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MANIFOLDS WITH INDEFINITE METRICS WHOSE
SKEW-SYMMETRIC CURVATURE OPERATOR HAS

CONSTANT EIGENVALUES

TAN ZHANG

Abstract. In this expository note, we survey some recent results in the
pseudo-Riemannian setting giving geometrical consequences when the skew-
symmetric curvature operator is assumed to have constant eigenvalues.

§1 Introduction

Let (M, gM ) be a smooth connected pseudo-Riemannian manifold of signature
(p, q). We shall suppose henceforth that p ≤ q since we can always replace gM by
−gM and reverse the roles of p and q.

Let ∇ be the Levi-Civita connection on TM and let R(x, y) := ∇x∇y−∇y∇x−
∇[x,y] be the Riemann curvature operator. The associated curvature tensor
R(x, y, z, w) := gM (R(x, y)z, w) has symmetries:

R(x, y, z, w) = −R(y, x, z, w) = −R(x, y, w, z),

R(x, y, z, w) = R(z, w, x, y), and(1.1.a)

R(x, y, z, w) + R(y, z, x, w) + R(z, x, y, w) = 0.

The curvature tensor carries crucial geometric information about the manifold.
However, the full curvature tensor is quite complicated. One can use the curvature
tensor to define natural endomorphisms of the tangent bundle; the Jacobi operator
JR(x) : y → R(y, x)x, the Szabó operator SR(x) : y → ∇xR(y, x)x, and the skew-
symmetric curvature operator R(·) are examples of such operators. The natural
domain of JR and SR is the unit tangent bundle S(TM); the natural domain of
R(·) is the oriented Grassmannian of non-degenerate 2-planes.

If one assumes that the eigenvalues of such an operator are constant on the nat-
ural domain of definition, then the possible geometries are usually quite restricted.
We work in the Riemannian setting for the moment. If the Szabó operator SR has
constant eigenvalues, then (M, gM ) is a local symmetric space [38]. If the Jacobi
operator JR has constant eigenvalues, then (M, gM ) is a rank 1 symmetric space if
m 6≡ 0 mod 4 [9], [10], [11]; for other related work concerning the Jacobi operator
we refer to [2]–[7], [12]–[20], [22], [25], [26], [29]–[36]. The proof of these results
uses techniques from both differential geometry and from algebraic topology; in
particular the work of Adams [1], Borel [8], and Stong [37] plays a central role.
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In this paper, we shall deal with the skew-symmetric curvature operator; this
operator was first studied in this context by Ivanova and Stanilov [28]. In the
Riemannian setting, this operator has been studied by Gilkey [21], by Gilkey,
Leahy, and Sadofsky [23], and by Ivanov and Petrova [27]. It is convenient to
pass to a purely algebraic context and work with the space of algebraic curvature
tensors. Let g be a non-degenerate symmetric bilinear form of signature (p, q) on
a finite dimensional real vector space V . A 4 tensor R ∈ ⊗4(V ∗) is said to be
an algebraic curvature tensor if the equations displayed in (1.1.a) are satisfied.
We note that the Riemann curvature tensor R of a manifold (M, gM ) defines an
algebraic curvature tensor on TP M for every P in M ; conversely, given a metric gP

on TP M and an algebraic curvature tensor RP , there exists the germ of a metric
g̃M on M extending gP so that RP is the curvature tensor of g̃M at P . Thus the
study of algebraic curvature tensors is important in differential geometry. We refer
to [20], [29] for expository accounts of this field and for a more detailed bibliography
than can be presented here.

Here is a brief outline of this note. In §2, we shall introduce some notational
conventions. In §3, we shall review results of [21], [23], [27] in the Riemannian
setting. In §4, we discuss the corresponding generalizations of these results to the
pseudo-Riemannian setting. We conclude with a short bibliography.

§2 Notational conventions

Let Rp,q be the vector space of real (p + q)-tuples of the form

x = (x1, . . . , xp, xp+1, . . . , xp+q)

with the non-degenerate symmetric bilinear form of signature (p, q)

g(x, y) := −
p∑

i=1

xiyi +
p+q∑

i=p+1

xiyi.

Let π be a 2-plane in Rp,q; π is said to be non-degenerate if the restriction of g to
π is non-degenerate. Let {x, y} be a basis for π; π is non-degenerate if and only if
g(x, x)g(y, y) − g(x, y)2 6= 0. Let Gr+

2 (Rp,q) (resp. Gr2(Rp,q)) be the manifold of
all oriented (resp. unoriented) spacelike 2-planes in Rp,q. Let {x, y} be an oriented
basis for π ∈ Gr+

2 (Rp,q). We define the skew-symmetric curvature operator R(π)
by

R(π) := {g(x, x)g(y, y)− g(x, y)2}− 1
2 R(x, y);

R(π) is independent of the particular oriented basis chosen for π.

An algebraic curvature tensor R is said to be of rank r if rankR(π) = r on
all π ∈ Gr+

2 (Rp,q). An algebraic curvature tensor R is said to be IP if R(π) has
constant eigenvalues on all π ∈ Gr+

2 (Rp,q). A metric gM on a manifold M is said
to be IP if R(π) is IP at every point P ∈ M ; the eigenvalues are permitted to
depend on P ∈ M .
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IP algebraic curvature tensors and IP metrics were first studied by Ivanov and
Petrova [27] in the context of four dimensional Riemannian geometry. Subse-
quently Gilkey [21], and Gilkey, Leahy and Sadofsky [23] classified the IP
algebraic curvature tensors and IP metrics in the Riemannian setting except in
dimension 7; some partial results regarding dimension 7 can be found in Gilkey
and Semmelman [24].

We say that (C, φ) is an admissible pair if C is a nonzero constant and if φ is
a linear map of Rp,q so that φ2 = ε · id and that g(φ(u), φ(v)) = ε · g(u, v) where
ε = ±1. If ε = 1, then φ is said to be an involutive isometry; if ε = −1, then φ
is said to be a skew-involutive skew-isometry. If (C, φ) is an admissible pair, we
define

RC,φ(x, y)z := C{g(φ(y), z)φ(x)− g(φ(x), z)φ(y)}.
We remark that ε = −1 is only possible when p = q. We note that if φ is the
identity map, then RC,φ has constant sectional curvature C.

We say that an algebraic curvature tensor R is spacelike (resp. timelike) if
Range (R(π)) is spacelike (resp. timelike) for every spacelike 2-plane π. If R is a
rank 2 IP algebraic curvature tensor, then R is said to be mixed if Range (R(π))
is of type (1, 1) for every spacelike 2-plane π; R is said to be null if Range (R(π))
is a degenerate 2-plane for every spacelike 2-plane π and R(π) has only the zero
eigenvalue.

§3 Classification of IP algebraic curvature tensors and IP metrics
in the Riemannian setting

In this section, we review previous work of [21], [23], [27] on the classification of
IP algebraic curvature tensors and IP metrics in the Riemannian setting. The fol-
lowing theorem classifies IP algebraic curvature tensors in the Riemannian setting
if m = 5, 6 or if m ≥ 8:

Theorem 3.1 (Gilkey [21], Gilkey, Leahy and Sadofsky [23]). Let R be an
IP algebraic curvature tensor. Assume that (p, q) = (0,m). Let m ≥ 5.

1. If m 6= 7, then rankR ≤ 2.
2. If rankR = 2, then there exists an admissible pair (C, φ) with φ an involutive

isometry of Rm so that R = RC,φ.

The four dimensional case is exceptional. We have:

Theorem 3.2 (Ivanov and Petrova [27]). Let R be an IP algebraic curvature
tensor. Let (p, q) = (0, 4).

1. If rankR = 2, then there exists an admissible pair (C, φ) with φ an involutive
isometry of R4 so that R = RC,φ.

2. If rankR = 4, then R is equivalent to a nonzero multiple of the “exotic”
rank 4 tensor:

R1212 = 2, R1313 = 2, R1414 = −1, R2424 = 2, R2323 = −1,

R3434 = 2, R1234 = −1, R1324 = 1, R1423 = 2.
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Theorems 3.1 and 3.2 classify the IP algebraic curvature tensors if m ≥ 4 and
if m 6= 7. The corresponding classification of IP metrics is given by the following
result:

Theorem 3.3. (Gilkey [21], Gilkey, Leahy and Sadofsky [23]; Ivanov and
Petrova [27]) Let M be an IP Riemannian manifold of dimension m. Assume
m ≥ 4. If m = 7, we further assume that rankR = 2. Exactly one and only one of
the following assertions is valid for M :

1. M has constant sectional curvature.
2. M is locally a warped product: ds2

M = dt2 + f(t)ds2
N of a connected open

interval I ⊂ R with a Riemannian manifold N of dimension m−1 which has
constant sectional curvature K 6= 0. Furthermore, the warping function f is
given by f(t) = Kt2 + At + B, where A and B are auxiliary constants so that
4KB −A2 6= 0 and that f(t) > 0 on I.

§4 Main results in the Pseudo-Riemannian setting

The results discussed in §3 are in the Riemannian setting where (p, q) = (0,m);
the fact that the metric in question is positive definite is used at several crucial
points in the argument. We shall present some analogous results in the Lorentzian
setting (p, q) = (1,m − 1) if m ≥ 10 and in the higher signature setting (p, q) =
(2,m− 2) if q ≥ 11. We refer to [39] for further details.

Theorem 4.1. Let R be an algebraic curvature tensor of rank r on Rp,q.
1. If p = 1 and if q ≥ 9, then r ≤ 2.
2. If p = 2 and if q ≥ 11, then r ≤ 4. Furthermore, if q and 2+q are not powers

of 2, then r ≤ 2.
3. There exists a rank 4 IP algebraic curvature tensor if (p, q) = (2, 2).

Theorem 4.1 bounds the rank of an IP algebraic curvature tensor. In the rank
2 Lorentzian setting, we have a trichotomy:

Theorem 4.2. Let R be a rank 2 Lorentzian IP algebraic curvature tensor and let
m ≥ 4. Exactly one and only one of the following assertions is valid for R:

1. For all π ∈ Gr+
2 (R1,m−1), we have that Range (R(π)) is spacelike and that

R(π) has two nontrivial purely imaginary eigenvalues. Thus R is spacelike.
2. For all π ∈ Gr+

2 (R1,m−1), we have that Range (R(π)) is of type (1, 1) and
that R(π) has two nontrivial real eigenvalues. Thus R is mixed.

3. For all π ∈ Gr+
2 (R1,m−1), we have that Range (R(π)) is degenerate with a

positive semi-definite metric and that R(π) has only the zero eigenvalue. Thus
R is null.

The following theorem shows that most rank 2 Lorentzian IP algebraic curvature
tensors are spacelike.

Theorem 4.3. Let R be a rank 2 Lorentzian IP algebraic curvature tensor and let
m ≥ 4.
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1. If R is mixed, then m = 4, 5, 8, or 9.
2. If R is null, then m = 5 or 9.

Theorems 4.1 4.2, and 4.3 show that in the Lorentzian setting, the rank of a
nontrivial IP algebraic curvature tensor is 2 and the tensor in question is spacelike
if m ≥ 10. We have the following classification of rank 2 IP algebraic curvature
tensors which are spacelike or timelike.

Theorem 4.4.
1. If (C, φ) is an admissible pair, then RC,φ is a rank 2 IP algebraic curvature

tensor which is spacelike if ε = 1 and timelike if ε = −1.
2. Let R be an IP algebraic curvature tensor on Rp,q. Suppose that q = 6 or

that q ≥ 9. Suppose that R is spacelike or timelike and that R has rank 2.
Then there exists an admissible pair (C, φ) so that R = RC,φ.

Let φ be an involutive isometry of Rp,q. We generalize the construction of IP
metrics given in Theorem 3.3 as follows. Let ε = ±1. Let I ⊂ R be a connected open
interval. Let N be the germ of a pseudo-Riemannian manifold of constant sectional
curvature K 6= 0. Let A and B be auxiliary constants so that 4KB − εA2 6= 0 and
that fε(t) := εKt2 + At + B > 0 on I. Let M := I ×N and let

(4.4.a) gM := εdt2 + fε(t)gN

define a rank 2 IP metric on M . We have the following classification of IP algebraic
curvature tensors and rank 2 IP metrics in the Lorentzian setting provided m ≥ 10.

Theorem 4.5. Assume that m ≥ 10.
1. Let R be an IP algebraic curvature tensor on R1,m−1. R is nontrivial if and

only if there exists an admissible pair (C, φ) with φ an involutive isometry of
R1,m−1 so that R = RC,φ.

2. If gM is a rank 2 Lorentzian IP metric, then exactly one and only one of the
following assertions is valid for gM :
(2a) gM is a metric of constant sectional curvature C 6= 0.
(2b) gM is locally isometric to a warped product metric of the form given

in (4.4.a).

References

[1] J. Adams, Vector fields on spheres, Ann. of Math (2)75, (1962), 603–632.
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