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Classical and quantum mechanics for an extended Heisenberg algebra with canoni-
cal commutation relations for position and momentum coordinates are considered.
In this approach additional noncommutativity is removed from the algebra by lin-
ear transformation of phase space coordinates and transmitted to the Hamiltonian
(Lagrangian). This transformation does not change the quadratic form of Hamil-
tonian (Lagrangian) and Feynman’s path integral maintains its well-known exact
expression for quadratic systems. The compact matrix formalism is presented and
can be easily employed in particular cases. Some p-adic and adelic aspects of
noncommutativity are also considered.

1. Introduction

Standard n-dimensional quantum mechanics (QM) is based on the Heisen-
berg algebra

[x̂a, p̂b] = i ~ δab, [x̂a, x̂b] = 0, [p̂a, p̂b] = 0, a, b = 1, 2, · · · , n, (1)

for Hermitian operators of position x̂a and momentum p̂a coordinates in
the Hilbert space. In the recent years there has been an intensive research
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of noncommutative quantum theory with an algebra

[x̂a, p̂b] = i ~ δab, [x̂a, x̂b] = i ~ θab, [p̂a, p̂b] = 0, a, b = 1, 2, · · · , n, (2)

where θab are constant elements of a real antisymmetric (θab = −θab) n×n-
matrix Θ. The initial considerations of noncommutativity (NC) (2) go back
to the 1930’s (see, e.g. [1]) but the real excitement began in the 1998 when
spatial NC of the form [x̂a, x̂b] = i ~ θab was observed in the low energy
string theory with D-branes in a constant background B-field (see reviews
[2], [3] and references therein).

The NC (2) leads to extended uncertainty, i.e.

∆xa ∆pb ≥ ~
2

δab, ∆xa ∆xb ≥ ~
2
|θab|, (3)

which prevents from simultaneous accurate measuring not only xa and
pa but also spatial coordinates xa and xb (a 6= b). To simplify explo-
ration one often takes θab = θ εab, where (εab) = E is the unit n × n

antisymmetric matrix with εab = +1 if a < b. Due to the uncertainty
∆xa ∆xb ≥ ~

2 |θ|, (a 6= b), a spatial point is not a well defined concept
and the space becomes fuzzy at distances of the order

√
~ |θ|, which may

be much larger than the Planck or string length.

The most attention in this subject has been paid to noncommutative field
theory (for reviews, see e.g. [2] and [3]). Noncommutative quantum me-
chanics (NCQM) has been also actively explored. Namely, NCQM can be
regarded as the corresponding one-particle nonrelativistic sector of non-
commutative quantum field theory. It also provides study of NC on simple
models and their potential experimental verification.

Models of NCQM have been mainly investigated using the Schrödinger
equation. The path integral method has attracted less attention, however
for systems with quadratic Lagrangians a systematic investigation started
recently ( see [4]-[8] and references therein).

We consider here n-dimensional NCQM which is based on the following
algebra

[x̂a, p̂b] = i ~ (δab − 1
4

θac σcb) , [x̂a, x̂b] = i ~ θab , [p̂a, p̂b] = i ~σab , (4)

where (θab) = Θ and (σab) = Σ are the antisymmetric matrices with con-
stant elements. This kind of an extended noncommutativity maintains a
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symmetry between canonical variables and yields (2) in the limit σab −→ 0.
The algebra (4) allows simple reduction to the usual commutation relations

[q̂a, k̂b] = i ~ δab, [q̂a, q̂b] = 0, [k̂a, k̂b] = 0, (5)

using the following phase space linear transformation:

x̂a = q̂a − θab k̂b

2
, p̂a = k̂a +

σab q̂b

2
, (6)

where summation over repeated indices is understood. It was shown re-
cently [9] that NC (4) is suitable to study possible dynamical control of
decoherence by applying perpendicular magnetic field to a charged particle
in the plane. This property also gives possibility to observe NC.

In this paper we present compact general formalism of NCQM for quadratic
Lagrangians (Hamiltonians) with the (4) form of the NC. The formalism
developed here is suitable for both Schrödinger and Feynman approaches
to quantum evolution. There are now many papers on some concrete mod-
els in NCQM. However, to our best knowledge, there is no article on the
evaluation of general quadratic Lagrangians (Hamiltonians). Especially,
Feynman’s path integral method to the NC has been almost ignored. Note
that quadratic Lagrangians contain an important class of physical models,
and that some of them are rather simple and exactly solvable (a free par-
ticle, a particle in a constant field, a harmonic oscillator). The obtained
relations between coefficients in commutative and noncommutative regimes
give possibility to easily construct effective Hamiltonians and Lagrangians
in the particular noncommutative cases.

Sec. 2 is devoted to noncommutativity on real space and contains: matrix
formalism, some expressions for quadratic Lagrangians and Hamiltonians
as well as relations between them, Schrödinger equation and Feynman path
integral. Some p-adic and adelic aspects of noncommutativity are presented
in Sec. 3. In the last section we give a few concluding remarks.

2. Noncommutativity on real phase space

Matrix formalism. Let us introduce the following (matrix) formalism. If
we put x̂T = (x̂1, x̂2, · · · , · · · , x̂n) and p̂T = (p̂1, p̂2, · · · , p̂n) ( superscript
T denotes transposition), then all commutators between x̂a and p̂b we can
rewrite in the following way:

for P̂ =
[

p̂

x̂

]
we put [P̂ , P̂ ] =

(
[p̂, p̂] [p̂, x̂]
[x̂, p̂] [x̂, x̂]

)
, (7)
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where [p̂, p̂], [p̂, x̂], [x̂, p̂], [x̂, x̂] are n × n matrices with entries given by(
[x̂, p̂]

)
ab

= [x̂a, p̂b] , and so on. Let us mention that [p̂, x̂] = −(
[x̂, p̂]

)T
.

We want to rewrite in this spirit the change of coordinates. Namely, if
we have another coordinates of the same type, q̂T = (q̂1, q̂2, · · · , q̂n) and
k̂T = (k̂1, k̂2, · · · , k̂n), and if a linear connection is defined by

P̂ = Â K̂ , i.e.
[

p̂

x̂

]
=

(
A B

C D

)[
k̂

q̂

]
, (8)

we want to find dependance of [P̂ , P̂ ] on [K̂, K̂]. To do this, let us prove
the following useful statement.

Lemma 2.1 Let A be an arbitrary n × n matrix whose entries commute
with the coordinates of q̂T = (q̂1, q̂2, · · · , q̂n) and k̂T = (k̂1, k̂2, · · · , k̂n).
Then the following commutation relations hold

(i1) [Aê, r̂] = A [ê, r̂] , (i2) [ê, Ar̂] = [ê, r̂] AT ,

where ê, r̂ ∈ {q̂, k̂}.

Proof. Let us prove (i2) for ê = q̂ and r̂ = k̂. We have,
([

q̂, Ak̂
])

ab
=

[
q̂a, Ak̂b

]
=

[
q̂a,

n∑
c=1

Abck̂c

]
=

n∑
c=1

Abc

[
q̂a, k̂c

]

=
n∑

c=1

[
q̂, k̂

]
ac

AT
cb =

([
q̂, k̂

]
AT

)
ab

.

The proof of all other relations is similar. ♦
Eqs. (6) and (5) can be rewritten in the compact form as

P̂ = Ξ K̂, Ξ =
(

I 1
2 Σ

− 1
2 Θ I

)
, K̂ =

(
k̂

q̂

)
, (9)

[K̂, K̂] = i ~
(

0 −I

I 0

)
, (10)

and using Lemma 2.1, relations (5), and skew-symmetricity of Σ and Θ, we
have

[P̂ , P̂ ] = [Ξ K̂, Ξ K̂] =

(
[k̂ + Σ

2 q̂, k̂ + Σ
2 q̂] [k̂ + Σ

2 q̂, q̂ − Θ
2 k̂]

[q̂ − Θ
2 k̂, k̂ + Σ

2 q̂] [q̂ − Θ
2 k̂, q̂ − Θ

2 k̂]

)

= i ~
(

Σ 1
4 ΣΘ− I

I − 1
4 ΘΣ Θ

)
, (11)
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since

[k̂ +
Σ
2

q̂, k̂ +
Σ
2

q̂] = [k̂, k̂] + [
Σ
2

q̂, k̂] + [k̂,
Σ
2

q̂] + [
Σ
2

q̂,
Σ
2

q̂]

=
Σ
2

[q̂, k̂] + [k̂, q̂]
ΣT

2
=

Σ
2

[q̂, k̂] + [q̂, k̂]
Σ
2

= i ~Σ,

[q̂ − Θ
2

k̂, k̂ +
Σ
2

q̂] = [q̂, k̂]− [
Θ
2

k̂, k̂] + [q̂,
Σ
2

q̂]− [
Θ
2

k̂,
Σ
2

q̂]

= [q̂, k̂]− Θ
2

[k̂, q̂]
ΣT

2
= i ~

(
I − 1

4
ΘΣ

)
,

[q̂ − Θ
2

k̂, q̂ − Θ
2

k̂] = [q̂, q̂]− [
Θ
2

k̂, q̂]− [q̂,
Θ
2

k̂] + [
Θ
2

k̂,
Θ
2

k̂]

= −Θ
2

[k̂, q̂]− [q̂, k̂]
ΘT

2
=

Θ
2

[q̂, k̂] + [q̂, k̂]
Θ
2

= i ~Θ .

Let us note that (11) contains formulas (4) rewritten in the above matrix
formalism.

Quadratic Lagrangians and Hamiltonians. We start with general
quadratic Lagrangian for an n-dimensional system with position coordi-
nates, xT = (x1, x2, · · · , xn), which has the form:

L(X, t) =
1
2

XT M X + NT X + φ, (12)

where 2n× 2n matrix M and 2n-dimensional vectors X, N are defined as

M =
(

α β

βT γ

)
, XT = (ẋT , xT ) , NT = (δT , ηT ). (13)

where the coefficients of the n × n matrices α = ((1 + δab)αab(t)),
β = (βab(t)), γ = ((1 + δab) γab(t)), n-dimensional vectors δ = (δa(t)),
η = (ηa(t)) and a scalar φ = φ(t) are some analytic functions of the time t.
Matrices α and γ are symmetric, α is nonsingular (det α 6= 0).

Using pa = ∂L
∂ẋa

one finds ẋ = α−1 (p−β x−δ). Since the function ẋ is linear
in p and x, then by the Legendre transformation H(p, x, t) = pT ẋ−L(ẋ, x, t)
classical Hamiltonian is also quadratic, i.e.

H(P, t) =
1
2

PTM P +N T P + F, (14)

where matrix M and vectors P, N are

M =
(

A B

BT C

)
, PT = (pT , xT ) , N T = (DT , ET ) , (15)



194

and

A = α−1, B = −α−1 β, C = βT α−1 β − γ,

D = −α−1 δ, E = βT α−1 δ − η, F =
1
2

δT α−1δ − φ .
(16)

From the symmetry of matrices α and γ follows that the matrices
A = ((1 + δab)Aab(t)) and C = ((1 + δab) Cab(t)) are also symmetric
(AT = A, CT = C). The nonsingular (det α 6= 0) Lagrangian L(ẋ, x, t)
implies nonsingular (detA 6= 0) Hamiltonian H(p, x, t). Note that the in-
verse Legendre transformation, i.e. H −→ L, is given by the same relations
(16).

One can show that

M =
3∑

i=1

ΥT
i (M) M Υi(M), (17)

where

Υ1(M) =
(

α−1 0
0 −I

)
, Υ2(M) =

(
0 α−1β

0 0

)
,

Υ3(M) =
(

0 0
0 i

√
2 I

)
,

(18)

and I is n× n unit matrix. One has also N = Y (M)N, where

Y (M) =
( −α−1 0

βT α−1 −I

)
= −Υ1(M) + ΥT

2 (M) + i
√

2 Υ3(M) , (19)

and F = NT Z(M) N − φ, where

Z(M) =
(

1
2 α−1 0
0 0

)
=

1
2

Υ1(M)− i

2
√

2
Υ3(M) . (20)

Using auxiliary matrices Υ1(M),Υ2(M) and Υ3(M) in the above way,
Hamiltonian quantities M,N and F are connected to the corresponding
Lagrangian ones M, N and φ.

Since Hamiltonians depend on canonical variables, the transformation (9)
leads to the transformation of Hamiltonian (14). By quantization the
Hamiltonian (14) easily becomes

H(P̂ , t) =
1
2

P̂TM P̂ +N T P̂ + F, (21)

because (14) is already written in the Weyl symmetric form.
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Performing linear transformation (9) in (21) we again obtain quadratic
quantum Hamiltonian

Ĥθσ(K̂, t) =
1
2

K̂T Mθσ K̂ +N T
θσ K̂ + Fθσ, (22)

where 2n× 2n matrix Mθσ and 2n-dimensional vectors Nθσ, K̂ are

Mθσ =
(

Aθσ Bθσ

BT
θσ Cθσ

)
, N T

θσ = (DT
θσ , ET

θσ), K̂T = (k̂T , q̂T ) , (23)

and where

Aθσ = A− 1
2

B Θ +
1
2

Θ BT − 1
4

Θ C Θ, Dθσ = D +
1
2

Θ E,

Bθσ = B +
1
2

ΘC +
1
2

A Σ +
1
4

Θ BT Σ, Eθσ = E − 1
2

ΣD,

Cθσ = C − 1
2

ΣB +
1
2

BT Σ− 1
4

ΣA Σ, Fθσ = F .

(24)

Note that for the nonsingular Hamiltonian H(p̂, x̂, t) and for sufficiently
small θab the Hamiltonian Hθσ(k̂, q̂, t) is also nonsingular. It is worth noting
that Aθσ and Dθσ do not depend on σ, as well as Cθσ and Eθσ do not depend
on θ. Classical analogue of (22) maintains the same form.

From (14), (9) and (22) one can find connections between Mθσ, Nθσ, Fθσ

and M, N , F , which are given by the following relations:

Mθσ = ΞT M Ξ , Nθσ = ΞT N , Fθσ = F. (25)

Using equations q̇a = ∂Hθσ

∂ka
which give k = A−1

θσ (q̇ − Bθσ q −Dθσ), we can
pass from the classical form of Hamiltonian (22) to the corresponding La-
grangian by relation Lθσ(q̇, q, t) = kT q̇−Hθσ(k, q, t). Note that coordinates
qa and xa coincide when θ = σ = 0. Performing necessary computations
we obtain

Lθσ(Q, t) =
1
2

QT Mθσ Q + NT
θσ Q + φθσ, (26)

where

Mθσ =
(

αθσ βθσ

βT
θσ γθσ

)
, NT

θσ = (δT
θσ , ηT

θσ) , QT = (q̇T , qT ) . (27)

Then the connections between Mθσ, Nθσ, φθσ and M, N, φ are given by
the following relations:

Mθσ =
3∑

i,j=1

ΞT
ij M Ξij , Ξij = Υi(M) Ξ Υj(Mθσ),

Nθσ = Y (Mθσ) ΞT Y (M)N, φθσ = N T
θσ Z(Mθσ)Nθσ − F .

(28)
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In more detail, the connection between coefficients of the Lagrangians Lθσ

and L is given by the relations:

αθσ =
[
α− 1 − 1

2 (Θ βT α− 1 − α− 1 β Θ)− 1
4 Θ(βT α− 1 β − γ)Θ

]− 1
,

βθσ = αθσ

(
α− 1 β − 1

2 (α− 1 Σ−Θ γ + Θ βT α− 1 β) + 1
4 Θ βT α− 1 Σ

)
,

γθσ = γ + βT
θσ α− 1

θσ βθσ − βT α− 1 β + 1
4 Σα− 1 Σ

− 1
2 (Σα− 1 β − βT α− 1 Σ) ,

δθσ = αθσ

(
α− 1 δ + 1

2 (Θ η −ΘβT α− 1 δ)
)
,

ηθσ = η + βT
θσ α− 1

θσ δθσ − βT α− 1 δ − 1
2 Σα− 1 δ ,

φθσ = φ + 1
2 δT

θσ α− 1
θσ δθσ − 1

2 δT α− 1 δ .

(29)

Note that αθσ, δθσ and φθσ do not depend on σ.

Noncommutative Schrödinger equation and path integral. The
corresponding Schrödinger equation in this NCQM is

i ~
∂Ψ(q, t)

∂t
= Hθσ(k̂, q, t)Ψ(q, t) , (30)

where k̂a = − i ~ ∂
∂qa

, a = 1, 2, · · · , n and Hθσ(k̂, q, t) is given by (22).
Investigations of dynamical evolution have been mainly performed using
the Schrödinger equation and this aspect of NCQM is much more developed
than the noncommutative Feynman path integral. For this reason and
importance of the path integral method, we will give now also a description
of this approach.

To compute a path integral, which is a basic instrument in Feynman’s
approach to quantum mechanics, one can start from its Hamiltonian for-
mulation on the phase space. However, when Hamiltonian is a quadratic
polynomial with respect to momentum k (see, e.g. [5]) such path inte-
gral on a phase space can be reduced to the Lagrangian path integral on
configuration space. Hence, for the Hamiltonian (22) we have derived the
corresponding Lagrangian (26).

The standard Feynman path integral [10] is

K(x′′, t′′;x′, t′) =
∫ x′′

x′
exp

(
i

~

∫ t′′

t′
L(q̇, q, t) dt

)
Dq , (31)

where K(x′′, t′′; x′, t′) is the kernel of the unitary evolution operator U(t)
and x′′ = q(t′′), x′ = q(t′) are end points. In ordinary quantum mechanics
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(OQM), Feynman’s path integral for quadratic Lagrangians can be evalu-
ated analytically and its exact expression has the form [11]

K(x′′, t′′; x′, t′) =
1

(ih)
n
2

√
det

(
− ∂2S̄

∂x′′a∂x′b

)
exp

(
2πi

h
S̄(x′′, t′′;x′, t′)

)
, (32)

where S̄(x′′, t′′; x′, t′) is the action for the classical trajectory. According to
(4), (5) and (6), NCQM related to the quantum phase space (p̂, x̂) can be
regarded as an OQM on the standard phase space (k̂, q̂) and one can apply
usual path integral formalism.

A systematic path integral approach to NCQM with quadratic Lagrangians
(Hamiltonians) has been investigated during the last few years in [4]- [8]. In
[4] and [5], general connections between quadratic Lagrangians and Hamil-
tonians for standard and θ 6= 0, σ = 0 NC are established, and this for-
malism was applied to a particle in the two-dimensional noncommutative
plane with a constant field and to the noncommutative harmonic oscillator.
Papers [6] - [8] present generalization of articles [4] and [5] towards non-
commutativity (4). This formalism was illustrated by a charged particle in
a noncommutative plane with electric and perpendicular magnetic field.

If we know Lagrangian (12) and algebra (4) we can obtain the corresponding
effective Lagrangian (26) suitable for the path integral in NCQM. Exploit-
ing the Euler-Lagrange equations

∂Lθσ

∂qa
− d

dt

∂Lθσ

∂q̇a
= 0 , a = 1, 2, · · · , n ,

one can obtain the classical trajectory qa = qa(t) connecting end points
x′ = q(t′) and x′′ = q(t′′), and the corresponding action is

S̄θσ(x′′, t′′; x′, t′) =
∫ t′′

t′
Lθσ(q̇, q, t) dt .

Path integral in NCQM is a direct analogue of (32) and its exact form
expressed through quadratic action S̄θσ(x′′, t′′;x′, t′) is

Kθσ(x′′, t′′; x′, t′) =
1

(ih)
n
2

√
det

(
− ∂2S̄θσ

∂x′′a ∂x′b

)
exp

(
2 π i

h
S̄θσ(x′′, t′′; x′, t′)

)
.
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3. Noncommutativity on p-adic and adelic spaces

We want to explore now some possible p-adic and adelic generalizations of
the above noncommutativity on real phase space. Let us first recall some
elementary properties of p-adic numbers and adeles.

p-Adic numbers and adeles. When we are going to consider basic prop-
erties of p-adic numbers it is instructive to start with the field Q of rational
numbers, which is the simplest field of numbers with characteristic 0. Q
also contains all results of physical measurements. Any non-zero rational
number can be expanded into two different ways of infinite series:

± 10n
−∞∑

k=0

ak 10k , ak ∈ {0, 1, 2, · · · , 9} , (33)

pν
+∞∑

k=0

bk pk , bk ∈ {0, 1, · · · , p− 1} , (34)

where p is a prime number, and n, ν ∈ Z. These expansions have the usual
repetition of digits depending on rational number but different for (33) and
(34).

The series (33) and (34) are convergent with respect to the usual absolute
value | · |∞ and p-adic norm (p-adic absolute value) | · |p . Allowing all
possibilities for digits, as well as for integers n and ν, by (33) and (34)
one can represent any real and p-adic number, respectively. According to
the Ostrowski theorem, the field R of real numbers and the field Qp of p-
adic numbers exhaust all possible completions of Q. Consequently Q is a
dense subfield in R as well as in Qp. These local fields have many distinct
geometric and algebraic properties. Geometry of p-adic numbers is the
non-Archimedean (ultrametric) one.

There are mainly two kinds of analysis on Qp, which are mathematically
well developed and employed in applications. They are related to two dif-
ferent mappings: Qp → Qp and Qp → C. Some elementary p-adic valued
functions are defined by the same series as in the real case, but the region of
convergence is rather different. For instance, expp x =

∑+∞
n=0

xn

n! converges
in Qp if |x|p ≤ |2p|p . Derivatives of p-adic valued functions are also defined
as in the real case, but using p-adic norm instead of the absolute value.

Very important usual complex-valued p-adic functions are: (i) an additive
character

χp(x) = exp 2πi{x}p , (35)
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where

{x}p =
{

p−m(a0 + a1 p + · · ·+ am−1 pm−1) , m ≥ 1 ,

0 , ν ≥ 0 ,
(36)

is the fractional part of x presented in the canonical form (34); (ii) a mul-
tiplicative character

πs(x) = |x|sp , s ∈ C ; (37)

and (iii) locally constant functions with compact support, whose simple
example is

Ω(|x|p) =
{

1, |x|p ≤ 1,

0, |x|p > 1.
(38)

An adele x is an infinite sequence

x = (x∞, x2, x3, · · · , xp, · · · ) , (39)

where x∞ ∈ R and xp ∈ Qp with the restriction that for all but a finite
set P of primes p we have xp ∈ Zp = {y ∈ Qp : |y|p ≤ 1}. Addition and
multiplication of adeles is componentwise. The ring of all adeles can be
presented as

A =
⋃

P
A(P), A(P) = R×

∏

p∈P
Qp ×

∏

p6∈P
Zp , (40)

where Zp is the ring of p-adic integers. A is locally compact topological
space with well defined Haar measure. There are mainly two kinds of
analysis over A, which generalize those on R and Qp.

On p-adic and adelic noncommutative analogs. Since 1987, p-adic
numbers and adeles have been successfully employed in many topics of
modern mathematical physics (for a review, see e.g. [12]). In particular, p-
adic and adelic string theory (as a review, see [13]), quantum mechanics (see
[14] as a recent review) and quantum cosmology (see [15] as a recent review)
have been investigated. For much more information on p-adic numbers,
adeles and their analysis one can see [16] and [17].

It is well known that combining quantum mechanics and relativity one
concludes existence of a spatial uncertainty ∆x which reads

∆x ≥ `0 =

√
~G
c3

∼ 10−33cm. (41)

The uncertainty (41) may be regarded as a reason to consider simulta-
neously noncommutative and p-adic aspects of spatial coordinates at the
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Planck scale. Henceforth we are interesting here in p-adic analogs of the
above noncommutativity considerations on real space. Adelic approach
enables to treat real and all p-adic aspects of a quantum system simul-
taneously and as essential parts of a more complete description. Adelic
quantum mechanics was formulated [18] and successfully applied to some
simple and exactly solvable models. Here we consider also adelic approach
to noncommutativity.

Note that instead of (1) one can use an equivalent quantization based on
relations (h = 1)

χ∞(−αax̂a)χ∞(−βbp̂b) = χ∞(αaβb δab) χ∞(−βbp̂b)χ∞(−αax̂a), (42)

χ∞(−αax̂a) χ∞(−αbx̂b) = χ∞(−αbx̂b)χ∞(−αax̂a), (43)

χ∞(−βap̂a) χ∞(−βbp̂b) = χ∞(−βbp̂b)χ∞(−βap̂a), (44)

where χ∞(u) = exp(−2πiu) is real additive character and (α, β) is a point
of classical phase space.

Quantization of expressions which contain products of xi and pj is not
unique. According to the Weyl quantization any function f(p, x), of clas-
sical canonical variables p and x, which has the Fourier transform f̃(α, β)
becomes a self-adjoint operator in L2(Rn) in the following way:

f̂(p̂, x̂) =
∫

χ∞(−αx̂− βp̂)f̃(α, β) dnα dnβ. (45)

It is significant that quantum mechanics on a real space can be generalized
to p-adic spaces for any prime number p. However there is not a unique way
to perform generalization. As a result there are two main approaches: with
complex-valued and p-adic valued elements of the Hilbert space on Qn

p . For
approach with p-adic valued wave functions see [19]. p-Adic quantum me-
chanics with complex-valued wave functions is more suitable for connection
with ordinary quantum mechanics, and in the sequel we will refer only to
this kind of p-adic quantum mechanics (as a review, see [14]).

Since wave functions are complex-valued, one cannot construct a direct
analog of the Schrödinger equation. The Weyl approach to quantization is
suitable in p-adic quantum mechanics (see e.g. [14]).

Let x̂ and k̂ be some operators of position x and momentum k, respectively.
Let us define operators χv(αx̂) and χv(βk̂) by formulas

χv(αx̂)χv(ax) = χv(αx)χv(ax) = χv((a + α)x) , (46)
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χv(βk̂)χv(bk) = χv(βk)χv(bk) = χv((b + β)) , (47)

where index v denotes real (v = ∞) and any p-adic case, v = ∞, 2,

· · · , p, · · · , taking into account all non-trivial and inequivalent valuations on
Q. It is obvious that these operators also act on a function ψv(x) ∈ L2(Qn

v ),
which has the Fourier transform ψ̃v(k), in the following way:

χv(−αx̂) ψv(x) = χv(−αx̂)
∫

χv(−kx) ψ̃v(k) dnk = χv(−αx) ψv(x), (48)

χv(−βk̂)ψv(x) =
∫

χv(−βk)χv(−kx) ψ̃(k)v dnk = ψv(x + β), (49)

where integration in p-adic case is with respect to the Haar measure dk with
the properties: d(k + a) = dk, d(ak) = |a|p dk and

∫
|k|p≤1

dk = 1. Now
relations (42), (43), (44) can be straightforwardly generalized, including
p-adic cases, by replacing formally index ∞ by v . Thus we have

χv(−αax̂a)χv(−βbk̂b) = χv(αaβb δab)χv(−βbk̂b)χv(−αax̂a), (50)

χv(−αax̂a)χv(−αbx̂b) = χv(−αbx̂b) χv(−αax̂a), (51)

χv(−βak̂a)χv(−βbk̂b) = χv(−βbk̂b)χv(−βak̂a). (52)

It is worth noting that equation (49) suggests to introduce

{βk̂

h

}m

p
ψp(x) =

∫ {βk

h

}m

p
χp(−k x) ψ̃p(k) dnk (53)

which may be regarded as a new kind of the p-adic pseudo-differential oper-
ator (for Vladimirov’s pseudo-differential operator, see [12]). Also equation
(50) suggests a p-adic analog of the Heisenberg algebra in the form

{αax̂a

h

}
p

{βbk̂b

h

}
p
−

{βbk̂b

h

}
p

{αax̂a

h

}
p

= − i

2π
δab

{αaβb

h

}
p
, (54)

where h is the Planck constant. According to (54), p-adic noncommutativ-
ity depends on

{
αaβb

h

}
p

which is a rational number related to the size of

phase space in units of h. When αaβb

h ∈ Z then
{

αaβb

h

}
p

= 0 and system

is p-adically commutative.

From (35) one can derive uncertainty relation [20]

∆
{αaxa

h

}
p
∆

{βbkb

h

}
p
≥ δab

4π

{αaβb

h

}
p
, (55)
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which is p-adic analog of the first inequality in (3).

Taking product of (50) over all valuations v we have

∏
v

χv(−αax̂a) χv(−βbk̂b) =
∏
v

χv(−βbk̂b) χv(−αax̂a) ,
αa βb

h
∈ Q , (56)

since
∏
v

χv(αa βb δab) = 1 ,
αa βb

h
∈ Q . (57)

It follows that in an adelic quantum system with the same rational value
of αaβb

h in real and all p-adic counterparts one has commutativity between
canonical operators x̂a and k̂a.

p-Adic version of (4) can be obtained from (50) - (52) by adding the corre-
sponding prefactors on the RHS. Adelic product will be again commutative
for rational values of parameters αa , βb , θab and σab.

p-Adic and adelic path integrals have been investigated and for quadratic
Lagrangians an analog of (32) was obtained with number field invariant
form (see [21] and references therein). For some other considerations of
p-adic and adelic noncommutativity including the Moyal product in the
context of scalar field theory one can see [22] and [23].

4. Concluding remarks

At the first glance one can conclude that the phase space transformation
(6) is not appropriate because it is not a canonical one. However this
transformation should not be the canonical one since initial problem is
given not only by Hamiltonian (14) but also with relations (4). Using
transformations (6), Hamiltonian (14) with commutation relations (4) is
equivalent to Hamiltonian (22) with conventional relations (5).

Let us mention that taking σ = 0, θ = 0 in the above formulas we recover
expressions for the Lagrangian L(X, t), classical action S̄(x′′, T ;x′, 0) and
probability amplitude K(x′′, T ; x′, 0) of the ordinary commutative case.

A similar path integral approach with σ = 0 has been considered in the
context of the Aharonov-Bohm effect, the Casimir effect, a quantum sys-
tem in a rotating frame, and the Hall effect (references on these and some
other related subjects can be found in [4] - [8]). Our investigation con-
tains all quantum-mechanical systems with quadratic Hamiltonians (21)
(Lagrangians (12)) on noncommutative phase space given by relations (4).
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