. These two
results will be used in the next section to show that M is precisely the
class of max-flow min-cut matroids. Before proceeding, the reader may
want to review briefly the results for 2- and ∆-sums in Sections 8.2 and
8.5, respectively.

We begin with some definitions. By symmetry, there is essentially just
one way to declare an element of the Fano matroid F7 or of its dual F ∗

7 to
be the special element l. When this is done, we get the matroid F7 with l
or F ∗

7 with l. Suppose two binary matroids M and M ′ contain the element
l. If an isomorphism exists between M and M ′ that takes the element l
of one of the matroids to l of the other one, then the two matroids are
l-isomorphic. Finally, we emphasize that l is always the special element of
any matroid in M. Note that F7 with l is in M, while F ∗

7 with l is not.
We are ready for the detailed discussion of the 2- and ∆-sum results

for M.

2-Sum Decomposition

The structure theorem for the 2-sum case is as follows.

(13.2.1) Theorem. Any 2-separable matroid M ∈ M on a set E has
a 2-sum decomposition where both components M1 and M2 are connected
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minors of M , contain l, and thus are in M. In addition, M2 has an element
y 6∈ l so that any set C ⊆ E is a circuit of M with l if and only if (i) or (ii)
below holds.

(i) C is a circuit of M2 with l but not y.
(ii) C = (C1 − {l}) ∪ (C2 − {y}) where C1 is a circuit of M1 with l, and

where C2 is a circuit of M2 with both l and y.

Proof. Using the results of Section 8.2 for 2-separations and 2-sums, as
well as the path shortening technique of Chapter 5, one readily shows that
any 2-separable M ∈M has a representation matrix B of the form

(13.2.2)

Y1
y

A2

B =

A1

Y2

l

X1

X2

0

0

1
all
1s

Matrix B of M ∈M with exact 2-separation

Note the position of the element l in X2, and the indicated element y ∈ Y1.
By Section 8.2, M is a 2-sum where both components M1 and M2 are
connected minors of M , have the element l, and are represented by the
matrices B1 and B2 of (13.2.3) below. Routine arguments using B, B1

and B2 confirm the claims of the theorem concerning the circuits of M ,
M1, and M2.

(13.2.3)
A2B2 =

y Y2
l

X2
1
0

Y1
y

B1 = A1

l

X1

0 1 1

1

Matrices B1 and B2 of 2-sum decomposition of M

Delta-Sum Decomposition

We turn to the much more challenging case where M is 3-connected. In
Section 13.3, it will be shown that any regular matroid of M has the max-
flow min-cut property. Thus, we concentrate here on the situation where
M is not regular. For that case, one can prove M either to be isomorphic
to F7, or to have a particular ∆-sum decomposition. The precise statement
is as follows.
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(13.2.4) Theorem. Any 3-connected nonregular matroid M ∈ M on a
set E is isomorphic to the Fano matroid F7, or has a ∆-sum decomposition
where the components M1 and M2 are connected minors of M , contain l,
and thus are in M. In the ∆-sum decomposition, both connecting triangles
of M1 and M2 contain l. Let the remaining elements of the connecting
triangle of M1 (resp. M2) be a and b (resp. v and w). Then any set C ⊆ E
is a circuit of M with l if and only if (i), (ii), (iii), or (iv) below holds.

(i) C is a circuit C1 of M1 with l but without a and b.
(ii) C is a circuit C2 of M2 with l but without v and w.
(iii) C = (Ca − {a}) ∪ (Cv − {v}) where Ca is a circuit of M1 with l and

a but without b, and where Cv is a circuit of M2 with l and v but
without w.

(iv) C = (Cb − {b}) ∪ (Cw − {w}) where Cb is a circuit of M1 with l and
b but without a, and where Cw is a circuit of M2 with l and w but
without v.

The proof of Theorem (13.2.4) takes up the remainder of this section.
We proceed as follows. First, we show that any 3-connected nonregular
M ∈ M is isomorphic to F7 or has a minor that is l-isomorphic to the
matroid N8 of M defined by the matrix B8 below.

(13.2.5)

X2

1
1
u

0

v w

Y2Y1

0

1
b
c

d
a

1

1

1
1

l

0
1

1

1
0

0
1

B8=

X1

Matrix B8 for the matroid N8

Evidently, (X1∪Y1, X2∪Y2) is a 3-separation of N8. Note that Y2 contains
just the element l. It is easy to confirm that N8 is indeed in M.

Next, we establish that M has a minor N with the following prop-
erties. N contains l and is l-isomorphic to N8, and a 3-separation of N
corresponding to (X1 ∪Y1, X2 ∪Y2) of N8 under one of the l-isomorphisms
induces a 3-separation of M . From that induced 3-separation of M , we
finally derive the ∆-sum decomposition claimed in Theorem (13.2.4).

Induced 3-Separation

We begin the detailed discussion. The first lemma deals with the presence
of N8 minors in M .

(13.2.6) Lemma. Let M be a 3-connected nonregular matroid of M.
Then M is isomorphic to the Fano matroid F7, or has a minor that is
l-isomorphic to N8.
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Proof. If M has seven elements, then it must be isomorphic to F7 since
membership in M rules out F ∗

7 . So assume that M has at least eight
elements. If M does not have any F ∗

7 minors, then by the splitter result of
Lemma (11.3.19), M has an F7 minor and is 2-separable, or is regular. The
assumptions made here rule out these cases. Thus, M has an F ∗

7 minor,
say N . Obviously, the minor N does not contain the element l.

According to Lemma (5.2.4), M has a connected N ′ minor that is a
1-element extension of N by l. If in N ′ the element l is parallel to or in
series with some other element, then clearly l is part of an F ∗

7 minor of
N ′ and thus of M , a contradiction. Thus, N ′ is 3-connected. Now F ∗

7 has
no 3-connected 1-element expansion, so N ′ is obtained from N by addition
of l. Routine calculations confirm that up to l-isomorphism, there is just
one addition case that does not have an F ∗

7 minor with l. That case is
represented by the matrix of (13.2.5).

From now on, we assume that M is a 3-connected nonregular matroid
of M with at least eight elements. By Lemma (13.2.6), M has a minor that
is l-isomorphic to N8. For one such minor, we will exhibit a 3-separation
that corresponds to the 3-separation (X1 ∪Y1, X2 ∪ Y2) of N8 under one of
the l-isomorphisms, and that induces a 3-separation of M . For this task,
we invoke Corollary (6.3.25) and Theorem (6.3.28). Recall that Corollary
(6.3.25) contains sufficient conditions for induced k-separations, while The-
orem (6.3.28) extends those conditions to the case where M has a special
subset L of elements. For the case at hand, we define L to be the set
containing just l. We combine Corollary (6.3.25) and Theorem (6.3.28) for
this special set L to the following theorem.

(13.2.7) Theorem. Suppose a 3-connected N given by the matrix BN

(13.2.8)

Y1 Y2

X1
BN =

A1

DX2 A2

0

Partitioned matrix BN for N

is in M and has l ∈ (X2 ∪ Y2). Assume that (X1 ∪ Y1, X2 ∪ Y2) is a k-
separation of N . Furthermore, assume that N/(X2 ∪ Y2) has no loops and
that N\(X2 ∪ Y2) has no coloops. Finally, assume for every 3-connected
1-element extension of N in M, say by an element z, that the pair (X1 ∪
Y1, X2 ∪ Y2 ∪ {z}) is a k-separation of that extension. Then for any 3-
connected matroid M ∈ M with a minor l-isomorphic to N , the following
holds. Any k-separation of any such minor that corresponds to (X1 ∪
Y1, X2 ∪ Y2) of N under one of the l-isomorphisms induces a k-separation
of M .
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We use Theorem (13.2.7) plus the recursive decomposition scheme ex-
plained in Section 10.5 to establish 3-separations for the nonregular 3-
connected matroids of M. We do not repeat here details of the decom-
position scheme, so the reader may want to review that material before
proceeding. The first iteration of that scheme is effectively accomplished
by the following lemma.

(13.2.9) Lemma. Let M be a 3-connected matroid of M with N8 as
minor. Then the 3-separation (X1 ∪Y1, X2 ∪Y2) of N8 as given by (13.2.5)
induces a 3-separation of M , or M has a minor that is l-isomorphic to the
matroid N9 represented by B9 below.

(13.2.10)

l

1
1
u

0

v w z
Y2Y1

0

1
b
c

d
a

1

1

1
1

0
1

1

1
0 0

0

0 1
11

B9=

X1

X2

Matrix B9 for the matroid N9

Proof. We assume absence of the specified N9 minors in M , and apply
Theorem (13.2.7). The matroid N8 plays the role of N of that theorem.
Since in N8 we have Y2 = {l}, we have l ∈ (X2∪Y2). It also is easily checked
that N8 satisfies the conditions of Theorem (13.2.7) involving N/(X2 ∪
Y2) and N\(X1 ∪ Y1). For verification of the remaining conditions of the
theorem, we must compute the 3-connected 1-element extensions N ′ of N8,
say by an element z, such that in N ′ the pair (X1 ∪ Y1, X2 ∪ Y2 ∪ {z}) is
not a 3-separation. We are done by contradiction once we show that any
such case of N ′ is l-isomorphic to N9 or is not in M.

We first consider the addition of z. For this, we adjoin to B8 of
(13.2.5) a column [g/h] representing the element z. The partition of [g/h]
corresponds to that of B8. By assumption, (X1 ∪ Y1, X2 ∪ Y2 ∪ {z}) is not
a 3-separation of N ′. Thus, we must have g = 1. By the 3-connectedness
of N ′, the vector h must have one or three 1s. Routine checking confirms
that all such instances are l-isomorphic to N9. We turn to the expansion
by z. We adjoin to B8 of (13.2.5) a row [e | f ] representing the element z.
The partition of [e | f ] corresponds to that of B8. The conditions imposed
on z demand that e has one or three 1s and that f = 1. In each case,
the element l of N ′ can be placed into an F ∗

7 minor, and thus is not in
M.

In the terminology of the decomposition scheme of Section 10.5, we
have just completed the first iteration. We begin the second iteration by
analyzing N9 for 3-separations. That matroid has several such separations,
some of them useful for our purposes, and others not. Indeed, in the initial
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investigation into the class M, a 3-separation of N9 was selected that led to
a large number of iterations of the decomposition scheme. But eventually
a better choice was found. It is the 3-separation ({a, b, d, u}, {c, l, v, w, z}).
It can be displayed in the accustomed format once we compute the repre-
sentation matrix for N9 corresponding to the base {b, c, v, w}. That matrix
for N9 is as follows.

(13.2.11)

l

1
1
a

0

d u z

0

1
v

c

b
w

1

1

1
1

0
1

1

1
0 1

0

0 0
11

Matrix for N9 corresponding to base {b, c, v, w}

The second iteration of the decomposition scheme is accomplished by the
following lemma.

(13.2.12) Lemma. Let M be a 3-connected matroid of M with N9 as
minor. Then the 3-separation ({a, b, d, u}, {c, l, v, w, z}) of N9 induces a
3-separation of M .

Proof. The arguments are virtually identical to those for Lemma (13.2.9),
except that this time each 3-connected 1-element extension satisfies the
conditions of Theorem (13.2.7) or is not in M. We leave it to the reader
to fill in the details.

Lemmas (13.2.6), (13.2.9), and (13.2.12) imply the following theorem,
which thus is the result of two iterations of the decomposition scheme.

(13.2.13) Theorem. Let M be a 3-connected nonregular matroid of M
with at least eight elements. Then M has a minor N with the following
properties. N contains the element l and is l-isomorphic to N8, and a 3-
separation of N corresponding to the 3-separation (X1∪Y1, X2∪Y2) of N8

under one of the l-isomorphisms induces a 3-separation of M .

Proof. By Lemma (13.2.6), M has a minor that contains l and that is
l-isomorphic to the matroid N8. We may suppose that N8 itself is that
minor. Then by Lemma (13.2.9), M has a 3-separation induced by the
3-separation (X1 ∪ Y1, X2 ∪ Y2) of N8, or M has a minor with l that is
l-isomorphic to the matroid N9. In the former case, we are done. In the
latter case, we apply Lemma (13.2.12). Accordingly, M has a 3-separation
induced by the 3-separation ({a, b, d, u}, {c, l, v, w, z}) of N9. From the
matrix of (13.2.11) for N9, we now delete the last column. Evidently, up to
indices other than l, a matrix for N8 results. The matroid N represented
by that matrix is thus l-isomorphic to N8. Furthermore, by the derivation
of N from N9, the 3-separation ({a, b, d, u}, {c, l, v, w}) of N also induces
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the 3-separation of M derived earlier from N9. But that 3-separation of N
corresponds to the 3-separation (X1 ∪ Y1, X2 ∪ Y2) of N8. Thus, the case
involving N9 also leads to the desired conclusion.

From 3-Separation to Delta-Sum

The reader probably anticipates that the conversion of the just-proved 3-
separation of M to the ∆-sum decomposition claimed in Theorem (13.2.4)
is straightforward. Unfortunately, the situation is not quite as simple. In
particular, we must obtain some insight into the position of l relative to
the 3-separation of M before we can proceed to the ∆-sum decomposition.
We obtain this insight next.

By (13.2.5), the minor N = N8/c of N8 is l-isomorphic to the Fano
matroid F7 with l. Indeed, the groundset of N is {a, b, d, l, u, v, w}, and
the 3-separation ({d, u, v, w}, {a, b, l}) of N induces the same 3-separation
in M that N8 induces.

From now on, we do not need the matroid N8 any more. Thus, we can
switch notation, and can utilize the sets X1, X2, Y1, and Y2 so far employed
for N8 to denote induced 3-separations of M . We do this next in a repre-
sentation matrix B of M . That matrix displays the just-defined F7 minor
N , with indices a, b, d, u, v, w, l and 3-separation ({d, u, v, w}, {a, b, l}).

(13.2.14)

u v

1
1

A2D

B =

A1

Y1 Y2
w l

a
d

b

X1

X2

0

1  11
0  11
1  01

0

Matrix B of M displaying N
and induced 3-separation (X1 ∪ Y1, X2 ∪ Y2)

To capture the role of l in the 3-separation (X1 ∪ Y1, X2 ∪ Y2) of M , we
define l to straddle the 3-separation if a shift of l from Y2 to Y1 results in
another 3-separation of M . The next theorem says that l must straddle
the 3-separation. This fact will be essential for the ∆-sum decomposition
to come.

(13.2.15) Theorem. Let a 3-connected matroid M ∈ M be represented
by the matrix B of (13.2.14), where (X1 ∪ Y1, X2 ∪ Y2) is a 3-separation of
M . Then the element l straddles that 3-separation.

Proof. Evidently, the element l straddles the 3-separation of M if and
only if column l of the submatrix A2 of B and column u of the submatrix
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D of B are parallel. The former column vector we call gl, and the latter
one gu. Note that gu is the sum (in GF(2)) of the columns v and w of D.

Assume that l does not straddle the 3-separation. Thus, gl and gu

are not parallel. Equivalently, one of these vectors contains a 1 in a row
x ∈ X2 where the other one has a 0. Thus, two cases are possible.

In the first case, gl
x = 0 and gu

x = 1. Then the submatrix of B indexed
by a, b, d, x and l, u, v, w is either

(13.2.16)

x

l

1
1
u

0

v w

1

1
b

d
a

1

1

1
0

0
1

1

1
0

0
1

Submatrix of B

or is obtained from the matrix of (13.2.16) by exchanging the row indices
a and b, and the column indices v and w. Thus, we may assume that the
situation depicted by (13.2.16) is at hand. Let M be the minor represented
by the matrix of (13.2.16). The minor M\b of M turns out to be an F ∗

7

minor with l, and thus M 6∈ M, a contradiction.
In the second case, gl

x = 1 and gu
x = 0. If row x of D is nonzero, or

equivalently, if row x has 1s in both columns v and w, then rows a, b, d, x
and columns l, v, w prove l to be in an F ∗

7 minor, a contradiction. Thus,
row x of D is zero. By this fact and by the completion of the first case, we
can narrow down the second case as follows. There is a nonempty subset
X2 ⊆ X2 such that for all x ∈ X2, we have gl

x = 1 while row x of D is
equal to 0. Furthermore, for all x ∈ (X2 −X2), we have gl

x = gu
x .

Let X2 be the index set of the nonzero rows of D. By the above
definition of X2, we know X2 ⊆ (X2−X2). We now redraw B of (13.2.14)
by enlarging and repartitioning the submatrices A2 and D. The revised B
is as follows.

(13.2.17) column
≠ 0, g= 0 or

= g
1
0 1

0
1

B =

A1

l

X1

Y1

Y2

X2

0

0

0
0 1

111

X2

Y2

g g

1

1

...

0

0

...

X2

Y2

0 1

each
column

each

Repartitioned matrix B
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The partition of the rows of B of (13.2.17) is induced by the sets X2

and X2 introduced above. The partition of Y2 into the sets l, Y 2, and Y 2

is based on the information given in the submatrices indexed by X2, Y 2

and X2, Y 2. Thus, each column of the former submatrix is zero or parallel
to the subvector g of column l. By the definition of X2, the subvector g
also occurs in D, as shown.

Suppose Y 2 = ∅. Then it is readily checked via B of (13.2.17) that X1∪
Y1∪X2 is one side of a 2-separation of the 3-connected M , a contradiction.
Thus, Y 2 6= ∅.

Derive a matrix B from B by deleting all 1s in positions (x, y) where
x ∈ X2 and y ∈ ({l} ∪ Y 2). Consider the bipartite graph BG(B). If that
graph does not have a path from l to Y 2, then arguments analogous to
those of the proof of Lemma (5.2.11), prove M to be 2-separable. Thus,
a path exists from l to some y ∈ Y 2. Because of path-shortening pivots,
we may assume that the path has exactly two arcs. Thus, we can extract
from B the following submatrix B,

(13.2.18)

u

1
0 1

h
a
b

v w l y

0
0

0

0
1

11

111

X2
g g

Submatrix B of B

where h 6= 0 and h 6= g. Reduce X2 to a minimal set containing a and b such
that the just-mentioned condition is still satisfied by the correspondingly
reduced g and h. Thus, |X2| = 2 or 3. Since g has two 1s in rows a and
b, we have |X2| = 3 if and only if h has either two or no 1’s in rows a
and b. If h is a unit vector, then a pivot on the 1 of h plus deletion of
the pivot column produces a previously resolved instance where gl

x 6= gu
x

and where a row x of D is nonzero. Otherwise, |X2| = 3, and h has two
1s in rows a and b. In each one of the three possible cases, a pivot in h
plus deletion of the pivot column and of one row proves that l is in an F ∗

7

minor, a contradiction.

As described in Section 8.5, a ∆-sum decomposition is derived from a
3-sum decomposition via a certain ∆Y exchange. We first carry out the
3-sum decomposition of M using the matrix of (13.2.14), except that this
time we ignore the column index u and the details of that column. We
are guided in that decomposition by the matrices of (8.3.10) and (8.3.11).
Below, we list the matrix B for M , as well as the representation matrices
B1 and B̃2 for the components M1 and M̃2 of the 3-sum decomposition of
M .
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(13.2.19)

l

1
1

A2D

B =

A1

Y1 Y2
v w

a
d

b

X1

X2

0

1  1
0  1
1  0

0

Matrix B for M

(13.2.20)

l

1
1

B1 =
A1

Y1
v w

a
d

b

X1

1  1
0  1
1  0

0

0

0 1

1
1

A2

l
Y2

v w

a
d

b
X2

01  1
0  1
1  0

0

  B2 =
~

0 1

Matrices B1 and B̃2 of 3-sum decomposition of M

The ∆-sum decomposition has M1 and a second matroid, say M2, as com-
ponents, where M2 is derived from M̃2 by the exchange of the triad {d, v, w}
with a triangle, say Z, according to the rule of (4.4.5). For the particular
case at hand, we modify that exchange using the following arguments.

By Theorem (13.2.15), the element l straddles the 3-separation (X1 ∪
Y1, X2 ∪ Y2) of M . Thus, in B, the columns v and w of the submatrix D
span the column l of the submatrix A2. This implies that one element of
M2 in the triangle Z is parallel to l. Thus, we can delete that element from
M2, and still have enough information to compose M1 and the reduced
M2 to M again. Accordingly, we redefine M2 to be that reduced matroid.
From B̃2 of (13.2.20), we see that the just-defined matroid M2 may be
taken to be M̃2/d. Note that M2 may have just six elements, in which case
it is isomorphic to the wheel matroid M(W3).

For later reference, we include the matrices B1 and B2 of the ∆-sum
decomposition of M into M1 and M2 in (13.2.21) below. We have simpli-
fied the matrices by omitting indices that are of no consequence for the
subsequent discussion. With B1 and B2 of (13.2.21), one readily confirms
the statements (i)–(iv) of Theorem (13.2.4) about certain circuits of M ,
M1 and M2. We leave the simple calculations to the reader. Thus, we have
completed the proof of that theorem.
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(13.2.21)

l

B1 =
A1

Y1

a
b

X1

0  1
1  0

1
1

0

0 1

1
1

A2
X2

l
Y2

v w

0  1
1  0

  B2 =
0 1

Matrices B1 and B2 of ∆-sum decomposition of M

In the next section, we use Theorems (13.2.1) and (13.2.4) to character-
ize the max-flow min-cut matroids with special element l by the exclusion
of U2

4 minors and of F ∗
7 minors with l.

13.3 Characterization of Max-Flow
Min-Cut Matroids

Recall from the introduction that a max-flow min-cut matroid is a con-
nected matroid with a special element l such that for any nonnegative
integral edge capacity vector h, we have maxF = minh(D). Here maxF
is the optimal value of the max flow problem, where one must find a max-
imum number of cycles with l such that each element e 6= l is contained
in at most he of these cycles. Then min h(D) is the optimal value of the
min cut problem, where one must determine a cocircuit D with l such that
h(D), defined to be the sum of the values he of the elements e ∈ (D − l),
is minimum.

In this section, we show that a connected matroid with a special el-
ement l has the max-flow min-cut property if and only if M has no U2

4

minors and has no F ∗
7 minors with l. By Theorem (3.5.2), a matroid is

binary if and only if it has no U2
4 minors. Thus, the claimed characteriza-

tion is equivalent to the statement that M, the class of connected binary
matroids having no F ∗

7 minors with l, is the class of connected max-flow
min-cut matroids.

The characterization is summarized by the following theorem and
corollary.

(13.3.1) Theorem. A connected matroid M with a special element l is
a max-flow min-cut matroid if and only if M has no U2

4 minors and has no
F ∗

7 minors with l.

(13.3.2) Corollary. M is the class of connected max-flow min-cut ma-
troids.
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We begin the proof of Theorem (13.3.1) by noting that the result
is trivially true for matroids whose groundset contains only the special
element l. Thus, we assume from now on that all matroids M examined
below have at least one additional element besides l. We first formulate
the max flow problem and the min cut problem as linear programs with an
integrality condition.

Max Flow Problem

Let M be a connected but not necessarily binary matroid whose groundset
E contains a special element l. We construct the following matrix H from
M . The rows of H correspond to the elements of E other than l, and the
columns to the circuits C of M containing l. The entry of H in row e and
column C is then 1 if e occurs in circuit C, and 0 otherwise. Consider
the following linear program involving H and an arbitrary nonnegative
integral vector h. Recall that 1 is a vector containing only 1s. All vectors
are assumed to be column vectors of appropriate dimension. Below, the
abbreviation “s. t.” stands for “subject to.”

(13.3.3)
max 1t · r
s. t. H · r ≤ h

r ≥ 0

We call this problem the fractional max flow problem, since it becomes
the max flow problem with capacity vector h when we require the solution
vector r to be integral. Indeed, for any integral solution vector r, the entry
in position C specifies the number of times the circuit C is to be selected.

Min Cut Problem

The linear programming dual of (13.3.3) is

(13.3.4)
min ht · s
s. t. Ht · s ≥ 1

s ≥ 0

We call (13.3.4) the fractional min cut problem. We justify the term next.
Suppose that we require the solution vector s of (13.3.4) to be integral.
According to the constraints of (13.3.4), any optimal solution s can then
be assumed to be a {0, 1} vector. We do this from now on when we impose
the integrality condition on s of (13.3.4). By the constraint Ht · s ≥ 1 of
(13.3.4), the vector s is thus the incidence vector of a subset Z of E that
intersects every circuit encoded by a column of H. Let C∗ = Z ∪ {l}. We
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claim that C∗ contains a cocircuit of M with l. For a proof, select a base
X of M that contains l and that avoids the set Z as much as possible.
Collect in a set Y each element y ∈ (E−X) whose fundamental circuit Cy

with X contains l. By this definition, Y ∪ {l} is the fundamental cocircuit
of M that l forms with (E−X). Furthermore, by the derivation of Z from
the vector s, Z intersects, for each y ∈ Y , the fundamental circuit Cy in
some element z different from l. Suppose no such z is equal to y. Then for
some z ∈ Z, (X −{z})∪{y} is a base, which proves that X does not avoid
Z as much as possible, a contradiction. Thus, Y ⊆ Z, and C∗ contains
a cocircuit of M with l as claimed. Since the vector h is nonnegative, we
may assume C∗ to be that cocircuit.

By Lemma (3.4.25), any circuit of M with l and any cocircuit of M
with l cannot intersect just on the element l. Thus, any cocircuit of M
with l is a candidate for producing an integral solution for (13.3.4), and the
best such candidate corresponds to a {0, 1} vector s solving (13.3.4) with
integrality condition. Thus, that problem represents the min cut problem,
and we are justified in calling (13.3.4), without the integrality requirement,
the fractional min cut problem for M .

Necessity of Excluded Minors Condition

We are ready to show the “only if” part of Theorem (13.3.1), which says
that a connected max-flow min-cut matroid cannot have U2

4 minors, or
F ∗

7 minors with l. The proof is based on two reductions. The first one
is accomplished by the following lemma and corollary. We omit the proof
of the lemma, since it is just a particular version of the so-called duality
theorem of linear programming.

(13.3.5) Lemma. For any feasible vectors r and s of (13.3.3) and
(13.3.4), respectively, we have 1t · r ≤ h · s, with equality holding if and
only if both vectors r and s are optimal.

(13.3.6) Corollary. If every optimal solution vector r of (13.3.3) is
nonintegral, then the matroid defining that problem is not a max-flow
min-cut matroid.

Proof. Let r and s be optimal solutions for (13.3.3) and (13.3.4), respec-
tively. Because of the assumptions and Lemma (13.3.5), we must have
maxF < 1t · r = ht · s ≤ h(D). Thus, maxF 6= min h(D), and the matroid
defining (13.3.3) cannot be a max-flow min-cut matroid.

For the second reduction, we rewrite Lemma (5.4.3) to get the following
result.

(13.3.7) Lemma. Let M be a connected matroid with an element l. If
M has U2

4 minors, then M has a U2
4 minor with l.
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By the preceding reductions, we may prove the necessity of the ex-
cluded minors condition of Theorem (13.3.1) by producing, for any con-
nected matroid with a U2

4 minor with l or with an F ∗
7 minor with l, a

nonnegative integral capacity vector h such that any optimal solution vec-
tor for (13.3.3) is nonintegral. The next lemma says that such a vector h
can always be found.

(13.3.8) Lemma. Let a connected matroid M with an element l have
a U2

4 minor with l or an F ∗
7 minor with l. Then there is a nonnegative

integral vector h such that all optimal solution vectors r for (13.3.3) with
that h are nonintegral.

Proof. Let N be a minor of M with l and isomorphic to U2
4 or F ∗

7 . By
the discussion of Section 3.4, we may assume that N = M/U\W , where
U does not contain any cycle of M , and W does not contain any cocycle.
Let M have n elements. Define the vector h by he = 1 for each element of
N except l, he = n for each e ∈ U , and he = 0 for each e ∈ W . Routine
calculations show that any optimal solution vector r for (13.3.3) with this
h is nonintegral. We leave the verification to the reader.

Sufficiency of Excluded Minors Condition

We prove the “if” part of Theorem (13.3.1), which says that any connected
matroid M with a special element l, without U2

4 minors, and without F ∗
7

minors with l is a max-flow min-cut matroid.
We invoke a result of polyhedral combinatorics to simplify the proof.

That result concerns a certain integrality property of linear programs called
total dual integrality and is due to Edmonds and Giles.

(13.3.9) Theorem. Suppose the matrix A and the vector c of the linear
program

(13.3.10)
max ct · f
s. t. A · f ≤ b

f ≥ 0

are integral and permit a feasible solution for the dual linear program of
(13.3.10), which is

(13.3.11)
min bt · g
s. t. At · g ≥ c

g ≥ 0

Furthermore, assume that the linear program (13.3.10) has an integral
optimal solution for every integral vector b for which it has a feasible solu-
tion. Then all extreme point solutions for the dual linear program (13.3.11)
are integral.
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We apply Theorem (13.3.9) as follows. We view the fractional max flow
problem (13.3.3) as an instance of (13.3.10). Then the linear programming
dual of (13.3.3), which is the fractional min cut problem (13.3.4), is the
problem (13.3.11). Note that (13.3.3) has a feasible solution if and only if
h ≥ 0. Suppose for a given M with l, and for any integral h ≥ 0, we can
show that the fractional max flow problem has an optimal solution vector
that is integral. By Theorem (13.3.9), the fractional min cut problem then
has, for any integral h ≥ 0, an optimal solution that is integral. By Lemma
(13.3.5), the optimal objective function values of the two problems agree,
and thus we have maxF = min h(D). We conclude that M is a max-flow
min-cut matroid.

By the above arguments, we may establish the max-flow min-cut prop-
erty for M by showing that the fractional max flow problem (13.3.3) has,
for any integral h ≥ 0, an optimal solution vector that is integral. We
divide the latter task into two parts. In the first one, we assume M to be
regular. In the second one, M is assumed to be nonregular.

Regular Matroid Case

We begin with the first part. So assume that a connected matroid M on a
set E and with special element l is regular. Let h be any nonnegative inte-
gral capacity vector. By Theorem (9.2.9), M has a real totally unimodular
representation matrix B. Adjoin an identity matrix I to B, getting a real
matrix A = [I | B] whose columns are indexed by E. Consider the fol-
lowing linear program, where the solution vector f is a real column vector
indexed by E.

(13.3.12)

max fl

s. t. A · f = 0
f ≥ −h
f ≤ h

The linear program is clearly bounded and has the zero vector as solution.
Thus, there is an optimal solution vector, say f̃ . By linear programming
results, f̃ may be assumed to be the solution to a system of equations of
the form Ã · f = h̃, where Ã is a square nonsingular matrix consisting of
some rows of A plus some unit vector rows, and where h̃ contains zeros and
some entries of h and −h. Evidently, Ã is totally unimodular. By Lemma
(9.2.2), Ã−1 is totally unimodular as well, and thus f̃ = Ã−1 · h̃ is integral.
We may suppose f̃ ≥ 0 since any negative entry f̃e of f̃ can be transformed
to a positive one by a clearly permissible scaling of column e of A by −1.
Thus, f̃ is nonnegative and integral.

Until stated otherwise, we assume that f̃l > 0. From f̃ , we derive
f̃l circuits that we later show to correspond to an optimal solution of the
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fractional max flow problem (13.3.3). We obtain these circuits by repeat-
edly solving a certain linear inequality system. In the first iteration, that
system is

(13.3.13)

A · g = 0;

ge ≥ 0; if e 6= l and f̃e > 0

ge = 0; if e 6= l and f̃e = 0
gl = 1

The vector g = f̃/f̃l is feasible for (13.3.13). Arguing analogously to the
case involving (13.3.12), we are thus assured of an integral nonnegative
solution g̃ for (13.3.13). Indeed, this time the vector playing the role of
the earlier h̃ is a unit vector, and g̃ may be taken to be the characteristic
vector of a circuit of M with l.

We now replace f̃ in (13.3.13) by f̃ ′ = f̃ − g̃ and deduce from the
so-modified system (13.3.13) another circuit of M with l. We repeat this
iterative derivation of circuits until f̃l has been reduced to 0. At that time,
we have f̃l circuits, each containing the element l. By the derivation, any
element e of M occurs in at most he of these circuits.

Now assume that f̃l = 0. Then we do not select any circuit at all. The
discussion to follow applies to this case as well as to the one where f̃l > 0
and where we do select circuits.

Define a vector r̃ from the circuits of M with l that we just have
selected by setting r̃C equal to the number of times the circuit C occurs
in the collection. Thus, 1t · r̃ = f̃l. We claim that r̃ solves the fractional
max flow problem (13.3.3). By the construction, r̃ is feasible for (13.3.3).
We prove optimality as follows. Take any feasible solution r for (13.3.3).
From each nonzero entry rC of r, we derive a nonzero solution fC for
the equation A · f = 0 as follows. First, we obtain a nontrivial {0,±1}
solution for A · f = 0 such that the support vector of that solution is the
characteristic vector of C. This can clearly be done, since A is totally
unimodular. Next, we scale that {0,±1} solution by rC to get a vector
fC . We define f to be the sum of the vectors fC if fl 6= 0, and to be the
zero vector otherwise. By the derivation, f is a solution for (13.3.12), with
objective function value fl = 1t · r. Recall that the vector f̃ is optimal for
(13.3.12). Thus, 1t · r̃ = f̃l ≥ fl = 1t · r, which proves r̃ to be optimal for
(13.3.3). We conclude that M is a max-flow min-cut matroid.

Nonregular Matroid Case

We turn to the second part, where M is not regular. We divide the proof
into three subcases. First, we assume M to be F7 with l; second, to have
at least eight elements and to be 2-separable; and third, to have at least
eight elements and to be 3-connected.
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Fano Matroid Subcase

Routine calculations prove that F7 with l is a max-flow min-cut matroid.
To assist the reader with the checking, we list the matrix H of (13.3.3) for
F7 with l below, but otherwise omit all details. We have partitioned H to
exhibit its structure.

(13.3.14)

0

1

0

1

0
0

0

0
0
1
0

1
0

1
0
0
1

0

0
0
1
1

0
1
0
1

1 0
0 1

1
1
1
0

0
0

1
0
0
0

1
1

Matrix H of (13.3.3) for F7 with l

For both the second and third subcase of the proof, we introduce the fol-
lowing terminology in connection with the fractional max flow problem
(13.3.3). For any matroid under consideration, we define a collection of
weighted circuits to be a collection of the circuits with l where a real non-
negative weight has been assigned to each circuit. We say that a collection
of weighted circuits is feasible or optimal if the vector r with the weights
of the circuits as entries is feasible or optimal for (13.3.3). The collection
has flow value α if the corresponding objective function value of (13.3.3) is
α. Finally, we say that a collection of weighted circuits uses an edge e α
times if the weights of the circuits containing the element e sum to α.

The arguments of the second and third subcase use induction. The
smallest instance involves the already treated F7. Thus, for some n ≥ 7,
we assume the desired conclusion for matroids with at most n elements and
take M to have n+1 elements. By the excluded minors condition, we know
that M is in M. Thus, the decomposition results of Section 13.2 apply.

2-Sum Decomposition Subcase

We use the decomposition Theorem (13.2.1), which we repeat below.

(13.3.15) Theorem. Any 2-separable matroid M ∈ M on a set E has
a 2-sum decomposition where both components M1 and M2 are connected
minors of M , contain l, and thus are in M. In addition, M2 has an element
y 6∈ l so that any set C ⊆ E is a circuit of M with l if and only if (i) or (ii)
below holds.

(i) C is a circuit of M2 with l but not y.
(ii) C = (C1 − {l}) ∪ (C2 − {y}) where C1 is a circuit of M1 with l, and

where C2 is a circuit of M2 with both l and y.
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The notation below is that of Theorem (13.3.15). In particular, M1

and M2 are the two components of a 2-sum decomposition of M .
First we find a collection of weighted circuits C that solves the frac-

tional max flow problem for M for an arbitrary nonnegative integral vector
h. Using parts (i) and (ii) of Theorem (13.3.15), we derive from C two
collections C1 and C2 of weighted circuits for M1 and M2, as follows. Let
C be a circuit of C of M with positive weight. By Theorem (13.3.15), C is
a circuit of M2 with l but not y, or C = (C1 − {l}) ∪ (C2 − {y}) where C1

is a circuit of M1 with l, and where C2 is a circuit of M2 with both l and
y. In the first case, we assign the weight of C to that circuit of M2. In the
second case, we assign the weight of C to both the circuit C1 of M1 and
the circuit C2 of M2. By this construction, C2 has the same flow value as
C. Furthermore, C1 uses the element l of M1 just as often as C2 of M2 uses
the element y, say α times.

Round up α to the next integer, getting, say, α′. Declare α′ to be the
capacity of the element y of M2. Except for the element l of M1 and for
the elements l and y of M2, assign the entries of the capacity vector h as
capacities to the elements of M1 and M2.

Solve the fractional max flow problem for M1. By induction and the
earlier proof for regular matroids, we may assume that a collection C′1 of
circuits with integral weights is found. Since C1 produces a feasible solution
with flow value α for that problem, the new collection C′1 must have a flow
value of at least α′.

Solve the fractional max flow problem for M2. Once more, we may
suppose that a collection C′2 of circuits with integral weights is found. The
flow value of C′2 must be at least as large as that of C2, which in turn we
know to be equal to that of C.

Suppose C′2 uses the element y α′′ times, for some α′′ ≤ α′. Derive a
collection C′′1 from C′1 by arbitrarily reducing weights of some circuits until
the element l is used exactly α′′ times. We combine C′′1 with C′2 via Theorem
(13.3.15) to a collection of circuits for M with integral weights and with
flow value at least as large as that of C, as desired.

Delta-Sum Decomposition Subcase

We turn to the final subcase, where the nonregular M has at least eight
elements and is 3-connected. We use Theorem (13.2.4), which we list again
below.

(13.3.16) Theorem. Any 3-connected nonregular matroid M ∈M on a
set E is isomorphic to the Fano matroid F7, or has a ∆-sum decomposition
where the components M1 and M2 are connected minors of M , contain l,
and thus are in M. In the ∆-sum decomposition, both connecting triangles
of M1 and M2 contain l. Let the remaining elements of the connecting
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triangle of M1 (resp. M2) be a and b (resp. v and w). Then any set C ⊆ E
is a circuit of M with l if and only if (i), (ii), (iii), or (iv) below holds.

(i) C is a circuit C1 of M1 with l but without a and b.
(ii) C is a circuit C2 of M2 with l but without v and w.
(iii) C = (Ca − {a}) ∪ (Cv − {v}) where Ca is a circuit of M1 with l and

a but without b, and where Cv is a circuit of M2 with l and v but
without w.

(iv) C = (Cb − {b}) ∪ (Cw − {w}) where Cb is a circuit of M1 with l and
b but without a, and where Cw is a circuit of M2 with l and w but
without v.

The proof to come is similar to that for the 2-sum case. But there
are subtle differences, as we shall see. We start again with a collection C
of weighted circuits for M that solves the fractional max flow problem for
an arbitrary nonnegative integral vector h. By Theorem (13.3.16), M has
a ∆-sum decomposition into two matroids M1 and M2. We derive from C
two collections C1 and C2 of weighted circuits for M1 and M2 by processing
each circuit C of C as follows.

Suppose C is a circuit of case (i) or (ii) of Theorem (13.3.3). Then
C occurs in M1 or M2, and we assign the same weight to that circuit in
the corresponding collection C1 or C2. Suppose C is a circuit of case (iii)
of Theorem (13.3.3). Thus, C = (Ca − {a}) ∪ (Cv − {v}), where Ca is a
circuit of M1 with l and a but without b, and Cv is a circuit of M2 with l
and v but without w. Then we assign to both Ca and Cv the weight of C.
Finally, case (iv) of Theorem (13.3.3) is handled analogously to case (iii).

Suppose the collection C1 uses the element a (resp. b) α times (resp. β
times). By the above derivation, C2 uses the element v (resp. element w)
also α times (resp. β times). If there are several choices for C, we prefer
one that minimizes α + β.

We claim that α = 0 or β = 0. Suppose both α and β are positive.
Thus, there are, in the notation of parts (iii) and (iv) of Theorem (13.3.16),
four circuits Ca, Cb, Cv, and Cw with positive weights, where Ca and Cb

occur in M1, and Cv and Cw in M2. Let γ be the minimum of these
four weights. Recall that {a, b, l} is a triangle of M1. Lemma (3.3.8) says
that the symmetric difference of two disjoint unions of circuits of a binary
matroid is a disjoint union of circuits. By two applications of this result,
we see that the elements of Ca ∪Cb ∪ {a, b, l} not contained in exactly two
of the circuits Ca, Cb, and {a, b, l} of M1 form a disjoint union of circuits
that contains l but not a or b. Let C′ be the circuit of that disjoint union
containing l.

Derive two collections C′1 and C′2 from C1 and C2 as follows. First, add
γ to the weight of the circuit C′ in C1. Then reduce the weights of the four
circuits Ca, Cb, Cv, and Cw by γ. Derive a collection C′ for M from C′1 and
C′2 of M1 and M2 in the by now obvious way. By the construction, C and
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C′ have the same flow value. Define α′ and β′ for C′ analogously to α and
β of C. By the construction, α′ + β′ < α + β, a contradiction.

We thus may assume without loss of generality that β = 0. In the
notation of Theorem (13.3.16), C produces circuits of type C1 and Ca for
C1, and of type C2 and Cv for C2. Round up α to the next integer, getting
α′. Assign α′ as capacity to the element a of M1 (resp. element v of M2),
and declare the element b of M1 (resp. element w of M2) to have capacity
zero. To all other elements of M1 and M2, assign the capacity according
to the vector h for M .

Solve the fractional max flow problem for M1. By induction and the
earlier proof for regular matroids, we may assume that a collection C′1 of
circuits with integral weights is found. Suppose that collection does not use
the element a exactly α′ times. Then, analogously to the earlier situation
where both α, β > 0, one easily shows that C does not minimize α + β.

Now solve the fractional max flow problem for M2. We may assume
that a collection C′2 of circuits with integral weights is found that uses the
element v exactly α′ times. It is a simple matter to combine C′1 and C′2
of M1 and M2 to a collection C′ of circuits with integral weights for M .
The latter collection is readily seen to have a flow value that is at least as
large as that of C. Thus, we have completed the last step in the proof of
the excluded minors characterization of the connected max-flow min-cut
matroids of Theorem (13.3.1).

In the next section, we utilize a part of the preceding proof of Theo-
rem (13.3.1) to validate a construction of the connected max-flow min-cut
matroids. We also describe polynomial algorithms for several problems
involving these matroids.

13.4 Construction of Max-Flow
Min-Cut Matroids and
Polynomial Algorithms

In this section, we establish a construction of the connected max-flow min-
cut matroids. We utilize the 2-sum and ∆-sum of Section 13.2, and rely on
the construction of the regular matroids given by Theorem (11.3.16). From
the proof of the construction, we derive a polynomial algorithm for deciding
whether a binary matroid has the max-flow min-cut property. Finally, we
describe polynomial algorithms that, for any connected max-flow min-cut
matroid, solve the max flow problem, the min cut problem, and a certain
shortest circuit problem. We begin with the construction of the connected
max-flow min-cut matroids.
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Construction of Max-Flow Min-Cut Matroids

We use the same terminology as for the construction of the regular matroids
described in Theorem (11.3.16). In particular, the two initial matroids of
any construction sequence, as well as all matroids that recursively are com-
posed with the matroid already on hand, are the building blocks. Among
the building blocks is the by now familiar matroid R10. The two represen-
tation matrices for that matroid are given by (10.2.8) and (10.4.5).

We split the description of the construction into two cases, depending
on whether the resulting max-flow min-cut matroid is to be regular. We
begin with the case where this is so.

(13.4.1) Theorem. Any connected regular max-flow min-cut matroid
with special element l is graphic, cographic, or isomorphic to R10, or may
be constructed recursively by 2-sums and ∆-sums using as building blocks
graphic matroids, cographic matroids, or matroids isomorphic to R10. In
the case of the recursive construction, one of the two initial building blocks
contains the special element l, and no other building block contains that
element.

Proof. The theorem is nothing but Theorem (11.3.16) except for the oc-
currence of the special element l. It is a trivial matter to adapt the proof
of Theorem (11.3.16) to account for that element. We leave it to the reader
to fill in the details.

Next we deal with the nonregular case.

(13.4.2) Theorem. Any connected nonregular max-flow min-cut ma-
troid with special element l is isomorphic to F7, or may be recursively
constructed by 2-sums given by (13.2.2), (13.2.3), and by ∆-sums given by
(13.2.19), (13.2.21). In the case of the recursive construction, one of the
two initial building blocks is isomorphic to F7 and contains l. Furthermore,
each additional building block also contains l, and is isomorphic to F7 or
is a connected regular max-flow min-cut matroid.

A key result for the proof of Theorem (13.4.2) is the following compo-
sition theorem.

(13.4.3) Theorem. Let M1 and M2 be two connected max-flow min-cut
matroids that are represented by the matrices B1 and B2 of (13.2.3) or
(13.2.21). Then the 2-sum or ∆-sum M of M1 and M2 as represented by
the matrix B of (13.2.2) or (13.2.19) is a max-flow min-cut matroid.

Proof. The part of the proof of Theorem (13.3.1) concerned with 2-sum
and ∆-sum decompositions proves the result.

Proof of Theorem (13.4.2). By Theorem (13.4.3), the compositions
specified in Theorem (13.4.2) maintain the max-flow min-cut property if
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it is present in the components. Except for this observation, the remain-
ing arguments are analogous to those proving Theorem (11.3.16). Indeed,
the ∆-sum situation is easier to handle than the ∆-sum case of Theorem
(11.3.16) since the element l straddles any 3-separation induced by an N8

minor. Thus, the reader should have no difficulties in filling in the de-
tails.

Polynomial Test for Max-Flow Min-Cut Property

The proofs of Theorems (13.4.1) and (13.4.2) just discussed are easily trans-
lated to polynomial algorithms that find the constructions claimed by these
theorems. Any such method may be used to test for the max-flow min-cut
property in binary matroids. The next theorem and corollary record these
facts.

(13.4.4) Theorem. There is a polynomial algorithm that for any con-
nected max-flow min-cut matroid finds an applicable construction as de-
scribed by Theorems (13.4.1) and (13.4.2).

(13.4.5) Corollary. There is a polynomial algorithm for determining
whether an arbitrary binary connected matroid with a special element l
has the max-flow min-cut property.

Next we devise polynomial algorithms for the max flow problem, the
min cut problem, and a certain shortest circuit problem. In each case, we
assume the matroid to have the max-flow min-cut property. In general,
these problems seem to be difficult for arbitrary binary matroids. For
example, the min cut problem and the as-yet-unspecified shortest circuit
problem can be shown to be NP-hard.

Polynomial Algorithm for Shortest Circuit Problem

The shortest circuit problem is as follows. For each element e of a connected
binary matroid M with special element l, a nonnegative rational distance
de is given. Then one must find a circuit C of M containing l such that
the sum of the distances de, e ∈ C, called the length of C, is minimal. This
problem is well solved for the max-flow min-cut matroids, as follows.

(13.4.6) Theorem. There is a polynomial algorithm for the shortest
circuit problem of the max-flow min-cut matroids.

Proof. Let M be the given connected max-flow min-cut matroid, with
given nonnegative distance vector d. We first identify a construction as
specified by Theorems (13.4.1) and (13.4.2). If M is isomorphic to F7,
then enumeration solves the problem. If M is regular, then we represent
M by a real totally unimodular matrix B, define A = [I | B], and solve
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the following linear program using any one of several known polynomial
algorithms for linear programs.

(13.4.7)

min dt · f + dt · g
s. t. A · f −A · g = 0

f ≥ 0
g ≥ 0
fl = 1
gl = 0

Arguing as in Section 13.3, the linear program (13.4.7) must have
{0,±1} solution vectors f and g. Indeed, the set {e | fe = ±1 or ge = ±1}
may be assumed to be the desired shortest circuit of M with l.

In the remaining case, M is not regular. Then by Theorem (13.4.2),
M is a 2-sum or ∆-sum where one component is regular or isomorphic to
F7. We discuss the ∆-sum case, and leave the easier 2-sum situation for the
reader. Let M1 and M2 be the components of the ∆-sum decomposition
of M . In agreement with the discussion of Section 13.2, let {a, b, l} and
{v, w, l} be the triangles of M1 and M2 created by the decomposition.

We may assume that M1 is isomorphic to F7 or is regular. Except
for a, b, and l, we assign the appropriate distance values of the vector d
to the elements of M1. To the former elements, we assign 0 as distance.
Temporarily, we delete the element b from M1, and solve the shortest circuit
problem for that minor of M1. Let Ca be the circuit so found, with length
ma. Similarly, by deletion of a from M1, we obtain Cb and mb. Finally,
we delete both a and b, and get Cl and ml. Note that ml ≤ ma + mb,
as is readily proved by comparing ml with the sum of the distances of the
symmetric difference of Ca, Cb, and {a, b, l}.

Until stated otherwise, we assume that both a ∈ Ca and b ∈ Cb. By
Theorem (13.2.4), we conclude the following. M has Cl as shortest circuit,
or M has a shortest circuit that intersects M1 in Ca or Cb, or M has a
shortest circuit that is contained in M2. To decide which case applies, we
assign ma and mb as distances to the elements v and w, respectively, of M2

and recursively solve the shortest circuit problem in that matroid using the
construction we already have on hand for it.

Let C be the circuit so found for M2, with length m2. If m2 ≥ ml,
then Cl is the desired shortest circuit of M . Otherwise, C contains just
v, or just w, or none of v and w, or both of v and w. In the first three
cases, the respective shortest circuit for M is (Ca − {a}) ∪ (C − {v}), or
(Cb − {b}) ∪ (C − {w}), or C. In the fourth case, the previously derived
inequality ml ≤ ma+mb implies that m2 ≥ ml, a situation already treated.

We now discuss the case for M1 where a 6∈ Ca or b 6∈ Cb. Thus, the
shortest circuit of M1 using a or b is at least as long as Cl, and hence we
are justified to assign a distance larger than ma or mb to v or w of M2 to
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get the correct conclusion by the preceding algorithm. It is easy to see that
this method is polynomial.

Polynomial Algorithm for Max Flow and Min Cut
Problems

We turn to the max flow problem and the min cut problem. The reader has
surely recognized that the min cut problem is the shortest circuit problem
for the dual matroid of the given max-flow min-cut matroid. Thus, we
could adapt the preceding proof procedure to directly solve the min cut
problem. We will not do so. Instead, we invoke Theorem (13.3.9) and a
result of linear programming to achieve a brief presentation. The latter
result is concerned with the efficient solution of linear programs and is due
to Grötschel, Lovász, and Schrijver.

(13.4.8) Theorem. Suppose there is a polynomial algorithm with the
following features. For any linear program of a given class and any rational
vector, the algorithm decides whether the vector is feasible for the linear
program. If the answer is negative, the algorithm also obtains a violated
constraint. Then there is a polynomial algorithm for the linear programs
of the class and their duals. If any such linear program or its dual has
extreme points, then an extreme point solution will be produced for that
linear program.

The next theorem contains the result that the max flow problem and
the min cut problem can be solved in polynomial time.

(13.4.9) Theorem. There is a polynomial algorithm that for any con-
nected max-flow min-cut matroid and for any nonnegative integral capacity
vector solves the max flow problem and the min cut problem.

Proof. Let M be a connected max-flow min-cut matroid, and let h be a
given vector of nonnegative integral capacities for the max flow problem
and the min cut problem.

For the solution of the max flow problem, we first find a construction
as described in Theorem (13.4.4). Note that the decompositions of the
construction always involve at least one component that is isomorphic to F7

or regular. Thus, we can carry out the proof procedure of Theorem (13.3.1),
knowing that we only need to solve max flow subproblems for matroids that
are isomorphic to F7 or regular. The F7 case is straightforward. For regular
components, linear programs of the form (13.3.12) and inequality systems
given by (13.3.13) must be solved. These tasks are handled efficiently
by any polynomial algorithm for linear programs. Thus, the entire proof
procedure for Theorem (13.3.1) can be converted to a polynomial algorithm
for the max flow problem.
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We turn to the min cut case. By the definition of the max-flow min-cut
property, any max flow solution also solves the fractional max flow prob-
lem (13.3.3). Thus, by Theorem (13.3.9), the fractional min cut problem
(13.3.4), which is the dual of the fractional max flow problem (13.3.3), has
only integral extreme solutions. Thus, by Theorem (13.4.8), a polynomial
solution algorithm for the min cut problem exists if we have a polyno-
mial algorithm that decides whether a given rational vector s is feasible for
(13.3.4). The latter algorithm must also identify a violated constraint of
(13.3.4) if s is not feasible.

The feasibility test for s is trivial if that vector has any negative en-
tries. So assume s to be nonnegative. View the entries of s as distances for
the elements of M different from l, and assign 0 as distance to the latter el-
ement. Then deciding whether s is feasible for (13.3.4) is clearly equivalent
to deciding whether the length of a shortest circuit of M with l is greater
than or equal to 1. To answer the latter question, we compute a shortest
circuit C of M using the polynomial algorithm of Theorem (13.4.6). If the
length of C is at most 1, then the vector s is feasible for (13.3.4). Other-
wise, the characteristic vector of C defines an inequality of (13.3.4) that is
violated by s.

In the next section, we meet an important graph application of the
max-flow min-cut matroids.

13.5 Graphs without Odd-K4 Minors

In this section, we transform a graph problem involving certain signed
graphs into a matroid problem involving max-flow min-cut matroids. As
a result, we can apply the construction and polynomial testing algorithm
for max-flow min-cut matroids to obtain a construction and polynomial
testing algorithm for the signed graphs. We begin with an application that
gives rise to the signed graphs. Let P be a bounded polyhedron of the form
{x ∈ IRn | A · x ≤ a; x ≥ 0}. We are to determine an inequality system
D ·x ≤ d such that the polyhedron Q = {x | A·x ≤ a; D ·x ≤ d; x ≥ 0} has
only integral vertices and contains all integral points of P . The polyhedron
Q is usually called the integer hull of P . The arrays D and d can have
complex structure even for small arrays A and a. Thus, determination
of the structure of D and d for special cases of A and a, either by some
combinatorial description or in terms of a constructive scheme, has become
one of the basic problems of polyhedral combinatorics.

An equally important converse problem is as follows. One postulates
some construction for D and d and characterizes the cases of A and a
for which the construction does work. For the description of one such con-
struction, we need a rounding operation for rational vectors. The operation
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rounds down each entry of a given vector b to the next integer. We denote
the resulting vector by ⌊b⌋. The construction is as follows. Each row Di

of D is obtained from some linear combination of the rows of A by round-
ing down the entries. Thus, for some rational row vector λi ≥ 0, we have
Di = ⌊λi · A⌋. The corresponding value di of the vector d is ⌊λi · b⌋. We
call this construction simple rounding.

Just a few classes of combinatorially interesting polyhedra are known
for which simple rounding does produce the desired D and d. The most
important case is due to Edmonds and has as A any {0,±1} matrix with
two ±1s in each column. The vector a may contain any integers. The
polyhedron P = {x ∈ IRn | A · x ≤ a; x ≥ 0} for this case is known as the
fractional matching polyhedron. On the other hand, it is well known that
simple rounding generally does not work for the polyhedra produced by
{0,±1} matrices A and integral vectors a where A has two ±1s in each row
instead of each column. Polyhedra of the latter variety are very important,
since they arise from a number of combinatorial problems. An example is
the vertex cover problem, where one must cover the edges of an undirected
graph by vertices. The matrix A is then the real and negated version of the
transpose of the node/edge incidence matrix of the graph, and the vector
a contains only −1s.

There are special cases, though, where simple rounding does work for
the latter polyhedra. To describe one such class, we derive a special graph
G(A) from any {0,±1} matrix A with two ±1s in each row. Each column
of A corresponds to a node of G(A), and each row to an edge. Specifically,
if a row of A has two entries of opposite (resp. same) sign, say in column
j and k, then an edge connects the nodes j and k of G(A) and is declared
to be even (resp. odd). We call G(A) a signed graph.

We define a cycle C of a signed graph to be odd if it contains an odd
number of odd edges. If we scale a column j of A by −1, getting, say,
A′, then the graph G(A′) may be obtained from G(A) by declaring each
even (resp. odd) edge incident at node j to be odd (resp. even). We also
say that G(A′) is obtained from G(A) by scaling. Note that any cycle of
G(A) is even or odd if and only if this is so for the corresponding cycle
of G(A′). Any graph obtained from G(A) by repeated column scaling we
call equivalent to G(A). As expected, “is equivalent to” is an equivalence
relation.

We derive minors from a signed graph by a sequence of deletions and
contractions interspersed with scaling steps, with the restriction that any
contraction may involve even edges only. It is easily checked that two
minors produced by the same deletions and contractions, in any order,
are equivalent, provided the reductions obey the cycle/cocycle condition of
Section 2.2.

Consider the signed graph G obtained from K4, the complete graph
on four vertices, by declaring the edges of one triangle to be odd and the
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remaining three edges to even. Evidently, the triangles of G are precisely
its odd circuits. Declare any signed graph that is equivalent to the just-
specified one to be an odd K4.

The signed graphs G(A) without odd-K4 minors have very pleasant
properties. Indeed, the preceding simple rounding construction does pro-
duce the desired integer hull for a variant of the previously specified poly-
hedron involving the matrix A. The result, due to Gerards and Schrijver,
is as follows.

(13.5.1) Theorem. Let A be a {0,±1} matrix with two ±1s in each
row, and let P be the polyhedron {x ∈ IRn | a1 ≤ A ·x ≤ a2; c1 ≤ x ≤ c2}.
Then simple rounding can derive, for all integer vectors a1, a2, c1, and c2,
a description of the integer hull of P if and only if G(A) has no odd-K4

minors.

At this point, we have a nice theorem of polyhedral combinatorics
involving the graphs without odd-K4 minors, but actually have no clue
what these graphs look like. Nor do we know how to decide efficiently
whether a signed graph has odd-K4 minors.

To gain the desired insight, we move from signed graphs G to cer-
tain binary matroids M . Let G be given. Define the edge set of G plus
an additional element l to be the groundset of M . Next we produce a
representation matrix for M . We begin with the usual binary node/edge
incidence matrix F for G, and record whether edges are even or odd by
appending to F an additional row having 0s (resp. 1s) in the columns cor-
responding to the even (resp. odd) edges of G. We adjoin a column unit
vector with index l, having its 1 in the new row. Let the resulting matrix
be F ′. Finally, we declare the circuits of M to be the index sets of the
GF(2)-mindependent column subsets of F ′. Since scaling in G does not
affect evenness or oddness of cycles, all graphs equivalent to G produce the
same matroid M .

From F ′, we obtain a matrix [I | B] by elementary row operations (in
GF(2)). Thus B is a representation matrix for M . The subsequent analysis
is simplified if we let l index a row of B, or equivalently, if we accept the
unit vector of F ′ indexed by l as part of the identity I of [I | B]. Indeed, in
that case we only need to choose a tree T of G and scale G so that all tree
edges become even, and finally use the fundamental cycles of the new G
to write down the columns of B. By the derivation, any such fundamental
cycle is even (resp. odd) if the out-of-tree edge producing that cycle is even
(resp. odd). It is easy to see that M is connected if G is 2-connected and
has at least one odd cycle. Also, every 2-connected minor of G with at least
one odd cycle corresponds to a minor of M with l, as expected. But what
property does M have when G has no odd-K4 minors? The next lemma,
also due to Gerards and Schrijver, gives the surprising answer.

(13.5.2) Lemma. Let G be a 2-connected signed graph, and let M
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be the corresponding binary connected matroid. Then G has no odd-K4

minors if and only if M has no F ∗
7 minors with l, and thus, if and only if

M is a max-flow min-cut matroid.

Proof. Assume that G has an odd-K4 minor, say G. Because of scaling,
we may presume that a triangle of that minor has all edges odd, and that
the remaining edges, which form a 3-star, are even. Derive a representation
matrix B for the corresponding minor M of M as described above, using
the 3-star as tree. Then one readily sees that M is an F ∗

7 minor of M
with l. By reversing the arguments, we see that any F ∗

7 minor of M with
l corresponds to an odd-K4 minor of G.

By Lemma (13.5.2) and Corollary (13.4.5), we already have a polyno-
mial algorithm for deciding whether a signed graph has no odd-K4 minors.
We also have, indirectly, a complete analysis of the graphs without odd-K4

minors, in the form of the decomposition Theorems (13.2.1) and (13.2.4)
and the construction Theorems (13.4.1) and (13.4.2) for the max-flow min-
cut matroids. To understand the structure of the graphs without odd-K4

minors, we only need to translate these results into graph language. We
carry out this task next.

Construction of Graphs without Odd-K4 Minors

Let M be the connected max-flow min-cut matroid corresponding to a 2-
connected signed graph G without odd-K4 minors. We assume that G has
at least one odd circuit. As before, l is the special element of M . Define G′

to be the unsigned version of G. Since M/l is the graphic matroid of the 2-
connected G′, that matroid is connected. We will work out a description of
G that involves scaling. That way, a particularly simple description results.
We divide the discussion into five cases, depending on whether G or M has
a 2-separation, and whether M is graphic, cographic, regular nongraphic
and noncographic, or nonregular.

2-Separation Cases

Suppose (E1 ∪ {l}, E2) is a 2-separation of M . Suppose that |E1| = 1, say
E1 = {e}. Recall that M/l is connected and graphic. Thus, e and l must
be two series elements of M . Accordingly, G can be scaled so that e is the
only odd edge. Let G be that scaled graph. We call a signed graph with all
odd edges incident at one vertex, and thus G, a graph with one partially
odd vertex. Later, we will see another instance of such a graph.

Suppose |E1| ≥ 2. Then (E1, E2) is a 2-separation of G. Select a base
X1 ∪ X2 of M where X1 ⊆ E1 and l ∈ X1, and where X2 is a maximal
independent subset of E2. In the corresponding representation matrix for
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M , the row l has only 0s in the columns of E2 −X2. Correspondingly, G
has, up to scaling, odd edges only in E1. Assume such scaling. We derive
from G the 2-sum components G1 and G2 as depicted in (8.2.8), where the
explicitly shown connecting edges are declared to be even. Note that G2 has
only even edges. Later, we will encounter another 2-sum decomposition, so
we define the present one to be a 2-sum of type 1.

As a result of the preceding discussion, we may assume from now on
that M is 3-connected. This implies that any parallel class of edges of G
contains at most two edges, one even and one odd.

Suppose the deletion of parallel edges from G creates a 2-separable
graph. Then G has a 2-separation (E1, E2) where neither E1 nor E2 is
just a set of parallel edges. Assume |E1| = 2. Since E1 is not just a
set of parallel edges, the two edges of E1 must be incident at a degree 2
node. But by scaling, both edges can be made even, so (E1, E2∪{l}) is a 2-
separation of M contrary to the assumption that M is 3-connected. Hence,
|E1|, |E2| ≥ 3. Clearly, (E1 ∪ {l}, E2) and (E1, E2 ∪ {l}) are 3-separations
of M . In the terminology of Section 13.2, the element l straddles the 3-
separation (E1, E2 ∪ {l}) of M . Furthermore, that 3-separation induces a
∆-sum decomposition of M into M1 and M2, as depicted by the matrices
B, B1, and B2 of (13.2.19) and (13.2.21). Since l straddles the 3-separation
of M , the column l of the submatrix A2 of B of (13.2.19) is spanned by the
columns of the submatrix D of B. So if we GF(2)-pivot in column l of B
and subsequently delete the pivot row, then the matrix D of B is reduced
to a matrix with GF(2)-rank 1. We rely on this fact next when we interpret
the ∆-sum decomposition of M in terms of a decomposition of G.

Suppose in each one of the matrices B, B1, and B2 of (13.2.19) and
(13.2.21) we perform a GF(2)-pivot on the 1 in row a and column l. Let B̃,
B̃1, and B̃2 result. Delete row l from B̃, B̃1, and B̃2 , getting B′, B′1, and
B′2. Clearly, the matrix B′ corresponds to G′, the unsigned version of G.
Since l straddles the 3-separation of M and B, the matrices B′1 and B′2 are
readily seen to correspond to a somewhat unusual 2-sum decomposition of
G. Indeed, the component graphs are as depicted in (8.2.8) once we replace
the connecting edge x of G1 in (8.2.8) by two parallel edges a and b, and the
connecting edge y of G2 in (8.2.8) by two parallel edges v and w. Assume
such a replacement has been done, and denote by G′

1 and G′
2 the graphs

corresponding to B′1 and B′2. Because of scaling, we may suppose that
the signature of G agrees with that given by row l of B̃. Then according
to row l of B̃1 and B̃2, we may sign G′

1 and G′
2 to obtain graphs for the

matroids M1 and M2 of the ∆-sum decomposition, as follows. In G′
1 (resp.

G′
2), we declare the edge a (resp. w) to be odd, and the edge b (resp. v) to

be even. The remaining edges of G′
1 and G′

2 are signed in agreement with
the signature of the edges of G. Let G1 and G2 be the graphs so obtained
for M1 and M2. We call this special 2-sum decomposition a 2-sum of type
2.
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Theorem (11.2.10), Corollary (11.2.12), and Theorem (13.4.3), which
cover the composition of regular matroids and of max-flow min-cut ma-
troids, imply that the above 2-sum decompositions of type 1 and 2 are
reversible. That is, if both components G1 and G2 correspond to regular
matroids (resp. max-flow min-cut matroids), then the 2-sum G of type 1 or
2 also corresponds to a regular matroid (resp. max-flow min-cut matroid).

We have completed the 2-separation cases. From now on, we assume
that M is 3-connected, and that G is 3-connected up to parallel edges. In
fact, any parallel class of edges of G consists of at most two edges, one even
and one odd.

Graphic Matroid Case

We assume M to be graphic. Thus, there is a graph H so that M is the
graphic matroid M(H) of H. Recall that G′ is the unsigned version of
G. Since M/l is the graphic matroid of H/l as well as of G′, the graphs
H/l and G′ must be 2-isomorphic. We know that G is 3-connected up to
parallel edges, so by Theorem (3.2.36), H/l = G′. The graph H may thus
be derived from G′ by splitting some vertex v into two nodes, which are
then connected by the edge l. Pick a spanning tree X ′ of G′ that has the
node v as tip node. Then X = X ′ ∪ {l} is a tree of H. The representation
matrix of M corresponding to the base X has l as row index. The 1s in
that row correspond to a subset E of the edges of G incident at v. Thus, up
to scaling, the odd edges of G are precisely the edges of E. Assuming such
scaling, G is therefore a graph with one partially odd vertex. By reversing
the construction, we see that any signed graph G with one partially odd
vertex produces a graphic M .

Cographic Matroid Case

We assume M to be cographic but not graphic. Hence, M∗ is graphic. As
before, G′ represents M/l, so both M/l and (M/l)∗ = M∗\l are planar.
We conclude that G′ and G may be taken to be 3-connected plane graphs
plus parallel edges, and that there is a graph H such that M(H) = M∗

and G′ = (H\l)∗. In H, let v1 and v2 be the endpoints of the edge l.
Pick a tree of H that does not contain the edge l. In the corresponding
representation matrix for M∗, the 1s of column l represent a path P from
v1 to v2. Thus, in H\l, each vertex other than v1 and v2 has an even
number of edges of P incident. By scaling in the plane graph G, the edges
of P become precisely the odd edges. Thus, up to scaling, exactly the two
faces of G corresponding to v1 and v2 of H\l have an odd number of odd
edges incident. The latter property is invariant under scaling, so the same
property holds for G. We call a planar graph with this property, and thus
G, a graph with two odd faces.
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Regular Nongraphic and Noncographic Matroid Case

We turn to the case where the 3-connected matroid M is regular but not
graphic and not cographic. By Theorem (13.4.1), M is isomorphic to R10,
or is a ∆-sum with components M1 and M2 where one component does not
contain l. The R10 case is not possible, since M/l is graphic, and since the
contraction of any element of R10 produces an M(K3,3)∗ minor, as shown
in the proof of Lemma (10.4.4). Thus, we only need to examine the case of
a ∆-sum. Let (E1 ∪ {l}, E2) be the corresponding 3-separation of M . By
the derivation of Theorem (13.4.1) via Theorem (11.3.16), we may assume
that |E1 ∪ {l}|, |E2| ≥ 6. The pair (E1, E2) cannot be a 2-separation of G
since otherwise |E1|, |E2| ≥ 5 implies that the earlier discussed 2-separation
case applies.

Suppose (E1, E2∪{l}) is also a 3-separation of M . In the terminology
of Section 13.2, the element l straddles the 3-separation (E1∪{l}, E2). Let
B of (13.2.19) be a representation matrix for M exhibiting the 3-separation
(E1, E2 ∪ {l}), except that we ignore in B the explicitly shown 0s and 1s
in the submatrix indexed by {a, b, d} and {l, v, w}. Since l straddles the
3-separation, the submatrix D of B spans the column l of A2. Then a
GF(2)-pivot on any 1 in column l of A2, followed by the deletion of the
pivot row and pivot column, reduces D, which has GF(2)-rank D = 2, to a
matrix with GF(2)-rank 1. We conclude that (E1, E2) is a 2-separation of
M/l, and hence of G, contrary to assumption. Hence, l does not straddle
the 3-separation. Thus, analogously to the case of a 2-sum of type 1, there
is a base X1 ∪ X2 for M where X1 ⊆ E1 and l ∈ X1, and where X2 is a
maximal independent subset of E2. Furthermore, up to scaling, all edges
of G in E2 are even. For the remainder of this case, we suppose G to be of
this form.

Assume that (E1, E2) is a graph 3-separation of G. Arguing as in the
2-sum case, G has a ∆-sum decomposition where we declare all edges of
the connecting triangles to be even, and where the component defined from
E2 has even edges only. Without chance of confusion, we call this process
a ∆-sum decomposition of G. By the composition Corollary (11.2.12) for
regular matroids, the ∆-sum decomposition of G is reversible.

So suppose (E1, E2) is not a graph 3-separation of G. This is possible,
by Theorem (3.2.25). Recall that each parallel class of G has at most
two edges, one even and one odd. Since the edges of E2 are even, all
parallel edges must occur in E1. Define G′′ to be G minus all odd parallel
edges. Correspondingly, define E′′

1 and E′′
2 from E1 and E2, respectively.

Since |E1|, |E2| ≥ 5, we have |E′′
1 |, |E′′

2 | ≥ 3. Let M ′′ be the minor of M
corresponding to G′′. Then (E′′

1 , E′′
2 ) is a 3-separation of M ′′ that induces

the 3-separation (E1 ∪ {l}, E2) of M . If (E′′
1 , E′′

2 ) is a graph 3-separation
of G′′, then (E1, E2) is a graph 3-separation of G contrary to assumption.
Thus, by Theorem (3.2.25), E′′

1 is a cutset of cardinality 3, and removal
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of that cutset from G produces two connected graphs H21 and H22 whose
edge sets form a partition of E2. Furthermore, each one of the latter graphs
contains a cycle.

If H21 or H22 has at least four edges, then a graph 3-separation of G
exists where one side contains only even edges, and the earlier case applies.
Thus, each one of H21 and H22 is just a triangle, and G consists of a pair
of triangles whose nodes are pairwise joined by three edges, say e, f , and g,
plus edges parallel to the latter edges. Then G corresponds to a cographic
matroid case unless G is of the form

(13.5.3)

e

g

f

Exceptional signed graph case

where e, f , and g are odd, and where all other edges are even. The matroid
M for this graph is regular, as is easily checked.

At this point, we want to summarize the above analysis for the situa-
tion where M is regular. For that summary, in Theorem (13.5.4) below, we
need a characterization of the regularity of M in terms of signed graphs.
To this end, we define an odd double triangle to be the following signed
graph. We start with a triangle, all of whose edges are even. Then we add
to each edge one parallel odd edge. Using a representation matrix for F7,
for example the matrix of (10.2.4), one readily confirms that M has an F7

minor with l if and only if G has an odd double triangle minor. It is easy
to check that M is regular if and only if M has no F7 minors with l and
no F ∗

7 minors with l. Indeed, this claim follows almost immediately from
the discussion of Section 13.2. We thus have the following theorem for the
case where M is regular.

(13.5.4) Theorem. Let G be a 2-connected signed graph without odd-
K4 minors and without odd double triangle minors, but with an odd circuit.
Then up to scaling, G has exactly one partially odd vertex, or is planar and
has exactly two odd faces, or is the graph of (13.5.3), or may be constructed
recursively by 2-sums of type 1 or 2, and by ∆-sums. Up to scaling, the
building blocks are the cited graphs and graphs having only even edges.

Proof. The above analysis and a simple inductive argument prove the
result.

We turn to the final case, where M is nonregular.
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Nonregular Matroid Case

Suppose G produces a nonregular max-flow min-cut matroid M . The trans-
lation of the construction Theorem (13.4.2) for M gives the following result.

(13.5.5) Theorem. Let G be a 2-connected signed graph without odd-
K4 minors, but with an odd double triangle minor. Then up to scaling,
G is an odd double triangle, or may be recursively constructed by 2-sums
of type 1 or 2. In the case of the recursive construction, one of the initial
building blocks is an odd double triangle. Furthermore, each additional
building block is also an odd double triangle, or corresponds to a signed
graph having no odd-K4 minors and no double triangle minors.

Proof. As shown above, matroid 2-sums and matroid ∆-sums with l as
straddling element correspond to graph 2-sums of type 1 or 2. Thus, the
theorem follows from Theorem (13.4.2).

In the next section, we include applications, extensions, and references.

13.6 Applications, Extensions, and

References

The first comprehensive treatment of the max flow problem for graphs is
contained in Ford and Fulkerson (1962). The definition and characteriza-
tion of max-flow min-cut matroids by excluded minors is due to Seymour
(1977a). Related is a characterization of matroid ports in Seymour (1976),
(1977b). The decomposition of the max-flow min-cut matroids is described
in Tseng and Truemper (1986). That reference proves a decomposition re-
sult slightly stronger than Theorem (13.2.13): Any N8 minor of a max-flow
min-cut matroid M has a 3-separation that up to indices other than l is
given by (13.2.5) and that induces a 3-separation of M . A short proof of
Theorem (13.2.13) is given in Bixby and Rajan (1989).

Basic linear programming results may be found in any standard text,
for example in Dantzig (1963), Chvátal (1983), or Schrijver (1986). The
concept of total dual integrality and the related Theorem (13.3.9) are due
to Edmonds and Giles (1977).

The existence of polynomial algorithms for the various problems of
Section 13.4 is established in Truemper (1987a). That reference proves
the min cut problem and the shortest circuit problem to be NP-hard, and
also shows that the max flow problem is solved by an integer extreme
point solution of the linear program (13.3.3), not just an integer solution
as proved here. Theorem (13.4.8) is due to Grötschel, Lovász, and Schrij-
ver (1988). Actually, simpler machinery suffices to prove the results of
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Section 13.4, as shown in Truemper (1987a). The recognition problem
of max-flow min-cut path matrices is treated in Hartvigsen and Wagner
(1988).

The simple rounding scheme is analyzed in Chvátal (1973). The most
important case treatable by simple rounding is the matching problem.
Its solution is due to Edmonds (1965c), (1965d); see Lovász and Plum-
mer (1986) for an excellent exposition of this result and of many related
ones. Theorem (13.5.1) and Lemma (13.5.2) are from Gerards and Schrijver
(1986). General results for packing and covering problems involving ma-
troid circuits are described in Seymour (1980c). Additional decomposition
theorems and other results for signed graphs are given in Gerards (1988),
(1989b). Gerards, Lovász, Schrijver, Seymour, and Truemper (1991) sum-
marize various decomposition results for signed graphs.

In Section 13.4, it is shown that the fractional min cut problem (13.3.4)
has only integer extreme point solutions, provided max-flow min-cut ma-
troids are involved. The latter condition is sufficient, but not necessary.
Thus, one may want to characterize when precisely (13.3.4) has only inte-
ger extreme point solutions. Much progress has been made on this difficult
problem (see Lehman (1981), Seymour (1990), and Cornuéjols and Novick
(1994)), but finding a complete characterization seems to be very difficult.
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Cornuéjols, G., Naddef, D., and Pulleyblank, W. (R.) (1985), The trav-
eling salesman problem in graphs with 3-edge cutsets, Journal of the
Association for Computing Machinery 32 (1985) 383–410.
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Löfgren, L. (1959), Irredundant and redundant Boolean branch-networks,
IRE Transactions on Circuit Theory CT-6 (Special Supplement) (1959)
158–175.

Lovász, L. (1980), Matroid matching and some applications, Journal of
Combinatorial Theory (B) 28 (1980) 208–236.

Lovász, L. (1983), Ear-decompositions of matching-covered graphs, Com-
binatorica 3 (1983) 105–117.

Lovász, L. (1987), Matching structure and the matching lattice, Journal of
Combinatorial Theory (B) 43 (1987) 187–222.

Lovász, L., and Plummer, M. D. (1975), On bicritical graphs, in: Infi-
nite and Finite Sets (Colloquia Mathematica Societatis János Bolyai 10)
(A. Hajnal, R. Rado, and V. T. Sós, eds.), North-Holland, Amsterdam,
1975, pp. 1051–1079.

Lovász, L., and Plummer, M. D. (1986), Matching Theory, Akadémiai
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Chvátal, V., 203, 243, 348, 349
Colbourn, C. J., 110
Commoner, F. G., 202
Conforti, M., 186, 202, 312
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binary matroid, 53, 54
matroid, 72, 73
minor of binary matroid, 60

Binary, see also Characterization,
Construction

field (= GF(2)), see Field
matroid, 52, 53
space, 56

Bipartite graph, 17
Black box, 84
Bridge, 9
Building block, 234, 237, 336
β-condition (graph), 277

C

C2
3 graph, 93, 94

Capacity
cutset of graph, 314
edge, 314

Cardinality
intersection problem, 119
set, 5

Census, binary matroids, 65, 66
Characteristic

column vector, 19
row vector, 19
vector, 19

Characterization
α-balanced graph, 277
binary matroid, 86
cographic matroid, 225
conjecture for ∆Y graphs, 100,

101
cycle polytope, 267
graph 2-isomorphic to a sus-

pended tree, 94
graphic matroid, 225
graphic matroid of suspended

tree, 95
matroid representable over

every field (= regular ma-
troid), 196

GF(4), 204
GF(3) (= ternary matroid),

199
GF(2) (= binary matroid),

86
max-flow min-cut matroid,

326
outerplanar graph, 93
planar graph, 163
planar matroid, 211, 225
regular matroid, 196
SP graph, 91
SP matroid, 95, 109
ternary matroid, 199

Chord, 8, see also G-chord
Chromatic number, 242
Circuit

binary matroid, 53, 54
matroid, 72, 73
minor of binary matroid, 60

Circuit/cocircuit condition, 59
Clique, 203
Clique/node incidence matrix,

203, 312
Cobase

binary matroid, 53, 55
matroid, 72
minor of binary matroid, 60

Cocircuit
binary matroid, 53, 56
matroid, 72
minor of binary matroid, 60

Cocycle, 9
graphic matroid, 33
minor of graph, 13
minor of graphic matroid, 36

Cographic, see also Characteri-
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zation, Planar, Regular
matrix, 34
matroid, 34, 192

Cohyperplane, 297
Co-independence

binary matroid, 53
graphic matroid, 34

Collection of weighted circuits,
332

Coloop
binary matroid, 56
graph, 9
matroid, 79

Colorable with n colors, 241
Column

complement of matrix, 284
Eulerian matrix, 24, 54
submatrix, 18
vector, terminology, 19

Common vertex, 39
Complement totally unimodular

matrix, 285, see also Con-
struction

Complete
bipartite graph Km,n, 17, see

also K4,3, K3,3, K2,3 graph
graph Kn, 17, see also K5, K4,

K6 graph
Complexity of algorithms, 24, see

also Polynomial algorithm
Component matrices of B12, see

B12 matrix
Components of sum, see ∆-, k-,

1-, 3-, 2-, Y-sum
Composition, see ∆-, k-, 1-, 3-,

2-, Y-sum
Conjecture, nonisomorphic min-

imal matroids for inherited
properties, 244

Connected
binary matroid, 63, 64
block, 23, 178
components of graph, 9
graph, 9

graphic matroid, 43
in cycle fashion, 39
in tree fashion, 39
matrix, 23
matroid, 80, 82

Connecting
graph, 180
matroid, 176
minor, 176, 180
nodes, 15
triad, 184
triangle, 183
vertex, 39

Connectivity, see also k-connec-
tivity

function, 87, 88
types, graph, 15

Construction
almost regular matroid, 106–

109, 298–300
almost representative matrix

(over GF(2) or GF(3)), 309
binary representation matrix,

55, 56
complement totally unimodu-

lar matrix, 305, 306
complement totally unimodu-

lar matrix, example, 310
graph without G12 minors,

237
graph without K5 minors, 234
graph without K5\y minors,

237
graph without odd-K4 minors,

347, 348
max-flow min-cut matroid,

336
minimal violation matrix of

regularity (= minimal non-
regular matrix), 310

minimal violation matrix of to-
tal unimodularity (= mini-
mal non-totally unimodular
matrix), 309
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regular matroid, 257
sequence of nested 3-connected

minors, 157–163
SP graph, 90
SP matroid, 94, 109
totally unimodular {0, 1} ma-

trix, 264, 265
totally unimodular {0,±1}

matrix, 260–264
∆Y graph, 96
∆Y matroid, 101–104

Contraction
binary matroid, 58
dual of binary matroid, 62, 63
graph, 10
graph with T nodes, 209, 210
graphic matroid, 36
matroid, 80
minor, binary matroid, 61
minor, graph, 61
minor, matroid, 81, 82

Coparallel
class, graph, 10
class, graphic matroid, 34
edges, graph, 10
edges, graphic matroid, 34
elements, binary matroid, 56
elements, matroid, 79

Corank gap, 157
Corner node, 216
Cosimple graph, 10
Cotree, 9

graphic matroid, 33
Cubic node, 221
Cycle, 8

agrees with α, 275
connectivity, 15
graphic matroid, 32
k-connected, 15
k-separable, 15
k-separation, 15
length, 8
minor of graph, 12, 13
minor of graphic matroid, 36

polytope, binary matroid, 267,
268

Cycle/cocycle condition, 12, 35

D

Decomposition, see also ∆-, k-,
1-, 3-, 2-, Y-sum

circle graph, 243
combinatorial structure, 243
graph into 3-connected compo-

nents, 243
minimally 3-connected graph,

243
optimization problem, 243
perfect graph, 243

Degree (vertex), 7
Deletion

binary matroid, 58
dual of binary matroid, 62, 63
graph, 10
graph with T nodes, 209
graphic matroid, 36
matroid, 80
minor, binary matroid, 62
minor, graph, 62
minor, matroid, 82

Delta-sum, see ∆-sum
Delta-wye, see ∆Y
Dependent set, matroid, 72
det (abstract matrix), 74
detF (F -determinant), 19
det3 (GF(3)-determinant), 19
det2 (GF(2)-determinant), 19
Determinant, 19
Difference of two sets, 5
Display

convention, matrix, 24
minor, 60

Double triangle, see C2
3 graph

Dual
binary matroid, 53
graph, 213
graphic matroid, 34
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linear program, 126
matroid, 72, 80
plane graph, 14

Duality theorem, see Linear pro-
gram

∆-sum
binary matroid, 183
components, 183
composition, binary matroid,

183
composition, graph, 183
decomposition, binary ma-

troid, 183
decomposition, graph, 183
graph, 183, 234–238, 346, 347
max-flow min-cut matroid,

318, 333–335
regular matroid, 251, 257
signed graph, 346, 347

∆-to-Y graph, 110
∆Y, see also Characterization,

Construction
exchange, almost regular ma-

troid, 108, 299
exchange, binary matroid,

103, 104, 183, 184
exchange, graph, 96, 183, 184
exchange, regular matroid,

249
exchange, restricted, 108, 299
extension sequence, almost reg-

ular matroid, 108, 299
extension sequence, binary ma-

troid, 104
extension sequence, restricted,

108, 299
graph, 96
matroid, 104, 250
reducibility, binary matroid,

104
reducibility, graph, 96
reducibility, planar graph, 97
reduction sequence, binary ma-

troid, 104

reduction sequence, graph, 96
extension sequence, binary ma-

troid, 104
extension sequence, graph, 96,

E

Ear decomposition, 243
Edge, 6

return edge (SP graph), see SP
subdivision, see Subdivision

Element, 5
Empty

graph, 9
matrix, 18, 37
matroid, 37
set, 5

Endpoints
edge, 6
path, 8

Equality, matrices, 18, 19
Equivalence (signed graph), see

Signed graph
Eulerian matrix, 24, 291
Even edge, see Signed graph
Exact k-separation

binary matrix, 63
binary matroid, 63
inducing another k-separation,

129–146
in terms of matroid rank func-

tion, 68, 83
Existence condition, almost reg-

ular matroid, 296
Expansion

binary matroid, 62
dual of binary matroid, 62, 63
graph, 11
graphic matroid, 36
matroid, 80

Extension
binary matroid, 62
graph, 11
matroid 80
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F

F7 matroid, 65, 107, 196, 199,
259, 268, 298, 316, 318, 366,
see also B7 matrix

graph with T nodes, 208
with labels, 107, 298, 366, see

also B7 matrix with labels
with special element l, 316, see

also Odd double triangle
splitter, 259

F ∗
7 matroid, 65, 196, 199, 259,

268, 316, 326
graph with T nodes, 208
with special element l, 316,

326, see also Odd K4 graph
splitter, 259

Face, plane graph, 14
Fano matroid, see F7, F ∗

7 ma-
troid

F -determinant (= detF ), 19
Field

binary (= GF(2)), 18
F (arbitrary field), 5, 18
GF(4), 204
GF(3), 18
GF(2), 18
IR (real numbers), 18
ternary (= GF(3)), 18

Finding 1-, 2-, 3-sums, see Poly-
nomial algorithm

Flow value
collection of weighted circuits,

332
max flow problem, 314

Forest, 9
Four-color

conjecture, 241
theorem, 241

F -pivot, 20, 21
properties, 21

Fractional
matching polyhedron, 341
max flow problem, 327

min cut problem, 327
F -rank, 19
Fundamental

circuit, binary matroid, 55
circuit, matroid, 78, 79
cocircuit, binary matroid, 56
cocircuit, matroid, 79
cocycle, graphic matroid, 33
cycle, graphic matroid, 32

G

G8 graph, 232–237
splitter, 233

Gi
15 graph, 236, 237

Gi
14 graph, 236, 237

G9 graph, 236
G13 graph, 236, 237
G12 graph, 236, 237
Gap, 157
G-chord, 275
Generalized network, recognition

problem, 243
Geometric viewpoint, 67
GF(4), 204, see also Field
GF(3), see also Field

-determinant (= det3), 19
-pivot, see F -pivot
-rank, see F -rank

GF(2), see also Field
-dependence, 28
-determinant (= det2), 19
-mindependence, 28
-pivot, 20, 34, 35, 80
-rank, see F -rank

Graph, 6–17, see also Character-
ization, Construction

addition, see Addition
coloop, see Coloop
contraction, see Contraction
deletion, see Deletion
expansion, see Expansion
extension, see Extension
without G12 minors, 236
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without K5 minors, 228–234
without K5\y minors, 236
k-connectivity, see k-connec-

tivity
k-separation, see k-separation
loop, see Loop
max cut problem, see Max cut

problem
max flow problem, see Max

flow problem
min cut problem, see Min cut

problem
without odd-K4 minors, 340–

348
reduction, see Reduction
subdivision, see Subdivision
sum, see ∆-, k-, 1-, 3-, 2-, Y-

sum
sum (special), 39
with T nodes, 206–211

Graphic, see also Characteriza-
tion, Planar, Regular

matrix, 31
matroid, 29, 34, 192

Graphicness test
binary matroid, 238–240
matroid, 243
subroutine, 47, 48

Grid graph, 98
Groundset

binary matroid, 53
graphic matroid, 29
matroid, 72

H

Hadwiger’s conjecture (graph col-
oring), 241

Hamiltonian cycle problem, 127
Has

a G minor, terminology, 13
an M minor, terminology, 63

Homeomorphism, graph, 13
Hyperplane, 297

I

Identification, nodes, 15
Incidence, edge, 7
Independent set

binary matroid, 53
graphic matroid, 29
matroid, 72

Independent vertex set problem,
203

Induced k-separation, 129, see
also Separation algorithm

graph, 145
sufficient conditions, 143–145
under L-isomorphism, 146

Induced subgraph, by node sub-
set, 7, 8

Integer
hull of polyhedron, 340
program, 195

Internal vertex, 39
Internally node-disjoint paths, 8
Intersection

algorithm, 119–123, 127, 181
circuits and cocircuits, 57
problem, applications, 124,

125
problem, generalization, 126
problem of at least three ma-

troids, 127
problem of two matroids, 119–

125
sets, 5
theorem, 123, 124

Isolated node, 7
Isomorphism

graph, 13
matrix, 19
matroid, 63

Isthmus, 9

K

K5 graph, 17, 49, 96, 157, 163,
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230–237
splitter, 157

K4 graph, 17, 91, 93, see also
Signed graph, W3 graph

K4,3 graph, 185
Km,n graph, 17
Kn graph, 17
K6 graph, 100
K3,3 graph, 17, 49, 157, 163, 217,

218, 233–237
Ki

3,3 graph, 229, 231, 233
K2,3 graph, 17, 93
k-connected, see k-connectivity
k-connectivity

abstract matrix, 80
binary matrix, 63
binary matroid, 63
graph, 16
graphic matrix, 38
graphic matroid, 38
matroid, 80

k-separable, see k-separation
k-separation, see also Polynomial

algorithm
abstract matrix, 80
binary matrix, 63
binary matroid, 63
with given subsets, 124, 125
graph, 15
graphic matrix, 38
graphic matroid, 38
link between graph and ma-

troid separations, 39, 40
matroid, 80
minimal k, 39
rank function, 67, 68, 83

k-star, 7
k-sum, see also ∆-, 1-, 3-, 2-, Y-

sum
binary matroid, 173–176
components, 174
composition, binary matroid,

174, 175
connecting matroid, 176

connecting minor, 176
decomposition, binary ma-

troid, 174
regular matroid (k ≥ 4), 270

L

Label sum, graph, 275
Lattice viewpoint, 67
Leaf

edge, 9
node, 9

Length
circuit, 337
cycle, 8
matrix, 18
path, 8

Line of graph, 216
Linear program

duality theorem version, 328
intersection problem, 126
max flow problem, 327
min cut problem, 327
partitioning problem, 126
polynomial algorithm, 339
with totally unimodular coeffi-

cient matrix, 195, 330
Link between graph and matroid

separations, 39, 40
l-isomorphism, 316
L-isomorphism, 146
Loop

binary matroid, 54
graph, 7
matroid, 79, 80

M

M(C2
3 ) matroid, 95

M(G8)∗ matroid, 268
M(K5) matroid, 49, 211, 214,

225
splitter, 214

M(K5)∗ matroid, 51, 208, 211,
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225, 268
graph with T nodes, 208

M(K4) matroid, 95
M(K3,3) matroid, 49, 211, 214,

216, 219, 225, 268
M(K3,3)∗ matroid, 51, 208, 211,

225, 268
graph with T nodes, 208

M(W4) matroid, 66, 116
M(Wn) matroid, 116
M(W3) matroid, 65, 116–118,

176
M(W2) matroid, 116
Matching

graph, 124, 126
matroid, 4

Matrix, 18–24, see also Construc-
tion, Polynomial algorithm

decomposition, see ∆-, k-, 1-,
3-, 2-, Y-sum

determinant, see Determinant
display convention, see Dis-

play
over GF(3), see Field
over GF(2), see Field
isomorphism, see Isomorphism
length, see Length
pivot, see Pivot
over IR, see Field
rank, see Rank
over the real numbers, see

Field
representation, see Represen-

tation
support, see Support
terminology, 18
viewpoint, 66

Matroid, see also Characteriza-
tion, Construction, Polyno-
mial algorithm

addition, see Addition
axioms, see Axioms
composition, see ∆-, k-, 1-, 3-,

2-, Y-sum

connectivity, see Connectivity
contraction, see Contraction
decomposition, see ∆-, k-, 1-,

3-, 2-, Y-sum
definition, see Axioms
deletion, see Deletion
delta-sum, see ∆-sum
dual, see Dual
∆-sum, see ∆-sum
expansion, see Expansion
extension, see Extension
intersection algorithm, see In-

tersection
intersection theorem, see In-

tersection
isomorphism, see Isomorphism
k-connectivity, see k-connec-

tivity
k-separation, see k-separation
k-sum, see k-sum
max flow problem, see Max

flow problem
min cut problem, see Min cut

problem
minor, see Minor
1-sum see 1-sum
oracle, see Oracle
rank function, see Rank
reduction, see Reduction
regularity, see Regular, Regu-

larity test
representability, see Repre-

sentability, Representation
representation, see Represent-

ability, Representation
separation algorithm, see Sep-

aration algorithm
split, see Split
splitter, see Splitter
standard representation ma-

trix, see Standard represen-
tation matrix

submodularity, see Submodu-
larity
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sum, see ∆-, k-, 1-, 3-, 2-, Y-
sum

3-sum, see 3-sum
2-sum, see 2-sum
wye-sum, see Y-sum
Y-sum, see Y-sum

Max cut problem, 242, 267
Max flow problem

graph, 314
matroid, 315, 327, 339

Max-flow min-cut, see also Char-
acterization, Construction,
Polynomial algorithm

matroid, 315
property, 315
property test, 337
theorem, graph, 314

Maximal
subgraph, 9
submatrix, 9
subset, 5

Maximum matching, see Match-
ing

Menger’s Theorem, 8, 16, 127
Min cut problem

graph, 314
matroid, 315, 327, 339

Mindependence, 28
Minimal

in context of induced separa-
tions, 135, 146

in context of K3,3 minor, 218
cutset, 9
GF(2)-dependence, 28
under isomorphism, without

induced k-separation, 135,
142, 143

under L-isomorphism, without
induced k-separation, 146

matroid without induced k-se-
paration, 135

nonregular matrix, 283, 310
non-totally unimodular ma-

trix, 107, 246, 290, 309, 311

subgraph, 9
submatrix, 9
subset, 5
support vector, binary space,

56
violation matrix of a property,

273, 294–296
violation matrix of regularity,

283, 310
violation matrix of total uni-

modularity, 107, 246, 290,
309, 311, see also Character-
ization, Construction, Poly-
nomial algorithm

Minimum node cover, 124
Minor

binary matroid, 59
with given elements, 126, 166
graph, 12
graph, terminology, 13
graphic matroid, 36
matroid, 80
matroid, terminology, 63

N

N8 matroid, 318–321, see also B8

matrix
N9 matroid, 320, 321, see also B9

matrix
n-cycle, 275
Nested 3-connected minors

algorithm, 162
binary matroid, 158–162
graph, 159–162

Network flow
problem, 195
property, 239–241
property test, 240, 241

Network matrix, 261
Node, 6

cover, 124
Node/arc incidence matrix, 189
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Node/edge incidence matrix, 27,
28, 189

Nonsingular matrix (abstract),
74

Nonstandard representation ma-
trix, 31, 54

NP, 24
-complete, 24
-hard, 25

n-path, 275
n-subgraph, 275
Nullspace, 56

O

Odd, see also Signed graph
cycle, 269
cycle (signed graph), 341
double triangle, 347
edge, 341
K4 graph, 342, 343

Odd-K4 minor, 315, 342, 343, see
also Signed graph

1-sum
binary matroid, 169, 170
components, 169
composition, binary matroid,

169
composition, graph, 170
decomposition, binary ma-

troid, 169, 180
decomposition, graph, 170
graph, 233
regular matroid, 247, 256

Optimum branching, 126
Oracle, 84
Order

algorithm, 24
matrix, 18

Orthogonal complement, binary
space, 56

Outerplanar graph, 93, see also
Characterization, Planar, SP

P

Parallel, see also SP
class, graph, 9
class, graphic matroid, 32
edges, graph, 9
edges, graphic matroid, 32
elements, binary matroid, 55
elements, matroid, 79
vectors, 23

Parity condition, almost regular
matroid, 296

Partially odd vertex, see Signed
graph

Partitioning problem, 119, 123,
124, see also Intersection al-
gorithm, Intersection prob-
lem

generalization, 126
graph into forests, 126

Path, 8
length, 8

Path shortening technique, 112–
114

applications, 114–119
Perfect

graph, 243, 312
matrix, 312

Petersen graph, 100, 237
PG(2,2) projective geometry,

65, 196
Pivot, see Abstract pivot, GF(2)-

pivot, F -pivot
Pivot element, 20, 21
Planar, see also Characterization

graph, 13
graph, ∆Y reducibility, 97
matrix, 34
matroid, 34
matroid, 1-element extension,

226
Plane graph, 13, 14
Point (= vertex), 6
Polyhedral combinatorics, 126,
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127, 340
Polymatroid, 126
Polynomial algorithm, 24, see

also Characterization, Con-
struction

graphicness testing subroutine,
see Graphicness test

induced separation, see Sepa-
ration algorithm

induced separation or exten-
sion, 145, 149

intersection problem, see In-
tersection algorithm

k-separation with given sub-
sets, see k-separation

linear program, 339
max flow problem, max-flow

min-cut matroid, 339, 340
min cut problem, max-flow

min-cut matroid, 339, 340
1-, 2-, or 3-sum decomposition,

180–182
partitioning problem, see In-

tersection algorithm
shortest circuit problem, max-

flow min-cut matroid, 337–
339

signing of regular matrix, see
Signing

test of graphicness, see Graph-
icness test

test of matrix total unimodu-
larity, see Total unimodu-
larity test

test of matroid regularity, see
Regularity test

test of max-flow min-cut prop-
erty, see Max-flow min-cut
property test

test of network flow property,
see Network flow property
test

test of representability over ev-
ery field, 204

2-separation or sequence of
nested 3-connected minors,
162

Polynomial reduction, 24
Power set, 5
Problem instance, 24
Projective geometry PG(2,2), see

PG(2,2)
Proper

subgraph, 7
submatrix, 18
subset, 5

R

IR (real numbers), see Field
R10 matroid, 193, 203, 209, 219,

224–226, 252, 256, 257, 268,
301, 311, 336, see also B10,
B10.1, B10.2 matrix

alternate representation ma-
trix, 226

graph with T nodes, 209
splitter, 252

R12 matroid, 105, 194, 203, 209,
219, 224, 225, 251, 255, 256,
311, see also B12 matrix

complement totally unimodu-
lar representation matrix,
310

graph with T nodes, 209
Rank

abstract matrix, 74
binary matroid, 53
field F , see F -rank
field GF(3), see F -rank
field GF(2), see F -rank
function, binary matroid, 53,

54, 67
function, matroid, 73, 78
function viewpoint, 67
gap, 157
graph, 9
matrix, 19
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matroid, 72
Real numbers (IR), see Field
Recognition problem, generalized

network, 243
Reduction

binary matroid, 58
graph, 11
graphic matroid, 35, 36
matroid, 80

Regular, see also Characteriza-
tion, Cographic, Construc-
tion, Graphic, Planar, Poly-
nomial algorithm, Regular-
ity test, Representability
over every field, Total uni-
modularity test, Totally uni-
modular matrix

matrix, 64, 106, 190
matroid, 64, 106, 191
matroid decomposition theo-

rem, 256
Regularity test, 259–260, 270, see

also Regular
Removal, edge, 7
Representability, see also Char-

acterization, Construction,
Polynomial algorithm, Reg-
ular, Regularity test

over every field (= regularity),
84, 196–199, 204

general discussion, 83, 84, 204
over GF(4), 204
over GF(3), 196–202
over GF(3) and GF(q), 204
over GF(2), 85–87

Representation, see also Repre-
sentability

abstract matrix, 75–77, 83, 84
matrix, binary matroid, 53
matrix, graphic matroid, 31
of matroid by abstract matrix,

78, 79
Restricted, see also Almost regu-

lar matroid

∆Y exchange, 108, 299
∆Y extension sequence, 108,

299
SP step, 108, 299

Return edge (SP graph), see SP
Rim, wheel graph, 17
Row

complement of matrix, 284
Eulerian matrix, 24
submatrix, 18
vector, terminology, 19

S

Scaling
graph, 275
signed graph, see Signed graph

Separable, see k-separation
Separation, see k-separation
Separation algorithm, 132, 133,

137, 138, 181
Sequence of nested 3-connected

minors, 157–163
Series, see also SP

class, graph, 10
class, graphic matroid, 33, 34
edges, graph, 10
edges, graphic matroid, 33, 34
elements, binary matroid, 56
elements, matroid, 79

Series-parallel, see SP
Set, 5
Shortest circuit problem, 337, see

also Polynomial algorithm
Signed graph (with odd and even

edges), 341, see also Max-
flow min-cut

∆-sum, see ∆-sum
equivalence, 341
even edge, 341
odd cycle, 341
odd double triangle, 347
odd edge, 341
odd-K4 minor, 315, 342, 343
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without odd-K4 minors, 340–
348

partially odd vertex, 343
scaling, 341
two odd faces, 345
2-sum of type 1, see 2-sum
2-sum of type 2, see 2-sum

Signing
graph (for α-balancedness),

275–277
regular matrix (for total uni-

modularity), 191
Simple

graph, 10
rounding of vector, 341

Singular matrix (abstract), 74
Solid

staircase matrix, 303
triangular matrix, 303

SP, see also Characterization,
Construction, Parallel, Se-
ries

extension, graph, 90
extension, matroid, 94
graph, 90
graph, return edge, 109
matroid, 94
reduction, graph, 90
reduction, matroid, 94
step, almost regular matroid,

108, 299
step, restricted, 108, 299

Special edge, max flow problem,
314

Split (= 2-separation), 151
Splitter, 151, 152, 214, see also

F7, F ∗
7 matroid, G8, K5

graph, M(K5), R10 matroid,
W3 graph

theorem, binary matroid, 152,
252

theorem, graph, 156, 228, 229
Spoke, wheel graph, 17
Standard representation matrix,

31, 54
Star, 7
Steinitz’s Theorem, 110
Straddling element, 3-separation,

322, 344
Strong perfect graph conjecture,

312
Subdivision

edge, 13,
graph, 217

Subgraph, 7
Submatrix, 18
Submodular, see Submodularity
Submodularity

abstract matrix rank function,
75

binary matroid rank function,
68–71, 136

F -rank function, 22
function on sets, 68
matrix rank function, 22, 70–

71
matroid rank function, 73

Subset, 5
Subvector, 18
Sum, see also ∆-, k-, 1-, 3-, 2-,

Y-sum
of circuits property, 270
of several graphs (special), 39

Support, matrix, 19
Suspended tree, see Tree
Switching, 45, 46

graph with T nodes, 210, 211
Symmetric difference

circuits, binary matroid, 57
disjoint unions of circuits, bi-

nary matroid, 57
sets, 5

T

T node, 207
Ternary, see also Characteriza-

tion
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field (= GF(3)), see Field
matroid, 199
matroid without M(K4) mi-

nors, 204
Test, see Polynomial algorithm
3-connected extension

binary matroid, 133, 147
graph, 133

3-connectedness
binary matroid, 64
matroid, 82

3-sum
binary matroid, 176–179
components, 177
composition, binary matroid,

176, 177
composition, graph, 179, 180
decomposition, binary ma-

troid, 176–179, 180–182
decomposition, graph, 179,

180
graph, 179, 180, 233
regular matroid, 248–250, 256

Tip node, 9
Total dual integrality, 329
Total unimodularity test, 259,

260, see also Signing, Totally
unimodular matrix

Totally unimodular matrix, 64,
106, 189, see also B10.1,
B10.2 matrix, B12 matrix,
totally unimodular version,
Complement totally uni-
modular matrix, Construc-
tion, Linear program, Mini-
mal violation matrix of total
unimodularity, Polynomial
algorithm, Regular, Regular-
ity test, Signing, U i matrix

Transpose, abstract matrix, 75
Tree, 9, 28

decomposition, 243
graphic matroid, 31
suspended, 93

Triad, binary matroid, 56, 65
Triangle, binary matroid, 55, 65
Triples in circuits, 269
trivial

matrix, 18
matroid, 37

Tutte
connectivity, graphs, 15
k-connected, see k-connectiv-

ity
k-connectivity, see k-connec-

tivity
k-separable, see k-separation
k-separation, see k-separation

Two odd faces, see Signed graph
2-connected components, graph,

16, 17
2-isomorphism, 44–46
2-sum

binary matroid, 171
components, 171
composition, binary matroid,

171
composition, graph, 172
decomposition, binary ma-

troid, 171, 180–182
decomposition, graph, 172
graph, 172, 233–237
max-flow min-cut matroid,

316, 317, 332, 333
regular matroid, 247, 256, 257
of type 1 (signed graph), 344
of type 2 (signed graph), 344

U

Ui matrix, 305
U3

5 matroid, 199
U2

5 matroid, 199
U2

4 matroid, 85, 86, 126, 326
minor with given element, 126

Um
n matroid, 85

Union, sets, 5
Uniqueness of reductions
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binary matroid, 59
graph, 11

V

Valid inequality, 267
Vector, terminology, 19
Vertex, 6

connectivity, 15
k-connected, 15
k-separable, 15
k-separation, 15
2-isomorphism, 87

Visible minor, binary matroid,
60, 61

W

W4 graph, 17, 66, 157
Wn graph, 17, 236
W3 graph, 17, 65, 157, 179, see

also K4 graph
splitter, 157

Wi matroid, 125, 126, see also U2
4

matroid
Wheel

graph, 17, 115, 116, 156, 159,
see also K4, W4, Wn, W3

graph
matroid, 116, 152, 158, see also

M(W4), M(Wn), M(W3),
M(W2) matroid

theorem, 159, 211, 252
Wheels and whirls theorem, 166
Whirl, 125, 126, 165
Wye-sum, see Y-sum, 182

Y

Y-sum
binary matroid, 184
components, 184
composition, binary matroid,

184

composition, graph, 184
decomposition, binary ma-

troid, 184
decomposition, graph, 184
graph, 184
regular matroid, 251, 257

Y-to-∆ graph, 110


