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RECENT RESULTS IN VARIATIONAL SEQUENCE THEORY

DEMETER KRUPKA AND JANA MUSILOVÁ

Abstract. In this paper, foundations of the higher order variational sequence
theory are explained. Relations of the classes in the sequence to basic concepts
of the variational calculus on fibered spaces, such as the lagrangians, Lepage

forms, Euler–Lagrange forms, and the Helmholtz–Sonin forms, are discussed.
Recent global results, including interpretation of the classes in the variational

sequence as differential forms, are discussed.

1. Introduction

During the few last decades, there has been a growing interest in the study
of global aspects of the calculus of variations. The arising theory, the calculus
of variations on smooth manifolds and fibered spaces, includes the coordinate–
free calculus of vector fields and differential forms, differential geometry, topology
and global analysis. The most intensively studied general questions were those
connected with the structure of Euler–Lagrange mapping, i.e., with variationally
trivial lagrangians, the inverse problem of the calculus of variations, and the order
reducibility problem.

Let Y be a fibered manifold over a base manifold X, where n = dimX, and
let JrY denote the r−jet prolongation of Y . The need of global concepts led
to the introduction of the so called Lepage n−forms, and Lepage equivalents of
lagrangians, based on the idea of Lepage and Dedecker that there should exist a
close connection between the Euler–Lagrange mapping and the exterior derivative
of forms (Krupka [32], [35], [36]). Later, this concept was extended to (n+1)−forms
in field theory by Krupková [57], [62] and Klapka [27]. Krupková [57], [58], [61]
applied Lepage 2−forms in higher order mechanics to the inverse problem, and to
the order reducibility problem, and obtained their complete solutions.

The relationship between the Euler–Lagrange mapping and the exterior deriva-
tive operator has given rise to the theory of variational bicomplexes, and variational
sequences. The idea was to discover a proper (cohomological) sequence in which
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the Euler–Lagrange mapping would be included as one ”arrow”; indeed, this would
give us a tool for a global characteristic of the Euler–Lagrange mapping.

A theoretical background of theory of variational bicomplexes, which is based on
infinite jet constructions, was formulated at the break of seventieth and eightieth by
Anderson and Duchamp [2], Dedecker and Tulczyjew [12], Takens [73], Tulczyjew
[75], Vinogradov et all [76] (see also e.g. Anderson [3], Vinogradov, Krasilschik and
Lychagin [77]).

Finite order variational sequences were introduced by Krupka [43] in 1989 (see
also [50], [56]), and was further developed by his co-workers (Kašparová, Krbek,
Musilová, Štefánek [24], [25], [29], [30], [31], [63], [72]), and others (Grigore [20],
Vitolo [78], [79], Francaviglia, Palese and Vitolo [13], [14]).

A comparison of both theories can be found in Krupka [53], Pommaret [67], and
Vitolo [79].

Let us discuss some most important features of the theory of finite order varia-
tional sequences.

(1) The variational sequence is defined as the quotient sequence of the De Rham
sequence over JrY by its subsequence of contact forms, and its morphisms keep
the order r fixed. The sequence is exact, and one of its morphisms is exactly
the Euler–Lagrange operator. This demonstrates the relationship of d with the
Euler–Lagrange mapping.

(2) Each term of the variational sequence is, as a quotient group, determined up
to an isomorphism. This means that the variational sequence can be represented
by various spaces. Important representations arise when the classes of forms are
represented as globally defined forms (on some JsY , where r≤ s). It has already
been proved that such representations do exist for spaces involving the domain and
the range of the Euler–Lagrange mapping, and the next arrow in the sequence, the
Helmholtz–Sonin mapping (see futher discussion).

(3) By the abstract De Rham theorem, the complex of global sections of the vari-
ational sequence has the same cohomology as the manifold Y . On the other hand,
the classes in the variational sequence have a certain algebraic structure; therefore,
the meaning of the cohomology conditions in the sequence differs from their mean-
ing in the context of the variational bicomplex theory. In particular, the global
variationality condition (Hn+1Y = 0) includes existence of global lagrangians of a
certain analytic structure, defined by the sequence.

(4) An interesting question is the meaning of the Lepage forms and their gener-
alizations, which play fundamental role in the global variational theory. It should
be pointed out that within the context of the variational sequence, the Lepage
forms are just proper representations of elements of the sequence (classes), defined
by some specific properties.

Štefánek [72] found a complete (local) representation of the r−th order varia-
tional sequence in mechanics. Musilová [63] and Krbek and Musilová [30] described
the representation by forms of the variational terms in the sequence, i.e. the terms
relevant to the Euler–Lagrange, and Helmholtz–Sonin mappings. Moreover, they
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described a reconstruction procedure of the classes. Kašparová [24], [25], [26] has
found global representations of the variational terms in the first order field the-
ory. Her results have been extended by Krbek, Musilová and Kašparová [31] to
arbitrary order field theory.

The aim of the presented review paper is to give a consistent exposition of the
present situation in the variational sequence theory. We define all concepts and
present all basic theorems together with ideas of their proofs. For more details, the
reader should consult the references.

2. The concept of the variational sequence

The main purpose of this part of the paper is to give a brief and consistent
presentation of the theory of finite-order variational sequence on the adequately
abstract level.

2.1. Differential forms on fibered manifolds. In this section we introduce the
basic geometrical structures for the formulation of variational theories, especially
for the concept of global higher order variational functionals as well as for the
variational sequences. Modern global variational theories are formulated by means
of differential forms defined on fibered manifolds and their jet prolongations. An
important role is played by some special classes of forms: horizontal and contact
forms. For the theory of differential forms the reader is referred e.g. to [1], [32], [35],
[43], the structure of contact forms is discussed in detail in [47], [49]. The concept
of a fibered manifold and its jet prolongations is based on the general theory of
jets, presented in [28], [44] and [70], and can also be found in [55].

Throughout, we use the standard notation given e.g. in [32], [43], [49], [50].
The definitions of fundamental structures and objects are presented in the form
adapted to practical purposes and emphasizing their coordinate expressions. All
manifolds and mappings are of class C∞.
Y is an (n+m)−dimensional fibered manifold with an n−dimensional base X

and projection π : Y → X (surjective submersion). For an arbitrary integer r≥0,
JrY is the r−jet prolongation of Y , πr : JrY → X, πr,s : JrY → JsY , r≥ s≥ 0,
are canonical jet projections of JrY on X and JsY , respectively. We denote
Nr = dim JrY . It holds Nr = n+

∑r
k=0Mk = n+m

(
n+r

n

)
, where Mk = m

(
n+k−1

k

)
.

We denote by γ and Jr
xγ a section of the fibered manifold Y (a smooth mapping

γ : X → Y for which π ◦ γ = idX) and its r−jet at the point x, respectively. The
mapping Jrγ : x→ Jrγ(x) = Jr

xγ is the r−jet prolongation of γ. ΓΩ(π) is the set
of all sections of Y defined on Ω ⊂ X. Let (V, ψ), ψ = (xi, yσ), 1≤ i ≤n, 1≤σ≤
m, be a fibered chart on Y . Then we denote (U,ϕ) and (V r, ψr) the associated
chart on X and the associated fibered chart on JrY , respectively. These charts are
induced by (V, ψ) by such a way that U = π(V ), ϕ = (xi) and V r = (πr,0)−1(V ),
ψr = (xi, yσ, yσ

j1
, . . . yσ

j1...jk
), where yσ

j1...jk
γ(x) = ∂yσγ(x)

∂xj1 ...∂xjk
for 1≤ k ≤ r, x ∈ U

and every γ ∈ ΓU (π). Thus, the variables yσ
j1...jk

are completely symmetric in all
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indices contained in each multiindex J = (j1 . . . jk). The integer k = |J | is the
length of the multiindex J . For yσ we put |J | = 0.

Let Ξ be a vector field on an open subset W of Y . It is called π−projectable, if
there exists a vector field ξ on π(V ) such that Tπ ·Ξ = ξ ◦π, Tπ being the tangent
mapping to π. Then ξ is unique and it is called the π−projection of Ξ. In a fibered
chart (V, ψ), V ⊂W , ψ = (xi, yσ), it holds

Ξ = ξi(xj)
∂

∂xi
+ Ξσ(xi, yσ)

∂

∂yσ
.

Let (V, ψ) be a chart on Y . Let α : V → Y be a local isomorphism of Y and
α0 : U → X its projection, i.e. π ◦ α = α0 ◦ π. We define the local isomorphism
Jrα : V r → JrY of JrY by the relation

Jrα(Jr
xγ) = Jr

α0(x)αγα
−1
0 .

Jrα is called the r−jet prolongation of α. Using prolongations of local isomor-
phisms connected with the one-parameter group of a projectable vector field we
can define jet prolongations of this vector field: Let Ξ be a π−projectable vector
field on Y and let ξ be its π−projection. Let αt be the local one-parameter group
of Ξ. Then we define

JrΞ(Jr
xγ) =

(
d
dt
Jrαt(Jr

xγ)
)

t=0

for each Jr
xγ ∈ dom Jrαt. This relation defines the vector field on JrY called the

r−jet prolongation of Ξ. Its chart expression is as follows:

JrΞ = ξi ∂

∂xi
+ Ξσ

J

∂

∂yσ
J

, Ξσ
j1...jk

= djk
ξσ
j1...jk−1

− yσ
j1...jk−1i

∂ξi

∂xjk
, 0≤|J |≤r

(in details see e.g. [49]), where di denotes the total (formal) derivative operator for
any function f : W → R in a fibered chart (V, ψ), V ⊂W :

dif =
∂f

∂xi
+

∂f

∂yσ
J

yσ
Ji, 0≤|J |≤ r.

It can be easily seen that JrΞ is πr,s−projectable for every 0 ≤ s ≤ r and it
is also πr−projectable. Denote W r = (πr,0)−1W . Let Ξ be a vector field on
W r. It is called πr−projectable, if there exists a vector field ξ on π(W ) such that
Tπr · Ξ = ξ ◦ πr. In a fibered chart (V, ψ), V ⊂W , ψ = (xi, yσ) we have

Ξ = ξi(xj) + Ξσ
J

∂

∂yσ
J

, Ξσ
J = Ξσ

J(xi, yσ, yσ
j1 , . . . , y

σ
j1...jr

).

A vector field Ξ on W r is called πr,s−projectable for 0 ≤ s ≤ r, if there exists a
vector field ξ on W s such that
Tπr,s · Ξ = ξ ◦ πr,s, i.e. Ξσ

j1...jk
= Ξσ

j1...jk
(xi, yσ, yσ

j1
, . . . , yσ

j1...js
) for s≤k≤r.

Let W ⊂ Y be again an open set. We denote by Ωr
0W the ring of smooth

functions on W and by Ωr
qW the Ωr

0W−module of smooth differential q−forms on
W r. The fibered structure on Y leads to the concept of vertical vectors and vector
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fields and of horizontal forms, as follows: A vector Ξ ∈ TyJ
rY is called πr−vertical

if Tπr · Ξ = 0. If the same holds for a vector field Ξ on W r ⊂ JrY at every point
y ∈ W r, we have the πr−vertical vector field. (In coordinates this means that
ξi = 0 on πr(W r).) Let 0≤s≤r be integers. A vector Ξ ∈ TyJ

rY (or a vector field
Ξ on JrY ) is called πr,s−vertical, if Tyπ

r,s · Ξ=0 (or Tπr,s · Ξ=0, respectively).
A form % ∈ Ωr

qW is called πr− horizontal (or simply horizontal), if it takes
zero value whenever some of its vector arguments are πr−vertical vectors. It can
be proved that for every form % ∈ Ωr

qW , q ≥ 1, there exists the uniquely defined
horizontal form h% ∈ Ωr+1

q W for which Jrγ∗% = Jr+1γ∗h% for all sections γ of
Y , ∗ denoting the pullback mapping. Putting in addition hf = f ◦ πr+1,r for a
function f : W r → R, we obtain a morphism h : Ωr

qW → Ωr+1
q W which is induced

by the fibered structure on Y . This morphism is called the horizontalization. For
the chart expressions it holds

(1) h dxi = (πr+1,r)∗dxi = dxi, h dyσ
j1...jk

= yσ
j1...jki (πr+1,r)∗dxi = yσ

j1...jki dxi,

for 1≤k≤r. It holds h(ω ∧ η) = hω ∧ hη.
A form % ∈ Ωr

qW is called contact if it holds Jrγ∗% = 0 for every section γ of Y ,
or equivalently, if h% = 0. Let (V, ψ) be a fibered chart on Y . We define

(2) ωσ
j1...jk

= dyσ
j1...jk

− yσ
j1...jki dxi, 0≤k≤r−1.

We can see that the integersMk = m
(
n+k−1

k

)
defined previously give also the number

of independent forms ωσ
j1...jk

.
The forms ωσ

j1...jk
defined by (2) are contact, as can be easily verified. Then we

can use the so called contact base of 1−forms on V r

(dxi, ωσ, ωσ
j1 , . . . , ω

σ
j1...jr−1

,dyσ
j1...jr

)

instead of the canonical one, (dxi,dyσ,dyσ
j1
, . . . ,dyσ

j1...jr
).

Recall that a form % ∈ Ωr
qW is called πr−projectable if there exists a form η

on πr(W ) for which % = (πr)∗η. A form % ∈ Ωr
qW is called πr,s−projectable for

r≥ s≥ 0 if there exists a form η ∈ Ωs
qW for which % = (πr,s)∗η. Let % ∈ Ωr

qW be
a form. We denote p% = (πr+1,r)∗% − h% its contact part (p% is of course contact,
as can be immediately proved with the use of definition of h%). There exists the
unique decomposition

(3) (πr+1,r)∗% = h%+ p1%+ · · ·+ pq%

of the form (πr+1,r)∗% in which pk%, for every 1≤k≤ q, is the contact form, called
the k−contact component of %. In an arbitrarily chosen fibered chart (V, ψ) on Y
the chart expression of pk% is a linear combination of exterior products

ωσ1
I1
∧ . . . ∧ ωσk

Ik
∧ dxik+1 ∧ . . . ∧ dxq

with coefficients from Ωr+1
0 V , where Ip = (j1 . . . jp), 0 ≤ p ≤ r, are multiindices.

Every such product contains exactly k exterior factors of the type ωσ
j1...jp

, 0≤p≤r.
The form h% is the horizontal or 0−contact component of the form %. The lowest
integer k for which pk 6= 0 is called the degree of contactness of the form %. We
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denote the submodule of horizontal q−forms onW r by Ωr
q,XW . A q−form % ∈ Ωr

qW
is called πr,s−horizontal if for every πr,s−vertical vector field Ξ on JrY it holds
iΞ% = 0. The decomposition (3) is, of course, coordinate invariant. In a fibered
chart (V, ψ) it can be expressed as follows: Let % ∈ Ωr

qW have, in a fibered chart
(V, ψ), V ⊂W , the chart expression

(4) % =
q∑

s=0

AI1
σ1
· · ·Is

σs,is+1,...iq
dyσ1

I1
∧ . . . ∧ dyσs

Is
∧ dxis+1 ∧ . . . ∧ dxiq

in which coefficients AI1
σ1
· · ·Is

σs,is+1,...iq
∈ Ωr

0V are antisymmetric in all multiindices((
I1
σ1

)
, . . . ,

(
Is

σs

))
, 0≤ |Ip| ≤ r, antisymmetric in all indices (is+1, . . . , iq) and sym-

metric in all indices contained in each multiindex Ip. Then for every 0≤ k≤ q it
holds

(5) pk% = CI1
σ1
· · ·Ik

σk,ik+1,...iq
ωσ1

I1
∧ . . . ∧ ωσk

Ik
∧ dxik+1 ∧ dxik+1 ∧ . . . ∧ dxiq ,

CI1
σ1
· · ·Ik

σk,ik+1,...iq
=

=
q∑

s=k

(
s

k

)
AI1

σ1
· · ·Ik

σk
· · ·Is

σs,is+1...iq
y

σk+1
Ik+1ik+1

. . . yσs

Isis
, alt(ik+1, . . . , iq).

(The summations over multiindices Ip are taken over all independent choices of
indices in each multiindex.) The proof of the existence and uniqueness of the
decomposition (3) and the relation (5) can be found in [49]. It can be immediately
seen from the relation (5) that for q > n every q−form is contact. Moreover, in
such a case it holds h% = p1% = · · · = pq−n−1% = 0. Let q > n. A form % ∈ Ωr

qW
is called strongly contact if pq−n% = 0. A form % ∈ Ωr

qW is called decomposable if
h% (or pq−n%) is πr+1,r−projectable for 1≤q≤n, (or q > n, respectively).

The decomposition of forms (3), and especially contact and strongly contact
forms, plays an important role in the theory of variational functionals. We antic-
ipate that all such basic concepts as a lagrangian, the Euler–Lagrange form and
the Helmholtz–Sonin form are based on the decomposition (3) combined with the
exterior derivative operator. Let us present the local structure of contact forms
more precisely (for detailed discussion see e.g. [47], [49]).

Let W ⊂ Y be an open set and let % ∈ Ωr
qW be a q−form. Let (V, ψ) be again

a fibered chart on Y for which V ⊂W , ψ = (xi, yσ). Then it holds:

(a) For q=1 a form % is contact if and only if it can be expressed in (V, ψ) as

(6) % = ΦJ
σω

σ
J , 0≤|J |≤r−1,

where ΦJ
σ ∈ Ωr

0V are some functions.

(b) For 2≤q≤n a form % is contact if and only if it can be expressed in (V, ψ) as

(7) % = ωσ
J ∧ΨJ

σ + dΨ, 0≤|J |≤r−1,
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where ΨJ
σ ∈ Ωr

q−1V are some (q− 1)−forms and Ψ ∈ Ωr
q−1V is some contact

(q−1)−form for which Ψ = ωσ
I ∧ χI

σ, |I|=r−1, χI
σ ∈ Ωr

q−2V .
(c) For n<q≤Nr a form % is strongly contact if and only if it can be expressed in
(V, ψ) as

(8) % = ωσ1
J1
∧ . . . ∧ ωσp

Jp
∧ dωσp+1

Ip+1
∧ . . . ∧ dωσp+s

Ip+s
∧ ΦJ1

σ1
· · ·JpIp+1

σpσp+1
· · ·Ip+s

σp+s
,

where ΦJ1
σ1
· · ·JpIp+1

σpσp+1 · · ·
Ip+s
σp+s ∈ Ωr

q−p−2sV are some forms, 0≤|J |≤r−1 for 1≤ l≤p,
|Ij |= r−1 for p+1≤ j ≤ p+s, and summation is taken over all such p for which
p+s≥q−n−1, p+2s≤q. It is evident that for q>Pr, where Pr =

∑r−1
k=0Mk+2n−1,

the relation (8) gives the identically zero form. Furthermore, for convenience in
most calculations we denote by ω0 = dx1 ∧ . . .∧dxn the volume element on X and
ωi = i ∂

∂xi
ω0 = (−1)i−1dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn.

2.2. The finite order variational sequence. In this section we give a relatively
complete exposition of the theory of higher order variational sequence including
comments concerning the proofs. The main ideas and results are based on the
theory of sheaves e.g. in [51].

Let q ≥ 0 be an integer. Let Ωr
q be the direct image of the sheaf of smooth

q−forms over JrY by the jet projection πr,0. We denote

Ωr
q,c = ker p0 = kerh for 0≤q≤n,

Ωr
q,c = ker pq−n for n<q≤Nr,

where p0 and pq−n are morphisms of sheaves induced by mappings p0 : % → p0%
and pq−n : % → pq−n% for 0≤ q≤n and n<q≤Nr, respectively. So, for 0≤ q ≤n,
Ωr

q,c is the sheaf of contact q−forms and for n<q≤Nr it is the sheaf of strongly
contact q−forms. (Recall that the functions are considered as 0−forms and thus
Ωr

0,c = {0}. Moreover, Ωr
q = {0} for q >Nr.) Let dΩr

q−1,c be the image sheaf of
Ωr

q−1,c by the exterior derivative d. Let W ⊂ Y be an open set. Then Ωr
qW is the

Abelian group of q−forms on W r and Ωr
q,cW is its Abelian subgroup of contact or

strongly contact q−forms on W r, for 0≤ q≤n or n<q≤Nr, respectively. Let us
denote

(9) Θr
q = Ωr

q,c + dΩr
q−1,c, Θr

qW = Ωr
q,cW + dΩr

q−1,cW.

Note that Θr
qW is a subgroup of the group Ωr

qW . Let us consider the well-known
de Rham sequence of sheaves

(10) {0} → Ωr
1 → · · · → Ωr

n → Ωr
n+1 → Ωr

n+2 → · · · → Ωr
Nr

→ {0}

in which the arrows (with the exception of the first one) represent the exterior
derivative d. The sequence (10) is exact. Furthermore, let us consider the sequence

(11) {0} → Θr
1 → · · · → Θr

n → Θr
n+1 → Θr

n+2 → · · · → Θr
Pr
→ {0}

with arrows having the same meaning as in (10). The following lemma ensures
that (11) is the exact subsequence of de Rham sequence (10):
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Lemma 1. Let W ⊂ Y be an open set and let % ∈ Θr
qW be a form, 1≤ q≤Nr.

Then the decomposition % = %c + d%c, where %c ∈ Ωr
q,cW and %c ∈ Ωr

q−1,cW , is
unique.

Proof–comments: The proof of lemma 1 is done by the direct coordinate calcu-
lations and its idea is as follows: For 1≤q≤n it holds dΩr

q−1,cW ⊂ Ωr
qW and thus

only the case n < q ≤Nr needs proof. Let q > n and let %c ∈ Θr
qW . Let % = 0,

i.e. %c = −d%c. Then d%c = 0. Moreover, it holds pq−n%c = 0, pq−n−1%c = 0.
Using the decomposition (3) for %c and the chart expression (5), we can calculate
the chart expression of (πr+2,r+1)∗pk d%c. Then we use two mentioned conditions
pq−n%c = 0 and pq−n−1%c = 0. By some recursive calculations we show that the
conditions pk d%c = 0 for q−n+1≤k≤q+1 imply that all coefficients in the chart
expression of %c vanish, i.e. %c = 0. Thus, d%c = 0. In an completely analogous
way we prove that also %c = 0.

♦
Thus, the sequence (11) is the exact subsequence of the de Rham sequence (10).
The quotient sequence

{0} → RY → Ωr
0 → Ωr

1/Θ
r
1 → · · · → Ωr

n/Θ
r
n → Ωr

n+1/Θ
r
n+1 → Ωr

n+2/Θ
r
n+2 →

(12) → · · · → Ωr
Pr
/Θr

Pr
→ Ωr

Pr+1 → · · · → Ωr
Nr

→ {0}

is called the r−th order variational sequence on Y . It is exact too. Elements of
Ωr

q/Θ
r
q are classes of forms defined by the following equivalence relation: Forms

%, η ∈ Ωr
qW are called equivalent if % − η ∈ Θr

qW . The quotient mappings are
defined by the relation

(13) Er
q : Ωr

q/Θ
r
q 3 [%] −→ Er

q ([%]) = [d%] ∈ Ωr
q+1/Θ

r
q+1, 0≤q≤Nr.

In the standard sense, the quotient spaces are determined up to an isomorphism.
This enables us to interpret the classes of equivalent forms as elements of different
sheaves. This means that we could describe each of the quotient sheaves Ωr

q/Θ
r
q by

means of a certain subsheaf of the sheaf of forms Ωs
q, generally for s≥ r. Within

this approach a class of equivalent forms will be represented by an element of Ωs
q.

More precisely: Let us consider the diagram

{0} −→ Θr+1
q −→ Ωr+1

q −→ Ωr+1
q /Θr+1

q −→ {0}
↑ ↑ ↑

{0} −→ Θr
q −→ Ωr

q −→ Ωr
q/Θ

r
q −→ {0}

in which the first two ”uparrows” represent the immersions by pullbacks and the
third one defines the quotient mapping

Qr+1,r
q : Ωr

q/Θ
r
q −→ Ωr+1

q /Θr+1
q

defined by

(14) Qr+1,r
q ([%]) = [(πr+1,r)∗%].
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The following lemma ensures the injectivity of mappings Qr+1,r
q :

Lemma 2. Let us consider the diagram

(15)
{0} −→ Θr

q −→ Θr+1
q −→ Θr+1

q /Θr
q −→ {0}

↓ ↓ ↓
{0} −→ Ωr

q −→ Ωr+1
q −→ Ωr+1

q /Ωr
q −→ {0}

in which the last downarrow denotes the quotient mapping and the remaining ones
are inclusions. Then the quotient mapping is injective.

Proof–comments: Let W ⊂ Y be an open set and let % ∈ Θr+1
q W be a form,

1≤q≤Nr. Let us suppose that the form % is πr+1,r−projectable, i.e. there exists
a form η ∈ Ωr

qW , such that % = (πr+1,r)∗η. We need to show that η ∈ Θr
qW .

The proof of this property can be made again by direct coordinate calculations:
We express both forms %c ∈ Ωr+1

q,c W and %c ∈ Ωr+1
q−1,cW in the decomposition

% = %c + d%c in agreement with (5) and we calculate the corresponding chart
expression of %. Taking into account the πr+1,r−projectability of the resulting
expression we can conclude, after somewhat tedious calculations, that the forms %c

and %c themselves are πr+1,r−projectable, i.e. %c ∈ Ωr
q,cW , %c ∈ Ωr

q−1,cW .
This ensures the injectivity of the quotient mapping in the scheme (15). Then the

3×3 lemma ensures the exactness of the sequence {0} → Ωr
q/Θ

r
q → Ωr+1

q /Θr+1
q →

Ψ → {0}, in which Ψ = (Ωr+1
q /Θr+1

q )/(Ωr
q/Θ

r
q), as well as the injectivity of Qr+1,r

q .
We can define the mappings

Qs,r
q : Ωr

q/Θ
r
q 3 [%] → [(πs,r)∗%] ∈ Ωs

q/Θ
s
q, s > r

in a quite analogous way. These mappings are injective as well.

♦
Now, let us discuss the cohomology of the variational sequence.

Theorem 1. Each of the sheaves Ωr
q is fine.

Proof–comments: It is sufficient to show that Θr
q admits a sheaf partition of

unity. However, this property is the immediate consequence of lemma 1 (the details
of the proof see e.g. in [43] or [50].)

♦
The following theorem describes global properties of the variational sequence. It is
the direct consequence of theorem 1.

Theorem 2. The variational sequence is an acyclic resolution of the constant sheaf
RY over V.
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Proof–comments: It has been proved that the variational sequence is exact and
thus it is a resolution of the constant sheaf RY . On the other hand, by theorem 1,
each of the sheaves Θr

q is fine and thus soft. The sheaves Ωr
q are soft too, and thus

the same holds for the quotient sheaves Ωr
q/Θ

r
q. Thus, the resolution is acyclic.

♦
Let us use the following shortened notation for the variational sequence (12): 0 →
RY → V. Let Γ(Y,Ωr

0) be the cochain complex of global sections

0 → Γ(Y,RY ) → Γ(Y,Ωr
0) → Γ(Y,Ωr

1) → · · · → Γ(Y,Ωr
Nr

) → 0.

Let Hq(Γ(RY ,V)) be the q−th comohology group of this complex. As the im-
mediate consequence of theorem 2 and the abstract de Rham theorem applied to
the variational sequence 0 → RY → V we can identify the cohomology groups
Hq(Γ(RY ,V)) for every q≥0 with the corresponding standard cohomology group
Hq(Y,R) of the manifold Y , i.e. Hq(Γ(RY ,V)) = Hq(Y,R). This is an important
result for the discussion of global properties of variational functionals.

3. Fundamental concepts of the calculus of variations

This part of the paper is devoted to the presentation of basic concepts of higher
order calculus of variations, such as higher order variational functionals, Lepage
equivalents of forms (especially of n−forms and lagrangians), the Euler–Lagrange
mapping and the Helmholtz–Sonin mapping. All considerations are based on the
theoretical background presented in [32] and [35], and on the theory of Lepage
forms (see e.g. [7], [15], [17], [18], [32], [36], [65], and especially [49] for Lepage
equivalents of lagrangians).

3.1. Variational functionals. In this section we introduce the definition of higher
order variational functionals and their variational derivatives.

Let W ⊂ Y be an open set. Let Ω be a compact n−dimensional submanifold of
X with boundary, such that Ω ⊂ π(W ) and let ∂Ω be its boundary. Let % ∈ Ωr

nW
be an n−form. Then the mapping

(16) ΓΩ(π) 3 γ −→ %Ω(γ) =
∫

Ω

Jrγ∗% ∈ R

defines a variational functional induced by %. Note that in this definition the varia-
tional functional is connected with an arbitrarily chosen n−form and thus it is more
general than the one obviously defined by a lagrangian λ ∈ Ωr

n,XW . On the other
hand, it holds Jrγ∗% = Jr+1γ∗h% and thus the lagrangian h% ∈ Ωr+1

n,XW defines
the same functional as the form %. Hence, the generalized r−th order variational
functional (16) connected with an arbitrary n−form % can be defined by means
of the specially chosen lagrangian of the (r+1)−st order (polynomial in variables
of the highest order, yσ

j1...jr+1
). If, as a special case, the form % itself is an r−th

order lagrangian λ ∈ Ωr
n,XW , we obtain from (16) the standard definition of the

corresponding variational functional: λΩ =
∫
Ω
Jrγ∗λ.
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Let U ⊂ X be an open set and let γ ∈ ΓU (π) be a section. Let Ξ be a
π−projectable vector field on an open set W ⊂ Y for which γ(U) ⊂ W . If
αt is the local one-parameter group of Ξ and α0t is its projection, we define by
γt = αtγ(α0t)−1 a one-parameter family of sections of the projection π, called the
variation (deformation) of γ induced by the vector field Ξ. Let ε>0 be such a real
number for which Ω ⊂ dom γt for all t ∈ (−ε, ε). We define the (smooth) mapping

(−ε, ε) 3 t −→ %α0t(Ω)(αtγα
−1
0t ) =

∫
α0t(Ω)

(
Jr(αtγα

−1
0t )
)∗
% ∈ R.

Using the transformation integral theorem and the definition of Lie derivative we
obtain(

d
dt
%α0t(Ω)(αtγα

−1
0t )
)

t=0

=
∫

Ω

Jrγ∗∂JrΞ% =⇒ (∂JrΞ%)Ω(γ) =
∫

Ω

Jrγ∗∂JrΞ%.

We call the mapping ΓΩ(π) 3 γ → (∂JrΞ%)Ω(γ) ∈ R the variational derivative or
first variation of %Ω by the vector field Ξ. Note that the direct generalization of
this definition is possible for obtaining higher order variational derivatives of the
starting variational function (for more details see [49]).

We say that the section γ is the stationary point of the variational function %Ω

if (∂JrΞ%)(γ) = 0, i.e.
∫
Ω
Jrγ∗∂JrΞ% = 0 for all admissible variations Ξ of γ. Let

λ ∈ Ωr
n,XW be a lagrangian. Stationary points of the variational function λΩ are

called the extremals of the r−th order Lagrange structure (π, λ). Let % ∈ Ωr
nW be

a form. It is evident that the stationary points of the variational function %Ω are
just the extremals of the (r+1)−th order Lagrange structure (π, h%).

3.2. Lepage forms and Lepage equivalents. Let us now briefly introduce the
concept of a Lepage form. Let W ⊂ Y be an open set and let % ∈ Ωr

nW . The
form % is called the Lepage n−form if the 1-contact component p1d% of its exterior
derivative is πr+1,0−horizontal, i.e. hiΞd% = 0 for every πr,0−vertical vector field
Ξ on W r. The following theorem describes the local structure of Lepage n−forms:

Theorem 3. Let W ⊂ Y be an open set and let % ∈ Ωr
nW be an n−form. Then %

is the Lepage n−form if and only if for every fibered chart (V, ψ), ψ = (xi, yσ) on
Y for which V ⊂W , it has the following chart expression

(17) (πr+1,r)∗% = ΘP + dχ+ µ,

where χ ∈ Ωr+1
n−1,cV is a contact (n−1)-form, µ ∈ Ωr+1

n,c V is a form with the degree
of contactness at least 2, and ΘP is expressed as

(18) ΘP = f0ω0 +
r∑

k=0

(
r−k∑
l=0

(−1)lds1 . . .dsl

∂f0
∂yσ

j1...jks1...sli

)
ωσ

j1...jk
∧ ωi,

where f0 ∈ Ωr+1
0 V is a function.
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Proof–comments: Theorem 3 can be proved by tedious calculations in three
steps (see [49]):

Step 1: Every Lepage n−form % ∈ Ωr
nW has the chart expression

(πr+1,r)∗% = f0ω0 +
r∑

k=0

f i,j1...jk
σ ωσ

j1...jk
∧ ωi + η,

where η ∈ Ωr+1
n,c V has the degree of contactness at least 2 and functions f0,

f i,j1...jk
σ ∈ Ωr+1

0 V are connected by the relations

(19)
∂f0

∂yσ
j1...jk

− dif
i,j1...jk
σ − f jk,j1...jk−1

σ = 0, sym (j1, . . . , jk), 1≤k≤r,

∂f0
∂yσ

j1...jr+1

− f jr+1,j1...jr
σ = 0, sym (j1, . . . , jr+1).

Step 2: The system of equations (19) is solved by means of the decomposition of
functions

f i,j1...jk
σ = F i,j1...jk

σ +Gi,j1...jk
σ

into their symmetric and complementary parts, F i,j1...jk
σ and Gi,j1...jk

σ , respectively.
Functions F i,j1...jk

σ symmetrized over (j1, . . . , jk, i) are finally expressed by means
of f0. This enables us to express the form (πr+1,r)∗% as the sum ΘP + ν+µ where
ΘP has exactly the form (18), µ ∈ Ωr+1

n,c V is the form of the degree of contactness
at least 2 and the contact form ν ∈ Ωr+1

n,c V is expressed by means of functions
Gi,j1...jk

σ .

Step 3: There exists a contact (n−1)−form χ for which p1dχ = ν. This can be
proved by the direct solution of this equation supposing the form χ to have the
chart expression

χ =
1
2

r∑
k=0

Hi1i2,j1...jk
σ ωσ

j1...jk
∧ ωi1i2

with unknown coefficients Hi1i2,j1...jk
σ , 0≤k≤r, where ωij = i ∂

∂xi
ωj .

♦
The form ΘP is called the principal component of the Lepage form % with respect
to the considered fibered chart (V, ψ). Note that ΘP is not in general coordinate
invariant.

Let % ∈ Ωr
nW be an n−form. A Lepage n−form Θ% ∈ Ωs

n,Y W , s≥r in general,
is called the Lepage equivalent of %, if it obeys the condition hΘ% = h%, up to a
possible projection. Note that if % is a lagrangian we obtain the standard concept of
Lepage equaivalent of lagrangian (see e.g. [49]). Let λ ∈ Ωr

n,XW be a lagrangian for
which λ = Lω0 in a fibered chart (V, ψ) such that V ⊂W . Then, as the immediate
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consequence of the relation (18), a Lepage form Θ ∈ Ωs
n,Y V is its Lepage equivalent

if and only if its principal component is of the form

ΘP = Lω0 +
r−1∑
k=0

(
r−k−1∑

l=0

(−1)ldj1 . . .djl

∂L
∂yσ

i1...ikj1...jli

)
ωσ

i1...ik
∧ ωi.

This assertion can be reformulated for an arbitrary form % ∈ Ωr
nW taking its

horizontal component as the corresponding lagrangian. It is evident that for every
form % ∈ Ωr

nW there exists its Lepage equivalent, Θ% = Θh%. It is not unique, in
general. (Note that the principal component (Θ%)P itself gives a Lepage equivalent
of the form % which is in general defined only locally, because of the non-invariance
of the splitting (17) with respect to various fibered charts.)

The corresponding reformulation of the well-known first variational formula, in
its integral or infinitesimal version, reads:∫

Ω

Jr+1γ∗∂Jr+1Ξh% =
∫

Ω

Jsγ∗ijsΞ dΘ% +
∫

∂Ω

Jsγ∗iJsΞΘ%, or

(πs+1,r+1)∗∂Jr+1Ξh% = hiJsΞ dΘ% + h dijsΞΘ%

for every π−projectable vector field Ξ on W . (In a special case in which % is a
lagrangian this gives the standard first variational formula.)

It is well-known that the concept of Lepage equivalents of lagrangians is closely
related to equations of motion of variational physical systems. Moreover, we shall
see that the concept of Lepage forms in somewhat generalized sense plays an im-
portant role in the problem of representation of variational sequence by forms. So,
let us now present some examples of Lepage equivalents of lagrangians.

Example 1. In mechanics, every lagrangian λ ∈ Ωr
1,XW has unique Lepage equiv-

alent. In a fibered chart (V, ψ), V ⊂W , a lagragian is expressed as λ = Ldt. Then
its Lepage equivalent is an element of Ω2r−1

n,Y W and has the form

Θλ = Ldt+
r∑

k=0

(
r−k−1∑

l=0

(−1)l dl

dtl

(
∂L

∂yσ
(k+l+1)

))
ωσ

(k).

For r=1 we obtain the well-known Poincaré–Cartan form.

In the field theory the situation is not so simple, because of the fact that every
lagrangian has a family of Lepage equivalents which are not necessarily globally
defined. Nevertheless one can construct some special types of Lepage equivalents:

Example 2. Let λ ∈ Ω1
n,XW . The family of corresponding Lepage equivalents

contains the uniquely defined one, such that its degree of contactness is at most 1.
It is given by the chart expression (see also [49]).

Θλ = Lω0 +
∂L
∂yσ

i

ωσ ∧ ωi

and it is called the Poincaré–Cartan equivalent of λ.
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Example 3. Some other important type of Lepage equaivalent of first order la-
grangians is so called fundamental Lepage equivalent discovered by Krupka [36],
[42] and Betounes [7]. It has the chart expression

Θλ =
n∑

k=0

1
k!(n−k)!

(
∂kL

∂yσ1
j1
. . . ∂yσk

jk

)
εj1...jkik+1...in ω

σ1∧. . .∧ωσk∧dxik+1∧. . .∧dxin .

Note that this Lepage equivalent is defined on JrY , i.e. it is of the same order as
the lagrangian.

Example 4. The family of Lepage equivalents of every second order lagrangian
contains an invariant Lepage equivalent given by:

Θλ = Lω0 +

(
∂L
∂yσ

i

− dj

(
∂L
∂yσ

ji

))
ωσ ∧ ωi +

∂L
∂yσ

ji

ωσ
j ∧ ωi

(see [32]). As an example let us show the second order Hilbert–Einstein lagrangian
depending on second order derivatives of the metric tensor, which has been studied
in details by Krupková [61] and Novotný [64] (see also [56]):

λ = R
√
|det gij |ω0,

where (gij) is the metric tensor and R is the scalar curvature

R = gikgjpRijkp, 0≤ i, j, k, p≤3,

Rijkp =
1
2
(gip,jk + gjk,ip − gik,jp − gjp,ik) + gsq(Γs

jkΓq
ip − Γs

jpΓ
q
ik),

Γi
jk =

1
2
gis(gsj,k + gsk,j − gjk,s).

Moreover, this lagrangian is affine in second order variables (gij,kl) and it is of

the special type λ =
(
L0(xi, yσ) +Gjk

ν (xi, yσ) yν
jk

)
ω0 (see [61]). There exists the

global first order Lepage equivalent of λ (see [61], [64]):

Θλ =
√
|det gij |gip

(
Γj

ipΓ
k
jk − Γj

ikΓk
jp

)
ω0+

(
gjpgiq − gpqgij

) (
dgpq,j + Γk

pq dgjk

)
∧ωi.

By some calculations we can make sure that the coefficients of the chart expression
of p1dΘλ in the fibered chart (V, ψ) are exactly the left-hand sides of the vacuum
Einstein equations.

The concept of a Lepage form was extended to the case of (n+1)−forms by Krupková
in [57], [61] for mechanics (n=1) and recently also for the field theory (n> 1, see
[62]):

Let E ∈ Ωr
n+1,Y W be a form. In a fibered chart (V, ψ) on Y , such that V ⊂W ,

it has the chart expression

E = Eσω
σ ∧ ω0, Eσ ∈ Ωr

0V.
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A closed form α ∈ Ωr−1
n+1W is called the Lepage (n+1)−form if it can be decomposed

as (πr,r−1)∗α = E + F , where E ∈ Ωr
n+1,Y W and F ∈ Ωr

n+1,cW is a strongly
contact form. For every πr,0-horizontal (n+1)−form E there exists the class of
(n+1)−forms [α] for which p1α = E. It is well-known that a form E ∈ Ωr

n+1,Y W
expresses the equations of motion Eσ = 0 of a physical system. The concept of
Lepage (n+1)-forms given by Krupková enables us to answer the question whether
a physical system given by its equations of motion is variational, i.e. whether it
moves along extremals of a lagrangian: It can be proved (see [61] and [62]) that
the class [α] corresponding to a given πr,0-horizontal (n+1)−form E contains a
Lepage representative if and only if E is variational. Such representative is then
unique and πr,r−1−projectable. In this generalized appropach, the variational form
E ∈ Ωr

n+1,Y W which represents the variational equations of motion is directly
related to the Lepage (n+1)−form (instead of a lagrangian). The advantage of this
approach lies in the fact that various equivalent lagrangians give the same system
of equations for extremals of the corresponding Lagrange structure and, as we shall
see in the section 3.3, the same Euler–Lagrange form.

3.3. Euler–Lagrange and Helmholtz–Sonin form. In this section we extend
the definition of the well-known Euler–Lagrange mapping of calculus of variations
which assigns to every lagrangian λ its Euler–Lagrange form Eλ.

By direct calculation we can prove the following theorem which is closely related
to the concept of Euler–Lagrange mapping:

Theorem 4. Let % ∈ Ωr
n,Y be a Lepage n−form. Then there exists the unique

decomposition of its exterior derivative (πr+1,r)∗d% = E + F , where E = p1d% is
the 1-contact πr+1,0−horizontal (n+1)−form which depends on h% only, and F is
a form such that its degree of contactness is at least 2. Moreover, it holds

(20) E = p1d% = Eσ ω
σ ∧ ω0 =

(
r∑

k=0

(−1)kdj1 . . .djk

∂f0
∂yσ

j1...jk

)
ωσ ∧ ω0.

The form E is called the Euler–Lagrange form of %.

Following the standard first variation procedure we can assign to every lagrangian
λ ∈ Ωr

n,XW its Euler–Lagrange form Eλ given by the relation (20) applied to
% = Θλ. This form is defined on J2rY , in general, i.e. Eλ ∈ Ω2r

n+1,Y W . (Recall
that the Euler–Lagrange form Eλ = p1dΘλ of the lagrangian λ is unique and it is
independent of the concrete choice of the Lepage equivalent Θλ.) This correspon-
dence defines the Euler–Lagrange mapping in the standard way:

Ωr
n,XW 3 λ −→ Eλ ∈ Ω2r

n+1,Y W.

The importance of Euler–Lagrange mapping is evident from the following theorem
the proof of which is based on the first variational formula and on the fact that
p1 dΘλ = Eλ.
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Theorem 5. Let W ⊂ Y be an open set. Let λ ∈ Ωr
n,XW be a lagrangian and let

Eλ be its Euler–Lagrange form. Let γ ∈ ΓU (π) be a section of π, Ω ⊂ U a compact
n−dimensional submanifold of X with boundary ∂Ω. Denote as Θλ ∈ Ωs

n,Y W a
Lepage equivalent of λ. Then the following four conditions are equivalent:

(a) γ is an extremal of (π, λ) on Ω.

(b) For every π-vertical vector field Ξ defined on a neighborhood of γ(U), such that
supp (Ξ ◦ γ) ⊂ U , it holds Jsγ∗iJsΞ d% = 0.

(c) For any fibered chart (V, ψ), ψ = (xi, yσ) on Y , such that V ⊂W , γ satisfies the
system of differential equations (equations of motion) Eσ(λ) ◦ J2rγ = 0, 1≤σ≤m.

(d) The Euler–Lagrange form Eλ vanishes along J2rγ, i.e. Eλ ◦ J2rγ = 0.

Following the generalized concept of a Lepage equivalent presented in Section 3.2,
we can also extend the concept of the Euler–Lagrange form and the Euler–Lagrange
mapping.

It is evident that the structure of the ”classical” Euler–Lagrange mapping has
the key importance for the variationally trivial problem, because its kernel gives
all trivial lagrangians. On the other hand, knowing the structure of its image, we
can characterize all variational πr,0−horizontal (n+1)−forms by the well known
Helmholtz–Sonin expressions (see e.g. [43]): Let W ⊂ Y be an open set. Let a
form E ∈ Ωr

n+1,Y W be, in a fibered chart (V, ψ) on Y , such that V ⊂W , expressed
as E = Eσ ω

σ ∧ ω0. The functions

Hj1...jk
σν =

1
2

(
∂Eν

∂yσ
j1...jk

− (−1)k ∂Eσ

∂yν
j1...jk

−
r∑

l=k+1

(−1)l

(
l

k

)
djk+1 . . .djl

∂Eσ

∂yν
j1...jl

)

are called its Helmholtz–Sonin expressions. Recall that a form E = Eσ ω
σ ∧ ω0 is

called variational if it is the Euler–Lagrange form of a lagrangian λ, i.e. E = Eλ. A
given πr,0−horizontal (n+1)−form E is variational if and only if the corresponding
Helmholtz–Sonin expression vanish identically.

For the purposes of the variational sequence we define the following (n+2)−form
associated with a given form E ∈ Ωr

n+1,Y W :

(21) HE = Hj1...jk
σν ωσ

j1...jk
∧ ων ∧ ω0, 0≤k≤2r.

Note that this definition is only local for present. Its coordinate invariance will be
mentioned later, in section 4.1. The arising mapping

H : Ωr
n+1,Y W 3 E −→ H(E) = HE ∈ Ω2r

n+2W

is called (”classical”) Helmholtz–Sonin mapping.
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4. Variational sequence and calculus of variations

In this part of the paper we shall demonstrate the possibility of an effective
interpretation of fundamental concepts of the calculus of variations, such as Euler–
Lagrange mapping and Helmholtz–Sonin mapping, as well as their relations, by
means of the variational sequence. We also introduce the concept of the repre-
sentation of the variational sequence by forms and we construct such appropriate
representation which leads to the generalized concept of lagrangian and its Lepage
equivalents, Euler–Lagrange form and Helmholtz–Sonin form.

4.1. Representation of the variational sequence by forms. In this section
we use the injectivity of mappings Qs,r

q to discuss the problem of the representation
of the variational sequence (12) by the appropriately chosen (exact) sequence of
mappings of spaces of forms. This problem is completely solved for the first order
mechanics in [50]. Its solution for the part of the variational sequence closely related
to the standard calculus of variations in higher order mechanics is presented in [30],
[63] and [72]. For the field theory see e.g. [24] (first order field theory) and [43] or
[31] (higher order field theory).

Any mapping

Φs,r
q : Ωr

qW/Θ
r
qW 3 [%] −→ Φs,r

q ([%]) = %0 ∈ Ωs
qW

with %0 ∈ [(πs,r)∗%] is called representation of Ωr
qW/Θ

r
qW . Because of the in-

jectivity of mappings Qs,r
q (see definition (14) and lemma 2) the representation

mappings Φs,r
q are injective too. Thus, we can define the representation of the

variational sequence by forms as the lower row of the following scheme:

· · · −→ Ωr
q/Θ

r
q −→ Ωr

q+1/Θ
r
q+1 −→ · · ·

↓ ↓
· · · −→ Ωs

q −→ Ωs
q+1 −→ · · ·

in which the upper row is the variational sequence, the ”downarrows” represent
the mappings Φs,r

q and mappings of the lower row are defined by

(22) Es,r
q : Ωs

q −→ Ωs
q+1, Es,r

q = Φs,r
q+1 ◦ Er

q ◦ (Φs,r
q )−1, Es,r

0 = Φs,r
1 ◦ Er

0 .

In the following considerations we shall show that there exists such a representation
of the variational sequence by forms for q=n, n+1, n+2 for which Es,r

n is the Euler–
Lagrange mapping and Es,r

n+1 is the Helmholtz–Sonin mapping (see section 3.3).

Lemma 3. Let W ⊂ Y be an open set, and let q≥1 be an integer. Let (V, ψ) be
a fibered chart on Y for which V ⊂W .

(a) Let 1≤q≤n and let % ∈ Ωr
qW be a form. Then the mapping

(23) Φs,r
q : Ωr

qV/Θ
r
qV 3 % −→ Φs,r

q ([%]) = (πs,r)∗h% ∈ Ωs
qV, s≥r + 1

is the representation of Ωr
qV/Θ

r
qV .
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(b) Let q = n + 1 and let % ∈ Ωr
n+1W be a form for which p1% is in the fibered

chart (V, ψ) expressed by the relation

p1% = P J
σ ω

σ
J ∧ ω0,

in which coefficients P J
σ ∈ Ωr+1

0 V , 0≤|J |≤r, are given by the chart expres-
sion of % following eqs. (4-5). Then the mapping

Φs,r
n+1 : Ωr

n+1V/Θ
r
n+1V 3 % −→ Φs,r

n+1([%]) = %0 ∈ Ωs
n+1V, s≥2r + 1

assigning to the class [%] the form

(24) %0 = (πs,2r+1)∗
(

r∑
l=0

(−1)ldj1 . . .djl
P j1...jl

σ

)
ωσ ∧ ω0

is the representation of Ωr
n+1V/Θ

r
n+1V .

(c) Let q = n + 2 and let % ∈ Ωr
n+2W be a form for which p2% is in the fibered

chart (V, ψ) expressed by the relation

p2% = P JK
σν ωσ

J ∧ ων
K ∧ ω0,

in which coefficients P JK
σν ∈ Ωr+1

0 V , 0 ≤ |J | ≤ r, can be obtained from the
chart expression (4-5) of the form (πr+1,r)∗%. Then the mapping

Φs,r
n+2 : Ωr

n+2V/Θ
r
n+2V 3 % −→ Φs,r

n+2([%]) = %0 ∈ Ωs
n+2V, s≥2r + 1

assigning to the class [%] the form

(25) %0 =

=(πs,2r+1)∗
2r∑

j=0

[
j∑

p=0

r∑
l=j−p

(−1)l
(

l
j−p

)
dij+1 . . .dip+l

P
i1...ip,ip+1...ip+l
σν

]
ωσ

i1...ij
∧ων∧ω0,

sym(i1, . . . , ij), s≥2r + 1, is the representation of Ωr
n+2V/Θ

r
n+2V .

Proof–comments: The equivalence Φs,r
q ([%]) = 0 ⇔ % ∈ Θr

qV is to be proved in
cases (a-c). The proof of the part (a) is trivial, because of the fact that Θr

q ⊂ Ωr
q.

The proofs of parts (b) and (c) are based on tedious coordinate calculations and
we present here their idea only. (For more detailed discussion see [31], [43]).

(b) Let q = n+1. Let (V, ψ) be a fibered chart on Y and let % ∈ Θr
n+1V . Then

% is uniquely decomposed as % = %c + d%c, where %c ∈ Ωr
n+1,cV and %c ∈ dΩr

n,cV

(see lemma 1). Then we have Φs,r
n+1([%c]) = 0. Now the equation Φs,r

n+1([d%c]) = 0
needs proof. Taking into account the local structure of contact forms given by the
equation (7) we can obtain by exterior derivative of the decomposition % = %c +d%c

d%c = d(ωσ
J ∧ΨJ

σ) ⇒ p1d%c = −ωσ
Ji ∧ dxi ∧ hΨJ

σ − ωσ
J ∧ hdΨJ

σ .

Using the chart expressions of ΨJ
σ in the form

(πr+1,r)∗ΨJ
σ =

n−1∑
l=0

(BJ
σ )J1

σ1
. . .Jl

σl,il+1...in−1
ωσ1

J1
∧ . . . ∧ ωσl

Jl
∧ dxil+1 ∧ . . .dxin−1 ,
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we obtain the coefficients P J
σ in the chart expression of p1d%c = P J

σ ω
σ
J∧ω0. Putting

them into (25) we obtain, after some technical steps, the equation Φs,r
n+1([d%c]) = 0.

Conversely, let Φs,r
n+1([%]) = 0. Using lemma 2 we obtain after some coordinate

calculations the expected result % ∈ Θr
n+1V .

(c) For q=n+2 the proof is based again on coordinate calculations and it is quite
analogous with (b).

♦
The expressions (23) and (24) for representatives of classes of n−forms and (n+
1)−forms can be found in [43]. In the same paper, the special case of the expression
(25) was obtained, representing only the classes of (n+2)−forms expressed as
exterior derivatives of πr,0−horizontal (n+1)−forms. The local expression (25)
for representatives of general classes of (n+2)−forms was presented recently (see
[31]). As we shall see from the following theorem, all these expressions fulfil the
transformation rules between various fibered charts and thus they are the chart
expressions of forms representing classes of q−forms for q=n, n+1, n+2.

Theorem 6. Let (V, ψ) be a fibered chart on Y . Let 1≤q≤n+2 and % ∈ Ωr
qY be

a form. Then the class [%] is represented by eqs. (23), (24) and (25) globally, for
1≤q≤n, q=n+1 and q=n+2, respectively.

Proof–comments: The horizontalization mapping h is coordinate invariant and
thus only the cases q=n+1, n+2 need proof. For the first order field theory the
detailed proof can be found in [25] and [26], for the higher order field theory it was
given recently in [31]. The idea of the proof is based on some integration procedure
considering the coordinate invariance of functions

(26) ηΩ =
∫

Ω

Jsγ∗ ◦ (πs,r+1)∗hiJrξ% and

(27) ηΩ =
∫

Ω

Jsγ∗ ◦ (πs,r+1)∗hiJrξiJrζχ

for % ∈ Ωr
n+1W and χ ∈ Ωr

n+2W , respectively. In these two relations, Ω is a
compact piece of manifoldX, ξ and ζ are π−vertical vector fields such that supp ξ ⊂
π−1(Ω). For details of the proof we refer the reader to the paper [31] which has
been submitted to these Proceedings as well.

♦
Corollary 1. W ⊂ Y be an open set. Let (Φ2r+1,r

q ) for 1 ≤ q ≤ n + 2 be the
representation of spaces Ωr

qW/Θ
r
qW which is locally given by relations (23-25)

following lemma 3.

(a) Then the mapping

E2r+1,r
n : Ω2r+1

n −→ Ω2r+1
n+1 , E2r+1,r

n = Φ2r+1,r
n+1 ◦ Er

n ◦ (Φ2r+1,r
n )−1
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is the (extended) Euler–Lagrange mapping.

(b) Let Ω2r+1
n+1,dyn be the set of representatives of classes of πr,0−horizontal (n+1)−

forms defined on JrY . Then mapping

E2r+1,r
n+1 : Ω2r+1

n −→ Ω2r+1
n+1 , E2r+1,r

n = Φ2r+1,r
n+2 ◦ Er

n+1 ◦ (Φ2r+1,r
n+1 )−1

restricted to Ω2r+1
n+1,dyn is the Helmholtz–Sonin mapping.

Proof–comments: (a) Let [%] ∈ Ωr
nW/Θ

r
nW be a class generated by the form

% ∈ Ωr
nW . Then Φ2r+1,r

n ([%]) = (π2r+1,r+1)∗h% is the corresponding lagrangian,
h% = Lω0. On the other hand, we have

p1 d(πr+1,r)∗% = p1 dh%+ p1 dp1% = p1 d(Lω0) + p1 d(BJ,i
σ ωσ

J ∧ ωi),

J = (j1 . . . jk), 0≤k≤r,
where coefficients L, BJ,i

σ ∈ Ωr+1
0 V can be determined from the chart expression

of the form %, given by (4) and (5). For coefficients BJ,i
σ we obtain

p1 d(πr+1,r)∗% =
∂L
∂yσ

J

ωσ
J ∧ ω0 − diB

J,i
σ ωσ

J ∧ ω0 −BJ,i
σ ωJi ∧ ω0, and thus

P j1...jk
σ =

∂L
∂yσ

j1...jk

− diB
j1...jk,i
σ −Bj1...jk−1,jk

σ , 1≤k≤r, sym (j1, . . . , jk),

P j1...jr+1
σ =

∂L
∂yσ

j1...jr+1

−Bj1...jr,jr+1
σ , sym (j1, . . . , jr+1), Pσ =

∂L
∂yσ

− diB
,i
σ .

The relation (24) gives

(28) Φ2r+1,r
n+1 ([d%]) =

r+1∑
k=0

(−1)kdj1 . . .djk

(
∂L

∂yσ
j1...jk

)
ωσ ∧ ω0 .

We can see that this is exactly the relation (20) (see section 3.3) for the Euler–
Lagrange form associated with the form % (or, equivalently, the Euler–Lagrange
form of the lagrangian h%). Thus we have

(29) E2r+1,r
n ◦ Φ2r+1,r

n+1 ([%]) = Eh%.

(b) Let E ∈ Ωr
n+1,Y W be a form given in the fibered chart (V, ψ), V ⊂ W , by the

expression
E = εσ ω

σ ∧ ω0, εσ ∈ Ωr
0V.

Then

% = dE =
∑

0≤|J|≤r

∂εν

∂yσ
J

ωσ
J ∧ ων ∧ ω0.

On the other hand, in general, we have

p2% = P JK
σν ωσ

J ∧ ων
K ∧ ω0, P JK

σν + PKJ
νσ = 0.
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Thus,

P 0J
σν = −P J0

νσ = −1
2
∂εσ

∂yν
J

, J = (j1 . . . jk), 1≤k≤r ,

P 00
σν = −P 00

νσ =
(
∂εν

∂yσ

)
alt(σν)

,

other coefficients P JK
σν being zero. Using the relation (25) we obtain, as the repre-

sentative of the class [E], exactly the local expression (21) of the Helmholtz–Sonin
form of E.

♦
As the immediate consequence of the just presented considerations we can for-

mulate the following corollary:

Corollary 2. Let W ⊂ Y be an open set and let (V, ψ) be a fibered chart on Y
form which V ⊂W . Then the mapping

Ψ2r+1,r
n : Ωr

nV/Θ
r
nV 3 [%] −→ Ψ2r+1,r

n ([%]) = Θ% ∈ Ω2r+1
n V,

assigning to the class of n−forms generated by a form % its Lepage equivalent Θ%

is a representation of spaces Ωr
nV/Θ

r
nV . Moreover, it holds

(30) Φ2r+1,r
n+1 ([d%]) = p1 dΨ2r+1,r

n ([%]), i.e. Eh% = p1 dΘ%.

This discloses the close relation of the variational sequence to one of the basic
concepts of calculus of variations, the Euler–Lagrange mapping. Considering this
relation described by corollaries 1 and 2 we can generalize the concept of the Euler–
Lagrange and Helmholtz–Sonin mappings in the following way: We call the arrows
Er

n and Er
n+1 in the variational sequence (12) the generalized Euler–Lagrange map-

ping and generalized Helmholtz–Sonin mapping, respectively.
Because of the close relation of mappings E2r+1,r

n and E2r+1,r
n+1 to physical the-

ories we use for the corresponding representation of the variational sequence the
name physical representation.
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[62] O. Krupková, Hamiltonian field theory revisited: A geometric approach to
regularity, submitted to Proc. Colloq. on Diff. Geom., Debrecen, Hungary, July
2000, L. Kozma, ed.; Debrecen 2001.
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1995, J. Janyška, I. Kolář, J. Slovák, eds.; Masaryk University, Brno, 1996, 611-
624.
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Czech Republic
E-mail address: Demeter.Krupka@math.slu.cz

Faculty of Science, Masaryk University, Brno Kotlářská 2, 611 37 Brno, Czech
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