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It is well-known that an n-dimensional Poincaré complex X
n, n ≥ 5, has the ho-

motopy type of a compact topological n–manifold if the total surgery obstruction
s(Xn) vanishes. The present paper discusses recent attempts to prove analogous
result in dimension 4. We begin by reviewing the necessary algebraic and con-
trolled surgery theory. Next, we discuss the key idea of Quinn’s approach. Finally,

we present some cases of special fundamental groups, due to the authors and to
Yamasaki.

1. Introduction

Classical surgery methods of Browder–Novikov–Wall break down in dimen-

sion 4. The Wall groups, depending only on the fundamental group, do

not seem to be strong enough as obstruction groups to completing the

surgery. It is strongly believed that for free nonabelian fundamental groups

of rank r ≥ 2 Wall groups are not sufficient [3]. Nevertheless, one can make

progress using controlled surgery theory to produce controlled embeddings

of 2–spheres needed for surgery, by using results of Quinn [16]. However,

this works only if the control map satisfies the UV 1–condition (in fact, one
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needs the UV 1(δ)–condition, for sufficiently small δ > 0).

A map p : X → B of X into a metric space B (with metric d) satisfies the

UV 1-condition if it is proper and surjective and if for every δ > 0 and every

map α : K → B of any 2-complex K into B with a lifting α0 : L → X,

defined on a subcomplex L of K, there is a map ᾱ : K → X such that (i)

ᾱ |L= α0, and (ii) d(p ◦ ᾱ(x), α(x)) < δ, for all x ∈ K.

In our applications, X and B will be compact and connected, with chosen

base points. In particular, the UV 1–condition implies that p induces an

isomorphism of fundamental groups p∗ : π = π1(X) → π1(B).

The obstructions belong to a controlled Wall group. Its construction is

conceptual, done by means of Ranicki’s machinery [10], [11], [20]–[25], [27],

[29], [30]. The most important fact is that the controlled groups are homol-

ogy groups, so they can in principle be calculated. The following is a basic

result in surgery theory in dimension n ≥ 5. It is due to Ranicki [20], see

§2 below:

Theorem 1.1. Suppose that Xn is a Poincaré n–complex, n ≥ 5, with total

surgery obstruction s(Xn) = 0. Then Xn is (simple) homotopy equivalent

to a topological n–manifold.

Quinn [19] proposed in 2004 a strategy to extend Theorem 1.1 to dimension

n = 4. More precisely, he suggested how to prove the following conjecture:

Conjecture 1.2. If X4 is a Poincaré 4–complex with s(X4) = 0, then X4

is (simple) homotopy equivalent to an ANR homology 4–manifold.

We shall outline the idea of Quinn’s approach in §4, after having prepared

the necessary preliminaries. We shall also prove a stable version of Conjec-

ture 1.2:

Theorem 1.3. If X4 is a Poincaré 4–complex with s(X4) = 0, then X4#

(
r

#
1

S2 × S2) is (simple) homotopy equivalent to a topological 4–manifold.

In the rest of §4 we shall prove special cases of Conjecture 1.2, when π1(X
4)

is free nonabelian. We begin by establishing some notations and results

which are needed for our presentation. We acknowledge the referee for

comments and suggestions.



275

2. Notations and basic results of algebraic surgery

Let Λ be some ring with anti–involution. Here we will only consider Λ =

Z[π1], the integral group ring of a fundamental group of a space with trivial

orientation character. An n–quadratic chain complex is a pair (C#, ψ#),

where C# is a free Λ–module chain complex and ψ# = {ψs | s = 0, 1, ...}

is a collection of Λ–homomorphisms ψs : Cn−r−s → Cr satisfying certain

relations. Here C# denotes the Λ–dual cochain complex of C (as in [32]).

The pair is a quadratic n–Poincaré complex if ψ0 + ψ#
0 : Cn−# → C# is a

chain equivalence, where ψ#
0 is a the dual map of ψ0.

There is the notion of (n+1)-quadratic (Poincaré) pairs, hence of cobordism

between n–quadratic Poincaré complexes, which is an equivalence relation.

Let Ln(Λ) be the set of equivalence classes of n–quadratic Poincaré com-

plexes. It has a group structure induced by direct sum constructions.

If n = 2k then particular examples of quadratic Poincaré complexes

are given by surgery kernels [Kk(f),Λ, µ] of degree 1 normal maps

(f, b) : Mn → Xn (see [21], [22], [23], [26] ). This gives an isomorphism

of L2k(Λ) with Wall groups L2k(π1). There is also an isomorphism in

odd dimensions in terms of formations. There is an Ω–spectrum L with

πn(L) = Ln({1}) and with zeroth space L0 = G/TOP × Z (see [12]). The

groups Ln({1}) were calculated in [8]. We denote by L̇ → L the connected

covering spectrum, so πn(L̇) = πn(G/TOP ).

If K is a simplicial complex, elements ξ ∈ Hn(K, L̇) can be represented

by equivalence classes of compatible collections of n–quadratic Poincaré

complexes {(C#(σ), ψ#(σ)) | σ ∈ K}. Gluing these individual quadratic

complexes together gives a global n–quadratic Poincaré complex (C#, ψ#)

hence an element in Ln(Λ). There results a homomorphism A : Hn(K, L̇) →

Ln(π1(K)), called the assembly map. To define the structure set Sn+1(K),

one considers compatible collections {(C#(σ), ψ#(σ)) | σ ∈ K} of n–

quadratic Poincaré complexes which are globally contractible, i.e. the map-

ping cone of the map ψ0 + ψ#
0 : Cn−# → C# is contractible (see [24]).

Cobordism classes of such objects build the set Sn+1(K). It has a group

structure arising from direct sum.

Theorem 2.1. The assembly map fits into the exact sequence

· · · → Ln+1(π1(K))
∂
→ Sn+1(K) → Hn(K, L̇)

A
→

A
→Ln(π1(K))

∂
→Sn(K) → · · · .
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For any geometric Poincaré duality complex Xn of dimension n, Ranicki

defined its total surgery obstruction s(Xn) ∈ Sn(Xn) (see [20]).

Theorem 2.2. If n ≥ 5 then s(Xn) = 0 if and only if Xn is (simple)

homotopy equivalent to a topological n–manifold.

The element s(X) can be described as follows: Suppose that X is tri-

angulated. The fundamental cycle [X] ∈ Cn(X) defines a simple chain

equivalence

− ∩ [X] : Cn−#(X̃) → C#(X̃), X̃ → X

is the universal covering, in particular the desuspension of the algebraic

mapping cone S−1C(−∩[X]) of −∩[X] is contractible as a Λ–chain complex.

Let σ∗ be the dual cell of the simplex σ ∈ X with respect of its barycen-

tric subdivision. The global fundamental cycle [X] defines local cycles

[X(σ)] ∈ Cn−|σ|(σ
∗, ∂σ∗), hence it maps

− ∩ [X(σ)] : Cn−r−|σ|(σ∗) → Cr(σ
∗, ∂σ∗).

The collection

{D#(σ) = S−1C(− ∩ [X(σ)]) | σ ∈ X}

assembles toD = S−1C(−∩[X]). There are (n−1−|σ|)–quadratic Poincaré

structures ψ#(σ) on D(σ), giving rise to an (n− 1)–quadratic structure on

D. Then s(X) is represented by the class of the compatible collection

{(D#(σ), ψ#(σ)) | σ ∈ X}.

3. Controlled L–groups of geometric quadratic complexes

and the controlled surgery sequence

Geometric modules were introduced by Quinn [14], [15], [17], [18] (see also

[28]). We introduce here the simple version that locates bases at points in

a control space K over B, and morphisms without incorporating paths.

Let K be a space, p : K → B a (continuous) map to a finite–dimensional

compact metric ANR space. We assume this already here since the surgery

sequence of [10] requires these properties. Let d : B × B → R be a metric.

Let Λ be a ring with involution and 1 ∈ Λ, for example, Λ = Z[π] is a group

ring with involution coming from g → g−1, for g ∈ π.

A geometric module overK is a free Λ–moduleM = Λ[S], S a basis together

with a map ϕ : S → K. It is required that for any x ∈ K, ϕ−1(x) ⊂ S is

finite. A morphism f : M = Λ[S] → N = Λ[T ] is a collection fst : Ms → Nt
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where Ms = Λ[s], Nt = Λ[t] such that for a fixed s ∈ S only finitely

many fst 6= 0. The dual is M∗ = Λ∗[S], where Λ∗ = HomΛ(Λ,Λ), so it is

essentially the same. However, if f : M → N is a geometric morphism, its

dual is a geometric morphism f∗ : N∗ →M∗.

Composition of geometric modules is defined in the obvious way. We de-

fine the radius of f by rad(f) = max{d(pϕ(s), pψ(t)) | fst 6= 0}. Here

ψ : T → K belongs to the geometric module N . The map f is an ε–

morphism if rad(f) < ε. The composition of an ε– and a δ–morphism is

an (ε+ δ)–morphism. The sum of an ε– and a δ–morphism is a max{ε, δ}–

morphism. See [28] for further properties.

Chain complexes of geometric modules are then defined as pairs (C#, ∂#)

where ∂n are geometric morphisms. (C#, ∂#) is an ε–chain complex if all ∂n

are ε–morphisms. A chain map f : (C#, ∂#) → (C ′
#, ∂

′
#) of geometric chain

complexes is a δ–chain equivalence if there is a δ–chain map g : (C ′
#, ∂

′
#) →

(C#, ∂#) and chain homotopies {hn : Cn → Cn+1}, {h
′
n : C ′

n → C ′
n+1} of

g◦f and f ◦g with radhn < δ and radh′n < δ. The composition of a δ–chain

equivalence with a δ′–chain equivalence is a (δ+δ′)–chain equivalence. Note

that the dual f∗ of f has the same radius.

A chain equivalence is ε–contractible if it is ε–chain equivalent to the zero

complex. If f is an ε–chain equivalence then its mapping cone is 3ε–

contractible. An ε–mapping f is a 2ε–equivalence if the mapping cone

is ε–contractible. A pair (C#, ψ#) is called an ε–quadratic geometric Λ–

module complex if the maps ψs : Cn−r−s → Cr have radius < ε. A pair

(C#, ψ#) is ε–Poincaré if the mapping cone ψ0 +ψ#
0 is 4ε–contractible. An

(n + 1)–dimensional ε–quadratic pair (C# → D#, ψ#, δψ#) is a quadratic

pair such that δψs : Dn+1−r−s → Dr and ψs : Cn−r−s → Cr have radius

< ε. It is ε–Poincaré if C(f)n+1−r = Dn+1−r ⊕ Cn−r → Dr, given by

(δψ0 + δψ#
0 , f ◦ (ψ0 + ψ#

0 )) has 4ε–contractible algebraic mapping cone

(note that it is a 2ε–chain map).

Let δ ≥ ε > 0. Then Ln(p : K → B, ε, δ) is the set of equivalence classes of

n–dimensional ε–quadratic ε–Poincaré Λ–chain complexes on p : K → B.

The equivalence relation is generated by δ–bordism defined in the obvious

way. Actually, Theorem 3.1 below implies that δ–bordism is an equivalence

relation if δ is sufficiently small (see Ch.4 of [15]) for analogous results. The

set Ln(p : K → B, ε, δ) has a natural abelian group structure given by direct

sums. As defined above, these ε–δ–L–groups seem to not be calculable.

However, there are deep results identifying these groups with homology

groups in certain spectra [10], [11], [29]. These spectra were constructed by
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Quinn in [15] (see also [30]). Here is a special case, due to Pedersen–

Yamasaki [11] and Ranicki–Yamasaki [29], which is most useful in 4–

dimensional surgery:

Theorem 3.1. Consider Λ = Z. Suppose that p : K → B is a fibration

with simply connected fibers. Then for all n ≥ 0, Ln(p : K → B, ε, δ) ∼=
Hn(B,L), for sufficiently small ε and δ.

Recall that L is the 4–periodic (nonconnected) surgery spectrum with

πn(L) = Ln({1}), if n ≥ 0. The Ω–spectrum L = {Lk | k ∈ Z} is alge-

braically defined in Ch.14 of [24]. However, the controlled surgery obstruc-

tion depends only on the Lk with k > −1, as can easily be deduced from the

Atiyah-Hirzebruch spectral sequence. A particular case is p = Id: B → B,

proved by Pedersen–Quinn–Ranicki [10] (an alternative proof was given by

Ferry [2]):

Theorem 3.2. Let B be as above. Then there exists an (assembly) iso-

morphism Ln(B, ε, δ) ∼= Hn(B,L).

The following is the main result of controlled surgery theory with locally

trivial fundamental groups (see [10]). By results of Quinn (see Ch.3.2 of

[16]) it also holds in dimension 4:

Theorem 3.3. Suppose that B is as above. Then there is ε0 > 0 such that

for any ε0 > ε > 0 there is δ > 0 with the following property: If Xn is a

δ–Poincaré complex with respect to a UV 1(δ) map p : Xn → B and n ≥ 4,

then there is a controlled surgery exact sequence

Hn+1(B,L) → Sε,δ(X
n) → [Xn, G/TOP ]

Θ
→Hn(B,L).

Here we must additionally assume, that there is a TOP reduction of νX .

Recall that Sε,δ(X) consists of pairs (M,f) where Mn is an n–manifold,

f : M → X a δ–homotopy equivalence over p : X → B, modulo the equiva-

lence relation: (M,f) ∼ (M ′, f ′) if there is a homeomorphism h : M →M ′

such that f and f ′ ◦ h are ε–homotopic over B. To define the Wall realiza-

tion map Hn+1(B,L) → Sε,δ(X), one needs Sε,δ(X) 6= ∅.

Remark 3.1. Ranicki and Yamasaki worked out, in a conceptual way, the

controlled surgery obstruction, using a controlled version of the quadratic

construction [27].

Summary. Consider a surgery problem (f, b) : M → X with control map

p : X → B. If X is a δ–Poincaré complex for sufficiently small δ > 0
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over B, then one can construct as above the controlled surgery obstruction

belonging to Ln(B, ε, δ). If p is additionally UV 1(δ) for sufficiently small

δ > 0, then the controlled surgery sequence holds.

4. Some conclusions and comments

In this section we present Quinn’s approach and then we consider Poincaré

4–complexes with free fundamental groups. We mentioned in the intro-

duction Ranicki’s main result in high–dimensional surgery theory: If Xn

is a Poincaré n–complex with vanishing total surgery obstruction s(Xn),

then Xn is (simple) homotopy equivalent to topological n–manifold Mn,

provided that n ≥ 5. One of the main objectives is to extend this result to

dimension 4.

Here are the key ideas of Quinn’s approach [19]: Let X4 be a 4–dimensional

Poincaré complex.

(1) We investigate the algebraic surgery sequence explained in §2.

· · · → L4(π1(X
4)) → S4(X

4) → H3(X
4, L̇) → . . .

with s(X4) ∈ S4(X
4).

(2) We consider the image of s(X4) under the composite map

S4(X
4) → H3(X

4, L̇) → H3(X
4,L)

and use the identification (§3)

H3(X
4,L) ∼= L3(X

4, ε, δ),∀ε < ε0.

Thus s(X4) determines an element [s(X4)] ∈ L3(X
4, ε, δ), i.e.

(D#, ψ#) = (S−1C(− ∩ [X4]), ψ#) as described in §2, carries an

ε–quadratic Poincaré structure, unique up to δ–bordism.

(3) If [s(X4)] = 0, there is a δ–null–bordism (D#, ψ#) → (E#, δψ#).

In fact, since we have assumed s(X4) = 0, E# is contractible.

(4) This bordism can be topologically realized by a δ′–homotopy equiv-

alence X ′4 → X4, where X ′4 is an ε′–Poincaré 4–complex. Here,

(δ′, ε′) depends on (δ, ε), and becomes arbitrary small as (δ, ε) be-

comes small. Ideas of surgery on Poincaré and normal spaces are

used here (see [13]).

(5) Choose a sequence {εn} → 0 and iterate the above construction to

produce a sequence {X ′4
n → X ′4

n−1}n. Its limit in the sense of [1] is

an ANR homology 4–manifold X ′4 which is homotopy equivalent

to X4.
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This approach can be summarized as follows: Suppose X4 is a Poincaré

4–complex with s(X4) = 0. Then X4 is (simple) homotopy equivalent to

an ANR homology 4–manifold X ′4.

Remark 4.1. The topological realization step (4) requires a highly δ–

connected null bordism (E#, δψ#), which is not guaranteed when n is even.

Remark 4.2. Starting with a relative Poincaré complex (X4, ∂X4) such

that ∂X4 is a topological 4–manifold, the 4–dimensional resolution theorem

[16] implies that X ′4 is a topological 4–manifold.

For the rest of this section we consider Poincaré 4–complexes X4 with free

nonabelian fundamental groups, i.e. π1(X
4) ∼=

p
∗
1

Z. We benefit from the

special topology of such complexes, in particular:

Theorem 4.1.

(a) X4 is (simple) homotopy equivalent to {
p
∨
1
(S1 ∨S3)∨ (

q
∨
1
S2)}∪

ϕ
D4;

and

(b) If the Λ–intersection form

λΛ : H2(X
4,Λ) ×H2(X

4,Λ) → Λ

is induced by the Z–intersection form

λZ : H2(X
4,Z) ×H2(X

4,Z) → Z

by extension of scalars Z → Λ, then X4 is (simple) homotopy equiv-

alent to Q4#M ′4, where Q4 =
p

#
1

(S1 × S3), and M ′4 is a simply

connected topological 4–manifold determined by λZ.

For proofs see [4], [6], [7], [9]. We note here that the first Postnikov invariant

forX4 vanishes. Theorem 4.1 implies (what is much easier to see) that there

is a degree 1 map p : X4 → Q4.

Lemma 4.2. The assembly maps satisfy the following properties:

(a) A : H4(X
4, L̇) → L4(π1(X

4)) is onto; and

(b) A : H3(X
4, L̇) → L3(π1(X

4)) is injective.

Proof. Assembly is a natural construction so we have the commutative

diagram
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A
A

p∗

Ll(π1(X))

Hl(X, L̇) Hl(Q, L̇)

A spectral sequence argument shows that p∗ : H4(X
4, L̇) → H4(Q

4, L̇)

is onto, and p∗ : H3(X
4, L̇) → H3(Q

4, L̇) is an isomorphism. If

B = B(π1(X
4)) is the classifying space, c : Q4 → B the classifying map,

then c∗ : Hl(Q
4, L̇) → Hl(B, L̇) is an isomorphism for l = 3, 4 by similar ar-

guments. However, for free fundamental groups, A : Hl(B, L̇) → Ll(π1(X))

is an isomorphism. This proves the lemma.

Corollary 4.3. If X4 is a Poincaré 4–complex, then s(X4) is zero. More-

over, the algebraic structure set S4(X
4) is trivial.

Proof. This follows from Lemma 4.2 and the algebraic surgery sequence

→ H4(X
4, L̇)

A
→L4(π1(X

4)) → S4(X
4) →

→ H3(X
4, L̇)

A
→L3(π1(X

4)) → · · ·

By the discussion above it is plausible to conjecture:

Conjecture 4.4. Any Poincaré 4–complex X4, such that π1(X
4) ∼=

p
∗
1

Z,

is (simple) homotopy equivalent to an ANR homology 4–manifold.

Part (b) of the above theorem confirms Conjecture 4.4 for the case when λΛ

is extended from λZ. Indeed, in this case X4 is homotopically a manifold.

In general case we obtain a stable result:

Corollary 4.5. If X4 has a free nonabelian fundamental group, then

X4#(
r

#
1

S2 × S2) is (simple) homotopy equivalent to a topological 4–

manifold.

Proof. Since s(X4) = 0, there is a degree 1 normal map (f, b) : M 4 → X4

whose Wall obstruction is zero. This means that (K2(f), λ, µ) is stably

hyperbolic. The result then follows from [6].

Remark 4.3. X4#(
r

#
1

S2 × S2) is the connected sum made inside a 4–cell

in X4.
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The controlled surgery method also works for certain other fundamental

groups. We have proved this for those Poincaré complexes whose funda-

mental group is that of a torus knot [5]:

Theorem 4.6. Let X4 be a 4-dimensional Poincaré complex such that

π1(X
4) ∼= π1(S

3 \ K), where K ⊂ S3 is a torus knot, and suppose that

s(X4) = 0. Then X4 is (simple) homotopy equivalent to a closed topological

4–manifold.

Yamasaki [31] has recently proved that Theorem 4.6 holds also for hyper-

bolic knots K ⊂ S3. Note that in order to verify Theorem 4.6 for all knots

K ⊂ S3 it would suffice, by Thurston’s theorem, to answer in affirmative

the following question:

Question Does Theorem 4.6 hold also if K ⊂ S3 is a satellite knot?
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