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PROPERTIES OF THE WEYL CONFORMAL CURVATURE OF
KÄHLER-NORDEN MANIFOLDS

KARINA S LUKA

Abstract. Let (M, J, g) be an n = 2m-dimensional Kählerian manifold en-

dowed with a Norden metric. It is proved that (M, J, g) is conformally flat
if and only if it is holomorphically projectively flat and its scalar curvature

vanishes; the ∗-scalar curvature of such a manifold is constant and it is lo-
cally symmetric. If (M, J, g) is of recurrent conformal curvature, then it is

locally symmetric in case of dimension n > 6, and it is locally symmetric or

holomorphically projectively flat in case of dimension n = 4. Next, we show
that the pseudosymmetry as well as the Weyl-pseudosymmetry and the holo-
morphically projective-pseudosymmetry of (M, J, g) reduces to the semisym-

metry. Moreover, the Ricci-pseudosymmetry of (M, J, g) reduces to the Ricci-
semisymmetry. An example of a Ricci-semisymmetric and non-semisymmetric
Kähler-Norden structure is stated. Examples of semisymmetric, especially lo-

cally symmetric, Kähler-Norden structures are given in [15].

1. Preliminaries

By a Kählerian manifold with Norden metric (Kähler-Norden in short) [9] we
mean a triple (M,J, g), where M is a connected differentiable manifold of dimension
n = 2m, J is a (1, 1)-tensor field and g is a pseudo-Riemannian metric on M
satisfying the conditions

J2 = −I, g(JX, JY ) = −g(X, Y ), ∇J = 0,

for any X, Y ∈ X(M), where X(M) is the Lie algebra of vector fields on M and ∇
is the Levi-Civita connection of g.

Let (M,J, g) be a Kähler-Norden manifold. Since in dimension 2 such a manifold
is flat, we assume in the sequel that dim M ≥ 4. Let R(X, Y ) be the curvature
operator [∇X ,∇Y ]−∇[X,Y ] and let R be the Riemann-Christoffel curvature tensor,
R(X, Y, Z,W ) = g(R(X, Y )Z,W ). The Ricci tensor S is defined as S(X, Y ) =
trace{Z 7→ R(Z,X)Y }. These tensors have the following properties [1]

(1)
R(JX, JY ) = −R(X, Y ), R(JX, Y ) = R(X, JY ),

S(JY, Z) = trace{X 7→ R(JX, Y )Z}, S(JX, Y ) = S(JY,X).
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Let S̃ be the Ricci operator. Then we have g(S̃X, Y ) = S(X, Y ) and

S̃Y = −
∑

i

εiR(ei, Y )ei.

In the above and in the sequel, (e1, e2, ..., en) is an orthonormal frame and εi are
the indicators of ei, εi = g(ei, ei) = ±1. The Weyl conformal curvature tensor C
is defined in the usual way,

(2) C(X, Y ) = R(X, Y ) +
1

n− 2

(
r

n− 1
X ∧ Y − S̃X ∧ Y −X ∧ S̃Y

)
,

where r (= trace S̃) is the scalar curvature and for any X,Y , the operator X ∧ Y
is defined by

(X ∧ Y )Z = g(Y,Z)X − g(X, Z)Y, Z ∈ X(M).

Using (2) and (1), we find the following useful equality

(3)
∑

i

εiC(Jei, JY )ei =
n

n− 2
S̃Y +

r∗

n− 2
JY − r

(n− 1)(n− 2)
Y,

where r∗ is the ∗-scalar curvature, which is defined as the trace of JS̃. In the
above, we have applied the identity

∑
i εig(Jei, ei) = 0, which is a consequence of

the traceless of J .
The holomorphically projective curvature tensor P is defined in the following

way ([19], [15])

(4) P (X, Y ) = R(X, Y )− 1
n− 2

(X ∧S Y − JX ∧S JY ),

the operator X ∧S Y is defined by

(X ∧S Y )Z = S(Y, Z)X − S(X, Z)Y, Z ∈ X(M).

We notice, for later use, that this tensor has the following properties

(5)
P (X, Y, Z,W ) = −P (Y, X,Z,W ), P (JX, JY, Z, W ) = −P (X, Y, Z,W ),∑

i

εiP (ei, Y, Z, Jei) = 0,
∑

i

εiP (X, Y, ei, ei) = 0,

A Kähler-Norden manifold (M,J, g) is holomorphically projectively flat if and only
if its holomorphically projective curvature tensor P vanishes identically (ibidem).

2. The Weyl conformal curvature

Theorem 1. A Kähler-Norden manifold (M,J, g) is conformally flat if and only
if it is holomorphically projectively flat and its scalar curvature vanishes.

Proof. Let us assume that C = 0. Then, using (3), we get

S̃Y = −r∗

n
JY +

r

n(n− 1)
Y.
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Hence, taking the trace, we find r = 0, and consequently

(6) S̃Y = −r∗

n
JY.

Then, from (2) by r = 0 and (6), we obtain

(7) R(X, Y ) = − r∗

n(n− 2)
(X ∧ JY + JX ∧ Y ).

Applying (6) and (7) into the right hand side of (4) yields P = 0.
Conversely, suppose P = 0 and r = 0. In this case, the Ricci operator and the

curvature tensor are as in the formulas (6) and (7) (see [15]). By applying these
formulas into (2), we find C = 0, which completes the proof.

Corollary 1. The curvature tensor and the Ricci tensor of a conformally flat
Kähler-Norden manifold (M,J, g) have the shapes (6) and (7), respectively. More-
over, the ∗-scalar curvature is constant and the manifold is locally symmetric.

Proof. Firstly, using a well known identity and r = 0, we obtain

(8)
∑

i

εi(∇eiS)(Y, ei) =
1
2
dr(Y ) = 0.

On the other hand, with the help of (6), we find∑
i

εi(∇eiS)(Y, ei) = − 1
n

dr∗(JY ) = 0.

Hence, r∗ is constant. Therefore, the local symmetry follows from (7).

Theorem 2. Any Kähler-Norden manifold (M,J, g) with parallel Weyl conformal
curvature tensor is locally symmetric.

Proof. Assume that the Weyl conformal curvature tensor of a Kähler-Norden man-
ifold (M,J, g) is parallel. Covariant differentiation of (3) and our assumption yield

(9) 0 = n(∇W S)(Y,Z) + dr∗(W )g(JY, Z)− 1
n− 1

dr(W )g(Y, Z).

Contracting formula (9) with respect to the pair of arguments Y,Z (that is, taking
Y = Z = ei into (9), multiplying by εi and summing up over i), one finds

(10) dr(W ) = 0.

Using the famous identity and (10), we obtain

(11)
∑

i

εi(∇eiS)(Y, ei) =
1
2
dr(Y ) = 0.

Equality (10) applied into (9) gives

(∇W S)(Y, Z) = − 1
n

dr∗(W )g(JY, Z).
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Taking JY instead of Y into the last relation, and transvecting the resulting equal-
ity with respect to Y,Z, one gets dr∗ = 0, which implies also ∇S = 0.

In view of (2), the covariant derivative ∇C can be expressed in the following
form

(∇W C)(X, Y ) = (∇W R)(X, Y )

+
1

n− 2

(
1

n− 1
dr(W )X ∧ Y −X ∧ ((∇W S̃)Y )− ((∇W S̃)X) ∧ Y

)
.

To have the proof complete it is now sufficient to apply ∇S̃ = 0 together with
∇C = 0 and dr = 0 into the last expression.

In the context of the above theorem, it should be said that the symmetric Kähler-
Norden manifolds are not yet classified, even locally. Examples of locally symmetric
Kähler-Norden structures are given in [15].

In the rest of this section, we study Kähler-Norden manifolds satisfying the
condition

(12) ∇C = ϕ⊗ C,

where ϕ is a 1-form.
A pseudo-Riemannian manifold is said to be of recurrent conformal curvature

(cf. e.g. [13], [14]) if its conformally curvature Weyl tensor C is non identically
zero and satisfies the condition (12), ϕ is then called the recurrence form of C.

Proposition 1. If a Kähler-Norden manifold (M,J, g) satisfies the condition (12),
then its holomorphically projective curvature tensor P realizes

(13) ∇P = ϕ⊗ P.

Proof. From (2) and (12), we obtain

(∇W R)(X, Y ) = ϕ(W )R(X, Y )− 1
n− 2

(
1

n− 1
(dr(W )− ϕ(W )r)X ∧ Y(14)

−X ∧ (∇W S̃)Y + ϕ(W )X ∧ S̃Y − (∇W S̃)X ∧ Y + ϕ(W )S̃X ∧ Y

)
.

Formula (3) together with (12) let us find the condition

n((∇W S)(Y, Z)− ϕ(W )S(Y, Z))(15)

= − (dr∗(W )− ϕ(W )r∗)g(JY, Z) +
1

n− 1
(dr(W )− ϕ(W )r)g(Y, Z).

Contracting (15) with respect to Y, Z, one finds

dr(W )− ϕ(W )r = 0.

Therefore, we can rewrite (15) in the following way

(16) (∇W S)(Y,Z) = ϕ(W )S(Y,Z)− 1
n

(dr∗(W )− ϕ(W )r∗)g(JY, Z).
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When we substitute (16) into (14), we obtain

(17) (∇W R)(X, Y ) = ϕ(W )R(X, Y ) + η(X ∧ (JY ) + (JX) ∧ Y ),

with

η =
1

n(n− 2)
(dr∗(W )− ϕ(W )r∗).

Differentiating covariantly (4) and using (16), (17) enable us to check that the
holomorphically projective curvature tensor P satisfies the condition (13).

Theorem 3. Let (M,J, g) be a Kähler-Norden manifold of recurrent conformal
curvature.

(1) If dim M > 6, then the manifold (M,J, g) is locally symmetric.
(2) If dim M = 4, then the manifold (M,J, g) is locally symmetric or holomor-

phically projectively flat.

Proof. In virtue of Proposition 1, the tensor P satisfies the condition (13). As it
is known, under such a condition, P vanishes everywhere or nowhere on M [17,
Theorem 3.8], [18].

If P does not vanish at every point of the manifold, then (M,J, g) is of recur-
rent holomorphically projective curvature, and by Theorem 4 of [15] it is locally
symmetric. Let us assume that P is identically zero, that is, the manifold (M,J, g)
is holomorphically projectively flat. If dim M > 6, then by Proposition 3 of [15],
the manifold is locally symmetric.

Theorem 4. Let (M,J, g) be a holomorphically projectively flat Kähler-Norden
manifold of dimension 4. If its scalar curvature does not vanish everywhere on M ,
then (M,J, g) is of recurrent conformal curvature.

Proof. Let us assume that P = 0. By Proposition 3 of [15], the curvature tensor
and the Ricci tensor have the shapes

R(X, Y ) =
r

n(n− 2)
(X ∧ Y − JX ∧ JY )− r∗

n(n− 2)
(X ∧ JY + JX ∧ Y ),

S(X, Y ) =
r

n
g(X, Y )− r∗

n
g(JX, Y ).

Substituting these relations into (2), we find

C(X, Y ) =
r

n(n− 1)(n− 2)
(X ∧ Y − (n− 1)JX ∧ JY ).

Therefore, the covariant derivative ∇C can be expressed in the following form

(∇W C)(X, Y ) =
1

n(n− 1)(n− 2)
dr(X ∧ Y − (n− 1)JX ∧ JY ).

Now it is easy to see that the covariant derivative of the non-zero tensor C satisfies
the condition

∇C = ϕ⊗ C
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with ϕ = d ln |r|. This means that the manifold is of recurrent conformal curvature
with ϕ as the recurrence form.

Remark. In the paper [15], we have constructed examples of 4-dimensional Kähler-
Norden manifolds which are holomorphically projectively flat with non-constant
scalar curvature as well as locally symmetric.

3. Pseudosymmetry curvature conditions

For an (0, k)-tensor (k > 1) field T on a pseudo-Riemannian manifold (M, g),
we define the (0, k + 2)-tensor field R · T by the condition

(R · T )(U, V,X1, X2, ..., Xk) = (R(U, V ) · T )(X1, X2, ..., Xk)(18)
= −T (R(U, V )X1, X2, . . . , Xk)− · · · − T (X1, X2, . . . , Xk−1, R(U, V )Xk).

A pseudo-Riemannian manifold (M, g) is said to be semisymmetric [16] if R·R =
0, Ricci-semisymmetric if R ·S = 0, Weyl-semisymmetric if R ·C = 0. Clearly, any
semisymmetric manifold is Ricci-semisymmetric as well as Weyl-semisymmetric,
and the converse statements do not hold in general [6], [5].

To initiate the definition of pseudosymmetry, we define also an (0, k + 2)-tensor
field Q(g, T ) associated with any (0, k)-tensor (k > 1) field T on a pseudo-Rieman-
nian manifold

Q(g, T )(U, V,X1, X2, ..., Xk) = ((U ∧ V ) · T )(X1, X2, ..., Xk)(19)
= − T ((U ∧ V )X1, X2, ..., Xk))− · · · − T (X1, X2, ..., Xk−1, (U ∧ V )Xk).

A pseudo-Riemannian manifold (M, g) is called pseudosymmetric [6] if there
exists a function LR : M → R such that

(20) R ·R = LR Q(g,R).

Clearly, every semisymmetric manifold is also pseudosymmetric. The converse
is not true in general [6]. Examples of semisymmetric Kähler-Norden metrics are
found in [15]. In the class of Kähler-Norden metrics, pseudosymmetry reduces to
semisymmetry. Indeed, we prove the following:

Theorem 5. Every pseudosymmetric Kähler-Norden manifold is semisymmetric.

Proof. Assume that a Kähler-Norden manifold (M,J, g) satisfies the condition (20).
Using (1) and (18), we claim that

−(R ·R)(U, V,X, Y, Z, W ) = (R ·R)(JU, JV, X, Y, Z,W ).

Thus, by (20), we have

−LR Q(g,R)(U, V,X, Y, Z, W ) = LR Q(g,R)(JU, JV, X, Y, Z,W ).

Suppose that LR is non-zero at a certain point p ∈ M . Then the above equality
gives at the point p

−Q(g,R)(U, V,X, Y, Z, W ) = Q(g,R)(JU, JV, X, Y, Z,W ).
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Contracting the last identity with respect to V,X, we obtain

−
∑

i

εiQ(g,R)(U, ei, ei, Y, Z,W ) =
∑

i

εiQ(g,R)(JU, Jei, ei, Y, Z,W ),

which, with the help of (19), can be rewritten in the following form

nR(U, Y, Z, W )−R(U, Y, Z, W ) + R(Y, U, Z, W ) + R(Z, Y, U, W )
+ R(W,Y, Z, U) + g(U,Z)S(Y, W )− g(U,W )S(Y,Z)
= −R(U, Y, Z, W )−R(JY, JU,Z,W )−R(JZ, Y, JU,W )−R(JW, Y, Z, JU)

− g(JU, Z)
∑

i

εiR(ei, Y,W, Jei) + g(JU, W )
∑

i

εiR(ei, Y, Z, Jei).

Hence, using (1) and the first Bianchi identity, we get

nR(U, Y, Z, W ) = g(JU, W )S(JY, Z)− g(JU, Z)S(JY,W )(21)
+ g(U,W )S(Y, Z)− g(U,Z)S(Y, W ).

Contracting (21) with respect to Y,Z, we find

S(U,W ) =
1
n

(rg(U,W ) + r∗(JU, W )).

This leads to R · S = 0. Using this fact and (21), we obtain R ·R = 0, that means
the semisymmetry of our manifold.

A pseudo-Riemannian manifold (M, g) is called Ricci-pseudosymmetric [6] if
there exists a function LS : M → R such that

(22) R · S = LS Q(g, S).

Clearly, every Ricci-semisymmetric manifold is also Ricci-pseudosymmetric. The
converse is not true in general [6]. However, we shall prove that the Ricci-pseudo-
symmetry reduces to the Ricci-semisymmetry in the class of Kähler-Norden metrics.

Theorem 6. Every Ricci-pseudosymmetric Kähler-Norden manifold is Ricci-semi-
symmetric.

Proof. Let us assume then the equality (22) holds on M . Now, in the same way as
in the proof of Theorem 5, we have

(23) −LS Q(g, S)(U, V,X, Y ) = LS Q(g, S)(JU, JV, X, Y ).

Suppose that the function LS is non-zero at a certain point of M . Therefore, (23)
takes the form

(24) −Q(g, S)(U, V,X, Y ) = Q(g, S)(JU, JV, X, Y ).

Contracting the last identity with respect to V,X, we get

−
∑

i

εiQ(g, S)(U, ei, ei, Y ) =
∑

i

εiQ(g, S)(JU, Jei, ei, Y ),
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which in virtue of (19) and (1) can be written as

S(X, Y ) =
1
n

(rg(X, Y ) + r∗g(JX, Y )).

This gives immediately R · S = 0, which completes the proof.

It is obvious that a pseudosymmetric manifold is Ricci-pseudosymmetric. And
as it is already known (see [6]), the converse does not hold in the class of pseudo-
Riemannian manifolds. The below example shows that the converse is not true
even in the class of Kähler-Norden manifolds.

Example. Let (x1, ..., x4m, x4m+1 = u, x4m+2 = v) be the Cartesian coordinates
in the Cartesian space Rn, with n = 4m + 2 > 10. Let

K1 =
[

1 0
0 −1

]
, K2 =

[
0 −1
1 0

]
.

Define a Norden metric g on Rn by

[gij ] =


FIm Im −GIm 0 0
Im 0 0 0 0

−GIm 0 −FIm −Im 0
0 0 −Im 0 0
0 0 0 0 K1

 ,

where Im is the identity matrix of rank m and functions F , G are defined on Rn,
depend on u, v only and satisfy the Cauchy-Riemann equations

∂F

∂u
=

∂G

∂v
,

∂F

∂v
= −∂G

∂u
.

Moreover, define a complex structure J on Rn by

[J i
j ] =


0 0 −Im 0 0
0 0 0 −Im 0

Im 0 0 0 0
0 Im 0 0 0
0 0 0 0 K2

 .

One checks that (J, g) is a Kähler-Norden structure on Rn. Moreover, it can be
verified that the condition R · S = 0 is fulfilled, which means our manifold is
Ricci-semisymmetric. On the other hand, R ·R is non-zero, which means that the
manifold is not semisymmetric.

A pseudo-Riemannian manifold (M, g) is called Weyl-pseudosymmetric [6] if
there exists a function LC : M → R such that

(25) R · C = LC Q(g, C).

Clearly, every pseudosymmetric as well as Weyl-semisymmetric manifold is Weyl-
pseudosymmetric. In dimensions > 5, for a pseudo-Riemannian manifold, it is
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proved in [8, Theorem 1] that the condition (25) reduces to (20) with LR = LC

on the set of points at which the tensor C does not vanish. This is not true in
dimension 4 [7]. Below, we prove that a stronger result holds good in the class of
Kähler-Norden metrics. Namely, we prove the following:

Theorem 7. Every Weyl-pseudosymmetric Kähler-Norden manifold is semisym-
metric.

Proof. Let (M,J, g) be a Kähler-Norden manifold which is Weyl-pseudosymmetric.
At first, we prove that the Weyl-pseudosymmetric reduces to the Weyl-semisym-
metry.

To do it let suppose that R · C is non-zero at a certain point p ∈ M . By the
Weyl-pseudosymmetry, in the same manner as in the proof of Theorem 5, we obtain

LC Q(g, C)(JU, V,X, Y, Z,W ) = LC Q(g, C)(U, JV,X, Y, Z,W ).

Since LC is non-zero at p, it must be satisfied at p

Q(g, C)(JU, V,X, Y, Z,W ) = Q(g, C)(U, JV,X, Y, Z,W ).

Contracting the last identity with respect to V,X, and next using (19) and the first
Bianchi identity for C, we obtain

nC(JU, Y, Z,W )− C(JY, U, Z,W ) + C(JZ, Y,W,U)− C(JW, Y, Z, U)(26)

= g(U,Z)
∑

i

εiC(ei, Y, W, Jei)− g(U,W )
∑

i

εiC(ei, Y, Z, Jei).

Contracting the above relation with respect to U,Z, we find∑
i

εiC(ei, Y,W, Jei) = 0,

which turns (26) into

(27) nC(JU, Y, Z,W )− C(JY, U, Z,W ) + C(JZ, Y,W,U)− C(JW, Y, Z, U) = 0.

We write this equation three times, with the vector fields U,Z,W cyclically per-
muted. Summing all three equations gives

C(JU, Y, Z,W ) + C(JZ, Y,W,U) + C(JW, Y, U, Z) = 0,

which used in (27) leads to

(28) (n− 1)C(JU, Y, Z,W )− C(JY, U, Z,W ) = 0.

If we substitute JU and JY instead of U and Y , respectively, into (28) and compare
the obtained relation with (28), we deduce that C = 0 at point p. Consequently,
R · C = 0 at p. This is a contradiction.

Thus, our Kähler-Norden manifold (M,J, g) is Weyl-semisymmetric, that is,
satisfies the condition R · C = 0. Using this and (3) one can easily see that
R · S = 0. Consequently, we have R ·R = 0 on M .
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A pseudo-Riemannian manifold (M, g) will be called holomorphically projective-
pseudosymmetric if there exists a function LP : M 7→ R such that

(29) R · P = LP Q(g, P ).

Theorem 8. Every holomorphically projective-pseudosymmetric Kähler-Norden
manifold is semisymmetric.

Proof. At the first part of the proof, we show that the holomorphically projective-
pseudosymmetry implies the holomorphically projective semisymmetry.

To do it, let us assume that (M,J, g) is a holomorphically projective-pseudosym-
metric Kähler-Norden manifold and R · P is non-zero at a certain point p ∈ M .
Using the holomorphically projective-pseudosymmetry, in the same way as in the
proof of Theorem 5, we find

−LP Q(g, P )(U, V,X, Y, Z, W ) = LP Q(g, P )(JU, JV, X, Y, Z,W ).

Since LP is non-zero at p, the following formula

−Q(g, P )(U, V,X, Y, Z, W ) = Q(g, P )(JU, JV, X, Y, Z,W )

must be satisfied at p. Contracting the last identity with respect to V,X, we have

nP (U, Y, Z, W )− P (U, Y, Z, W ) + P (Y, U, Z, W ) + P (Z, Y, U, W )

+ P (W,Y, Z, U)− g(U,Z)
∑

i

εiP (ei, Y, ei,W )

= − P (U, Y, Z, W )− P (JY, JU,Z,W )− P (JZ, Y, JU,W )− P (JW, Y, Z, JU)

+ g(U, JZ)
∑

i

εiP (ei, Y, Jei,W ) + g(U, JW )
∑

i

εiP (ei, Y, Z, Jei).

Hence, using (5), we obtain

nP (U, Y, Z, W ) + P (Z, Y, U, W ) + P (W,Y, Z, U)(30)
+ P (JZ, Y, JU,W ) + P (JW, Y, Z, JU)

= g(U, JZ)
∑

i

εiP (ei, Y, Jei,W ) + g(U,Z)
∑

i

εiP (ei, Y, ei,W ).

Contracting the above equality with respect to Z,U , we find

(31)
∑

i

εiP (JW, Y, ei, Jei) = 0.

Taking JU instead of U in (30), contracting the resulting equation with respect to
Z,U , and making use of (31), we deduce

(32)
∑

i

εiP (ei, Y, Jei,W ) = 0.

Moreover, contracting (30) with respect to Y, Z and using∑
i

εiP (JW, ei, ei, JU) =
∑

i

εiP (W, ei, ei, U),
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we obtain
n

∑
i

εiP (U, ei, ei,W ) = −
∑

i

εiP (W, ei, ei, U),

consequently,

(33)
∑

i

εiP (U, ei, ei,W ) = 0.

Now, (30) with the help of (32) and (33) can be rewritten in the following form

nP (U, Y, Z, W ) = P (Y, Z, U, W ) + P (Y, W, Z, U)(34)
−P (JZ, Y, JU,W )− P (JW, Y, Z, JU).

When we put JU, JY instead of U, Y into (34), respectively, and compare the
obtained formula with (34), we conclude that P = 0 at point p. This gives R·P = 0,
which is a contradiction.

Thus, the manifold (M,J, g) is holomorphically projective semisymmetric. To
have the proof complete it is sufficient to use Theorem 2 of [15], which states that
holomorphically projective semisymmetry always implies the semisymmetry.

Final remarks. The conditions of the semisymmetry and pseudosymmetry type
for the Riemann, Ricci and Weyl curvature tensors of Kählerian and para-Kählerian
manifolds were studied in the papers [2] - [4], [10] - [11], [12], and others. Some of
them have inspired the author in her investigations.

Acknowledgment. The author is greatly indebted to Prof. Zbigniew Olszak for
his help during the preparation of this paper.
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