COMPLEX SUBMANIFOLDS OF QUATERNIONIC KÄHLER MANIFOLDS *

STEFANO MARCHIAFAVA[†]

Dipartimento di Matematica, Università di Roma "La Sapienza", P.le A. Moro 2, 00185 Roma, Italy E-mail: marchiaf@mat.uniroma1.it

This is a survey on some basic results concerning complex and, in particular, Kähler submanifolds of a quaternionic Kähler manifold. Some problems which could be interesting to consider are outlined.

1. Preliminaries on quaternionic Kähler manifolds

We shall give a survey on (immersed) submanifolds having some interest to be considered into a quaternionic Kähler manifold. A **quaternionic Kähler manifold** will be denoted by $(\widetilde{M}^{4n}, \widetilde{g}, Q)$, where \widetilde{g} is the Riemannian metric and (\widetilde{g}, Q) is the quaternionic Hermitian structure on the 4*n*-dimensional manifold $\widetilde{M} \equiv \widetilde{M}^{4n}$; the quaternionic structure Q, which is parallel with respect to the Levi-Civita connection $\widetilde{\nabla} = \nabla^{\widetilde{g}}$, is locally generated by an **admissible almost hypercomplex basis** $H = (J_1, J_2, J_3 = J_1 J_2)$ and the following identities hold:

$$\widetilde{\nabla}_X J_\alpha = \omega_\gamma(X) J_\beta - \omega_\beta(X) J_\gamma, \qquad X \in TM$$

where α, β, γ is a cyclic permutation of 1, 2, 3 and the $\omega_{\alpha}, \alpha = 1, 2, 3$, are local 1-forms (depending on the choice of an admissible basis (J_{α})). See for example [23],[1] for a basic introduction. Let us recall also that $(\widetilde{M}^{4n}, \widetilde{g})$ is an Einstein manifold and there is a decomposition of the curvature tensor

^{*} MSC 2000: Primary 53C26, Secondary 53C55, 53C40.

Keywords: Superminimal surfaces, quaternionic Kähler manifolds, complex submanifolds, Kähler submanifolds, totally complex submanifolds, minimal submanifolds, twistor spaces, Legendrian submanifolds, pluriminimal immersions.

 $^{^\}dagger$ Work done under the program of G.N.S.A.G.A. of C.N.R.; partially supported by M.U.R.S.T, Italy.

of the form

$$\widetilde{R} = \nu R_{\mathbb{H}P^n} + \widetilde{W}$$

where $R_{\mathbb{H}P^n}$ is the curvature tensor of the quaternionic projective space $\mathbb{H}P^n$ with the standard metric, ν is a constant which is called the **reduced** scalar curvature, such that $K = 4n(n+2)\nu$ is the scalar curvature, and \widetilde{W} is the **quaternionic Weyl tensor** which verifies the identity $[\widetilde{W}(X,Y),Q] = 0$ and has all contractions equal to zero.

For n = 1, 4-dimensional quaternionic Kähler manifolds are the same as Einstein anti-self-dual manifolds.

The most basic 4n-dimensional quaternionic Kähler manifolds are respectively the numerical quaternionic space \mathbb{H}^n , $\nu = 0$, the projective quaternionic space $\mathbb{H}P^n$, $\nu > 0$, and its non compact dual, the hyperbolic quaternionic space $\mathcal{H}\mathbb{H}P^n$, $\nu < 0$, endowed with their canonical quaternionic Hermitian structure.

The last two models fall into the important classes of *Wolf spaces*, i.e. the compact quaternionic Kähler symmetric spaces, and of their non compact duals respectively .

2. Special submanifolds in quaternionic Kähler manifolds $(\widetilde{M}^{4n}, \widetilde{g}, Q)$

Submanifolds M of primary interest in $(\widetilde{M}^{4n}, \widetilde{g}, Q)$, where Q is a (rank-3) bundle of skew-symmetric endomorphisms, are the following.

Quaternionic submanifolds (M^{4m}, Q') : the tangent bundle of M is Q-invariant, QTM = TM, and $Q' = Q_{|TM}$.

By a classical result they are totally geodesic. Hence (M^{4m}, g, Q') , where $g = \tilde{g}_{|TM}$, is a quaternionic Kähler manifold.

(Almost-) complex submanifolds (M^{2m}, J_1) : the tangent bundle TM is J_1 -invariant with respect to a section $J_1 \in \Gamma(Q_{|M}), J_1^2 = -\text{Id.}$ Then $(M^{2m}, g = \tilde{g}_{|TM}, J = J_{1|TM})$ is an (almost-) Hermitian manifold.

As usual, the adverb *almost* is skipped if the almost complex structure $J = J_{1|TM}$ induced on M is integrable.

3. Complex submanifolds (M^{2m}, J_1)

Let (M^{2m}, J_1) be an almost complex submanifold of $(\widetilde{M}^{4n}, \widetilde{g}, Q)$. An **adapted basis** for (M^{2m}, J_1) is an admissible basis $H = (J_1, J_2, J_3)$ de-

fined around a point of M^{2m} .

The problem of integrability of the almost complex structure $J = J_{1|TM}$, i.e. the vanishing of the Nijenhuis tensor N(J), was studied in [2]. Let assume that (J_1, J_2, J_3) is an adapted basis and denote

$$\psi = (\omega_3 \circ J_1 - \omega_2)_{|TM}.$$

Then:

- N(J) = 0 if and only if $\psi = 0$.

Let consider the orthogonal decomposition

$$T_x M = \overline{T}_x M + \mathcal{D}_x, \quad x \in M,$$

where $\overline{T}_x M = T_x M \cap J_2 T_x M$ is the maximal quaternionic subspace of $T_x M$.

- If $N(J)_x \neq 0$ then $\mathcal{D}_x = \operatorname{span}\{g^{-1}\psi, Jg^{-1}\psi\}.$
- J is integrable if one of the following conditions holds:

 $\begin{aligned} \dim(\mathcal{D}_x) &> 2\\ a) \ on \ an \ open \ dense \ set \ U \subset M\\ or\\ b) \ in \ a \ point \ x, \ if \ (M,J) \ is \ analytic. \end{aligned}$

Corollary 3.1 If dim(M) = 4k and $N(J) \neq 0$ on U dense in M then M^{4k} is a totally geodesic quaternionic submanifold.

Corollary 3.2 Let be $\nu > 0$. If (M^{4k}, g, J) is analytic and $g = \tilde{g}_{|TM|}$ is complete then (M^{4k}, g, J) is Hermitian.

Some problems:

- Construction of examples of almost complex submanifolds which are not complex (m > 1). Also from the quoted results, it seems that such examples are rather rare.
- Construction of pseudo-quaternionic submanifolds (non-holonomic quaternionic submanifolds M^{4k+i} , i = 1, 2, 3, whose bundle QTM has minimal quaternionic rank k + 1; see [17], [6]). These submanifolds deserve some interest since they behave as submanifolds of a quaternionic submanifold $M^{4(k+1)}$ of minimal possible dimension. Of particular interest are the low dimensional cases M^2, M^3 .

- Evolution of almost complex surfaces M^2 following the mean curvature vector. In [17] it was proved that such vector always belongs to the characteristic quaternionic line bundle QTM^2 (see also [3]); hence the evolution of M^2 , eventually under appropriate hypothesis, could be useful to find a minimal surface as a limit (in this line of research, let see also [9]) or to generate a pseudo-quaternionic 3-submanifold M^3 . In turn, since a pseudo-quaternionic M^3 has parallel characteristic quaternionic line bundle QTM^3 , the evolution of M^3 following the mean curvature vector could produce a minimal 3-dimensional submanifold as a limit or generate a quaternionic submanifold M^4 .

By referring (see [3]) to the twistor bundle of a quaternionic Kähler manifold,

$$\mathcal{Z} \xrightarrow{\pi} \widetilde{M}^{4n}$$

where the twistor space Z is a complex contact manifold, it is natural to ask whether an almost complex submanifold (M^{2m}, J_1) of \widetilde{M}^{4n} is **supercomplex**, i.e. it is the projection by π of a complex submanifold of Z. In fact it was proved that, for m > 1, this happens exactly if and only if (M^{2m}, J_1) is complex. (The case of a complex surface (M^2, J_1) is a little more delicate to handle).

4. Kähler submanifolds

Let (M^{2m}, J_1) be an almost complex submanifold of $(\widetilde{M}^{4n}, \widetilde{g}, Q)$.

We note first that if $\nu \neq 0$ and $m \neq 3$ (which is still an open problem) the almost Hermitian submanifold $(M^{2m}, g = \tilde{g}_{|TM}, J = J_{1|TM})$ is almost Kähler if and only if it is Kähler, see [2].

In [3] the following definition was proposed.

Definition 4.1 (M^{2m}, J_1) is Kähler if $\widetilde{\nabla}_X J_1 = 0$, $X \in TM$.

A standard example of Kähler submanifold of a quaternionic Kähler manifold is

$$\mathbb{C}P^n \hookrightarrow \mathbb{H}P^n$$

It was also proved that

- a Kähler surface (M^2, J_1) is **superminimal**, i.e. supercomplex and minimal.

- if m > 1, (M^{2m}, J_1) is Kähler if and only if $(M^{2m}, g = \tilde{g}_{|TM}, J = J_{1|TM})$ is a Kähler manifold;

- if $\nu \neq 0$, (M^{2m}, J_1) is Kähler if and only if (M^{2m}, J_1) is **totally complex**, i.e.

$J_2TM \perp TM$.

Remark 4.1 A more general definition of "totally complex" submanifold (M^{2m}, J_1) could be considered by assuming only that: $QX \not\subseteq TM$, $\forall X \in TM$.

Kähler submanifolds (M, J_1) have interesting properties (see [13], [3]) being

- minimal,

in fact

- **pluriminimal** i.e.
$$h(X,Y) + h(JX,JY) = 0$$
, $\forall X, Y \in TM$,

where $h = 2^{nd}$ fundamental form. It follows from the stronger condition

$$h(JX,Y) - J_1h(X,Y) = 0, \qquad \forall X,Y \in TM.$$

If $\nu \neq 0$, an (M^{2m}, J_1) pluriminimal and (super)complex is Kähler or quaternionic (h=0).

Problem: What can be said by using only "pluriminimality"?

In a quaternionic Kähler manifold with $\nu \neq 0$:

$$\dim(M^{2m}, J_1) \le 2n$$

.

Definition 4.2 If $\nu \neq 0$, $(M^{2n}, J_1) =$ maximal Kähler submanifold.

(McLean, F.E. Burstall call it a **complex-Lagrangian submanifold**, [16]).

In $(\widetilde{M}^{4n}, \widetilde{g}, Q)$, $\nu \neq 0$, there are many maximal Kähler submanifolds: it follows from a generalization of Bryant construction for $\mathbb{C}P^3 \to S^4 \equiv \mathbb{H}P^1$ to the twistor bundle $\mathcal{Z} \xrightarrow{\pi} \widetilde{M}^{4n}$. By the projection π , there is a correspondence between Legendrian submanifolds of \mathcal{Z} (i.e. maximal holomorphic horizontal submanifolds) and maximal Kähler submanifolds of \widetilde{M}^{4n} , [3]. Totally geodesic maximal Kähler submanifolds of Wolf spaces were studied by M. Takeuchi, [25]. For classical Wolf spaces $\mathbb{H}P^n, G_2(\mathbb{C}^{n+2}),$ $Gr_4^+(\mathbb{R}^{n+4})$ the situation is the following, where the inclusions have a natural geometrical content:

$$(Q_p(\mathbb{C}) = \frac{SO(p+2)}{SO(p) \times SO(2)} =$$
Complex hyperquadric).

In the following let assume $\nu \neq 0$.

A remarkable fact concerning a maximal Kähler submanifold $M \equiv M^{2n}$ is the identification:

$$J_2: T^{\perp}M \xrightarrow{\sim} TM$$
.

Then the Gauss-Codazzi equations can be expressed in terms of the tangent space TM, [2].

In particular, the second fundamental form h (locally) is identified with the **shape tensor** C on M defined by

$$C(X, Y, Z) = \langle J_2 h(X, Y), Z \rangle$$

which is symmetric with respect to X, Y, Z and satisfies the identities

$$C(JX, Y, Z) = C(X, JY, Z) = C(X, Y, JZ)$$

(Note: the shape tensor C is defined even if M is not maximal).^a

5. Parallel Kähler submanifolds

If the Kähler submanifold (M^{2m}, J_1) is **parallel**, i.e. $\nabla' h = 0$, then the complex line bundle *L* generated by the shape tensor *C* (which is canonically defined and independent from the local section J_2) is a parallel line bundle.

^aAdded in proof: Recently K. Tsukada, [27], by basing on such Gauss-Codazzi equations and following a conjecture in [2], proved the fundamental theorem on the existence and uniqueness of isometric totally complex immersions for Kähler manifolds M^{2n} as submanifolds of $\mathbb{H}P^n$ and $\mathbb{H}H^n$

Let us first consider the case of a maximal Kähler submanifold which is parallel, but not totally geodesic.

Tsukada classified such submanifolds in $\mathbb{H}P^n$, [26].

Parallel maximal Kähler submanifolds of $\mathbb{H}P^n$

reducible

$$\begin{split} M^{2n} &= \frac{SO_{n+1}}{SO_2 \cdot SO_{n-1}} \times \mathbb{C}P^1, (M^4 = \mathbb{C}P^1 \times \mathbb{C}P^1, M^6 = \mathbb{C}P^1 \times \mathbb{C}P^1 \times \mathbb{C}P^1) \\ M^8 &= \frac{Sp_2}{U_2} \times \mathbb{C}P^1 \end{split}$$

irreducible

$$M^2 = \mathbb{C}P^1 \,, \, M^{12} = \frac{Sp_3}{U_3} \,, \, M^{18} = \frac{SU_6}{S(U_3 \times U_3)} \,, \, M^{30} = \frac{SO_{12}}{U_6} \,, \, M^{54} = \frac{E_7}{T \cdot E_6} \,.$$

The same classification holds for Kähler submanifolds which could be immersed as parallel maximal Kähler submanifolds into a quaternionic Kähler manifold with $\nu > 0$ and in the case of a quaternionic Kähler manifold with $\nu < 0$ the analogous classification result is obtained by considering as models the dual symmetric spaces of such M^{2n} , as one can prove by arguing as follows, [2].

If the Kähler submanifold (M^{2n}, J_1) is parallel then the complex line bundle L generated by the shape tensor C is a parallel line bundle, cubic (i.e. $L_x \subset S_3V^*, V =$ holomorphic tangent space $T^{1,0}M$), of type ν (i.e. the curvature form of the induced connection of L is proportional to the Kähler form of (M^{2n}, J_1) with coefficient of proportionality $i\nu$, $R^L = i\nu\Omega$). Then the classification of Kähler manifolds with parallel cubic line bundle reduces to the determination of the irreducible holonomy Lie algebras \mathfrak{h} of Kähler manifolds such that the representation of $\mathfrak{h}' = [\mathfrak{h}, \mathfrak{h}]$ in $V = T^{1,0}M$ has non trivial invariant quadratic or cubic form, i.e. $S^2(V^*)^{\mathfrak{h}'} \neq 0, S^3(V^*)^{\mathfrak{h}'} \neq 0$.

6. Parallel maximal Kähler submanifolds of Wolf spaces and their dual spaces

Definition 6.1 A submanifold $M \subset \widetilde{M}$ of a Riemannian manifold $(\widetilde{M}, \widetilde{g})$ is called

- curvature invariant if $\widetilde{R}(T_xM, T_xM)T_xM \subset T_xM, \quad \forall x \in M;$

- normal curvature invariant if $\widetilde{R}(T_x^{\perp}M, T_x^{\perp}M)T_x^{\perp}M \subset T_x^{\perp}M, \forall x \in M$.

It is known that: (by Codazzi-Mainardi) a parallel submanifold is curvature invariant and (by Gauss) a parallel submanifold of a locally symmetric space is itself a locally symmetric space.

Definition 6.2 Let $\widetilde{M} = G/K$ be a homogeneous Riemannian manifold. Fix an orbit \mathcal{V} of the isometry group G in the Grassmann bundle $\operatorname{Gr}_k(T\widetilde{M})$ of tangent k-planes of \widetilde{M} .

A k-dimensional submanifold $M \subset M$ is called a \mathcal{V} -submanifold if $T_x M \in \mathcal{V}$ for any $x \in M$. If \mathcal{V} is (normal) curvature invariant, then any \mathcal{V} -submanifold is (normal) curvature invariant.

([5]): Any curvature invariant (in particular, any parallel) maximal Kähler submanifold (M^{2n}, J_1) of a quaternionic Kähler symmetric space $\widetilde{M}^{4n} \neq \mathbb{H}P^n$ is totally geodesic. The proof bases on

- remark that the curvature identity

$$\widetilde{g}(R(J_2X, J_2Y)J_2Z, J_2T) = \widetilde{g}(R(X, Y)Z, T)$$

holds for any complex structure $J_2 \in Q$;

- results of H. Naitoh:
 - ([18]) in a simply connected Riemannian symmetric space \widetilde{M} a submanifold M is parallel and normal curvature invariant if and only if it is extrinsically symmetric;
 - ([19]) up to a short list of exceptions, a parallel normal curvature invariant, i.e. extrinsically symmetric, V-submanifold of a symmetric space is in fact totally geodesic.

Sketch proof. By the curvature identity above, M is also normal curvature invariant; hence, by [18], $\forall x \in M$ there exists an involutive isometry s_0 s.t. $(s_0)_{*|T_xM} = -\mathrm{Id}, (s_0)_{*|T_x^{\perp}M} = \mathrm{Id}$ and the totally geodesic submanifold $M(x) = \exp(T_xM)$ is an extrinsically symmetric maximal Kähler submanifold; then it follows that T_xM belongs to one of finitely many orbits $\mathcal{V} = G(V) \subset \mathrm{Gr}_{2n}T(G/K)$ and, by continuity reason, M is a \mathcal{V} -submanifold; by [19] one can conclude that M is totally geodesic if $\widetilde{M} \neq \mathbb{H}P^n$.

An elementary proof for $G_2(\mathbb{C}^{n+2})$ is also available, [4].

Theorem 6.1 Let (M^{2m}, J_1) be a totally complex submanifold of a quaternionic Kähler manifold \widetilde{M}^{4n} . Assume that M is parallel. Then the first normal bundle $N^1M \equiv h(TM, TM)$ is totally complex, i.e. $\langle h(X,Y), J_2h(V,Z) \rangle = 0 \quad \forall X, YV, Z \in TM$. Moreover, if $\nu \neq 0$ there are two cases:

- 1) $C \equiv 0$, i.e. $N^1 M \perp J_2 T M$
- 2) $C \neq 0$, and M is a locally symmetric Hermitian manifold with parallel cubic line bundle of type ν .

The classification of parallel Kähler submanifolds in a quaternionic Kähler **symmetric** space reduces to the classification of parallel Kähler submanifolds in Hermitian or quaternionic Kähler symmetric spaces.

Theorem 6.2 ([5]) Let (M^{2m}, J_1) be a geodesically complete parallel Kähler submanifold of $(\widetilde{M}^{4n}, \widetilde{g}, Q), \nu \neq 0$, and \overline{M} the minimal totally geodesic submanifold of \widetilde{M}^{4n} containing M^{2m} .

- If C ≡ 0 then M is an Hermitian symmetric space and (M^{2m}, J) is a full parallel Kähler submanifold in M;
- If C ≠ 0, and hence (M^{2m}, J) is a Kähler manifold with parallel cubic line bundle, then M is a quaternionic symmetric space of dimension 4m and (M^{2m}, J) is full in M.

An important class, also for physicists, of quaternionic Kähler manifolds which are homogeneous, but not necessarily symmetric, are the **Alek-seevskian spaces**, [10].

Problem. Classify parallel Kähler submanifolds in Alekseevskian quaternionic homogeneous spaces.

References

- D. V. Alekseevsky and S. Marchiafava, Quaternionic structures on a manifold and subordinated structures, Ann. Mat. Pura Appl., 171 (1996), 205–273.
- D. V. Alekseevsky and S. Marchiafava, Almost Hermitian and Kähler submanifolds of a quaternionic Kähler manifold, Osaka Math. J., 38 (2001), 869–904.
- D. V. Alekseevsky and S. Marchiafava, A twistor construction of (minimal) Kähler submanifolds of a quaternionic Kähler manifold Ann. Mat. Pura Appl. (4) 184 (2005), 53–74.
- D. V. Alekseevsky, A. J. Di Scala and S. Marchiafava, Kähler submanifolds of Wolf spaces, In: Recent advances in geometry and topology, 15-27, Cluj Univ. Press, Cluj-Napoca, 2004.

- D. V. Alekseevsky, A. J. Di Scala and S. Marchiafava, Parallel Kähler submanifolds of quaternionic Kähler symmetric spaces, Tohoku Math. J., 57 (2005), 521–540.
- A. Bejancu, Pseudo-quaternionic submanifolds and generalized 3-Sasakian manifolds. J. Nat. Acad. Math. India 11 (1997), 110–117.
- R. L. Bryant, Conformal and minimal immersions of compact surfaces into the 4-sphere, J. Differ. Geom. 17 (1982), 455–473.
- F. E. Burstall, Minimal surfaces in quaternionic symmetric spaces, Geometry of low-dimensional manifolds, 1 (Durham, 1989), 231–235, London Math. Soc. Lecture Note Ser., 150, Cambridge Univ. Press, Cambridge, 1990.
- J. Chen and G. T. Gang Moving symplectic curves in Kähler-Einstein surfaces, Acta Math. Sin. (Engl. Ser.) 16 (2000), no. 4, 541–548.
- V. Cortés, A new construction of homogeneous quaternionic manifolds and related geometric structures, Memoirs of AMS, Vol. 147, September 2000, Providence, Rhode Island, 2000.
- J. H. Eschenburg and R. Tribuzy, Associated families of pluriharmonic maps and isotropy, Manuscripta Math. 95, (1998), no. 3, 295–310.
- T. Friedrich, On superminimal surfaces, Archivum math., 33, n 1/2, (1997), 41–56.
- S. Funabishi, Totally complex submanifolds of a quaternionic Kaehlerian manifold, Kodai Math. J. 2 (1979), 314–336.
- P. Gauduchon, Les immersions super-minimales d'une surface compacte dans une variété riemannienne orientée de dimension 4, Astérisque, 154–155 (1987), 151–180.
- P. Z. Kobak, A twistorial construction of (1,1)- geodesic maps, In: L.J. Mason et al. "Further advances in twistor theory: Vol. III: Curved twistor spaces". Chapman & Hall/CRC Research Notes in Mathematics n. 424, (2001), 75–81.
- 16. R. C. McLean, Twistors and complex Lagrangian submanifolds of $\mathbb{H}P^n$, Preprint
- S. Marchiafava, Sulla geometria locale delle varietà Kähleriane quaternionali, Bollettino U.M.I. (7) 5-B, (1991), 417–447.
- H. Naitoh, Symmetric submanifolds of compact symmetric spaces, Tsukuba J. Math. 10 (1986), 215–242.
- H. Naitoh, Grassmann geometries on compact symmetric spaces of exceptional type, Japan J. Math. 26 (2000), 157–206.
- Y. Ohnita, On pluriharmonicity of stable harmonic maps, J. London Math. Soc. 35 (1987), 563–568.
- J. H. Rawnsley, f-structures, f-twistor spaces and harmonic maps, Lectures Nothes in Math. 1164 (1985), 85–159.
- M. Rigoli and R. Tribuzy, The Gauss map for Kählerian submanifolds of ℝⁿ, Trans. AMS, **332**, n.2, (1992), 515–528.
- S. Salamon, Quaternionic Kähler manifolds, Invent. Math. 67, (1982), 143– 171.
- S. Salamon, Differential geometry of quaternionic manifolds, Ann. Sci. École Norm. Sup. (4) 90 (1986), 31–55.

- 25. M. Takeuchi, Totally complex submanifolds of quaternionic symmetric spaces, Japan J. Math. (N.S.) **12** (1986), 161–189.
- K. Tsukada, Parallel submanifolds in a quaternion projective space, Osaka J. Math. 22 (1985), 187–241.
- 27. K. Tsukada Fundamental Theorem for Totally Complex Submanifolds, (2006), 1–27, preprint