Steps in Differential Geometry, Proceedings of the Colloquium on Differential Geometry, 25–30 July, 2000, Debrecen, Hungary

ON THE GEOMETRICAL THEORY OF HIGHER-ORDER HAMILTON SPACES

RADU MIRON

ABSTRACT. One investigates the geometrical properties of the Hamilton spaces of order $k \geq 1$, the natural presymplectic and Poisson structures and Hamilton-Jacobi equations, [2],[9]. An \mathcal{L} -duality between the Lagrange spaces of order k and Hamilton spaces of the same order is pointed out.

INTRODUCTION

The notion of Hamilton space was introduced by the author in [3],[4]. It was defined as a pair $H^n = (M, H(x, p))$, for M a C^{∞} -manifold of dimension n and $H : (x, p) \in T^{*k}M \longrightarrow H(x, p) \in \mathbb{R}$ a regular Hamiltonian. H^n has a canonical symplectic structure and a canonical Poisson structure. The Hamilton spaces appear as dual, via Legendre transformation, of the Lagrange spaces $L^n = (M, L(x, y))$, [3].

The notion of Lagrange space of order $k \ge 1$, $L^{(k)n} = (M, L(x, y^{(1)}, ..., y^{(k)}))$ was defined by author some years ago. Its geometry was showed in the book [7].

A definition of the notion of higher-order Hamilton space $H^{(k)n}$ is difficult to get. This is due to the fact that the space $H^{(k)n}$ must have some important properties, which extend those of $H^{(1)n} = H^n$:

- a) dim $H^{(k)n} = \dim L^{(k)n}$.
- b) $H^{(k)n}$ has a canonical presymplectic structure.
- c) $H^{(k)n}$ has at least one Poisson structure.
- d) The spaces $H^{(k)n}$ and $L^{(k)n}$ to be diffeomorphic via Legendre transformation.

In the paper [5] we solved the above mentioned problem.

Now, in the lecture at the "Colloquium on Differential Geometry", July 2000, Debrecen, I should like to present an abstract of the paper [5], published this year by the *International Journal of Theoretical Physics*. Some new results concerning the \mathcal{L} -duality of the spaces $L^{(k)n}$ and $H^{(k)n}$ will be provided. The proofs are omitted.

1. The "dual" bundle of T^kM -bundle.

Let M be a real C^{∞} -manifold, n-dimensional and (T^kM, π^k, M) its k-accelerations bundle $(k \in \mathbb{N}^*)$. It can be identified with k-osculator bundle (Osc^kM, π^*, M) . A point $u \in T^kM$ has the coordinates $(x, y^{(1)}, .., y^{(k)}), x \in M$ and $y^{(1)}, .., y^{(k)}$ are

RADU MIRON

the "higher order accelerations". The local coordinates of u are $(x^i, y^{(1)i}, ..., y^{(k)i})$. The indices i, j, h, ... run over the set $\{1, ..., n\}$ and summation convention will be used.

We define "the dual" of (T^kM, π^k, M) as being $(T^{*k}M, \pi^{*k}, M)$ where $T^{*k}M$ is the following fibred product:

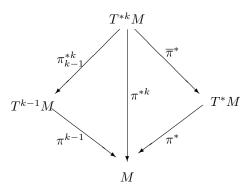
(1.1)
$$T^{*k}M = T^{k-1}M \times_M T^*M$$

Clearly, $(T^{k-1}M, \pi^{k-1}, M)$ is the k-1-acceleration bundle and (T^*M, π^*, M) is the cotangent bundle of the base manifold M.

 $T^{*k}M$ is a C^{∞} -differentiable manifold and $\dim T^{*k}M = \dim T^kM = (k+1)n$. A point $u \in T^{*k}M$ is of the form $u = (x, y^{(1)}, ..., y^{(k-1)}, p), \ \pi^{*k}(u) = x$ and u has the coordinate $(x^i, y^{(1)i}, ..., y^{(k-1)i}, p_i)$.

For $k = 1, T^{*1}M$ is identified with T^*M .

The following diagram is commutative:



The changes of local coordinates on $T^{*k}M$ can be easily written, [8]. We consider the following differential forms

(1.2)
$$\begin{aligned} \omega &= p_i dx^i \\ \theta &= d\omega = dp_i \wedge dx^i \end{aligned}$$

Theorem 1.1. 1°. The forms ω and θ are globally defined on the manifold $T^{*k}M$. 2°. $d\theta = 0$, $rank||\theta|| = 2n$.

3°. θ is a canonical presymplectic structure on $T^{*k}M, k > 1$.

The proof is not difficult. Let us consider the bracket:

(1.3)
$$\{f,g\} = \frac{\partial f}{\partial x^i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial x^i}, \quad \forall f,g \in \mathcal{F}(T^{*k}M).$$

We have

Theorem 1.2. 1°. The bracket $\{f, g\}$ has a geometrical meaning. 2°. $\{f, g\}$ is a Poisson structure on $T^{*k}M$.

Indeed, one proves by a staightforward calculus, using the changes of local coordinates of $T^{*k}M$, that these brackets are conserved. Then it is shown that

 $\{f,g\}$ is R-linear in every argument,

 $\{f,g\}=-\{g,f\}$ and Jacobi identity holds,

the mapping $\{f, \cdot\}$: $\mathcal{F}(T^{*k}M) \longrightarrow \mathcal{F}(T^{*k}M)$ is a derivation in the function algebra $\mathcal{F}(T^{*k}M)$.

q.e.d.

Remark 1.1. The following brackets

$$\{f,g\}_{\alpha} = \frac{\partial f}{\partial y^{(\alpha)i}} \frac{\partial g}{\partial p_i} - \frac{\partial g}{\partial y^{(\alpha)i}} \frac{\partial f}{\partial p_i}, \quad (\alpha = 1,..,k-1),$$

are Poisson structures on $T^{*k}M$.

2. Hamiltonian system of order k. The spaces $H^{(k)n}$.

A mapping $H: T^{*k}M \longrightarrow \mathbb{R}$ is called a differentiable Hamiltonian of order k, if H is a C^{∞} -function on $\widetilde{T^{*k}M} = T^{*k}M \setminus \{0\}$ and continuous on the null section of π^{*k} .

Definition 2.1. An Hamilton system of order k is a triple $(T^{*k}M, \theta, H)$, where θ is a presymplectic structure on $T^{*k}M$ and H is a differentiable Hamiltonian of order k.

In the case k = 1, and θ a symplectic structure, the triple $(T^{*k}M, \theta, H)$ is a classical Hamilton system.

Let us consider the section Σ_0 of the projection

 $\pi_2^*: (x,y^1,..,y^{k-1},0) \in T^{*k}M \longrightarrow (x,0,..,0,p) \in T^{*k}M.$

 Σ_0 is an intersed submanifold of the manifold $T^{*k}M$. The restrictions $\theta_o = \theta_{|\Sigma_0}$, $H_o = H_{|\Sigma_0}$ together of Σ_0 determine an Hamiltonian system of order 1, $(\Sigma_0, \theta_0, H_0)$. In this case, θ_0 is a symplectic structure on Σ_0 .

It is not difficult to prove the following theorem:

Theorem 2.1. 1°. The triple $(\Sigma_0, \theta_0, H_0)$ is an Hamiltonian system, θ_0 being a symplectic structure on the manifold Σ_0 .

2°. There exists an unique vector field X_{H_0} on Σ_0 with the property

(2.1)
$$i_{H_0}\theta_0 = -dH_0.$$

3°. The integral curve of the vector field X_{H_0} are given by the canonical equations (Hamilton - Jacobi eq.):

(2.2)
$$\frac{dx^i}{dt} = \frac{\partial H_0}{\partial p_i}; \quad \frac{dp_i}{dt} = -\frac{\partial H_0}{\partial x^i}.$$

4°. The following equations hold:

(2.3)
$$\{f,g\} = \theta(X_f, X_g), \quad \forall f,g \in \mathcal{F}(\Sigma_0).$$

Now, for a differentiable Hamiltonian $H(x, y^{(1)}, ..., y^{(k-1)}, p)$, we consider its Hessian with respect to p_i . Its matrix has the elements:

(2.4)
$$g^{ij} = \frac{1}{2} \frac{\partial^2 H}{\partial p_i \partial p_j}.$$

We can prove that g^{ij} is a distinguished tensor field (shortly a d-tensor) on $T^{*k}M$, symmetric and contravariant.

We say that H is regular if

(2.5)
$$rank||g^{ij}|| = n = dim \ M \quad \text{on } T^{*k}M$$

Definition 2.2. An Hamilton space of order k, $(k \in \mathbb{N}^{|ast})$ is a pair $H^{(k)n} = (M, H(x, y^{(1)}, ..., y^{(k-1)}, p))$ formed by a C^{∞} -manifold M, n-dimensional and a regular Hamiltonian of order k, H with the property that the d-tensor field g^{ij} has a constant signature on $\widetilde{T^{*k}M}$.

In the paper [5], we proved the existence of the Hamilton spaces of order k over the paracompact manifolds M.

In order to prove the duality between the Lagrange spaces of order k,

$$L^{(k)n} = (M, L(x, y^{(1)}, ..., y^{(k-1)}, y^{(k)}))$$

and the Hamilton spaces of order k,

$$H^{(k)n} = (M, H(x, y^{(1)}, ..., y^{(k-1)}, p))$$

we consider the Legendre mapping, defined by

$$\mathcal{L}eg: L^{(k)n} \longrightarrow H^{(k)n}$$

given by

$$(2.6) \qquad \mathcal{L}eg: (x, y^{(1)}, .., y^{(k-1)}, y^{(k)}) \in T^k M \longrightarrow (x, y^{(1)}, .., y^{(k-1)}, p) \in T^{*k} M$$
 where

(2.7)
$$p_i = \frac{1}{2} \frac{\partial L}{\partial y^{(k)i}} = \varphi_i(x, y^{(1)}, ..., y^{(k-1)}, y^{(k)})$$

We obtain:

Theorem 2.2. The mapping $\mathcal{L}eg$, (2.6), (2.7) is a local diffeomorphism of the manifolds T^kM and $T^{*k}M$.

Indeed, the determinant of the Jacobian matrix of the mapping $\mathcal{L}eg$ coincides with the determinant of matrix $||a_{ij}||$, where $a_{ij} = \frac{1}{2} \frac{\partial^2 L}{\partial y^{(k)i} \partial y^{(k)j}}$. This is different of zero.

q.e.d.

Concluding, the properties a)-d) enunciated in the introduction hold.

The geometry of the higher-order Hamilton spaces $H^{(k)n}$ can be investigated as a natural extension of the geometry of Hamilton spaces H^n .

3. \mathcal{L} -duality between the spaces $L^{(k)n}$ and $H^{(k)n}$.

Assuming that the Lagrange space of order k,

$$L^{(k)n} = (M, L(x, y^{(1)}, .., y^{(k)}))$$

is given and a nonlinear connection $\overset{\circ}{N}$ on the manifold $T^{k-1}M$ is apriori given, too, we can determine a regular Hamiltonian such that the pair

$$H^{(k)n} = (M, L(x, y^{(1)}, ..., y^{(k-1)}, p))$$

is an Hamilton space of order k. The application $\mathcal{L}: L^{(k)n} \longrightarrow H^{(k)n}$ will be called \mathcal{L} -duality.

Let us consider the local inverse $\mathcal{L}eg^{-1}$ of the Legendre transformation (2.6):

$$\mathcal{L}eg^{-1}: (x, y^{(1)}, ..., y^{(k-1)}, p) \in T^{*k}M \longrightarrow (x, y^{(1)}, ..., y^{(k-1)}, y^{(k)i}) \in T^kM$$

where (3.1)

$$y^{(k)i} = \xi^i(x, y^{(1)}, ..., y^{(k-1)}, p)$$

It follows:

(3.2)
$$\frac{\partial \xi^i}{\partial p_i} = a^{ij}$$

where a^{ij} is the contravariant tensor of the fundamental tensor of space $L^{(k)n}$.

Let us consider an apriori given nonlinear connection $\overset{\circ}{N}$ on $T^{k-1}M$, having the dual coefficients $M^i_{\ j}, ..., M^i_{\ j}$ depending, evidently, by $(x, y^{(1)}, ..., y^{(k-1)}))$. Then

the k-Liouville d-vector field $z^{(k)i}$ on T^kM is well defined:

$$kz^{(k)i} = ky^{(k)i} + (k-1)M^{i}_{s}y^{(k-1)s} + \dots + M^{i}_{s}y^{(1)s}.$$

Consequently, the *d*-vector field

can be considered.

We define the function

(3.4)

$$H(x, y^{(1)}, ..., y^{(k-1)}, p) = 2p_i \check{z}^{(k)i} - L(x, y^{(1)}, ..., y^{(k-1)}, \xi^i(x, y^{(1)}, ..., y^{(k-1)}, p)).$$

We can prove that H is an Hamiltonian defined on an open set of the manifold $T^{\ast k}M.$

So, the construction is a local one.

The following theorem holds:

Theorem 3.1. The pair $H^{(k)n} = (M, H)$ with H from (3.4) is an Hamilton space having the fundamental tensor

$$g^{ij}(x, y^{(1)}, ..., y^{(k-1)}, p) = a^{ij}(x, y^{(1)}, ..., y^{(k-1)}, \xi^i(x, y^{(1)}, ..., y^{(k-1)}, p)).$$

RADU MIRON

We can use this \mathcal{L} -duality to transform the main geometrical object fields of the space $L^{(k)n}$ in the main geometrical object fields of the space $H^{(k)n}$.

In the case k = 1, we obtain the classical \mathcal{L} -duality between the Lagrange space $L^n = (M, L(x, y))$ and Hamilton spaces $H^n = (M, H(x, p))$.

References

- ANTONELLI, P.L. and . MIRON, R.(EDS.), Lagrange and Finsler Geometry. Applications to Physics and Biology, Kluwer Academic Publishers, FTPH, no.76, (1996).
- [2] LÉON, M. DE and RODRIGUES, P., Generalized Classical Mechanics and Fields Theory, North Holland, (1985).
- [3] MIRON, R., Hamilton Geometry, Analele St. Univ. Iaşi, s.I, Mat. 35, (1989), p.33-85.
- [4] MIRON, R., Sur la géométrie des espaces Hamilton, C.R. Acad. Sci. Paris, Ser.II, 306, no.4, (1988), 195-198.
- [5] MIRON, R., Hamilton spaces of order $k \ge 1$, Int. Journal of Theoretical Physics, (2000), (to appear).
- [6] MIRON, R. and ANASTASIEI, M., The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Academic Publishers, FTPH, no.59, (1994).
- [7] MIRON, R. The geometry of Higher Order Lagrange spaces. Applications to Mechanics and Physics, Kluwer Academic Publishers, FTPH, no. 82, (1997).
- [8] MIRON, R., HRIMIUC, D., SHIMADA, H. and SABĂU, S. The Geometry of Hamilton and Lagrange Spaces, Kluwer Academic Publishers, FTPH, (2000), (to appear).
- [9] VAISMAN, I., Lectures on the Geometry of Poisson manifolds, Birkhäuser Verlag, Basel, (1994).