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ON THE GEOMETRICAL THEORY OF HIGHER-ORDER
HAMILTON SPACES

RADU MIRON

Abstract. One investigates the geometrical properties of the Hamilton spaces

of order k ≥ 1, the natural presymplectic and Poisson structures and Hamilton-
Jacobi equations, [2],[9]. An L-duality between the Lagrange spaces of order

k and Hamilton spaces of the same order is pointed out.

Introduction

The notion of Hamilton space was introduced by the author in [3],[4]. It was
defined as a pair Hn = (M,H(x, p)), for M a C∞-manifold of dimension n and H :
(x, p) ∈ T ∗kM −→ H(x, p) ∈ IR a regular Hamiltonian. Hn has a canonical sym-
plectic structure and a canonical Poisson structure. The Hamilton spaces appear
as dual, via Legendre transformation, of the Lagrange spaces Ln = (M,L(x, y)),
[3].

The notion of Lagrange space of order k ≥ 1, L(k)n = (M,L(x, y(1), .., y(k))) was
defined by author some years ago. Its geometry was showed in the book [7].

A definition of the notion of higher-order Hamilton space H(k)n is difficult to get.
This is due to the fact that the space H(k)n must have some important properties,
which extend those of H(1)n = Hn :

a) dim H(k)n = dim L(k)n.
b) H(k)n has a canonical presymplectic structure.
c) H(k)n has at least one Poisson structure.
d) The spaces H(k)n and L(k)n to be diffeomorphic via Legendre transformation.
In the paper [5] we solved the above mentioned problem.
Now, in the lecture at the ”Colloquium on Differential Geometry”, July 2000,

Debrecen, I should like to present an abstract of the paper [5], published this year
by the International Journal of Theoretical Physics. Some new results concerning
the L-duality of the spaces L(k)n and H(k)n will be provided. The proofs are
omitted.

1. The ”dual” bundle of T kM-bundle.

Let M be a real C∞-manifold, n-dimensional and (T kM,πk,M) its k-accelera-
tions bundle (k ∈ IN∗). It can be identified with k-osculator bundle (OsckM,π∗,M).
A point u ∈ T kM has the coordinates (x, y(1), .., y(k)), x ∈ M and y(1), .., y(k) are
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the ”higher order accelerations”. The local coordinates of u are (xi, y(1)i, .., y(k)i).
The indices i, j, h, .. run over the set {1, .., n} and summation convention will be
used.

We define ”the dual” of (T kM,πk,M) as being (T ∗kM,π∗k,M) where T ∗kM is
the following fibred product:

(1.1) T ∗kM = T k−1M×MT ∗M

Clearly, (T k−1M,πk−1,M) is the k − 1-acceleration bundle and (T ∗M,π∗,M)
is the cotangent bundle of the base manifold M.

T ∗kM is a C∞-differentiable manifold and dim T ∗kM = dim T kM = (k+1)n.
A point u ∈ T ∗kM is of the form u = (x, y(1), .., y(k−1), p), π∗k(u) = x and u has
the coordinate (xi, y(1)i, .., y(k−1)i, pi).

For k = 1, T ∗1M is identified with T ∗M .
The following diagram is commutative:
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The changes of local coordinates on T ∗kM can be easily written, [8]. We consider
the following differential forms

(1.2)
ω = pidxi

θ = dω = dpi ∧ dxi.

Theorem 1.1. 1◦. The forms ω and θ are globally defined on the manifold T ∗kM.
2◦. dθ = 0, rank||θ|| = 2n.
3◦. θ is a canonical presymplectic structure on T ∗kM,k > 1.

The proof is not difficult.
Let us consider the bracket:

(1.3) {f, g} =
∂f

∂xi

∂g

∂pi
− ∂f

∂pi

∂g

∂xi
, ∀f, g ∈ F(T ∗kM).

We have

Theorem 1.2. 1◦. The bracket {f, g} has a geometrical meaning.
2◦. {f, g} is a Poisson structure on T ∗kM.
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Indeed, one proves by a staightforward calculus, using the changes of local co-
ordinates of T ∗kM, that these brackets are conserved. Then it is shown that
{f, g} is R-linear in every argument,
{f, g} = −{g, f} and Jacobi identity holds,
the mapping {f, ·} : F(T ∗kM) −→ F(T ∗kM) is a derivation in the function

algebra F(T ∗kM).
q.e.d.

Remark 1.1. The following brackets

{f, g}α =
∂f

∂y(α)i

∂g

∂pi
− ∂g

∂y(α)i

∂f

∂pi
, (α = 1, .., k − 1),

are Poisson structures on T ∗kM.

2. Hamiltonian system of order k. The spaces H(k)n.

A mapping H : T ∗kM −→ IR is called a differentiable Hamiltonian of order k,
if H is a C∞-function on T̃ ∗kM = T ∗kM \ {0} and continuous on the null section
of π∗k.

Definition 2.1. An Hamilton system of order k is a triple (T ∗kM, θ, H), where
θ is a presymplectic structure on T ∗kM and H is a differentiable Hamiltonian of
order k.

In the case k = 1, and θ a symplectic structure, the triple (T ∗kM, θ, H) is a
classical Hamilton system.

Let us consider the section Σ0 of the projection

π∗2 : (x, y1, .., yk−1, 0) ∈ T ∗kM −→ (x, 0, .., 0, p) ∈ T ∗kM.

Σ0 is an imersed submanifold of the manifold T ∗kM. The restrictions θo =
θ|Σ0 , Ho = H|Σ0 together of Σ0 determine an Hamiltonian system of order 1,
(Σ0, θ0,H0). In this case, θ0 is a symplectic structure on Σ0.

It is not difficult to prove the following theorem:

Theorem 2.1. 1◦. The triple (Σ0, θ0,H0) is an Hamiltonian system, θ0 being a
symplectic structure on the manifold Σ0.

2◦. There exists an unique vector field XH0 on Σ0 with the property

(2.1) iH0θ0 = −dH0.

3◦. The integral curve of the vector field XH0 are given by the canonical equations
(Hamilton - Jacobi eq.):

(2.2)
dxi

dt
=

∂H0

∂pi
;

dpi

dt
= −∂H0

∂xi
.

4◦. The following equations hold:

(2.3) {f, g} = θ(Xf , Xg), ∀f, g ∈ F(Σ0).
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Now, for a differentiable Hamiltonian H(x, y(1), .., y(k−1), p), we consider its Hes-
sian with respect to pi. Its matrix has the elements:

(2.4) gij =
1
2

∂2H

∂pi∂pj
.

We can prove that gij is a distinguished tensor field (shortly a d-tensor) on
T ∗kM, symmetric and contravariant.

We say that H is regular if

(2.5) rank||gij || = n = dim M on T̃ ∗kM.

Definition 2.2. An Hamilton space of order k, (k ∈ IN |ast) is a pair H(k)n =
(M,H(x, y(1), .., y(k−1), p)) formed by a C∞-manifold M , n-dimensional and a reg-
ular Hamiltonian of order k, H with the property that the d-tensor field gij has a
constant signature on T̃ ∗kM.

In the paper [5], we proved the existence of the Hamilton spaces of order k over
the paracompact manifolds M.

In order to prove the duality between the Lagrange spaces of order k,

L(k)n = (M,L(x, y(1), .., y(k−1), y(k)))

and the Hamilton spaces of order k,

H(k)n = (M,H(x, y(1), .., y(k−1), p))

we consider the Legendre mapping, defined by

Leg : L(k)n −→ H(k)n

given by

(2.6) Leg : (x, y(1), .., y(k−1), y(k)) ∈ T kM −→ (x, y(1), .., y(k−1), p) ∈ T ∗kM

where

(2.7) pi =
1
2

∂L

∂y(k)i
= ϕi(x, y(1), .., y(k−1), y(k)).

We obtain:

Theorem 2.2. The mapping Leg, (2.6), (2.7) is a local diffeomorphism of the
manifolds T kM and T ∗kM.

Indeed, the determinant of the Jacobian matrix of the mapping Leg coincides

with the determinant of matrix ||aij ||, where aij =
1
2

∂2L

∂y(k)i∂y(k)j
. This is different

of zero.
q.e.d.

Concluding, the properties a)-d) enunciated in the introduction hold.
The geometry of the higher-order Hamilton spaces H(k)n can be investigsted as

a natural extension of the geometry of Hamilton spaces Hn.
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3. L-duality between the spaces L(k)n and H(k)n.

Assuming that the Lagrange space of order k,

L(k)n = (M,L(x, y(1), .., y(k)))

is given and a nonlinear connection
◦
N on the manifold T k−1M is apriori given,

too, we can determine a regular Hamiltonian such that the pair

H(k)n = (M,L(x, y(1), .., y(k−1), p))

is an Hamilton space of order k. The application L : L(k)n −→ H(k)n will be called
L-duality.

Let us consider the local inverse Leg−1 of the Legendre transformation (2.6):

Leg−1 : (x, y(1), .., y(k−1), p) ∈ T ∗kM −→ (x, y(1), .., y(k−1), y(k)i) ∈ T kM

where

(3.1) y(k)i = ξi(x, y(1), .., y(k−1), p).

It follows:

(3.2)
∂ξi

∂pj
= aij

where aij is the contravariant tensor of the fundamental tensor of space L(k)n.

Let us consider an apriori given nonlinear connection
◦
N on T k−1M, having the

dual coefficients M i
j

(1)

, .., M i
j

(k−1)

depending, evidently, by (x, y(1), .., y(k−1))). Then

the k-Liouville d-vector field z(k)i on T kM is well defined:

kz(k)i = ky(k)i + (k − 1)M i
s

(1)

y(k−1)s + · · ·+ M i
s

(k−1)

y(1)s.

Consequently, the d-vector field

(3.3) ž(k)i = z(k)i(x, y(1), .., y(k−1), ξi(x, y(1), .., y(k−1), p))

can be considered.
We define the function

(3.4)
H(x, y(1), .., y(k−1), p) = 2piž

(k)i − L(x, y(1), .., y(k−1), ξi(x, y(1), .., y(k−1), p)).

We can prove that H is an Hamiltonian defined on an open set of the manifold
T ∗kM.

So, the construction is a local one.
The following theorem holds:

Theorem 3.1. The pair H(k)n = (M,H) with H from (3.4) is an Hamilton space
having the fundamental tensor

gij(x, y(1), .., y(k−1), p) = aij(x, y(1), .., y(k−1), ξi(x, y(1), .., y(k−1), p)).
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We can use this L-duality to transform the main geometrical object fields of the
space L(k)n in the main geometrical object fields of the space H(k)n.

In the case k = 1, we obtain the classical L-duality between the Lagrange space
Ln = (M,L(x, y)) and Hamilton spaces Hn = (M,H(x, p)).
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