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We collect the recent results on invariant f -structures in generalized Hermitian
geometry. Here the canonical f -structures on homogeneous k-symmetric spaces
play a remarkable role. Specifically, these structures provide a wealth of invariant
examples for the classes of nearly Kähler f -structures, Hermitian f -structures and
some others. Finally, we consider all invariant f -structures on the complex flag
manifold SU(3)/Tmax and describe them in the sense of generalized Hermitian
geometry. In particular, we present first invariant examples of Killing f -structures.

1. Introduction

Invariant structures on homogeneous manifolds are traditionally among the
most important objects in differential geometry, specifically, in Hermitian
geometry. In particular, a special role is played by a significant class of
invariant nearly Kähler structures based on the canonical almost complex
structure on homogeneous 3-symmetric spaces (see [51], [58], [21], [34]). It
should be mentioned that the canonical almost complex structure on such
spaces became an effective tool and a remarkable example in some deep
constructions of differential geometry and global analysis such as homoge-
neous structures, Einstein metrics, holomorphic and minimal submanifolds,
real Killing spinors.

The concept of generalized Hermitian geometry created in the 1980s (see,
for example, [35], [38]) is a natural consequence of the development of Her-
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mitian geometry and the theory of almost contact structures. One of its
central objects is the metric f -structures of the classical type (f3 + f = 0),
which include the class of almost Hermitian structures. Many important
classes of metric f -structures such as Kähler, Killing, nearly Kähler, Her-
mitian f -structures and some others were introduced and intensively inves-
tigated in various aspects (see [35], [36], [38], [39] etc.). Specifically, Killing
and nearly Kähler f -structures became natural generalizations of classical
nearly Kähler structures in Hermitian geometry. However, this theory had
not provided new invariant examples of its own up to the recent period.

There has recently been a qualitative change in the situation, related to the
complete solution of the problem of describing canonical structures of classi-
cal type on regular Φ-spaces [17]. A rich collection of canonical f -structures
has been discovered (including almost complex structures) leading to the
presentation of wide classes of invariant examples in generalized Hermi-
tian geometry (see [5]-[8], [18] and others). In particular, nearly Kähler
f -structures were provided with a remarkable class of their own invariant
examples (see [7], [8]). This has ensured a continuation of the classical
results of J. A. Wolf, A. Gray, V. F. Kirichenko and others. As to Killing
f -structures, it is an essential problem to find proper non-trivial invariant
examples. Moreover, the possibilities for constructing such examples are
fairly limited (see [5]).

The main goals of this paper are

(i) to give a very brief survey on invariant structures in Hermitian and
generalized Hermitian geometry and

(ii) to characterize all invariant f -structures on the flag manifold
SU(3)/Tmax in the sense of generalized Hermitian geometry, in par-
ticular, to present first invariant examples of Killing f -structures.

Sections 2-4 are of short survey character. In Section 2, we mention some
basic notions and results on homogeneous Φ-spaces and canonical affinor
structures of classical types. In particular, the exact formulae for canonical
f -structures on 4- and 5-symmetric spaces are included. In Section 3, we
recall the main classes of almost Hermitian structures following the Gray-
Hervella division (see [27]). Besides, we select particular results related to
invariant almost Hermitian structures. Further, in Section 4, we describe
main classes of metric f -structures in generalized Hermitian geometry. Here
we also refer to the recent results on invariant nearly Kähler, G1f -, Hermi-
tian, Killing f -structures as well as invariant f -structures admitting (1, 2)-
symplectic metrics. In this consideration, the canonical f -structures on



7

homogeneous 4- and 5-symmetric spaces are especially important.

Finally, in Section 5, we examine in detail all invariant f -structures on the
complex flag manifold SU(3)/Tmax with respect to all invariant Riemannian
metrics. We discuss belonging these structures to the main classes of metric
f -structures above mentioned. In particular, invariant non-trivial Killing
f -structures with the corresponding Riemannian metrics are first presented.

Note that more detailed version of this paper is available in [12].

2. Homogeneous Φ-spaces and canonical affinor structures

Here we briefly formulate some basic definitions and results related to reg-
ular Φ-spaces and canonical affinor structures on them. More detailed in-
formation can be found in [17], [11], [58], [41], [20], [50], [51].
Let G be a connected Lie group, Φ its (analytic) automorphism, GΦ the
subgroup of all fixed points of Φ, and GΦ

o the identity component of GΦ.
Suppose a closed subgroup H of G satisfies the condition GΦ

o ⊂ H ⊂ GΦ.

Then G/H is called a homogeneous Φ-space.
Homogeneous Φ-spaces include homogeneous symmetric spaces (Φ2 = id)
and, more general, homogeneous Φ-spaces of order k (Φk = id) or, in the
other terminology, homogeneous k-symmetric spaces (see [41]).
For any homogeneous Φ-space G/H one can define the mapping

So = D : G/H → G/H, xH → Φ(x)H.

It is known [50] that So is an analytic diffeomorphism of G/H. So is usually
called a ”symmetry” of G/H at the point o = H. It is evident that in view
of homogeneity the ”symmetry” Sp can be defined at any point p ∈ G/H.
Note that there exist homogeneous Φ-spaces that are not reductive. That
is why so-called regular Φ-spaces first introduced by N. A.Stepanov [50] are
of fundamental importance.
Let G/H be a homogeneous Φ-space, g and h the corresponding Lie alge-
bras for G and H, ϕ = dΦe the automorphism of g. Consider the linear
operator A = ϕ−id and the Fitting decomposition g = g0⊕g1 with respect
to A, where g0 and g1 denote 0- and 1-component of the decomposition re-
spectively. It is clear that h = Ker A, h ⊂ g0. Recall that a homogeneous
Φ-space G/H is called a regular Φ-space if h = g0 [50]. Note that other
equivalent defining conditions can be found in [17], [11].
We formulate two basic facts [50]:
Any homogeneous Φ-space of order k (Φk = id) is a regular Φ-space.
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Any regular Φ-space is reductive. More exactly, the Fitting decomposition

g = h⊕m, m = Ag (1)

is a reductive one.
Decomposition (1) is the canonical reductive decomposition corresponding
to a regular Φ-space G/H, and m is the canonical reductive complement.
Decomposition (1) is obviously ϕ-invariant. Denote by θ the restriction of
ϕ to m. As usual, we identify m with the tangent space To(G/H) at the
point o = H. We note that θ commutes with any element of the linear
isotropy group Ad(H) (see [50]). It also should be noted (see [50]) that
(dSo)o = θ.

An affinor structure on a manifold is known to be a tensor field of type (1, 1)
or, equivalently, a field of endomorphisms acting on its tangent bundle.
Suppose F is an invariant affinor structure on a homogeneous manifold
G/H. Then F is completely determined by its value Fo at the point o,
where Fo is invariant with respect to Ad(H). For simplicity, we will denote
by the same manner both any invariant structure on G/H and its value at
o throughout the rest of the paper.
Recall [16],[17] that an invariant affinor structure F on a regular Φ-space
G/H is called canonical if its value at the point o = H is a polynomial in
θ.
Denote by A(θ) the set of all canonical affinor structures on a regular Φ-
space G/H. It is easy to see that A(θ) is a commutative subalgebra of
the algebra A of all invariant affinor structures on G/H. It is evident that
the algebra A(θ) for any symmetric Φ-space (Φ2 = id) is isomorphic to
R. As to arbitrary regular Φ-space (G/H, Φ), the algebraic structure of
its commutative algebra A(θ) has been recently completely described (see
[10]). It should be also mentioned that all canonical structures are, in
addition, invariant with respect to the ”symmetries” {Sp} of G/H.

The most remarkable example of canonical structures is the canonical al-
most complex structure J = 1√

3
(θ − θ2) on a homogeneous 3-symmetric

space (see [51], [58], [21]). It turns out that it is not an exception. In other
words, the algebra A(θ) contains many affinor structures of classical types.

We will concentrate on the following affinor structures of classical types:
almost complex structures J (J2 = −1);
almost product structures P (P 2 = 1);
f -structures (f3 + f = 0) [59]; f -structures of hyperbolic type or,
briefly, h-structures (h3 − h = 0), [35].
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Clearly, f -structures and h-structures are generalizations of structures J

and P respectively.
All the canonical structures of classical type on regular Φ-spaces were com-
pletely described [16],[17],[9]. In particular, for homogeneous k-symmetric
spaces, precise computational formulae were indicated. For future reference
we select here the results for canonical f -structures (including structures J)
on homogeneous Φ-spaces of orders 3, 4, and 5 only:

k = 3 : J =
1√
3
(θ − θ2) k = 4 : f =

1
2
(θ − θ3);

k = 5 : J1 = α(θ − θ4)− β(θ2 − θ3); J2 = β(θ − θ4) + α(θ2 − θ3);

f1 = γ(θ − θ4) + δ(θ2 − θ3); f2 = δ(θ − θ4)− γ(θ2 − θ3);

where α =
√

5+2
√

5
5 ; β =

√
5−2

√
5

5 ; γ =
√

10+2
√

5
10 ; δ =

√
10−2

√
5

10 .
We note that the existence of the structure J and its properties are well
known (see [51],[58],[21],[34]). Besides, general properties of the canonical
structure f on homogeneous 4-symmetric spaces were investigated in [14].

3. Almost Hermitian structures

Let M be a smooth manifold, X(M) the Lie algebra of all smooth vector
fields on M , d the exterior differentiation operator. An almost Hermitian
structure on M (briefly, AH-structure) is a pair (g, J), where g = 〈·, ·〉 is
a (pseudo)Riemannian metric on M , J an almost complex structure such
that 〈JX, JY 〉 = 〈X, Y 〉 for any X,Y ∈ X(M). It follows immediately that
the tensor field Ω(X, Y ) = 〈X, JY 〉 is skew-symmetric, i.e. (M, Ω) is an
almost symplectic manifold. Ω is usually called a fundamental form (the
Kähler form) of an AH-structure (g, J).

Further, denote by ∇ the Levi-Civita connection of the metric g on M .
We recall below some main classes of AH-structures together with their
defining properties (see, for example, [27]):

K Kähler structure: ∇J = 0,
H Hermitian structure: ∇X(J)Y −∇JX(J)JY = 0,
G1 AH-structure of class G1, or ∇X(J)X −∇JX(J)JX = 0,

G1-structure:
QK quasi-Kähler structure: ∇X(J)Y +∇JX(J)JY = 0,
AK almost Kähler structure: d Ω = 0,
NK nearly Kähler structure, ∇X(J)X = 0.

or NK-structure:
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It is well known (see, for example, [27]) that
K ⊂ H ⊂ G1; K ⊂ NK ⊂ G1; NK = G1 ∩QK; K = H ∩QK.

As usual, we will denote by N the Nijenhuis tensor of an almost complex
structure J , that is,

N(X,Y ) =
1
4

([JX, JY ]− J [JX, Y ]− J [X, JY ]− [X, Y ])

for any X,Y ∈ X(M). Then the condition N = 0 is equivalent to the
integrability of J . Moreover, an almost Hermitian structure (g, J) belongs
to the class H if and only if N = 0 (see, for example, [27]).
As was already mentioned, the role of homogeneous almost Hermitian man-
ifolds is particularly important ”because they are the model spaces to which
all other almost Hermitian manifolds can be compared” (see [22]). A wealth
of examples for the most classes above noted, both of general and specific
character, can be found in [58], [21], [22], [34] and others. In particular,
after the detailed investigation of the 6-dimensional homogeneous nearly
Kähler manifolds V. F. Kirichenko proved [34] that naturally reductive
strictly nearly Kähler manifolds SO(5)/U(2) and SU(3)/Tmax are not iso-
metric even locally to the 6-dimensional sphere S6. These examples gave
a negative answer to the conjecture of S. Sawaki and Y. Yamanoue (see
[52]) claimed that any 6-dimensional strictly NK-manifold was a space of
constant curvature. It should be noted that the canonical almost complex
structure J = 1√

3
(θ − θ2) on homogeneous 3-symmetric spaces plays a key

role in these and other examples of homogeneous AH-manifolds.
Let g be an invariant (pseudo-)Riemannian metric on a homogeneous space
G/H. Suppose G/H is a reductive homogeneous space, g = h ⊕ m the
reductive decomposition of the Lie algebra g. As usual, we identify m with
the tangent space To(G/H) at the point o = H. Then the invariant metric
g is completely defined by its value at the point o. For convenience we
denote by the same manner both any invariant metric g on G/H and its
value at o.
Recall that (G/H, g) is naturally reductive with respect to a reductive
decomposition g = h ⊕ m [40] if g([X,Y ]m, Z) = g(X, [Y, Z]m) for all
X,Y, Z ∈ m. Here the subscript m denotes the projection of g onto m

with respect to the reductive decomposition.
We select here some known results closely related to the main subject of
our future consideration.

Theorem 3.1 [1] Any invariant almost Hermitian structure on a naturally
reductive space (G/H, g) belongs to the class G1.
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Theorem 3.2 [58], [21] A homogeneous 3-symmetric space G/H with the
canonical almost complex structure J and an invariant compatible metric g

is a quasi-Kähler manifold. Moreover, (G/H, J, g) belongs to the class NK

if and only if g is naturally reductive.

Theorem 3.3 [44], [23], [37] A 6-dimensional strictly nearly Kähler man-
ifold is Einstein.

Finally, we dwell on some recent results obtained in [48] for flag manifolds.
Let G be a complex semi-simple Lie group, g its Lie algebra. Consider
the corresponding maximal flag manifold F = G/P , where P is a Borel
(minimal parabolic) subgroup of G. For any maximal compact subgroup
U of G it is possible to write F = U/T , where T ⊂ U is a maximal torus.
Studying U -invariant almost Hermitian structures on F the following result
was proved:

Theorem 3.4 [48] Let G be a complex simple Lie group. Any invariant
nearly Kähler structure on F is Kähler if g is not A2. In the case A2

there exists one equivalence class of invariant almost complex structures
admitting a unique (up to homothety) nearly Kähler metric.

Further, in accordance with 16 classes of almost Hermitian structures (see
[27]), it was shown in [48] that in the invariant setting on F these 16 classes
collapse down to four classes of invariant almost Hermitian structures with
three possibilities for the invariant almost complex structures. More ex-
actly, the following results were summarized [48]:

There are the following classes of invariant almost Hermitian structures on
F:

1) Kähler: {0}; W1 (nearly Kähler); W2 (almost Kähler); W3; W4;
W3⊕W4 (integrable); W2⊕W4; W1⊕W4; W2⊕W3; W2⊕W3⊕W4.

2) (1, 2)-symplectic (quasi-Kähler): W1 ⊕W2; W1 ⊕W2 ⊕W4.

3) Invariant: W1 ⊕W2 ⊕W3 (co-symplectic); W1 ⊕W3; W1 ⊕W3 ⊕
W4. (The last two for specific metrics and every invariant almost
complex structure.)

4. Metric f-structures and homogeneous manifolds

An f -structure on a manifold M is known to be a field of endomorphisms
f acting on its tangent bundle and satisfying the condition f3 + f = 0 (see
[59]). The number r = dim Im f is constant at any point of M and called
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a rank of the f -structure. Besides, the number dim Ker f = dim M − r is
usually said to be a deficiency of the f -structure and denoted by def f .

Recall that an f -structure on a (pseudo)Riemannian manifold (M, g = 〈·, ·〉)
is called a metric f -structure, if 〈fX, Y 〉+ 〈X, fY 〉 = 0, X, Y ∈ X(M) (see
[35]). In the case the triple (M, g, f) is called a metric f -manifold. It is
clear that the tensor field Ω(X,Y ) = 〈X, fY 〉 is skew-symmetric, i.e. Ω is a
2-form on M . Ω is called a fundamental form of a metric f -structure [38],
[35]. It is easy to see that the particular cases def f = 0 and def f = 1 of
metric f -structures lead to almost Hermitian structures and almost contact
metric structures respectively.

Let M be a metric f -manifold. Then X(M) = L ⊕M, where L = Im f

and M = Ker f are mutually orthogonal distributions, which are usually
called the first and the second fundamental distributions of the f -structure
respectively. Obviously, the endomorphisms l = −f2 and m = id + f2

are mutually complementary projections on the distributions L and M
respectively. We note that in the case when the restriction of g to L is non-
degenerate the restriction (F, g) of a metric f -structure to L is an almost
Hermitian structure, i.e. F 2 = −id, 〈FX, FY 〉 = 〈X, Y 〉, X, Y ∈ L.
A fundamental role in the geometry of metric f -manifolds is played by the
composition tensor T , which was explicitly evaluated in [38]:

T (X,Y ) =
1
4
f(∇fX(f)fY −∇f2X(f)f2Y ), (2)

where ∇ is the Levi-Civita connection of a (pseudo)Riemannian manifold
(M, g), X,Y ∈ X(M).Using this tensor T , the algebraic structure of a
so-called adjoint Q-algebra in X(M) can be defined by the formula:
X ∗ Y = T (X, Y ). It gives the opportunity to introduce some classes of
metric f -structures in terms of natural properties of the adjoint Q-algebra
(see [35], [38]). We enumerate below the main classes of metric f -structures
together with their defining properties:

Kf Kähler f–structure: ∇f = 0,
Hf Hermitian f–structure: T (X, Y ) = 0, i.e. X(M) is

an abelian Q-algebra,
G1f f -structure of class G1, or T (X, X) = 0, i.e. X(M) is

G1f -structure: an anticommut. Q-algebra,
QKf quasi-Kähler f–structure: ∇Xf + TXf = 0,
Kill f Killing f -structure: ∇X(f)X = 0,
NKf nearly Kähler f -structure, ∇fX(f)fX = 0.

or NKf -structure:
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The classes Kf, Hf, G1f, QKf (in more general situation) were introduced
in [35] (see also [49]). Killing f -manifolds Kill f were defined and studied
in [24], [25]. The class NKf was determined in [7], [8].

The following relationships between the classes mentioned are evident:
Kf = Hf ∩QKf ; Kf ⊂ Hf ⊂ G1f ; Kf ⊂ Kill f ⊂ NKf ⊂ G1f .

It is important to note that in the special case f = J we obtain the cor-
responding classes of almost Hermitian structures (see [27]). In particular,
for f = J the classes Kill f and NKf coincide with the well-known class
NK of nearly Kähler structures.

Remark 4.1 Killing f -manifolds are often defined by requiring the fun-
damental form Ω to be a Killing form, i.e. dΩ = ∇Ω (see [24], [39]). It is
not hard to prove that the definition is equivalent to the above condition
∇X(f)X = 0.

Now we dwell on invariant metric f -structures on homogeneous spaces.

Any invariant metric f -structure on a reductive homogeneous space G/H

determines the orthogonal decomposition m = m1⊕m2 such that m1 = Imf ,
m2 = Ker f .

As it was already noted (see Section 3), the main classes of almost Hermi-
tian structures are provided with the remarkable set of invariant examples.
It turns out that there is also a wealth of invariant examples for the basic
classes of metric f -structures. These invariant metric f -structures can be
realized on homogeneous k-symmetric spaces with canonical f -structures.
We select here only several results in this direction. More detailed infor-
mation can be found in [5]-[8], [18], [43].

Theorem 4.1 [6] Any invariant metric f -structure on a naturally reduc-
tive space (G/H, g) is a G1f -structure.

As a special case (Ker f = 0), it follows Theorem 3.1.

We stress the particular role of homogeneous 4- and 5-symmetric spaces.

Theorem 4.2 [5]-[8] The canonical f -structure f = 1
2 (θ−θ3) on any natu-

rally reductive 4-symmetric space (G/H, g) is both a Hermitian f -structure
and a nearly Kähler f -structure. Moreover, the following conditions are
equivalent:
1) f is a Kähler f -structure; 2) f is a Killing f -structure; 3) f is a quasi-
Kähler f -structure; 4) f is an integrable f -structure; 5) [m1,m1] ⊂ h; 6)
[m1,m2] = 0; 7) G/H is a locally symmetric space: [m, m] ⊂ h.
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Theorem 4.3 [5], [6], [8], [18] Let (G/H, g) be a naturally reductive 5-
symmetric space, f1 and f2, J1 and J2 the canonical structures on this
space. Then f1 and f2 belong to both classes Hf and NKf. Moreover, the
following conditions are equivalent:
1) f1 is a Kähler f -structure; 2) f2 is a Kähler f-structure; 3) f1 is a
Killing f -structure; 4) f2 is a Killing f -structure; 5) f1 is a quasi-Kähler
f -structure; 6) f2 is a quasi-Kähler f -structure; 7) f1 is an integrable
f -structure; 8) f2 is an integrable f -structure; 9) J1 and J2 are NK-
structures; 10) [m1,m2] = 0 (here m1 = Im f1 = Ker f2, m2 = Im f2 =
Ker f1); 11) G/H is a locally symmetric space: [m, m] ⊂ h.

It should be mentioned that Riemannian homogeneous 4-symmetric spaces
of classical compact Lie groups were classified and geometrically described
in [29]. The similar problem for homogeneous 5-symmetric spaces was
considered in [54]. By Theorem 4.2 and Theorem 4.3, it presents a collection
of homogeneous f -manifolds in the classes NKf and Hf. Note that the
canonical f -structures under consideration are generally non-integrable.

Besides, there are invariant NKf -structures and Hf -structures on homoge-
neous spaces (G/H, g), where the metric g is not naturally reductive. The
example of such a kind can be realized on the 6-dimensional Heisenberg
group (N, g). As to details related to this group, we refer to [32], [33], [53].

Theorem 4.4 [6]-[8] The 6-dimensional generalized Heisenberg group
(N, g) with respect to the canonical f -structure f = 1

2 (θ− θ3) of a homoge-
neous Φ-space of order 4 is both Hf - and NKf-manifold. This f -structure
is neither Killing nor integrable on (N, g).

Remark 4.2 Theorems 4.2 and 4.4, in particular, illustrate simultaneously
the analogy and the difference between the canonical almost complex struc-
ture J on homogeneous 3-symmetric spaces (G/H, g, J) and the canonical
f -structure on homogeneous 4-symmetric spaces (G/H, g, f) (see Theorem
3.2).

Let us also remark that the 6-dimensional generalized Heisenberg group
(N, g) is an example of solvable type. In Section 5, we present NKf -
structures with non-naturally reductive metrics of semi-simple type.

Finally, we briefly discuss the existence problem for invariant Killing f -
structures. By Theorems 4.2 and 4.3, the canonical f -structures on nat-
urally reductive 4- and 5-symmetric spaces are never strictly (i.e. non-
Kähler) Killing f -structures. Moreover, we recall the following general
result:
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Theorem 4.5 [5] Let (G/H, g, f) be a naturally reductive Killing f -
manifold. Then the following relations hold:

[m1, m1] ⊂ m1 ⊕ h, [m2,m2] ⊂ m2 ⊕ h, [m1, m2] ⊂ h.

In particular, both the fundamental distributions of the Killing f -structure
generate invariant totally geodesic foliations on G/H.

By the results in [24] and Theorem 4.5, it follows

Corollary 4.1 [5] There are no non-trivial (i.e. def f > 0) invariant
Killing f -structures of the so-called fundamental type (see [24]) on naturally
reductive homogeneous spaces (G/H, g).

This fact is a wide generalization of the similar result of A.Gritsans ob-
tained for Riemannian globally symmetric spaces. Besides, it shows a
substantial difference between invariant Killing f -structures and invariant
NK-structures. In Section 5, we will indicate, in particular, first examples
of invariant Killing f -structures.

It should be mentioned that invariant f -structures on flag manifolds were
recently investigated in [19]. More precisely, invariant f -structures on the
classical maximal flag manifolds F(n) = U(n)/T (n ≥ 2, T is a maximal
torus in the unitary group U(n)) were considered. Using graph-theoretic ap-
proach, invariant f -structures admitting (1, 2)-symplectic metrics on F(n)
were characterized in the following way:

Theorem 4.6 [19] Let F be an invariant f -structure on F(n), n ≥ 2.
(F(n),F) admits invariant (1, 2)-symplectic metrics if and only if the asso-
ciated with F digraph G is locally transitive.

It is noted in [19] that the problem of classifying locally transitive digraphs
is still open. We refer to [19], [48] and many preceding works sited here for
details in notions, constructions, and results.

5. Invariant f-structures on the complex flag manifold
M = SU(3)/Tmax

In this Section, we will consider all invariant f -structures on the flag mani-
fold M = SU(3)/Tmax. Note that invariant almost complex structures (i.e.
f -structures of maximal rank 6) on this space were investigated in [22], [2],
[3] and many other papers.

The homogeneous manifold SU(3)/Tmax is known to be an important ex-
ample in many branches of differential geometry and beyond. In particular,



16

M = SU(3)/Tmax is a Riemannian homogeneous 3-symmetric space not
homeomorphic with the underlying manifold M of any Riemannian sym-
metric space (see [42]). Further, M is a homogeneous k-symmetric space
for any k ≥ 3. Moreover, M is a naturally reductive Riemannian homoge-
neous space that is non-commutative (see [30]). It means that the algebra
of invariant differential operators D(SU(3)/Tmax) is not commutative (see
[28]). It follows that M = SU(3)/Tmax is not even a weakly symmetric
space (see, for example, [55]).

Besides, M is the twistor space for the projective space CP 2 (see, for exam-
ple, [13], Chapter 13). It was a key point for constructing the first examples
of 6-dimensional Riemannian manifolds admitting a real Killing spinor (see
[15]). More exactly, the flag manifold M = SU(3)/Tmax with the nearly
Kähler structure (g, J) just possesses a real Killing spinor (see [15], [26]).
Moreover, using the duality procedure for this space SU(3)/Tmax, one can
effectively construct pseudo-Riemannian homogeneous manifolds with the
real Killing spinors (see [31]).

Let Φ = I(s) be an inner automorphism of the Lie group SU(3) defined
by the element s = diag (ε, ε, 1), where ε is a primitive third root of unity.
Then the subgroup H = GΦ of all fixed points of Φ is of the form:

GΦ = {diag(eiβ1 , eiβ2 , eiβ3)|β1 + β2 + β3 = 0, βj ∈ R}.
Obviously, GΦ is isomorphic to T 2 = Tmax diagonally imbedded into SU(3).
It means that the flag manifold M = SU(3)/Tmax is a homogeneous 3-
symmetric space defined by the automorphism Φ.

Consider the canonical reductive decomposition g = h⊕m of the Lie algebra
g = su(3) for the homogeneous Φ-space M . Using the notations in [46], we
obtain:

g = su(3) =








α1 a c

−a α2 b

−c −b α3




∣∣∣∣∣∣

α1, α2, α3 ∈ ImC,

a, b, c ∈ C,

α1 + α2 + α3 = 0





= E(α1, α2, α3)⊕D(a, b, c) = h⊕m.

If we put X = D(a, b, c), Y = D(a1, b1, c1), Z = E(α1, α2, α3), then the Lie
brackets can be briefly indicated (see [47]):

[X, Y ] = D (bc1 − b1c, ca1 − c1a, ab1 − a1b)

−2E (Im(aa1 + cc1), Im(aa1 + bb1), Im(cc1 + bb1)),

[Z,X] = D (α1a− aα2, α2b− bα3, α3c− cα1).
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Further, we putm = m1 ⊕m2 ⊕m3, where

m1 = {X ∈ su(3)|X = D(a, 0, 0), a ∈ C},
m2 = {X ∈ su(3)|X = D(0, b, 0), b ∈ C},
m3 = {X ∈ su(3)|X = D(0, 0, c), c ∈ C}.

Using the Killing form of the Lie algebra su(3), we define an invariant inner
product on m:

go(X,Y ) = 〈X,Y 〉o = − 1
2Re tr XY.

Then (see [46]) g = h ⊕ m1 ⊕ m2 ⊕ m3 is 〈·, ·〉o-orthogonal decomposition
satisfying the following relations:

[h,mj ] ⊂ mj , [mj , mj ] ⊂ h, [mj , mj+1] ⊂ mj+2,

where j = 1, 2, 3 and the index j should be reduced by modulo 3. Besides,
the H-modules mj are pairwise non-isomorphic.

Now we turn to invariant Riemannian metrics on M . Taking into account
the well-known one-to-one correspondence between G-invariant Rieman-
nian metrics on G/H and Ad(H)-invariant inner products on m (see [40]),
we will make use of the following fact:

Lemma 5.1 [46] Any SU(3)-invariant Riemannian metric g = 〈·, ·〉 on
the flag manifold M = SU(3)/Tmax can be written in the form

g = 〈·, ·〉 = λ1〈·, ·〉o|m1×m1 + λ2〈·, ·〉o|m2×m2 + λ3〈·, ·〉o|m3×m3 ,

where λj > 0, j = 1, 2, 3.

A triple (λ1, λ2, λ3) is called [46] a characteristic collection of a Rieman-
nian metric g above mentioned . Considering Riemannian metrics up to
homothety, one can assume that (λ1, λ2, λ3) = (1, t, s), t > 0, s > 0.

For convenience we will denote this correspondence in the following way:
g = (λ1, λ2, λ3) or g = (1, t, s).

We also recall the following result:

Theorem 5.1 [57],[4],[46] There are exactly (up to homothety) the fol-
lowing invariant Einstein metrics on the flag manifold SU(3)/Tmax :

(1, 1, 1), (1, 2, 1), (1, 1, 2), (2, 1, 1).

Let α be the Nomizu function (see [45]) of the Levi-Civita connection ∇
for an invariant Riemannian metric g = 〈·, ·〉 on a reductive homogeneous
space G/H. Then

α(X, Y ) =
1
2

[X,Y ]m + U(X, Y ), X, Y ∈ m, (3)
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where U : m×m → m is a symmetric bilinear mapping determined by the
formula (see[40]):

2〈U(X,Y ), Z〉 = 〈X, [Z, Y ]m〉+ 〈[Z, X]m, Y 〉.
For our case in these notations we have

Lemma 5.2 [56],[47] For the Levi-Civita connection of a Riemannian met-
ric g = (λ1, λ2, λ3) on the flag manifold SU(3)/Tmax the following condi-
tions are satisfied:

U(X, Y ) = 0, if X, Y ∈ mj , j ∈ {1, 2, 3};
U(X, Y ) = −(2λj)−1(λj+1 − λj+2)[X,Y ], if X ∈ mj+1, Y ∈ mj+2,

where j = 1, 2, 3 and the numbers j are reduced by modulo 3.

Let us now turn to invariant f -structures on M = SU(3)/Tmax. Keeping
the above notations, any invariant f -structure on M can be expressed by
the mapping

f : D(a, b, c) → D(ζ1ia, ζ2ib, ζ3ic), (4)

where ζj ∈ {1, 0,−1}, j = 1, 2, 3, i is the imaginary unit. We will call the
collection (ζ1, ζ2, ζ3) a characteristic collection of the invariant f -structure
and for convenience denote f = (ζ1, ζ2, ζ3). Obviously, all invariant f -
structures on M pairwise commute.

If we agree to consider f -structures up to sign, then there are the following
invariant f -structures on M = SU(3)/Tmax:

1) invariant f -structures of rank 6 (invariant almost complex structures):
J1 = (1, 1, 1), J2 = (1,−1, 1), J3 = (1, 1,−1), J4 = (1,−1,−1).

2) invariant f -structures of rank 4:
f1 = (1, 1, 0), f2 = (1, 0, 1), f3 = (0, 1, 1),

f4 = (1,−1, 0), f5 = (1, 0,−1), f6 = (0, 1,−1).

3) invariant f -structures of rank 2:
f7 = (1, 0, 0), f8 = (0, 1, 0), f9 = (0, 0, 1).

Our description of all invariant f -structures and all invariant Riemannian
metrics evidently implies that any invariant f -structure f = (ζ1, ζ2, ζ3) is
a metric f -structure with respect to any invariant Riemannian metric g =
(λ1, λ2, λ3). In particular, Jj , j = 1, 2, 3, 4 are invariant almost Hermitian
structures with respect to all invariant Riemannian metrics g = (λ1, λ2, λ3).

Now we are able to investigate all invariant f -structures in the sense of
generalized Hermitian geometry, i.e. the special classes Kf, NKf, Kill f,
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Hf, G1f.

A key point of our consideration belongs to the expression ∇X(f)Y . Using
formula (3), we get:

∇X(f)Y = ∇XfY − f∇XY = α(X, fY )− fα(X, Y )

=
1
2

([X, fY ]m − f [X,Y ]m) + U(X, fY )− fU(X, Y ).

As a result, we can obtain:

∇X(f)Y =
1
2

D(A,B, C), where

A = i((ζ1 + ζ3)(1 + s− t)bc1 + (ζ1 + ζ2)(s− t− 1)b1c),

B = i((ζ2 + ζ1)(1 +
1− s

t
)ca1 + (ζ2 + ζ3)(

1− s

t
− 1)c1a),

C = i((ζ3 + ζ2)(
t− 1

s
+ 1)ab1 + (ζ3 + ζ1)(

t− 1
s

− 1)a1b). (5)

5.1. Kähler f-structures

Kähler f -structures are defined by the condition ∇X(f)Y = 0 (see Section
4). Using formula (5), this condition is equivalent to the following system
of equations:





(ζ1 + ζ3)(s− t + 1) = 0

(ζ1 + ζ2)(s− t− 1) = 0

(ζ2 + ζ3)(s + t− 1) = 0

(6)

Solving (6) for all invariant f -structures, we obtain the following result:

Proposition 5.1 The flag manifold M = SU(3)/Tmax admits the follow-
ing invariant Kähler f -structures with respect to the corresponding invari-
ant Riemannian metrics only:

J2 = (1,−1, 1), gt = (1, t, t− 1), t > 1;

J3 = (1, 1,−1), gt = (1, t, t + 1), t > 0;

J4 = (1,−1,−1), gt = (1, t, 1− t), 0 < t < 1.

Hence there are no invariant Kähler f -structures of rank 2 and 4 on M .

We note that the result is known for invariant almost complex structures
(see [22],[3]). We can also observe that for each of Kähler f -structures
J2, J3, J4 the corresponding 1-parameter set gt of invariant Riemannian
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metrics contains exactly one Einstein metric excluding the naturally reduc-
tive metric g = (1, 1, 1) (see Theorem 5.1). Taking into account Theorem
3.2, the latter fact implies that the structures J2, J3, J4 cannot be real-
ized as the canonical almost complex structures J = 1√

3
(θ − θ2) for some

homogeneous Φ-spaces of order 3.

In addition, Lie brackets relations for the subspaces mj , j = 1, 2, 3 im-
ply that all invariant f -structures of rank 2 and 4 are non-integrable. It
immediately follows that these f -structures cannot be Kähler f -structures.

5.2. Killing f-structures

The defining condition for Killing f -structures can be written in the form
∇X(f)X = 0 (see Section 4). From (5), it follows

∇X(f)X =
1
2

D(A0, B0, C0), where

A0 = ibc((ζ1 + ζ3)(1 + s− t) + (ζ1 + ζ2)(s− t− 1)),

B0 = ica((ζ2 + ζ1)(1 +
1− s

t
) + (ζ2 + ζ3)(

1− s

t
− 1)),

C0 = iab((ζ3 + ζ2)(
t− 1

s
+ 1) + (ζ3 + ζ1)(

t− 1
s

− 1)).

It easy to show that the condition ∇X(f)X = 0 is equivalent to the follow-
ing system of equations:

{
(ζ1 + ζ3)(s− t + 1) + (ζ1 + ζ2)(s− t− 1) = 0

(ζ1 + ζ2)(s− t− 1) + (ζ2 + ζ3)(s + t− 1) = 0

Analyzing this system for all invariant f -structures, we obtain the following
result:

Proposition 5.2 All invariant strictly Killing (i.e. non-Kähler) f -
structures on the flag manifold M = SU(3)/Tmax and the corresponding
invariant Riemannian metrics (up to homothety) are indicated below:

J1 = (1, 1, 1), g = (1, 1, 1);

f1 = (1, 1, 0), g = (3, 3, 4);

f2 = (1, 0, 1), g = (3, 4, 3);

f3 = (0, 1, 1), g = (4, 3, 3).
In particular, there are no invariant Killing f -structures of rank 2 on M .
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Note the structure J1 is a well-known non-integrable nearly Kähler struc-
ture on a naturally reductive space M (see [21], [22], [34], [3] and oth-
ers). The structures f1, f2, f3 present first invariant non-trivial Killing f -
structures [12]. The important feature of these structures is that the corre-
sponding invariant Riemannian metrics are not Einstein (see Theorem 5.1).
It illustrates a substantial difference between non-trivial strictly Killing f -
structures and strictly NK-structures at least in the 6-dimensional case
(see Theorem 3.3).

Remark 5.1 It is interesting to note that all strictly Killing f -structures
above indicated are canonical f -structures for suitable homogeneous Φ-
spaces of the Lie group SU(3). We already mentioned that M =
SU(3)/Tmax is a homogeneous k-symmetric space for any k ≥ 3. It means
M as an underlying manifold could be generated by various automorphisms
Φ of the Lie group SU(3). In particular, J1 is the canonical almost complex
structure J = 1√

3
(θ − θ2) for the homogeneous Φ-space of order 3, where

Φ = I(s), s = diag (ε, ε, 1), ε = 3
√

1 (see the beginning of this Section).
Further, if we consider the automorphism Φ1 = I(s1), s1 = diag (i,−i, 1),
where i = 4

√
1 is the imaginary unit, then M is a homogeneous Φ1-space of

order 4. The corresponding canonical f -structure f = 1
2 (θ1 − θ3

1) for this
Φ1-space just coincides (up to sign) with the f -structure f3 = (0, 1, 1). The
structures f1 and f2 can be obtained in the similar way. Moreover, all the
structures f1, f2, f3 and f7, f8, f9 can be realized as canonical f -structures
for suitable homogeneous Φ-spaces of order 5.

We also note that all f -structures f1, f2, f3 are just the restrictions of the
structure J1 onto the corresponding distributions mp ⊕mq, p, q ∈ {1, 2, 3}.

5.3. Nearly Kähler f-structures

Using (5), we can easily obtain:

∇fX(f)fX =
1
2
D(Â, B̂, Ĉ), where

Â = −iζ2ζ3bc((ζ1 + ζ3)(1 + s− t) + (ζ1 + ζ2)(s− t− 1)),

B̂ = −iζ1ζ3ca((ζ2 + ζ1)(1 +
1− s

t
) + (ζ2 + ζ3)(

1− s

t
− 1)),

Ĉ = −iζ1ζ2ab((ζ3 + ζ2)(
t− 1

s
+ 1) + (ζ3 + ζ1)(

t− 1
s

− 1)).
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It follows that the condition ∇fX(f)fX = 0 is reduced to the following
system of equations:





ζ2ζ3((ζ1 + ζ3)(s− t + 1) + (ζ1 + ζ2)(s− t− 1)) = 0

ζ1ζ3((ζ2 + ζ1)(1 + t− s) + (ζ2 + ζ3)(1− s− t)) = 0

ζ1ζ2((ζ3 + ζ2)(t + s− 1) + (ζ3 + ζ1)(t− s− 1)) = 0

Consideration of this system implies

Proposition 5.3 The only invariant strictly nearly Kähler f-structure of
rank 6 on the flag manifold SU(3)/Tmax is the nearly Kähler structure
J1 = (1, 1, 1) with respect to the naturally reductive metric g = (1, 1, 1).
Invariant strictly nearly Kähler f -structures of rank 4 and the corresponding
invariant Riemannian metrics (up to homothety) are:

f1 = (1, 1, 0), gs = (1, 1, s), s > 0;

f2 = (1, 0, 1), gt = (1, t, 1), t > 0;

f3 = (0, 1, 1), gt = (1, t, t), t > 0.

The invariant f -structures f7, f8, f9 of rank 2 are strictly NKf-structures
with respect to all invariant Riemannian metrics g = (1, t, s), t, s > 0.

The structures f1, f2, f3 and f7, f8, f9 provide invariant examples of NKf -
structures with non-naturally reductive metrics on the homogeneous space
M = SU(3)/Tmax, which belongs to a semi-simple type. Besides, for any
invariant strictly NKf -structure on M there exists at least one (up to
homothety) corresponding Einstein metric. More exactly, for these NKf -
structures of rank 6, 4, and 2 there are (up to homothety) 1, 2, and 4
Einstein metrics respectively (see Theorem 5.1). This is a certain analogy
with the result of Theorem 3.3. This particular fact and some related
general results lead to the following conjecture, which seems to be plausible:

Conjecture. For any strictly nearly Kähler f -structure on a 6-dimensional
manifold there exists at least one corresponding Einstein metric.

Remark 5.2 The invariant f -structures f4, f5, f6 on the flag manifold
M = SU(3)/Tmax cannot be canonical f -structures for all homogeneous
Φ-spaces of orders 4 and 5 of the Lie group SU(3). It evidently follows by
comparing the results in Theorem 4.2, Theorem 4.3, and Proposition 5.3.
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5.4. Hermitian f-structures

We calculate the tensor T (see formula (2)) for any invariant f -structure
on (SU(3)/Tmax, g = (1, t, s)). Combining (5) and (4), one can obtain:

T (X, Y ) =
1
8

D(Ǎ, B̌, Č), where (7)

Ǎ = −ζ1ζ2ζ3(1 + ζ2ζ3)((ζ1 + ζ3)(1 + s− t)bc1 + (ζ1 + ζ2)(s− t− 1)b1c),

B̌ = −ζ1ζ2ζ3(1 + ζ1ζ3)((ζ2 + ζ1)(1 +
1− s

t
)ca1 + (ζ2 + ζ3)(

1− s

t
− 1)c1a),

Č = −ζ1ζ2ζ3(1 + ζ1ζ2)((ζ3 + ζ2)(
t− 1

s
+ 1)ab1 + (ζ3 + ζ1)(

t− 1
s

− 1)a1b).

We recall that the defining property for a Hermitian f -structure is the
condition T (X,Y ) = 0. Now from (7), we get the following result:

Proposition 5.4 The invariant f -structures J2, J3, J4 and f1, . . . , f9 are
Hermitian f -structures with respect to all invariant Riemannian metrics
g = (1, t, s), t, s > 0 on the flag manifold M = SU(3)/Tmax.

Notice that the almost complex structure J1 = (1, 1, 1) is non-integrable.
It agrees with the fact that J1 is not a Hermitian f -structure for each
Riemannian metric. While we stress that all f -structures f1, . . . , f9 of rank
4 and 2 are non-integrable, but they are Hermitian f -structures.

5.5. G1f-structures

Finally, we consider the condition T (X, X) = 0, which is the defining prop-
erty for G1f -structures. Using (7) and taking into account Propositions 5.3
and 5.4, we get

Proposition 5.5 The flag manifold M = SU(3)/Tmax does not admit
invariant strictly G1f -structures (i.e. neither NKf -structures nor Hf -
structures). In particular, there are no invariant strictly G1-structures J

(i.e. neither nearly Kähler nor Hermitian) on M .
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