
Steps in Differential Geometry, Proceedings of the Colloquium
on Differential Geometry, 25–30 July, 2000, Debrecen, Hungary

PROJECTIVE AND INDUCTIVE LIMITS OF DIFFERENTIAL
TRIADS

M. H. PAPATRIANTAFILLOU

Abstract. We prove that in the category of differential triads projective and

inductive systems have limits.

1. Introduction

The geometry of differential manifolds is a very effective machinery to deal
with problems in many fields of pure mathematics and numerous applications. In
particular, it is the underlying mathematical theory for the contemporary (non-
quantum) mechanics, relativity and cosmology.

However, this machinery does not work when the smooth manifold structure
breaks down, for instance, when singularities appear, as the big bang or the black
holes. On the other hand, the differential manifold structure is so strong an as-
sumption, that it is not preserved under the most common operations on manifolds.
For example, one cannot pull-back or push-out an atlas by a continuous map. An
arbitrary subset of a manifold is not a manifold. The limit of a projective system
of manifolds is not, in general, a manifold. In some cases, as in the theory of jets,
it is a manifold, but it is infinite dimensional. Thus, the category of smooth, fi-
nite dimensional manifolds is not closed for projective limits. The same is true for
inductive limits of manifolds.

These deficiencies led many authors to introduce several generalizations of the
notion of manifolds (see, for instance, differential spaces [1, 5, 8, 9]), so that the dif-
ferential mechanism is preserved but the manifold structure is not needed. Among
these generalizations, the most recent and most general is that of differential tri-
ads, introduced by A. Mallios in [2], by replacing the the assumptions on the local
structure of the space X (charts, atlases) with assumptions on the existence of an
(algebraic) derivation on an arbitrary sheaf A of algebras onX, which plays the rôle
of the structural sheaf of germs of smooth functions. Differential triads generalize
smooth manifolds (and differential spaces) and also include (non-smooth) spaces
with very general, non-functional, structural sheaves. As it happens, any sheaf of
algebras may be regarded as the structural sheaf of a differential triad (Example
2.1(ii)).
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Analogously to the considerations on the space X, one may replace the usual
smooth maps between manifolds with an algebraically defined class of “differen-
tiable maps”, or “morphisms of differential triads”, giving rise to a category, de-
noted by DT , in which the category of manifolds is embedded [6].

Our aim in this paper is to prove that DT is closed for the projective and
inductive limits of differential triads. To this end, we first prove that a projective
(resp. inductive) system of differential triads over the same base space has a limit
in DT (Propositions 3.2 and 3.3). Then, for a projective (resp. inductive) system
of differential triads over a projective system of base spaces, we construct a new
projective (resp. inductive) system of differential triads over the projective (resp.
inductive) limit of the base spaces, and we prove that their limit satisfies the
universal property of the projective (resp. inductive) limit for the initially given
family (Theorems 4.4 and 4.5).

2. Preliminaries

Throughout the paper, K stands for R or C; if X is a topological space, τX
denotes its topology. First we recall the main concept in our framework, introduced
by A. Mallios (see [2], or [3, Vol. II]):

Let X be a topological space, A a sheaf of unital, commutative, associative K-
algebras over X and Ω an A-module; i.e., Ω is a sheaf of K-vector spaces over X,
so that Ω(U) is an A(U)-module, for every U ∈ τX . Besides, let ∂ ≡ (∂U )U∈τX

:
A → Ω be a sheaf morphism. The triplet δ = (A, ∂,Ω) is said to be a differential
triad, if

i) ∂ is K-linear, and
ii) ∂ satisfies the Leibniz condition: for every (α, β) ∈ A×X A,

∂(αβ) = α∂(β) + β∂(α).

Examples 2.1. (i) Every Ck-manifold X (k ≥ 1) defines a differential triad: take
as A the sheaf of germs of local R-valued Ck-functions on X, as Ω the sheaf of germs
of local Ck−1-differential 1-forms and as ∂ the sheafification of the usual differential
d. Thus, the concept of a differential triad generalizes that of a manifold. On the
other hand, manifolds are far from being alone in the new context, as the following
example shows:

(ii) Let (X,A) be an algebraized space, that is, X is a topological space and A
is a sheaf of (commutative, associative, unital) K-algebras over X. We denote by
X (A) the set of all sheaf morphisms ξ : A → A, which are K-linear and satisfy the
Leibniz condition (of course, for each ξ, (A, ξ,A) is a differential triad). X (A) is an
A-module. We consider the dual A-module Ω := X (A)∗ and the sheaf morphism
∂ : A → Ω, given by

∂α : X (A)→ A : ξ 7→ (∂α)(ξ) := ξ(α), ∀α ∈ A.
Then (A, ∂,Ω) is a differential triad. Thus, every algebraized space defines a dif-
ferential triad.
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Some other examples are found in [3].

Let f : X → Y be a continuous map and let ShX , ShY denote the categories
of sheaves over X, Y , respectively. We denote by f∗ : ShX → ShY the push-out
functor and by f∗ : ShY → ShX the pull-back functor induced by f .

Definition 2.2. Let δX = (AX , ∂X ,ΩX), δY = (AY , ∂Y ,ΩY ) be differential triads
over the topological spaces X, Y , respectively. A morphism from δX to δY is a
triplet (f, fA, fΩ), where

(i) f : X → Y is continuous;
(ii) fA : AY → f∗(AX) is a unit preserving morphism of sheaves of K-algebras

over Y .
(iii) fΩ : ΩY → f∗(ΩX) is an fA-morphism, i.e., it is a morphism of sheaves of

K-vector spaces over Y , with

fΩ(αω) = fA(α)fΩ(ω), ∀ (α, ω) ∈ AY ×Y ΩY ;

(iv) the following diagram is commutative

AY
fA- f∗(AX)

ΩY

∂Y

?

fΩ
- f∗(ΩX)

f∗(∂X)

?

Following the classical terminology, we say that a continuous f : X → Y is
differentiable, if it can be completed to a morphism of differential triads (f, fA, fΩ).

Differential triads and their morphisms form a category [6], denoted in the sequel
by DT . The identity morphism of a triad (A, ∂,Ω) over X is (idX , idA, idΩ) and
the composition of (f, fA, fΩ) and (g, gA, gΩ) is given by

(2.1) (g ◦ f, (g ◦ f)A = g∗(fA) ◦ gA, (g ◦ f)Ω = g∗(fΩ) ◦ gΩ).

The differential triads over a fixed topological space X and the morphisms of the
form (idX , fA, fΩ) constitute a subcategory of DT , denoted by DTX .

Clearly, if the Ck-manifolds X,Y (k ≥ 1) are endowed with the differential triads
(AX , ∂X ,ΩX), (AY , ∂Y ,ΩY ) induced by their manifold structure, then every Ck-
map f : X → Y is differentiable, with

fA(α) := α ◦ f , ∀ α ∈ AY (V ) ,
fΩ(ω) := ω ◦ df , ∀ ω ∈ ΩY (V ),

for any V ∈ τY . Thus, the category of Ck-manifolds is embedded in DT .
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If δX = (AX , ∂X ,ΩX) ∈ DTX , δY = (AY , ∂Y ,ΩY ) ∈ DTY and f : X → Y is
continuous, then it is clear that the push-out of δX by f

f∗(δX) := (f∗(AX), f∗(∂X), f∗(ΩX))

is a differential triad over Y and the pull-back of δY by f

f∗(δY ) := (f∗(AY ), f∗(∂Y ), f∗(ΩY ))

is a differential triad over X. The following two results are already known ([7,
Theorems 3.1 and 3.4]).

Theorem 2.3. Let δX = (AX , ∂X ,ΩX) ∈ DTX and let f : X → Y be a continuous
map. If Y is endowed by the push-out f∗(δX) of δX by f , then there is a mor-
phism (f, fA, fΩ) : δX → f∗(δX) in DT , i.e., f becomes differentiable. Besides,
f∗(δX) satisfies the following universal property: if δY = (AY , ∂Y ,ΩY ) ∈ DTY

and (f, f̃A, f̃Ω) : δX → δY is a morphism, then there exists a unique morphism
(idY , gA, gΩ) : f∗(δX)→ δY , so that

(2.2) (f, f̃A, f̃Ω) = (idY , gA, gΩ) ◦ (f, fA, fΩ).

Theorem 2.4. Let δY = (AY , ∂Y ,ΩY ) ∈ DTY and let f : X → Y be a continuous
map. If X is endowed by the pull-back f∗(δY ) of δY by f , then there is a mor-
phism (f, fA, fΩ) : f∗(δY ) → δY in DT , i.e., f becomes differentiable. Besides,
f∗(δY ) satisfies the following universal property: if δX = (AX , ∂X ,ΩX) ∈ DTX

and (f, f̃A, f̃Ω) : δX → δY is a morphism, then there exists a unique morphism
(idX , gA, gΩ) : δX → f∗(δY ), so that

(2.3) (f, f̃A, f̃Ω) = (f, fA, fΩ) ◦ (idX , gA, gΩ).

3. Projective and inductive limits over X

In this section we prove that projective and inductive systems of differential
triads over the same base space X have limits in DTX .

Lemma 3.1. (i) Let (Si; fij)i≥j∈I be a projective (resp. inductive) system of
sheaves and sheaf morphisms over X. Then the projective (resp. inductive) limit
of the system exists in ShX .

(ii) Let (Si; fij)i≥j∈I , (Ti; gij)i≥j∈I be projective (resp. inductive) systems of
sheaves and sheaf morphisms over X and let (S, {fi}i∈I), (T , {gi}i∈I) be their
projective (resp. inductive) limits. If (hi : Si → Ti)i∈I is a morphism of projective
(resp. inductive) systems, then there exists a sheaf morphism h : S → T , with
gi ◦ h = hi ◦ fi (resp. h ◦ fi = gi ◦ hi), for every i ∈ I.

Proof. (i) For every open U ⊆ X, (Si(U); fU
ij )i≥j∈I is a projective system. Besides,

if V is open with V ⊆ U , the family of the restriction maps

ρV
iU : Si(U)→ Si(V )

is a morphism of projective systems. We set

S(U) := lim←−Si(U) , U ∈ τX ;
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ρV
U := lim←− ρ

V
iU : S(U) −→ S(V ) , V ⊆ U ∈ τX .

(S(U), ρV
U )V⊆U∈τX

is a presheaf over X, generating a sheaf S. Since S(U) is the
projective limit of (Si(U); fU

ij )i≥j∈I , there is a family of maps

fU
i : S(U) −→ Si(U) , i ∈ I ,

so that

(3.1) fU
j = fU

ij ◦ fU
i , ∀ U ∈ τX , i ≥ j ∈ I.

For every i ∈ I, (fU
i )U∈τX

is a presheaf morphism. Let fi denote the induced sheaf
morphism. Then (S, {fi}i∈I) is the projective limit of (Si; fij)i≥j∈I .

(ii) Each hi corresponds to a presheaf morphism (hU
i )U∈τX

. For a fixed U ,
(hU

i : Si(U) → Ti(U))i∈I is a morphism of projective systems, hence there is a
morphism hU : S(U) → T (U), so that hU

i ◦ fU
i = gU

i ◦ hU , for every i ∈ I. Then,
(hU )U∈τX

is a presheaf morphism. Let h be the corresponding sheaf morphism.
The required equality hi ◦ fi = gi ◦ h is obtained from the respective equality for
the presheaf morphisms.

Analogous reasoning holds for inductive systems.

Proposition 3.2. Let X be a topological space, (I,≤) a directed set and

((Ai, ∂i,Ωi); (idX , fijA, fij Ω))i≥j∈I

a projective system in DTX . Then there exist a differential triad (A, ∂,Ω) over X
and a family of morphisms

(idX , fiA, fiΩ) : (A, ∂,Ω)→ (Ai, ∂i,Ωi), i ∈ I
that satisfy the universal property of the projective limit in DTX .

Proof. If ((Ai, ∂i,Ωi); (idX , fijA, fij Ω))i≥j∈I is a projective system of differential
triads, then (Ai; fijA)i≥j∈I and (Ωi; fij Ω)i≥j∈I are inductive systems of sheaves
over X and (∂i)i∈I is a morphism of inductive systems. According to the previous
lemma, the inductive limit

(A, ∂,Ω) := (lim−→Ai, lim−→ ∂i, lim−→Ωi)

exists, along with morphisms fiA : Ai → A and fiΩ : Ωi → Ω, i ∈ I, so that

∂ ◦ fiA = fiΩ ◦ ∂i , ∀ i ∈ I,
that is, for every i ∈ I, (idX , fiA, fiΩ) : δ → δi is a morphism in DTX . The
universal property of the projective limit is readily checked.

It is clear that the dual result also holds true. That is, we have

Proposition 3.3. Let X be a topological space, (I,≤) a directed set and

((Ai, ∂i,Ωi); (idX , fijA, fij Ω))i≤j∈I

an inductive system in DTX . Then there are a differential triad (A, ∂,Ω) over X
and a family of morphisms

(idX , fiA, fiΩ) : (Ai, ∂i,Ωi)→ (A, ∂,Ω), i ∈ I
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that satisfy the universal property of the inductive limit in DTX .

4. Projective and inductive limits in DT

In this section we consider a projective system

(δi = (Ai, ∂i,Ωi); (fij , fijA, fij Ω))i≥j∈I

of differential triads δi over the base spaces Xi, i ∈ I, I directed, and of morphisms
of differential triads (fij , fijA, fij Ω) : δi → δj , i ≥ j ∈ I. Our aim is to construct a
differential triad δ = (A, ∂,Ω) over some space X and a family of morphisms

(fi, fiA, fiΩ) : δ → δi, i ∈ I,

that satisfy the universal property of the projective limit in DT .
To this end, we consider the projective limit

(X := lim←−Xi, {fi}i∈I)

of the projective system (Xi; fij)i≥j∈I of topological spaces and continuous maps.
X will be the base space of the required differential triad.

Next, we consider the pull-backs f∗i (δi), i ∈ I, which constitute a family of
differential triads over X. We have the following.

Lemma 4.1. Let (δi = (Ai, ∂i,Ωi); (fij , fijA, fij Ω))i≥j∈I be a projective system
in DT and let Xi be the base space of δi. If (X, {fi}i∈I) is the projective limit of
(Xi; fij)i≥j∈I , then there exist connecting sheaf morphisms

gijA : f∗j (Aj)→ f∗i (Ai),

making (f∗i (Ai); gijA)i≥j∈I an inductive system of sheaves of algebras over X.
Similarly, there exist connecting sheaf morphisms

gij Ω : f∗j (Ωj)→ f∗i (Ωi),

so that (f∗i (Ωi); gij Ω)i≥j∈I is an inductive system of f∗i (Ai)-modules, i ∈ I.

In order to prove Lemma 4.1 (and its dual, needed for the analogous considera-
tions for inductive limits), we need some additional information about the pull-bach
and the push-out functors, induced by a continuous f : X → Y . The crucial feature
is the existence of a natural transformation φf : id → f∗f

∗ between the covariant
functors id, f∗f

∗ : ShY → ShY , and a natural transformation ψf : f∗f∗ → id
between the covariant functors f∗f∗, id : ShX → ShX . For details we refer to
[10, 7.11]. We note that, for every B ∈ ShY and V ∈ τY ,

f∗f
∗(B)(V ) ≡ f∗(B)(f−1(V )) ≡ Γf (f−1(V ),B),

where Γf (f−1(V ),B) is the set of all continuous maps α : f−1(V ) → B, with
α(x) ∈ Bf(x), for every x ∈ f−1(V ), and φf

B is given by

φf
BV : B(V )→ Γf (f−1(V ),B) : β 7→ β ◦ f.
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Regarding ψf , let A ∈ ShX and

(x, s) ∈ f∗f∗(A) ≡ {(x, s) ∈ X × f∗(A) : s ∈ f∗(A)f(x)}.

Then there exist V ∈ τY and s̄ ∈ f∗(A)(V ) = A(f−1(V )), so that rV
f(x)(s̄) = s,

(rV
V ′)V ′⊆V ∈τY

being the restrictions of the presheaf (f∗(A)(V ))V ∈τY
. We have

ψf
A(x, s) := ρf−1(V )

x (s̄),

where (ρU
U ′)U ′⊆U∈τX

are the restrictions of the presheaf (A(U))U∈τX
. The above

functors interact with each other, in the following way (see [7])

f∗(ψ
f
A) ◦ φf

f∗(A) = idf∗(A),(4.1)

ψf
f∗(B) ◦ f

∗(φf
B) = idf∗(B).(4.2)

Regarding the way φ and ψ behave with respect to the composition of maps, we
have

Lemma 4.2. Let f : X → Y and g : Y → Z be continuous. Then for every
A ∈ ShX and C ∈ ShZ ,

ψg◦f
A = ψf

A ◦ f
∗(ψg

f∗(A)),(4.3)

φg◦f
C = g∗(φ

f
g∗(C)) ◦ φ

g
C .(4.4)

Proof. Let (x, s) ∈ (g ◦ f)∗(g ◦ f)∗(A). By definition, there are W ∈ τZ and s̄ ∈
(g ◦ f)∗(A)(W ) = A((g ◦ f)−1(W ) such that rW

g(f(x))(s̄) = s, where (rW
W ′)W ′⊆W∈τZ

are the restrictions of (g ◦ f)∗(A). Then

ψg◦f
A (x, s) = ρ(g◦f)−1(W )

x (s̄),

where (ρU
U ′)U ′⊆U∈τX

are the restrictions of A. Now (x, s) coincides with
(x, (f(x), pW

g(f(x))(s̄)) ∈ f
∗g∗g∗f∗(A), where (pW

W ′)W ′⊆W∈τZ
are the restrictions of

g∗f∗(A). Thus,

ψf
A ◦ f

∗(ψg
f∗(A))(x, s) = ψf

A ◦ f
∗(ψg

f∗(A))(x, (f(x), pW
g(f(x))(s̄))) =

= ψf
A(ψg

f∗(A)(f(x), pW
g(f(x))(s̄))) =

= ψf
A(x, πg−1(W )

f(x) (s̄)) = ρf−1(g−1(W ))
x (s̄),

(πV
V ′)V ′⊆V ∈τY

being the restrictions of f∗(A), and (4.3) is proved.
Let now W ∈ τZ and a ∈ C(W ). Then

g∗(φ
f
g∗(C))W ◦ φg

CW (a) = φf
g∗(C)f−1(W )(a ◦ g) = a ◦ g ◦ f = φg◦f

CW (a),

completing the proof.
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Proof of Lemma 4.1. Let i ≤ j ∈ I and consider the commutative diagram

X
fi - Xi

@
@

@
@

@
fj

R
Xj

fij

?

Over X, we have the pull-backs f∗i (Ai) and f∗j (Aj) = f∗i f
∗
ij(Aj). For each i ∈ I,

the sheaf morphism fijA : Aj → fij∗(Ai) induces a morphism

f∗ij(fijA) : f∗ij(Aj)→ f∗ijfij∗(Ai).

We consider the composition

ψ
fij

Ai
◦ f∗ij(fijA) : f∗ij(Aj)→ Ai

and we pull it back via fi, obtaining

gijA := f∗i (ψfij

Ai
◦ f∗ij(fijA)) : f∗j (Aj) = f∗i f

∗
ij(Aj)→ f∗i (Ai).

We prove that the family (f∗i (Ai); gijA)i≥j∈I is an inductive system of sheaves of
algebras over X. To this end, we prove that

gijA ◦ gjkA = gikA, ∀ i ≥ j ≥ k ∈ I.
In fact,

gijA ◦ gjkA = f∗i (ψfij

Ai
◦ f∗ij(fijA)) ◦ f∗j (ψfjk

Aj
◦ f∗jk(fjkA)) =

= f∗i (ψfij

Ai
◦ f∗ij(fijA) ◦ f∗ij(ψ

fjk

Aj
◦ f∗jk(fjkA))) =

= f∗i (ψfij

Ai
◦ f∗ij(fijA ◦ ψ

fjk

Aj
◦ f∗jk(fjkA))).

Since ψfjk : f∗jkfjk∗ → id is a natural transformation, we have

fijA ◦ ψ
fjk

Aj
= ψ

fjk

fij∗(Ai)
◦ f∗jkfjk∗(fijA),

hence

gijA ◦ gjkA = f∗i (ψfij

Ai
◦ f∗ij(ψ

fjk

fij∗(Ai)
◦ f∗jkfjk∗(fijA) ◦ f∗jk(fjkA))) =

= f∗i (ψfij

Ai
◦ f∗ij(ψ

fjk

fij∗(Ai)
◦ f∗jk(fjk∗(fijA) ◦ fjkA))).

By virtue of (2.1), the expression fjk∗(fijA) ◦ fjkA in the last equality coincides
with (fjk ◦ fij)A = fikA, consequently, we have

gijA ◦ gjkA = f∗i (ψfij

Ai
◦ f∗ij(ψ

fjk

fij∗(Ai)
◦ f∗jk(fikA))) =

= f∗i (ψfij

Ai
◦ f∗ij(ψ

fjk

fij∗(Ai)
) ◦ f∗ik(fikA)).

Combining the last equality with (4.3), we obtain

gijA ◦ gjkA = f∗i (ψfik

Ai
◦ f∗ik(fikA)) = gikA.
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Analogously, we define

gij Ω := f∗i (ψfij

Ωi
◦ f∗ij(fij Ω)) ; i ≥ j ∈ I.

Then (f∗i (Ωi); gij Ω)i≥j∈I is an inductive system of f∗i (Ai)-modules. 2

Lemma 4.3. With the assumptions of Lemma 4.1,

(f∗i (δi); (idX , gijA, gij Ω))i≥j∈I

is a projective system of differential triads over X.

Proof. We prove that every

(idX , gijA, gij Ω) : f∗i (δi)→ f∗j (δj)

is a morphism: It suffices to prove condition (iv) of Definition 2.2. We have

f∗i (∂i) ◦ gijA = f∗i (∂i) ◦ f∗i (ψfij

Ai
◦ f∗ij(fijA)) = f∗i (∂i ◦ ψ

fij

Ai
◦ f∗ij(fijA)).

Since ψfij is a natural transformation,

∂i ◦ ψ
fij

Ai
= ψ

fij

Ωi
◦ f∗ij(fij∗(∂i)),

hence

f∗i (∂i) ◦ gijA = f∗i (ψfij

Ωi
◦ f∗ij(fij∗(∂i)) ◦ f∗ij(fijA)) =

= f∗i (ψfij

Ωi
◦ f∗ij(fij∗(∂i) ◦ fijA)).

Condition (iv) for the morphism (fij , fijA, fijA) implies that

fij∗(∂i) ◦ fijA = fij Ω ◦ ∂j

yielding, in turn,

f∗i (∂i) ◦ gijA = f∗i (ψfij

Ωi
◦ f∗ij(fij Ω ◦ ∂j)) =

= f∗i (ψfij

Ωi
◦ f∗ij(fij Ω)) ◦ f∗j (∂j) = gij Ω ◦ f∗j (∂j),

and the proof is complete.

Theorem 4.4. Let (δi = (Ai, ∂i,Ωi); (fij , fijA, fij Ω))i≥j∈I be a projective system
in DT and let Xi be the base space of δi. There exists a differential triad δ =
(A, ∂,Ω) over the projective limit X of the base spaces, satisfying the universal
property of the projective limit in DT .

Proof. By Lemma 4.3, there exists a projective system

(f∗i (δi); (idX , gijA, gij Ω))i≥j∈I

of differential triads over X. Let

(δ = (A, ∂,Ω), {(idX , giA, giΩ)}i∈I)

be the limit of this system in DTX (see Proposition 3.2). For every i ∈ I, we
consider the composition

(fi, hiA, hiΩ) := (fi, φ
fi

Ai
, φfi

Ωi
) ◦ (idX , giA, giΩ),
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of the morphisms

(idX , giA, giΩ) : δ → f∗i (δi) ,

(fi, φ
fi

Ai
, φfi

Ωi
) : f∗i (δi)→ δi .

That is, we set

hiA := fi∗(giA) ◦ φfi

Ai
, hiΩ := fi∗(giΩ) ◦ φfi

Ωi
(4.5)

(cf. (2.1)). We will prove that ((A, ∂,Ω), {(fi, hiA, hiΩ)}i∈I) is the projective limit
of the initial projective system (δi; (fij , fijA, fij Ω))i≥j∈I .

First we prove that, for every i ≥ j ∈ I,

(fij , fijA, fij Ω)) ◦ (fi, hiA, hiΩ) = (fj , hjA, hjΩ).

In virtue of (2.1), it suffices to prove that

hjA = fij∗(hiA) ◦ fijA , hjΩ = fij∗(hiΩ) ◦ fijΩ.

For the first equality we have (see (4.5))

hjA = fj∗(gjA) ◦ φfj

Aj
= (fij ◦ fi)∗(giA ◦ gijA) ◦ φfij◦fi

Aj
=

= fij∗fi∗(giA) ◦ fij∗fi∗(gijA) ◦ φfij◦fi

Aj

and
fij∗(hiA) ◦ fijA = fij∗fi∗(giA) ◦ fij∗(φ

fi

Ai
) ◦ fijA.

Thus, it suffices to prove that

fij∗fi∗(gijA) ◦ φfij◦fi

Aj
= fij∗(φ

fi

Ai
) ◦ fijA.

Taking into account the definition of gijA, along with (4.4) and the naturality of
φfi and of φfij , we obtain

fij∗fi∗(gijA) ◦ φfij◦fi

Aj
= fij∗[fi∗f

∗
i (ψfij

Ai
◦ f∗ij(fijA)) ◦ φfi

f∗ij(Aj)
] ◦ φfij

Aj
=

= fij∗[φ
fi

Ai
◦ (ψfij

Ai
◦ f∗ij(fijA))] ◦ φfij

Aj
=

= fij∗(φ
fi

Ai
) ◦ fij∗(ψ

fij

Ai
) ◦ fij∗f

∗
ij(fijA) ◦ φfij

Aj
=

= fij∗(φ
fi

Ai
) ◦ fij∗(ψ

fij

Ai
) ◦ φfij

fij∗(Ai)
◦ fijA

and the required equality is a result of (4.1). The analogous equality for hiΩ is
proved in a similar way.

Finally, we prove that ((A, ∂,Ω), {(fi, hiA, hiΩ)}i∈I) is unique. In fact, let
(Ã, ∂̃, Ω̃) be a differential triad over some topological space X̃ and

(h̃i, h̃iA, h̃iΩ) : (Ã, ∂̃, Ω̃)→ (Ai, ∂i,Ωi) , i ∈ I

a family of morphisms, with

(fij , fijA, fijΩ) ◦ (h̃i, h̃iA, h̃iΩ) = (h̃j , h̃jA, h̃jΩ),
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for every i ≥ j ∈ I. Since (X, {fi}i∈I) is the projective limit of (Xi; fij)i≥j∈I , there
exists a continuous map h : X̃ → X, with fi ◦ h = h̃i, for every i ∈ I. We set

kiA := ψfi

h∗(Ã)
◦ f∗i (h̃iA) , kiΩ := ψfi

h∗(Ω̃)
◦ f∗i (h̃iΩ) .

We check that

(4.6) (h, kiA, kiΩ) : (Ã, ∂̃, Ω̃)→ f∗i (Ai, ∂i,Ωi)

is a morphism and

(idX , gijA, gijΩ) ◦ (h, kiA, kiΩ) = (h, kjA, kjΩ),

for every i ≥ j ∈ I. The family (4.6) can be viewed as a family

(idX , kiA, kiΩ) : (h∗(Ã), h∗(∂̃), h∗(Ω̃))→ f∗i (Ai, ∂i,Ωi)

of morphisms in DTX . Since (A, ∂,Ω) is the projective limit of the system
(f∗i (Ai, ∂i,Ωi), (idX , gijA, gijΩ)) in DTX , there exists a unique

(idX , hA, hΩ) : (h∗(Ã), h∗(∂̃), h∗(Ω̃))→ (A, ∂,Ω),

so that
(idX , giA, giΩ) ◦ (idX , hA, hΩ) = (idX , kiA, kiΩ) , ∀i ∈ I.

Then (idX , hA, hΩ) corresponds to a unique morphism

(h, hA, hΩ) : (Ã, ∂̃, Ω̃)→ (A, ∂,Ω)

satisfying
(fi, hiA, hiΩ) ◦ (h, hA, hΩ) = (h̃i, h̃iA, h̃iΩ), ∀i ∈ I,

and the proof is complete.

It is now trivially checked that dual arguments give the following

Theorem 4.5. Let ((Ai, ∂i,Ωi), (fij , fijA, fij Ω))i≥j∈I be an inductive system in
DT and let Xi be the base space of (Ai, ∂i,Ωi). There exists a differential triad
(A, ∂,Ω) over the inductive limit X of the base spaces, satisfying the universal
property of the inductive limit in DT .

References

[1] M.Heller - W.Sasin : Sheaves of Einstein algebras, Intern. J. Theor. Phys. 34(1995), 387-
398.

[2] A.Mallios : On an abstract form of Weil’s integrality theorem, Note Mat. 12(1992), 167-202.

[3] A.Mallios : Geometry of Vector Sheaves. An Abstract Approach to Differential Geometry,
Vol. I, II, Kluwer Acad. Publ., Dordrecht, 1998.

[4] A.Mallios : On an axiomatic treatment of differential geometry via vector sheaves. Appli-

cations. Math. Japon. 48(1998), no. 1, 93-180.
[5] M.A.Mostow : The differentiable space structures of Milnor classifying spaces, simplicial

complexes, and geometric realizations, J. Diff. Geom. 14 (1979), 255-293.

[6] M.H.Papatriantafillou : The category of differential triads, Bull. Greek Math. Soc. Vol.
44 (in press).

[7] M.H.Papatriantafillou : Initial and final differential structures (to appear).
[8] R.Sikorski : Abstract covariant derivative, Colloq. Math. 18 (1967), 251-272.



262 M. H. PAPATRIANTAFILLOU

[9] R.Sikorski : Differential Modules, Colloq. Math. 24 (1971), 45-70.

[10] B.R.Tennison : Sheaf Theory, Cambridge Univ. Press, Cambridge, 1975.

Department of Mathematics, University of Athens, Panepistimiopolis, Athens 157 84,

Greece
E-mail address: mpapatr@cc.uoa.gr


