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A classic result of representation theory is Brauer’s construction of a diagrammat-
ical (geometrical) algebra whose matrix representation is a certain given matrix
algebra, which is the commutating algebra of the enveloping algebra of the repre-
sentation of the orthogonal group. The purpose of this paper is to provide a mo-
tivation for this result through the categorial notion of symmetric self-adjunction.

1. Introduction

In [1] Richard Brauer introduced a class of diagrammatical algebras and
found a matrix representation for them. These algebras have been in focus
again after more than fifty years since Temperley-Lieb algebras, the subal-
gebras of Brauer’s algebras, have started to play an important role in knot
theory and low-dimensional topology via the polynomial approach to knot
invariants (see [14], [18] and [19]). Brauer’s algebras arose as a side product
of investigations concerning a representation of the orthogonal group O(n),
and the representation of these algebras was established following Brauer’s
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remark that if one associates (in a natural way) diagrams to matrices from
a particular class, then the product of these matrices corresponds to the
operation of “composition” of such diagrams. We give more details con-
cerning Brauer’s introduction of these algebras in Section 2. So, for a given
matrix algebra, Brauer had constructed a diagrammatical algebra whose
matrix representation turned out to be this matrix algebra. We find such
a representation insufficiently justified.

On the other hand, there are several results concerning diagrammatical
characterization of various kinds of free adjunctions and related notions
from category theory (see for example [3], [5], [6], [10] and [17], [11], [13]).
Combining the fact that the symmetric self-adjunction freely generated by
a singleton set of objects is isomorphic to the category of Brauer’s diagrams
and the fact that a symmetric self-adjunction exists in the skeleton of the
category of finite dimensional vector spaces over a field F , one can find
a matrix representation of Brauer’s diagrams that coincides with Brauer’s
representation. We find this is a natural justification of Brauer’s represen-
tation.

2. Brauer’s algebras and their representation

For every n ∈ N+, Brauer’s algebra Bn over a field F of characteristic 0
is a vector space whose basis consists of (2n− 1)!! diagrams, which we call
Brauer’s n-diagrams or just n-diagrams. Every n-diagram consists of n

vertices in the top row and n vertices in the bottom row. Each of these 2n

vertices is connected by a thread with exactly one of the remaining 2n− 1
vertices. For example,
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is a 3-diagram.

So, addition and multiplication by scalars is formal in Bn and as a vector
space, Bn is isomorphic to F (2n−1)!!. For the structure of algebra in Bn it
is sufficient to define multiplication of n-diagrams. (We call this multipli-
cation composition and denote it by ◦ .) To define the n-diagram D2 ◦D1

for two n-diagrams D1 and D2, we have to identify the bottom row of D1

with the top row of D2 so that the top row of D1 becomes the top row
of D2 ◦D1 and the bottom row of D2 becomes the bottom row of D2 ◦D1.
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The threads of D2 ◦D1 are obtained by concatenating the threads of D1

and D2. The number k ≥ 0 of circular components that may occur in this
procedure reflects in the scalar pk which multiplies the resulting n-diagram
(p is here a fixed positive integer and the choice to represent a circle in a
diagram by multiplying the rest of the diagram by p is forced by the matrix
algebra in which Brauer represented Bn). For example, let D1 and D2 be
the following 3-diagrams:
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After identification of the bottom row of D1 with the top row of D2 we
have
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and D2 ◦D1 is the following element of B3
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Let In be the n-diagram in which for every i ∈ {1, . . . , n} we have that the
i-th vertex from the top row is connected with the i-th vertex from the
bottom row. For example I3 is

q

q

q

q

q

q

It is pretty obvious that In is the unit for composition and associativity of
composition is straightforward when we rely on such an informal (pictorial)
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definition of ◦ . For a formal proof of associativity of ◦ one may consult [7]
and [8]. We explain below how these algebras arose in the work of Brauer.

Let F be a field of characteristic 0 and let G be O(p) (group of orthogonal
linear transformations of the p-dimensional vector space Fp over F). Every
member of G is given by an orthogonal p × p matrix G (G−1 = GT ) with
entries from F .

Brauer was particulary interested in the following representation of G:

M(G) = G⊗n = G⊗ . . .⊗G︸ ︷︷ ︸
n-fold Kronecker product

∈ End (Fpn

).

(That M is a representation, i.e. that M(G1G2) = M(G1)M(G2), follows
from the functoriality of ⊗.)

Let M be the group {M(G) | G ∈ G} and let A be the enveloping algebra
of M, i.e.,

A = {c1M(G1) + ... + ckM(Gk) | k ∈ N+, ci ∈ F , Gi ∈ G, 1 ≤ i ≤ k}.

Brauer’s goal was to characterize elements of this algebra. For this purpose
he used the commutating algebra B of A, i.e.,

B = {B ∈ End (Fpn

) | (∀A ∈ A) AB = BA}.

The algebra B is a matrix algebra whose elements are pn × pn matrices of
the form

[bi,j ]pn×pn =




b1,1 b1,2 . . . b1,pn

b2,1 b2,2 . . . b2,pn

. . . . . . . . . . . .

bpn,1 bpn,2 . . . bpn,pn




with entries from F .

We explain now some technical notation that we are going to use below.
There are pn functions from {1, . . . , n} to {1, . . . , p}. Each of these functions
can be envisaged as a sequence of length n of elements of {1, . . . , p}. The
set of these sequences may be ordered lexicographically so that (1, 1, . . . , 1)
is the first and (p, . . . , p) is the last (pn-th) in this ordering. We use this
ordering to identify the elements of {1, . . . , pn} with the functions from
{1, . . . , n} to {1, . . . , p}. So, for i ∈ {1, . . . , pn} and k ∈ {1, . . . , n}, by i(k) ∈
{1, . . . , p} we mean the image of k by the i-th function from {1, . . . , n} to
{1, . . . , p}.
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Let

ui =




ui
1

...
ui

p


 and vj =




vj
1

...
vj

p




for i, j ∈ {1 . . . , n} be 2n vectors of Fp and let G acts on them, so that for
G ∈ G we have (ui)′ = Gui and (vj)′ = Gvj . Then the following holds.

Theorem 2.1 (Brauer) The function

J(u1, . . . , un, v1, . . . , vn) =
∑

1≤i,j≤pn

bi,ju
1
i(1) . . . un

i(n)v
1
j(1) . . . vn

j(n)

is an invariant of G (i.e., J(u1, . . . , vn) = J((u1)′, . . . , (vn)′)) iff the matrix
[bi,j ]pn×pn belongs to B.

From the main theorem of invariant theory concerning the orthogonal group
case (see [20], Chapter II, Section A.9) it follows that

J(u1, . . . , un, v1, . . . , vn) =
∑

1≤i,j≤pn

bi,ju
1
i(1) . . . un

i(n)v
1
j(1) . . . vn

j(n)

is an invariant of G iff J(u1, . . . , un, v1, . . . , vn) is a linear combination of
products of scalar products of the form

(w1w2) · (w3w4) · . . . · (w2n−1w2n)

where w1w2 . . . w2n is a permutation of vectors u1 . . . unv1 . . . vn.

Up to commutativity of multiplication and scalar product there are
(2n− 1)!! different terms of this form. It is natural to associate with every
such term an n-diagram. In this diagram the vertices from the top row
represent the vectors u1, . . . , un and vertices from the bottom row repre-
sent the vectors v1, . . . , vn. Then every thread of the diagram shows which
pairs of vectors occur in the scalar products of the term. However, this
correspondence is a bijection (up to commutativity of multiplication and
scalar product). This means that starting from an arbitrary n-diagram one
can find a term of the above form representing an invariant of G from which
a matrix from B can be extracted. In this way Brauer obtained a function
that maps n-diagrams to matrices from B.

Brauer remarked that the result of composition of two n-diagrams is
mapped to the product of matrices corresponding to these diagrams. This
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is the core of Brauer’s representation of Brauer’s algebra since, by linear-
ity, the above correspondence between n-diagrams and matrices can be
extended to a representation of Bn in a unique way.

We illustrate this representation by an example in which p = 2, n = 3 and
D is the 3-diagram:
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¢
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q

q

q

q

q

¶³
&%

v1 v2 v3

u1 u2 u3

Then the following term corresponds to D

(u1u3) · (u2v1) · (v2v3) = (u1
1 ·u3

1 +u1
2 ·u3

2) · (u2
1 ·v1

1 +u2
2 ·v1

2) · (v2
1 ·v3

1 +v2
2 ·v3

2).

After distributions at the right-hand side of this equation we obtain a term
of the form

∑

1≤i,j≤8

bi,ju
1
i(1)u

2
i(2)u

3
i(3)v

1
j(1)v

2
j(2)v

3
j(3)

where bij = 1 iff i(1) = i(3), i(2) = j(1) and j(2) = j(3), otherwise bij = 0.
Roughly speaking, bij = 1 if and only if i as a ternary sequence of elements
of {1, 2} above j as a ternary sequence of elements of {1, 2} as in the picture
below

¢
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q

q

q

q

q

¶³
&%

j(1) j(2) j(3)

i(1) i(2) i(3)

is ready to “accept” D, in the sense that linked elements of {1, 2} are equal.

The Temperley-Lieb algebra TLn is a subalgebra of Bn whose basis con-
sists of non-intersecting n diagrams. The number of such diagrams is
(2n)!/(n!(n + 1)!) (the n-th Catalan number). It is proved in [12] (see
also [4]) that the restriction to TLn of Brauer’s representation of Bn is
faithful for p ≥ 2, which means that this representation is an embedding of
Temperley-Lieb algebras into End (Fpn

). However, this cannot always be
the case for Brauer’s representation of Bn since (2n− 1)!! as the dimension
of Bn may exceed p2n as the dimension of End (Fpn

).

We are going now to generalize the notion of Brauer’s n-diagram in the
sense that we allow different number of vertices in its top and bottom row.
So, let an m-n-diagram be a diagram like Brauer’s n-diagram save that
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it has m vertices in the top row and n vertices in the bottom row for m

not necessarily equal to n. Then we can take instead of just n-diagrams
for a particular n ∈ N+, the class of m-n-diagrams for all m,n ∈ N and
define the composition of an m-n-diagram and an n-q-diagram analogously
to what we had for two n-diagrams. So the result of this composition is
an m-q-diagram multiplied by a scalar of the form pk which reflects the
number k of circular components that arise after concatenating the threads
of these diagrams. In this way we obtain the category Brp whose objects
are natural numbers and whose arrows are m-n-diagrams with coefficients
of the form pk for fixed p ≥ 1. In [9], Section 2.3, the category Br re-
lated to Brp (case p = 1) is defined in a more formal way. One can call
this generalization of Bn a categorification of multiplicative submonoids of
Brauer’s algebras generated out of the basis. We shall see in the following
section that the category Brp is strongly connected to the notion of sym-
metric self-adjunction of [10] in a way that it may be called the geometry
of symmetric self-adjunctions.

All the above shows that Brauer’s representation of Brauer’s algebras
“works”. But one may still ask why does it work? Or, what mathemat-
ics underlies this representation? We try to answer these questions in the
following sections.

3. Symmetric self-adjunctions

In the hierarchy of categorial notions, one of the topmost positions is re-
served for the notion of adjunction. This notion can be defined equation-
ally in the following manner: an adjunction is a 6-tuple 〈A,B, F,G, ϕ, γ〉
where A and B are categories; F : B → A and G : A → B are functors;
ϕ : FG → 1A and γ : 1B → GF are natural transformations such that the
following triangular equations hold in A and B respectively

ϕFB ◦FγB = 1FB ,

GϕA ◦ γGA = 1GA.

The definition above is equational in the sense that it is possible to present
the notions of category, functor and natural transformation equationally.
Such an equational definition guarantees the existence of some free struc-
tures on which we rely in this section.

In [3], Section 4.10.1, an m-n-diagram is associated to every canonical arrow
f of an adjunction. These diagrams are called the set of links of f and are
denoted by Λ(f). For example,
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ª
Λ(ϕA) is

A

F G A
®©and Λ(γB) is

B

G F B

and Λ(g ◦ f) = Λ(g) ◦Λ(f) (where ◦ on the right-hand side denotes the
composition of m-n-diagrams). We illustrate the soundness of Λ with the
first of the triangular equations; this yields the following picture:

®©

Λ(ϕFB)

Λ(FγB)

ª

F B

F G F B

F B

¢
¢

¢
¢

F B

F B

Λ(1FB)

As we have already mentioned, the equational definition of adjunction
guarantees the existence of the adjunction freely generated by a pair of
sets of objects (discrete categories). Then Λ gives rise to functors from
both categories involved in this freely generated adjunction to the category
Brp. It is proved in [3], Proposition in Section 4.10.1, that both of these
functors are faithful. However, not all the m-n-diagrams are covered by
the arrows of freely generated adjunction. It is easy to see that all the
m-n-diagrams corresponding to these arrows are of Temperley-Lieb kind
(they are non-intersecting diagrams) and even not all the diagrams of the
Temperley-Lieb kind are covered by this correspondence. This was a mo-
tivation for a step leading from the notion of adjunction to a more specific
notion of self-adjunction (see [5], [6] and references therein, see also [10] for
a more gradual introduction of this notion). A self-adjunction (also called
L-adjunction in [5]) may be introduced as a quadruple 〈A, F, ϕ, γ〉 such
that 〈A,A, F, F, ϕ, γ〉 is an adjunction. (So, F : A → A is an endofunctor
adjoint to itself.)

As in the case of adjunction, one may construct the self-adjunction freely
generated by an arbitrary set of objects. Then Λ, as before, gives rise to a
functor from the category involved in this freely generated self-adjunction
to the category Brp. This time, the functor is not faithful because a sim-
ple counting of circular components that occur in compositions of m-n-
diagrams is not sufficient. The faithfulness of this functor requires some
adjustments in the category Brp; namely, one must take into account not
just the number of circular components, but also their positions in the dia-
gram (See [5] for the definition of friezes and L-equivalence between them).
It is shown in [5] that the arrows of freely generated self-adjunction cover
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by Λ all the diagrams of the Temperley-Lieb kind.

Since all the intersecting m-n-diagrams are still out of the range of Λ we can
make a step forward, to arrive at the notion of symmetric self-adjunction,
which is defined as follows. A symmetric self-adjunction is a quintuple
〈A, F, ϕ, γ, χ〉 for which 〈A, F, ϕ, γ〉 is a self-adjunction, χ is a natural trans-
formation from F ◦F to F ◦F such that the equations

χA ◦χA = 1FFA, χFA ◦FχA ◦χFA = FχA ◦χFA ◦FχA,
ϕA ◦χA = ϕA, χA ◦ γA = γA,
ϕFA ◦FχA = FϕA ◦χFA, χFA ◦FγA = FχA ◦ γFA.

are satisfied.

If we extend Λ to cover all the canonical arrows of a symmetric self-
adjunction by defining Λ(χA) to be

F F A

F F A
¢
¢
A

A

then Λ gives rise to a functor from the category involved in the symmetric
self-adjunction freely generated by a set of objects, to the category Brp.
It is shown in [10] that this functor is faithful and, moreover, if the set of
generating objects is a singleton, then this functor is an isomorphism.

4. Symmetric self-adjunction of the category MatF

In this section we discuss an example of symmetric self-adjunction. To
find such an example we start with the category VectF of vector spaces
over the field F . For a given vector space V ∈ VectF , the functor
F : VectF → VectF which acts on objects as FU = V ⊗ U has the right
adjoint G : VectF → VectF which maps a vector space W to the vector
space of all linear transformations from V to W .

If we replace VectF by VectfdF , the compact closed category of finite di-
mensional vector spaces over F (for the notion of compact closed category
see [15], [16] or [2]), then the right adjoint of F = V ⊗ becomes V ∗ ⊗ ,
where V ∗ is the dual vector space of V . Since V and V ∗ are isomorphic in
VectfdF we have that this isomorphism leads to the isomorphism of functors
V ⊗ and V ∗ ⊗ . So, V ⊗ becomes a self-adjoint functor. It is easy
to see that the natural transformation χ (symmetry) with all the required
equations is present in VectfdF with F = V ⊗ and, hence, we obtain an
example of symmetric self-adjunction.
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We can simplify the category VectfdF by passing to its skeleton MatF (a
full subcategory of VectfdF such that each object of VectfdF is isomorphic to
exactly one object of MatF ). The category MatF still provides an example
of symmetric self-adjunction. We can envisage this category as the category
whose objects are natural numbers (the dimensions of finite dimensional
vector spaces) and an arrow M : m → n is an n×m matrix with entries
from F . Composition of such arrows becomes matrix multiplication.

For every p ∈ N , the functor p⊗ , which maps an object n of MatF
to the product m · n and an arrow M of MatF to the Kronecker product
Ip ⊗M , is the part of a symmetric self-adjunction 〈MatF , p⊗ , ϕ, γ, χ〉
for some indexed sets ϕ, γ and χ of matrices.

Suppose now that p is equal to the p we used in the definition of composition
of m-n-diagrams. We have the following picture in which K is the category
of the symmetric self-adjunction freely generated by a single object,

Brp

∼=−→ K R−→ MatF

and R is the functor which strictly preserves the structure of symmetric self-
adjunction, and which extends the function that maps the unique generator
of K to the object 1 of MatF . The functor R exists by the freedom of K.

The above composition of functors (which we also denote by R) has
the following properties: for every pair of m-n-diagrams D1 and D2 we
have that R(D2 ◦D1) = R(D2) ·R(D1) (by the functoriality of R) and
R(pk ·D1) = pk ·R(D1). These properties show that R can serve as a core
for a matrix representation of Brauer’s algebras. It is not difficult to check
that this representation coincides with Brauer’s representation, which is
now properly justified via symmetric self-adjunctions.
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6. K. Došen and Z. Petrić, The geometry of self-adjunction, Publications de
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9. K. Došen and Z. Petrić, Proof-Net Categories, preprint, 2005.
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