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We discuss a way to define minimal lightlike surfaces in Minkowski space.

1. Introduction

The minimal two-dimensional surfaces in the Euclidean space En have vari-
ous characteristic properties which can be viewed as definitions of minimal-
ity. The classical definition says that a surface F 2 in En, n ≥ 3, is minimal
if its mean curvature vanishes, H ≡ 0. Minimal surfaces are critical points
of the area functional, the position-vector of a minimal surface in En is
harmonic in terms of isothermic coordinates, etc [1]. One of the most use-
ful properties of minimal surfaces is their deformability. Namely, a surface
in En admits a continuous family of conformal G-transformations different
from translations and homotheties if and only if it is minimal [2]. Here a G-
transformation is defined as a regular mapping F 2 −→ F̃ 2 which preserves
the Gauss image, i.e. the planes tangent to F 2 and F̃ 2 at corresponding
points are parallel.

The aim of this article is to introduce a natural analogue of minimal surfaces
for the class of lightlike surfaces in the Minkowski space Mn. Recall that
there are three types of two-dimensional planes in Mn: a two-dimensional
plane Π2 in Mn is called spacelike, timelike or lightlike if it contains zero,
two or one null directions respectively [3],[5]. A two-dimensional surface F 2

in Mn is referred to as spacelike (timelike, lightlike), if all planes tangent
to F 2 are spacelike (timelike, lightlike respectively). Every space- or time-
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like surface in Mn has a non-degenerate semi-Riemannian metric induced
from ds2

M , so we can consider all the fundamental intrinsic and extrinsic
geometric notions. In particular, one can define such notions as the mean
curvature and the minimal (maximal) space- and timelike surfaces. As for
the lightlike surfaces, whose induced metrics are degenerate by definition,
it is not clear what kind of lightlike surfaces may be treated as minimal and
what is the mean curvature. For our best knowledge, a unique attempt to
define the mean curvature for lightlike submanifolds was accomplished in
[4] for the lightlike hypersurfaces in semi-Euclidean spaces, see also [5].

Our idea is to use the mentioned deformability property of minimal surfaces
in En. It turns out to be true that the space- and timelike surfaces in
Mn have the same property [6]: a space- or timelike surface F 2 in Mn

admits a continuous family of nontrivial conformal G-transformations if

and only if the mean curvature of F 2 vanishes, H ≡ 0 . Moreover, for

every spacelike (timelike) surface F 2 with vanishing mean curvature in Mn

its conformal G-transformations are well represented by pairs of conjugate

harmonic functions (two functions of one argument, respectively) in terms

of isothermic coordinates on F 2. It is useful to recall that a spacelike
(timelike) surface F 2 in Mn is parameterized by isothermic coordinates iff
its position-vector ρ(u1, u2) satisfies

〈∂u1ρ, ∂u1ρ〉 = ε〈∂u2ρ, ∂u2ρ〉, 〈∂u1ρ, ∂u2ρ〉 = 0,

and then the vanishing of the mean curvature reads

∂u1u1ρ + ε∂u2u2ρ = 0,

here 〈, 〉 stands for the inner product in Mn, ε = 1 and ε = −1 correspond
to the spacelike and timelike cases respectively [7], [8], [9].

As for the lightlike case, it turns out that from the local point of view
there are two classes of lightlike surfaces which admit non-trivial conformal
G-deformations. One class consists of the null-ruled surfaces. A null-ruled
surface in Mn is formed by null straight lines of Mn, it may be parameter-
ized in such a way that its position-vector ρ(u1, u2) satisfies

〈∂u1ρ, ∂u1ρ〉 = 0, 〈∂u1ρ, ∂u2ρ〉 = 0, ∂u1u1ρ = 0,

i.e. the coordinate curves u2 = const are null straight lines and u1 is an
affine parameter on them. This class of lightlike surfaces is formally relied
to the space- and timelike surfaces with vanishing mean curvature: we have
to set ε = 0 instead of ε = ±1.
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The other particular class consists of lightlike surfaces which are referred to
as strongly lightlike. By definition, a strongly lightlike surface is not null-
ruled and it may be parameterized in such a way that its position-vector
ρ(u1, u2) satisfies three conditions:

〈∂u1ρ, ∂u1ρ〉 = 0, 〈∂u1ρ, ∂u2ρ〉 = 0,

i.e. the coordinate curves u2 = const in F 2 are null curves, and besides

∂u1u2ρ = P∂u1ρ + Q∂u2ρ.

This class of surfaces was described earlier by K. Ilienko [10], [11], [12] in
terms of twistors and spinors but without any geometric interpretations.

Since in the lightlike case only the null-ruled and strongly lightlike surfaces
admit continuous families of non-trivial conformal G-transformations, just
like the minimal surfaces in En and the minimal (maximal) space- and
timelike surfaces in Mn do, then the null-ruled and strongly lightlike sur-
faces may be also treated as minimal. It has to be remarked that every
lightlike surface in M3 is null-ruled; in M4 the strongly lightlike surfaces
are generic, whereas the null-ruled surfaces form a particular class of light-
like surfaces; in Mn, n > 4, generically a lightlike surface is neither strongly
lightlike nor null-ruled.

The structures of null-ruled surfaces are quite simple, they were intensively
studied from different points of view. On the other hand, the strongly light-
like surfaces were neglected, so our principal aim is to study this new class
of surfaces. After proving the existence of continuous families of non-trivial
conformal G-transformations for null-ruled and strongly lightlike surfaces,
we will describe in more details the conformal G-transformations of strongly
lightlike surfaces. Next, we will consider Laplace transformations between
strongly lightlike surfaces and prove that Laplace transformations commute
with conformal G-transformations. Finally, we will present some examples
of lightlike surfaces in Mn.

2. General conformal G-transformations

Let x0, ..., xn−1 be Cartesian coordinates in the n-dimensional Minkowski
space Mn, the metric of Mn reads

ds2
M = (dx0)2 − (dx1)2 − (dx2)2 − ...− (dxn−1)2.

Consider a regular two-dimensional surface F 2 in Mn represented by a
position-vector x = ρ(u1, u2). The regularity of F 2 means that at every
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point P ∈ F 2 the vectors ∂u1ρ and ∂u2ρ are non-collinear and span the
tangent plane TP F 2 to F 2. The metric induced on F 2 from ds2

M reads
ds2 = gijduiduj , where gij = 〈∂uiρ, ∂uj ρ〉 are corresponding inner products
in Mn.

Suppose the given surface F 2 is transformed to another surface F̃ 2 with
position-vector ρ̃(u1, u2). The transformation ψ : F 2 −→ F̃ 2 is said to be
a G-transformation if the tangent planes to F 2 and F̃ 2 at corresponding
points are parallel, i.e. the following equalities hold:

∂u1 ρ̃ = A∂u1ρ + B ∂u2ρ, (1)

∂u2 ρ̃ = C ∂u1ρ + D ∂u2ρ, (2)

where A, B, C, D are some functions of variables u1, u2.

Clearly, translations and homotheties in Mn generate G-transformations of
surfaces, they are referred to as trivial. Translations are described by A =
D ≡ 1, B = C ≡ 0, whereas homotheties correspond to A = D ≡ const,
B = C ≡ 0.

On the other hand, non-trivial G-transformations may exist too, so it is
an interesting problem to study such kind of mappings. The existence of
non-trivial G-transformations is relied to some restrictions for A, B, C,
D, which arise from the compatibility of (1)-(2), ∂u1u2 ρ̃ = ∂u2u1 ρ̃. These
restrictions are following:

(∂u2A− ∂u1C) ∂u1ρ + (∂u2B − ∂u1D) ∂u2ρ (3)

−C ∂u1u1ρ + (A−D) ∂u1u2ρ + B ∂u2u2ρ = 0.

Generically we have a system of algebraic and differential equations for A,
B, C, D, whose compatibility depends on linear relations between ∂u1ρ,
∂u2ρ, ∂u1u1ρ, ∂u1u2ρ and ∂u2u2ρ. Besides, since we consider regular G-
transformations only, the functions A, B, C, D have to satisfy an additional
constraint:

AD −B C 6= 0. (4)

Now assume that the G-transformation ψ : F 2 −→ F̃ 2 is conformal. It
means that the metric ds̃2 = g̃ijduiduj of F̃ 2 is proportional to the metric

of the initial surface F 2,
g̃11

g11
=

g̃12

g12
=

g̃22

g22
. It follows from (1)-(2) that ψ

is conformal if and only if A, B, C and D satisfy the following conditions:

A2g11 + 2ABg12 + B2g22

g11
=

ACg11 + (AD + CB)g12 + BDg22

g12
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=
C2g11 + 2CDg12 + D2g22

g22
. (5)

Thus, the surface F 2 ⊂ Mn being given, the existence of conformal G-
transformations for F 2 depends on the solvability of (3)-(5) with respect
to A, B, C, D. Generically we have trivial solutions only that corre-
spond to translations and homotheties. However in some particular cases
there are either finite sets or continuous families of non-trivial conformal
G-transformations. We will study continuous families of conformal G-
transformations which are referred to as conformal G-deformations. From
the analytic point of view, the question is when there exists a continu-
ous family of non-trivial solutions A(u1, u2; ε), B(u1, u2; ε), C(u1, u2; ε),
D(u1, u2; ε) of (3)-(5) , here ε is a family parameter. It is natural to sup-
pose that the desired family starts from a trivial solution A(u1, u2; 0) = 1,
B(u1, u2; 0) = 0, C(u1, u2; 0) = 0, D(u1, u2; 0) = 1. For space- and timelike
surfaces the discussion is quite simple and similar to the Euclidean case, if
we apply isothermic coordinates. Our aim is to analyze the case of lightlike
surfaces.

3. Conformal G-transformations of lightlike surfaces

Now assume that the regular surface F 2 is lightlike. It means that the
differential form ds2 induced in F 2 from ds2

M is degenerate, g11g22 − g2
12 =

0. In this case it is conventional to call ds2 a degenerate metric [3], [4],
[5]. In this case at every point P ∈ F 2 there exist a unique well defined
null direction in the tangent plane TP F 2. As consequence, F 2 is foliated
into a one-parameter family of null curves. Without loss of generality we
can specify the coordinates u1, u2 in such a way that the coordinate lines
u2 = const are just the mentioned null curves in F 2. Then the metric of
F 2 reads ds2 = g22(du2)2, i.e.

g11 = 〈∂u1ρ, ∂u1ρ〉 = 0, (6)

g12 = 〈∂u1ρ, ∂u2ρ〉 = 0. (7)

Remark that if we chose another local coordinates u1 = u1(û1, û2),
u2 = u2(û2), then the coordinate lines û2 = const in F 2 will still null
and the metric will be written as ds2 = ĝ22(dû2)2.

The planes tangent to F 2 and F̃ 2 at points corresponding under the G-
transformation ψ : F 2 −→ F̃ 2 are parallel. Therefore F 2 and F̃ 2 are of the
same causal type, so F̃ 2 is lightlike. Moreover, if we specify u1, u2 so that
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(6)-(7) hold, then the conditions (5) read:

B = 0. (8)

So, the G-transformation ψ : F 2 −→ F̃ 2 is conformal iff it maps null
directions tangent to F 2 into null directions tangent to F̃ 2. Such mappings
of lightlike submanifolds are sometimes referred to as radical preserving.

Because of (8), the equation (3) is rewritten as follows:

(∂u2A− ∂u1C) ∂u1ρ − ∂u1D ∂u2ρ − C ∂u1u1ρ + (A−D) ∂u1u2ρ = 0. (9)

Besides, the regularity condition (4) holds iff A and D don’t vanish. We
see that if the vectors ∂u1ρ, ∂u2ρ, ∂u1u1ρ and ∂u1u2ρ are independent, then
(9) has trivial solutions only, C = 0, A = D = const, they correspond to
trivial conformal G-transformations.

Proposition 3.1 If a lightlike surface F 2 in Mn, with position-vector
x = ρ(u1, u2) and metric ds2 = g22(du2)2, admits a non-trivial conformal
G-transformation, then the vectors ∂u1ρ, ∂u2ρ, ∂u1u1ρ and ∂u1u2ρ are line-
arly dependent.

The described necessary condition for the existence of non-trivial conformal
G-transformations is invariant with respect to mentioned scaling changes of
coordinates, u1 = u1(û1, û2), u2 = u2(û2), which preserve the nullity of one
family of coordinate lines. How it is restrictive depends on the dimension
n.

Lemma 3.1 Let F 2 be a lightlike surface in the n-dimensional Minkowski
space Mn. Assume that F 2 is represented by a position-vector ρ(u1, u2) in
such a way that coordinate lines u2 = const are null curves, i.e. the metric
of F 2 reads ds2 = g22(du2)2.

1) If n = 3, then ∂u1u1ρ and ∂u1u2ρ linearly depend on ∂u1ρ, ∂u2ρ.

2) If n = 4, then ∂u1ρ, ∂u2ρ, ∂u1u1ρ and ∂u1u2ρ are linearly dependent.

Proof. The coordinates on F 2 are specified in such a way that (6)-(7) hold.
If we differentiate these equalities, we obtain

〈∂u1ρ, ∂u1u1ρ〉 = 0, (10)

〈∂u1ρ, ∂u1u2ρ〉 = 0, (11)

〈∂u2ρ, ∂u1u1ρ〉 = 0, (12)

〈∂u2ρ, ∂u1u2ρ〉 + 〈∂u1ρ, ∂u2u2ρ〉 = 0, (13)
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It follows from (7), (10)-(11) that ∂u2ρ, ∂u1u1ρ and ∂u1u2ρ are orthogonal to
the null vector ∂u1ρ. On the other hand, the subspace of vectors orthogonal
to a given null vector in Mn is (n − 1)-dimensional and contains this null
vector itself. Hence if n = 3, the subspace orthogonal to ∂u1ρ is two-
dimensional and it is spanned by ∂u1ρ and ∂u2ρ, so ∂u1u1ρ and ∂u1u2ρ are
linear combinations of ∂u1ρ and ∂u2ρ.

If n = 4, the subspace orthogonal to ∂u1ρ is three-dimensional and it con-
tains ∂u1ρ, ∂u2ρ, ∂u1u1ρ and ∂u1u2ρ, so ∂u1ρ, ∂u2ρ, ∂u1u1ρ and ∂u1u2ρ are
linearly dependent, q.e.d.

If n > 4, the dimension of the subspace orthogonal to ∂u1ρ is greater than
or equal to 4. Therefore generically the vectors ∂u1ρ, ∂u2ρ, ∂u1u1ρ and
∂u1u2ρ are linearly independent. However in some particular cases linear
dependencies between the vectors in question may exist, it gives us a way
to distinguish particular classes of lightlike surfaces in Mn, n > 4.

From the local point of view, three different classes of lightlike surfaces in
Mn may be defined:

A) ∂u1u1ρ linearly depends on ∂u1ρ and ∂u2ρ at every point of F 2;

B) ∂u1ρ, ∂u2ρ and ∂u1u1ρ are independent, whereas ∂u1u2ρ is its linear
combination, at every point of F 2;

C) ∂u1ρ, ∂u2ρ, ∂u1u1ρ and ∂u1u2ρ are independent at every point of
F 2.

The case C is trivial because of Proposition 3.1. It is a generic situation
for n ≥ 5.

The case A describes null-ruled surfaces. To see this, suppose ∂u1u1ρ lin-
early depends on ∂u1ρ and ∂u2ρ. Since ∂u1u1ρ and ∂u2ρ are orthogonal, then
∂u1u1ρ is collinear to ∂u1ρ. One can chose an admissible scaling change
of coordinates u1 = u1(û1, û2), u2 = u2(û2) on F 2 in such a way that
∂ũ1ũ1ρ = 0, so ρ = ξ(ũ2)ũ1 + η(ũ2), where vector-function ξ(ũ2) and η(ũ2)
satisfy 〈ξ, ξ〉 = 0, 〈ξ, η′〉 = 0. Thus the coordinate null curves ũ2 = const in
F 2 are null straight lines of Mn, so the lightlike surface F 2 is ruled by null
straight lines. It follows from Lemma 3.1, that every lightlike surface in M3

is null-ruled. On the other hand, if n > 3, then the null-ruled surfaces form
a very particular class of lightlike surfaces in Mn. A quite simple analy-
sis shows that every null-ruled surface in Mn admits non-trivial conformal
G-deformations and it still remains null-ruled under such transformations.

We consider in more details the case B. So suppose that at each point of F 2
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the vectors ∂u1ρ, ∂u2ρ and ∂u1u1ρ are linearly independent, whereas ∂u1u2ρ

is its linear combination, ∂u1u2ρ = P∂u1ρ + Q∂u2ρ + R∂u1u1ρ. In this case
the lightlike surface F 2 is referred to as strongly lightlike. Clearly, F 2 is
not null-ruled. Moreover, one can specify the choice of local coordinates
u1, u2 in F 2, by applying a suitable scaling u1 = u1(ũ1, ũ2), u2 = u2(ũ2),
in such a way that

∂u1u2ρ = P∂u1ρ + Q∂u2ρ. (14)

If (14) holds, then u1, u2 are called Liouville coordinates in F 2. They are
determined uniquely up to scaling changes u1 −→ ũ1(u1), u2 −→ ũ2(u2).

It is easy to find the coefficients of (14), if we take into account (6)-(7),
(10)-(12):

P =
〈∂u1u1u2ρ, ∂u1u1ρ〉
〈∂u1u1ρ, ∂u1u1ρ〉 , Q =

〈∂u1u2ρ, ∂u2ρ〉
〈∂u2ρ, ∂u2ρ〉 .

We remark that the lightlike surfaces described by K. Ilienko [10], [11],
[12] in terms of spinor-twistor representations are just the strongly lightlike
surfaces parameterized by Liouville coordinates.

Proposition 3.2 A strongly lightlike surface F 2 in Mn admits non-
trivial continuous conformal G-deformations. Each regular conformal G-
transformation maps F 2 to another strongly lightlike surface F̃ 2, and Liou-
ville coordinates in F 2 are mapped to Liouville coordinates in F̃ 2.

Proof. In order to prove Proposition 3.2, we rewrite (9) by applying (14):

(∂u2A− ∂u1C + P (A−D))∂u1ρ + (Q(A−D)− ∂u1D)∂u2ρ−C∂u1u1ρ = 0.

Since ∂u1ρ, ∂u2ρ and ∂u1u1ρ are independent, then C = 0, and the non-
vanishing functions A and D solve the following system of equations:

∂u2A = P (D −A), (15)

∂u1D = Q(A−D). (16)

It is easy to see that this system has many solutions different from
A = D = const. For instance, one can find D from (15) and substitute
it to (16), then we obtain a second-order linear pde of hyperbolic type
for A(u1, u2), which has a large variety of solutions. As consequence, the
strongly lightlike surface F 2 admits many various non-trivial conformal
G-transformations, which can generate non-trivial continuous conformal
G-deformations of F 2.
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Let us analyze what kind of surfaces in Mn we can obtain, if we apply a
regular conformal G-transformation to F 2. So assume that we have some
non-trivial solution A, D of (15)-(16). In order to construct the corre-
sponding non-trivial conformal G-transformation ψ : F 2 −→ F̃ 2, we have
to integrate the complete system of compatible equations (1)-(2) which now
reads as follows:

∂u1 ρ̃ = A∂u1ρ, (17)

∂u2 ρ̃ = D ∂u2ρ. (18)

The solution ρ̃(u1, u2) of (17)-(18) is the position-vector of the transformed
surface F̃ 2. Let us discuss the properties of F̃ 2. First of all, it is trivial to
verify that F̃ 2 is lightlike, the coordinate curves u2 = const in F̃ 2 are null,
the metric of F̃ 2 is ds̃2 = g̃22(du2)2, where g̃22 = g22D

2. Next, differentiate
(17)-(18) and take into account (14) and (16):

∂u1u1 ρ̃ = ∂u1A∂u1ρ + A∂u1u1ρ, (19)

∂u1u2 ρ̃ = PD∂u1ρ + QA∂u2ρ. (20)

It follows from (17)-(19), that ∂u1 ρ̃, ∂u2 ρ̃ and ∂u1u1 ρ̃ are independent and
span the same three-dimensional subspace as ∂u1ρ, ∂u2ρ and ∂u1u1ρ do.

Finally, find ∂u1ρ and ∂u2ρ from (17)-(18) and substitute into (20):

∂u1u2 ρ̃ = P̃ ∂u1 ρ̃ + Q̃∂u2 ρ̃, (21)

here P̃ = P D
A and Q̃ = Q A

D . Therefore, F̃ 2 is strongly lightlike and u1, u2

are Liouville coordinates in F̃ 2.

4. Laplace transformations of strongly lightlike surfaces

Let the lightlike surface F 2 be strongly lightlike and parameterized by Li-
ouville coordinates u1, u2 so that (14) holds. Consider the transformation
L : F 2 −→ F̂ 2 represented by the following formula:

ρ̂ = ρ − 1
Q

∂u1ρ. (22)

The mapping L is completely determined by F 2, since the vector (1/Q) ∂u1ρ

is invariant under scaling changes of Liouville coordinates u1 → ū1(u1),
u2 → ū2(u2). Following the traditional terminology [13], it is naturally
to call the mapping L the Laplace transformation of F 2. Clearly, this
transformation is defined if the coefficient Q from (14) does not vanish.
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Differentiating (22) and taking into account (14) we obtain:

∂u1 ρ̂ =
(

1 +
∂u1Q

Q2

)
∂u1ρ − 1

Q
∂u1u1ρ, (23)

∂u2 ρ̂ =
(

∂u2Q

Q2
− P

Q

)
∂u1ρ. (24)

We see that the transformed surface F̂ 2 with position-vector ρ̂ is regu-
lar (regularly parameterized by u1, u2) iff ∂u2Q − PQ does not vanish.
Moreover, it easily follows from (6) and (10), that F̂ 2 is lightlike, the co-
ordinate curves u1 = const on F̂ 2 are null curves, and the metric of F̂ 2 is
dŝ2 = ĝ11(du1)2, where ĝ11 = 〈∂u1u1ρ, ∂u1u1ρ〉/Q2.

Differentiate (24) with respect to u2 and apply (14):

∂u2u2 ρ̂ =
(
∂u2

(
∂u2Q

Q2
− P

Q

)
+ P

(
∂u2Q

Q2
− P

Q

))
∂u1ρ +

(
∂u2Q

Q
− P

)
∂u2ρ.

Therefore ∂u1 ρ̂, ∂u2 ρ̂ and ∂u2u2 ρ̂ are linearly independent, since
∂u2Q− PQ 6= 0 in view of regularity of F̂ 2.

Finally, differentiate (24) with respect to u1 and replace ∂u1ρ and ∂u1u1ρ

by corresponding expressions in terms of ∂u1 ρ̂ and ∂u2 ρ̂. We obtain:

∂u1u2 ρ̂ = P̂ ∂u1 ρ̂ + Q̂∂u2 ρ̂,

where

P̂ = P − ∂u2Q

Q
, Q̂ =

Q2∂u2Q− ∂u1Q∂u2Q−Q3P + Q∂u1u2Q−Q2∂u1P

Q(∂u2Q− PQ)
.

Hence, the transformed surface F̂ 2 is strongly lightlike and parameterized
by Liouville coordinates u1, u2. So the following statement holds.

Proposition 4.1 Let L : F 2 −→ F̂ 2 be the Laplace transformation of a
strongly lightlike surface F 2 parameterized by Liouville coordinates. If L is
regular, then the transformed surfaces F̂ 2 is strongly lightlike and parame-
terized by Liouville coordinates.

Thus one can apply the Laplace transformation in order to construct a
strongly lightlike surface parameterized by Liouville coordinates from a
given strongly lightlike surface parameterized by Liouville coordinates. It
is easy to check that the Laplace transformation is involutive.

Remark that the null curves on F 2 are u2 = const, whereas the null
curves on F̂ 2 are u1 = const. So the Laplace transformation is not con-
formal (radical preserving). Besides, the Laplace transformation is not a
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G-transformation, since the planes tangent to F 2 and F̂ 2 at correspond-
ing points are not parallel. On the other hand, we will demonstrate that
conformal G-transformations and Laplace transformations commute, in the
following sense.

Proposition 4.2 Let F 2 be a strongly lightlike surface in Mn. Let
Φ : F 2 −→ F̃ 2 be a conformal G-transformation, L : F 2 −→ F̂ 2 and
L̃ : F̃ 2 −→ ˆ̃F 2 the Laplace transformations. Suppose that the mapping L

and L̃ are regular. Then the mapping L̃◦Φ◦L−1 : F̂ −→ ˆ̃F 2 is a conformal
G-transformation.

Proof. Without loss of generality we assume that the strongly lightlike sur-
face F 2 is parameterized by Liouville coordinates u1, u2, and its position-
vector ρ(u1, u2) satisfies (14). Then the strongly lightlike surface F̃ 2, that
is obtained from F 2 by the given conformal G-transformation Φ, is param-
eterized by Liouville coordinates u1, u2 and its position-vector ρ̃ is relied to
ρ by (17)-(18), where A and D satisfy (15)-(16). The Laplace transforma-
tion L is represented by the formula (22), and the Laplace transformation
L̃ is represented by a similar formula:

ˆ̃ρ = ρ̃− 1
Q̃

∂u1 ρ̃.

Similarly to (23)-(24), one can write:

∂u1 ˆ̃ρ =

(
1 +

∂u1Q̃

Q̃2

)
∂u1 ρ̃− 1

Q̃
∂u1u1 ρ̃, ∂u2 ˆ̃ρ =

(
∂u2Q̃

Q̃2
− P̃

Q̃

)
∂u1 ρ̃ .

Recall that P̃ = P D
A , Q̃ = Q A

D . Taking into account (15)-(18), we obtain:

∂u1 ˆ̃ρ = D

(
1 +

∂u1Q

Q2

)
∂u1ρ − D

Q
∂u1u1ρ,

∂u2 ˆ̃ρ =
(∂u2Q− PQ)D −Q∂u2D

Q2
∂u1ρ .

Easy calculations which use (23)-(24) lead to the following final expressions:

∂u1 ˆ̃ρ = D∂u1 ρ̂, (25)

∂u2 ˆ̃ρ =
(

D − ∂u2D
Q

∂u2Q− PQ

)
∂u2 ρ̂. (26)

Therefore the planes tangent to F̂ 2 and ˆ̃F 2 at corresponding points are
parallel, i.e. the mapping L̃ ◦ Φ ◦ L−1 is a G-transformation of F̂ 2 to ˆ̃F 2.
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Besides, it follows from (26) that the null curves u1 = const in F̂ 2 are

mapped to the null curves u1 = const in ˆ̃F 2, so the mapping L̃ ◦Φ ◦L−1 is
conformal.

5. Examples

Example 1. Consider a surface of rotation F 2 in M4 represented by
a position-vector ρ(u1, u2) = (u1, f(u1) cos u2, f(u1) sin u2, h(u1)), where
f(u1) and h(u1) satisfy (f ′)2 + (h′)2 = 1, f 6= 0. It is easy to verify that
F 2 is strongly lightlike provided f ′′h′ − h′′f ′ 6= 0.

Example 2. Consider a surface F 2 in M5 represented by a position-vector
ρ(u1, u2) = (u1, a cos u1, a sinu1, b cos u2, b sin u2), where constants a and
b satisfy a2 + b2 = 1. It is easy to see that F 2 is strongly lightlike.

Example 3. Consider a Cartan surface N2 in Euclidean space En−1, n > 4:
by definition, N2 carries a well-defined net of conjugate curves[13]. Choose
a corresponding local parameterizations of N2, r(u1, u2) = (f1(u1, u2),
..., fn−1(u1, u2)); the conjugacy of coordinate curves on N2 means that
∂u1u2r is a linear combination of ∂u1r and ∂u2r. Assume that the conju-
gate coordinates u1, u2 in N2 are semi-geodesic, i.e. the metric of N2 is
dσ2 = (du1)2 + G(du2)2. The surface N2 being fixed as the base, consider
the surface F 2 in Mn with position-vector ρ(u1, u2) = (u1, f1(u1, u2), ...,
fn−1(u1, u2)). It is easy to verify that F 2 is lightlike. If the base surface
N2 is not ruled by straight lines, then F 2 is strongly lightlike.

Example 4. Consider the two-dimensional surface of rotation F 2 in
M5 with position-vector ρ = (u1, f(u1) cos u2, f(u1) sin u2, h(u1) cos u2,
h(u1) sin u2), where f(u1) and h(u1) are some functions which satisfy
(f ′)2 + (h′)2 = 1. The surface F 2 is lightlike. If ((f ′′)2 + (h′′)2)(fh′ − hf ′)
does not vanish, then F 2 is neither strongly lightlike nor null-ruled.
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