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For a Riemannian manifold Mn with the curvature tensor R, the Jacobi operator
RX is defined by RXY = R(X, Y )X. The manifold Mn is called pointwise Os-
serman if, for every p ∈ Mn, the eigenvalues of the Jacobi operator RX do not
depend on the choice of a unit vector X ∈ TpMn, and is called globally Osserman
if they do not depend of the point p either. R. Osserman conjectured that globally
Osserman manifolds are flat or rank-one symmetric. This Conjecture was proved
in all the cases, except for manifolds of dimension n = 16 whose Jacobi operator
has an eigenvalue of multiplicity m ∈ {7, 8, 9}. Here we give the proof in the case
m = 9.

1. Introduction

An algebraic curvature tensor R in a Euclidean space Rn is a (3, 1) ten-
sor having the same symmetries as the curvature tensor of a Riemannian
manifold. For X ∈ Rn, the Jacobi operator RX : Rn → Rn is defined by
RXY = R(X, Y )X . The Jacobi operator is symmetric and RXX = 0 for
all X ∈ Rn. Throughout the paper, “eigenvalues of the Jacobi operator”
refers to eigenvalues of the restriction of RX , with X a unit vector, to the
subspace X⊥.

Definition 1.1 An algebraic curvature tensor R is called Osserman if the
eigenvalues of the Jacobi operator RX do not depend of the choice of a unit
vector X ∈ Rn.

Definition 1.2 A Riemannian manifold Mn is called pointwise Osserman
if its curvature tensor is Osserman. If, in addition, the eigenvalues of the
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Jacobi operator are constant on Mn, the manifold Mn is called globally
Osserman.

Flat and rank-one symmetric spaces are globally Osserman, since the isom-
etry group of each of them acts transitively on its unit tangent bundle.
Osserman [9] conjectured that the converse is also true:

Conjecture 1.1 A globally Osserman manifold is flat or locally rank-one
symmetric.

Except for a few cases in dimension 16, the answer to the Osserman Con-
jecture is affirmative, as well as to its “pointwise” version (see the Corollary
below).

In this paper, we treat one of the remaining cases and prove the following:

Theorem 1.1 The Jacobi operator of a pointwise Osserman manifold of
dimension sixteen cannot have an eigenvalue of multiplicity 9.

Combining this with Theorems 1 and 2 of [7], and with the result of [8] we
get:

Corollary 1.1 Let Mn be a Riemannian globally Osserman manifold
of dimension n ≥ 2, or a pointwise Osserman manifold of dimension
n 6= 2, 4. Then Mn is flat or locally rank-one symmetric except, possibly,
in the following case: n = 16 and the Jacobi operator has an eigenvalue of
multiplicity 7 or 8.

In the cases covered by the Corollary, there is not much difference between
globally and pointwise Osserman conditions, except in dimension 2, where
any Riemannian manifold is pointwise Osserman, and in dimension 4, where
any globally Osserman manifold is flat or locally rank-one symmetric [1],
but there exist pointwise Osserman manifolds that are not even locally
symmetric (“generalized complex space forms”, Corollary 2.7 of [3]).

We would also like to announce the following theorem, the proof of which
is to appear elsewhere:

Theorem 1.2 A pointwise Osserman manifold of dimension sixteen whose
Jacobi operator has two eigenvalues, of multiplicity 7 and 8, respectively, is
locally isometric to the Cayley projective plane or to its hyperbolic dual.

The paper is organized as follows.

In section 2, we introduce algebraic curvature tensors with a Clifford struc-
ture and show that Theorem 1.1 follows from Proposition 2.1 saying that
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an Osserman algebraic curvature tensor in R16 whose Jacobi operator has
an eigenvalue of multiplicity 9 has a Clifford structure. Proposition 2.1 is
then proved in section 3.

2. Manifolds with Clifford structure. Proof of Theorem 1.1

We will follow the two-step approach to the Osserman Conjecture suggested
in [3]:

(i) find all Osserman algebraic curvature tensors;
(ii) classify Riemannian manifolds having curvature tensor as in (i).

The standard tool for (ii) is the second Bianchi identity. The difficult part
is (i), but thanks to the remarkable construction of [2,3], we know the right
candidate for (i), a typical Osserman algebraic curvature tensor:

Definition 2.1 An algebraic curvature tensor R in Rn has a Cliff(ν)-struc-
ture (ν ≥ 0), if there exist anticommuting skew-symmetric orthogonal op-
erators J1, . . . , Jν , and the numbers λ0, µ1, . . . µν , with µs 6= λ0, such that

R(X, Y )Z = λ0(〈X, Z〉Y − 〈Y, Z〉X)

+
ν∑

s=1

1
3 (µs − λ0)(2〈JsX, Y 〉JsZ + 〈JsZ, Y 〉JsX − 〈JsZ,X〉JsY ). (1)

A Riemannian manifold Mn has a Cliff(ν)-structure if its curvature tensor
at every point does.

The fact that skew-symmetric operators Js are orthogonal and an-
ticommute is equivalent to each of the following sets of equations:
〈JsX, JqX〉 = δsq‖X‖2 and JsJq + JqJs = −2δsqIn, for all s, q = 1, . . . , ν

and all X ∈ Rn.

The Jacobi operator of the algebraic curvature tensor R with the Clifford
structure given by (1) has the form

RXY = λ0(‖X‖2Y − 〈Y,X〉X) +
ν∑

s=1

(µs − λ0)〈JsX,Y 〉JsX, (2)

and the tensor R can be reconstructed from (2) using polarization and the
first Bianchi identity.

A Cliff(ν) algebraic curvature tensor (manifold) is Osserman (pointwise
Osserman, respectively). For any unit vector X, the Jacobi operator RX

given by (2) has constant eigenvalues λ0, λ1, . . . , λk−1, where λ1, . . . , λk−1
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are the µs’s without repetitions. The eigenspace corresponding to the eigen-
value λα, α 6= 0, is Eλα

(X) = Spans:µs=λα
(JsX), and the λ0-eigenspace is

Eλ0(X) = (Span(X, J1X, . . . , JνX))⊥, provided ν < n− 1.

Theorem 1.1 follows from

Proposition 2.1 An Osserman algebraic curvature tensor in R16 whose
Jacobi operator has an eigenvalue of multiplicity 9 has a Clifford structure
Cliff(6).

By Theorem 1.2 of [5], a Riemannian manifold M16 with a Cliff(6)-structure
is locally rank-one symmetric. However, no rank-one symmetric space of
dimension 16 has the Jacobi operator with an eigenvalue of multiplicity 9.

3. Proof of Proposition 2.1

Let R be an Osserman algebraic curvature tensor in R16 whose Jacobi
operator has an eigenvalue of multiplicity 9. Shifting R by a multiple of
the curvature tensor of a unit sphere (which preserves both the Osserman
property and the property to have a Clifford structure) we can assume this
eigenvalue to be 0.

Define an eigenvalue structure for R to be the list of multiplicities of its
Jacobi operator, in the nondecreasing order. There are eleven possible
eigenvalue structures:

(9, 6), (3)

(9, 3, 3), (4)

(9, 5, 1), (9, 4, 2), (9, 4, 1, 1), (9, 3, 2, 1), (9, 3, 1, 1, 1), (5)

(9, 2, 2, 2), (9, 2, 2, 1, 1), (9, 2, 1, 1, 1, 1), (9, 1, 1, 1, 1, 1, 1). (6)

For the eigenvalue structure (9, 6) the claim follows from Theorem 2 of [6].
We will separately consider the case of the eigenvalue structure (9, 3, 3), in
subsection 3.1, and all the other cases (when the Jacobi operator has an
eigenvalue of multiplicity 1 or 2), in subsection 3.2. In the proof, we will
use some facts from commutative algebra collected in subsection 3.3.

3.1. Jacobi operator has an eigenvalue of multiplicity 1 or 2

In this subsection, we show that an Osserman algebraic curvature tensor
whose Jacobi operator has an eigenvalue of multiplicity 9 and an eigenvalue
of multiplicity at most 2 has a Clifford structure. Our starting point is the
following two Lemmas:
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Lemma 3.1 (1.) Let R be an Osserman algebraic curvature tensor in Rn

whose Jacobi operator has k distinct eigenvalues, one of which is zero, and
let λ 6= 0 be a simple eigenvalue. Then for every X 6= 0, the eigenspace
Eλ‖X‖2(X) of RX is spanned by a vector P (X) all of whose nonzero com-
ponents are odd homogeneous polynomials of degree 2m + 1 ≤ k − 1, and
for all unit vectors X,

〈P (X), X〉 = 0, ‖P (X)‖2 = 1, P (P (X)) = −X. (7)

(2.) Let R be an Osserman algebraic curvature tensor in Rn whose Jacobi
operator has k distinct eigenvalues, one of which is zero, and let λ 6= 0
be an eigenvalue of multiplicity 2. Then for every X 6= 0, the eigenspace
Eλ‖X‖2(X) of RX is spanned by vectors U(X), V (X) all of whose nonzero
components are odd homogeneous polynomials of degree 2m + 1 ≤ k − 1,
and for all unit vectors X,

〈U(X), X〉 = 〈V (X), X〉 = 〈U(X), V (X)〉 = 0, ‖U(X)‖2 = ‖V (X)‖2 = 1.

The proof is given in Lemma 2 of [8].

Lemma 3.2 (1.) Let R be an Osserman algebraic curvature tensor in
R16, and let J be an orthogonal skew-symmetric operator and C 6= 0 a
real constant. Suppose that an algebraic curvature tensor R̃ defined by
R̃XY = RXY −C〈JX, Y 〉JX is Osserman (this condition is automatically
satisfied, if JX is an eigenvector of RX , for all X ∈ R16) and has a Clifford
structure. Then R also has a Clifford structure.

(2.) Let R be an Osserman algebraic curvature tensor in R16 having an
eigenvalue 0 of multiplicity 9 and an eigenvalue λ 6= 0 of multiplicity 1 or
2. If the polynomial eigenvector P (X) ( respectively, at least one of the
polynomial eigenvector U(X), V (X)) constructed as in Lemma 3.1 has the
form ‖X‖2mJX for some linear operator J , then R has a Clifford structure
Cliff(6).

Proof. (1.) We assume (shifting by a constant curvature tensor) that the
eigenvalue of the Jacobi operator of R̃ with the biggest multiplicity is 0.

Let J1, . . . , Jν be a Clifford structure for R̃, so that

R̃XY =
ν∑

α=1

µα〈JαX,Y 〉JαX,

where µα 6= 0, although some of the µα’s can be equal. Let λ1, . . . , λp

be the set of nonzero eigenvalues (the µα’s without repetitions), and let
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m1, . . . ,mp be the corresponding multiplicities. Relabeling the Jα’s ac-
cordingly we get R̃XY =

∑p
i=1 λi(

∑mi

j=1〈J (i)
j X, Y 〉J (i)

j X). For a unit

vector X, the eigenspaces of R̃X are Eλi
(X) = Span(J (i)

1 X, . . . , J
(i)
miX)

and E0(X) = KerR̃X = (Spanα(JαX))⊥. For R to be Osserman, it is
necessary and sufficient that every projection πi(JX) of JX to Eλi

(X)
has a constant length ci ≥ 0, for any unit vector X. For an ar-
bitrary X we have πi(JX) =

∑mi

j=1(〈J (i)
j X, JX〉‖X‖−2)J (i)

j X, and so

‖πi(JX)‖2 =
∑mi

j=1〈J (i)
j X,JX〉2‖X‖−2. This must be equal to ci‖X‖2,

so
∑mi

j=1〈J (i)
j X,JX〉2 = ‖X‖4. The left-hand side is a sum of squares

of mi ≤ ν ≤ 8 polynomials, which is divisible by ‖X‖2. According
to Lemma 3.11, each of them must be divisible by ‖X‖2, so that each
〈J (i)

j X, JX〉 is a constant multiple of ‖X‖2, This implies that πi ◦ J is a

linear operator, which is a constant linear combination of J
(i)
1 , . . . , J

(i)
mi .

Replacing J
(i)
1 , . . . , J

(i)
mi by appropriate orthonormal linear combinations

we can assume that πi(JX) = ciJ
(i)
1 X. Then the map X → Jν+1X,

the projection of JX to E0(X) is also linear, and the operator Jν+1 is
skew-symmetric, is orthogonal times a constant c0 =

√
1−∑

i c2
i (which

can be zero), and anticommutes with all the Jα’s (as Jν+1X ⊥ JαX, for
α = 1, . . . , ν). So J =

∑p
i=1 ciJ

(i)
1 + c0(c−1

0 Jν+1) (if c0 = 0, we simply
omit the last term). Substituting this to RXY = R̃XY + C〈JX, Y 〉JX

and replacing the operators J
(1)
1 , . . . , J

(p)
1 , Jν+1 by their orthonormal linear

combinations (to diagonalize the symmetric matrix diag{λ1, . . . , λp, 0} +
C(c1, . . . , cp, c0)t(c1, . . . , cp, c0)) we get a Clifford structure for R.

(2.) As it follows from Lemma 3.1, the operator J is orthogonal and skew-
symmetric. What is more, for any X ∈ R16, JX is an eigenvector of RX ,
with the eigenvalue λ. Then an algebraic curvature tensor R̃ defined by
R̃XY = RXY − λ〈JX, Y 〉JX is again Osserman, with the Jacobi operator
having an eigenvalue 0 of multiplicity 10. By Proposition 1 of [7], such an
algebraic curvature tensor has a Clifford structure Cliff(5). By assertion 1,
R has a Clifford structure (which is Cliff(6)).

One of the applications of Lemma 3.2 is immediate: for the eigenvalue
structures (9, 5, 1) and (9, 4, 2), the degree of all the nonzero components of
P (X) (of U(X), V (X), respectively) is 1, according to Lemma 3.1. Hence
in the both cases, R has a Clifford structure Cliff(6).

We next consider the cases (6), when all the multiplicities, other than 9,
are 1 or 2.
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Lemma 3.3 Let R be an Osserman algebraic curvature tensor in R16.
Suppose that the Jacobi operator of R has the eigenvalue 0, with multiplicity
9, and that all the other eigenvalues have multiplicity 1 or 2. Then R has
a Clifford structure Cliff(6).

Proof. Let λ1, . . . , λp be the nonzero eigenvalues, each of multiplicity
mj ≤ 2. Let µ1, . . . , µ6 be the list of the λj ’s counting multiplicities (each
λj appears mj times in that list), and let P1(X), . . . , P6(X) be the list
of the corresponding polynomial eigenvectors of RX (take P (X) for each
simple eigenvalue and U(X), V (X) for each eigenvalue of multiplicity 2, as
constructed in Lemma 3.1). For every i, all the nonzero components of
Pi(X) are homogeneous polynomials of the same odd degree di. Denote
d = maxi di and replace every Pi’s with di < d by Pi‖X‖d−di (note
that d − di is even). We now have six vectors Pi(X), all whose nonzero
components are odd homogeneous polynomials of the same degree d, and
at least one of the components of some vector Pi(X) is not divisible by
‖X‖2. What is more, they still span the corresponding eigenspaces of RX ,
and 〈Pi(X), X〉 = 0, 〈Pi(X), Pj(X)〉 = δij‖X‖2d. Choose an orthonor-
mal basis for R16 and denote P (X) a 16 × 6 matrix whose columns are
P1(X), . . . , P6(X). Note that P (X)tP (X) = ‖X‖2dI6.

Let Λ = diag{µ1, . . . , µ6}. For every X 6= 0, the 16 × 16 matrices
‖X‖−2dP (X)ΛP (X)t and ‖X‖−2RX have the same eigenvalues and the
same eigenvectors. It follows that P (X)ΛP (X)t = ‖X‖2d−2RX . Squaring
both sides we get

P (X)Λ2P (X)t = ‖X‖2d−4R2
X , as P (X)tP (X) = ‖X‖2dI6.

If d ≥ 3, then every entry of the polynomial matrix P (X)Λ2P (X)t is divis-
ible by ‖X‖2. The diagonal (α, α) entry of this matrix (α = 1, . . . , 16) is∑6

i=1(µi(Pi(X))α)2, which is a sum of squares of six polynomials in the vari-
ables x1, . . . , x16, the coordinates of X. By Lemma 3.11 of subsection 3.3,
it follows that for every i = 1, . . . , 6 and every α = 1, . . . , 16, the polyno-
mial (Pi(X))α is divisible by ‖X‖2. This contradicts the construction of
the Pi’s.

So d = 1, hence all the Pi(X)’s are linear, which implies that R has a
Clifford structure.

We have three remaining cases for the eigenvalue structure to consider:
(9, 4, 1, 1), (9, 3, 2, 1) and (9, 3, 1, 1, 1).

This is done in the following Lemma:
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Lemma 3.4 Let R be an Osserman algebraic curvature tensor in R16

whose eigenvalue structure is one of the following: (9, 4, 1, 1), (9, 3, 2, 1),
(9, 3, 1, 1, 1), with 0 being the eigenvalue of multiplicity 9. Then R has a
Clifford structure Cliff(6).
Proof. We start as in the proof of Lemma 3.3. Let λ, λ1, . . . , λp be the
nonzero eigenvalues of the Jacobi operator, with λ the eigenvalue of multi-
plicity bigger than 2, and each of the λj of multiplicity 1 or 2. Let µ1, . . . , µs

be the list of the λj ’s counting multiplicities (s here can be 2 or 3), and
let P1(X), . . . , Ps(X) be the list of the corresponding polynomial eigenvec-
tors of RX , as constructed in Lemma 3.1. We can assume that all the
nonzero components of all the Pi’s are homogeneous polynomials of the
same odd degree d, and at least one of the components of some of them
is not divisible by ‖X‖2. Choose an orthonormal basis for R16 and con-
sider a 16× s matrix P (X) whose columns are P1(X), . . . , Ps(X). We have
P (X)tP (X) = ‖X‖2dIs.

Let Λ = diag{µ1(µ1 − λ), . . . , µs(µs − λ)} (all these numbers are nonzero).
For every X 6= 0, the 16 × 16 matrices ‖X‖−2dP (X)ΛP (X)t and
‖X‖−4RX(RX −λ‖X‖2I16) have the same eigenvalues and the same eigen-
vectors. So

P (X)ΛP (X)t = ‖X‖2d−4RX(RX − λ‖X‖2I16). (8)
Squaring both sides of equation (8) we get

P (X)Λ2P (X)t = ‖X‖2d−8(RX(RX − λ‖X‖2I16))2.

Suppose d ≥ 5. Then the diagonal entries of the polynomial ma-
trix P (X)Λ2P (X)t are divisible by ‖X‖2. The diagonal (α, α) entry is∑s

i=1(µi(µi − λ)(Pi(X))α)2, for every α = 1, . . . , 16, which is a sum
of squares of no more than three polynomials in x1, . . . , x16, hence, by
Lemma 3.11 of subsection 3.3, every (Pi(X))α is divisible by ‖X‖2. This
contradicts the construction of the Pi’s.

Hence, as d is odd, it can only be 1 or 3. If d = 1, all the Pi(X)’s are linear
and R has a Clifford structure, by assertion 2 of Lemma 3.2.

Let d = 3. Then every entry of the matrix P (X)ΛP (X)t is divisible by
‖X‖2, by (8).

First, suppose that all the numbers µi(µi − λ), the diagonal entries of Λ,
have the same sign. The diagonal (α, α) entry of P (X)ΛP (X)t is then
±∑s

i=1(|µi(µi−λ)|−1/2(Pi(X))α)2, for every α = 1, . . . , 16, which is a sum
of squares of no more than three polynomials in x1, . . . , x16. This again
implies that all the (Pi(X))α’s are divisible by ‖X‖2, which leads to a
contradiction.
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Now, assume that from among the µi(µi − λ)’s there are numbers of both
signs. Here we consider two possibilities, s = 2 and s = 3, separately.
Let s = 2 (this corresponds to the eigenvalue structure (9, 4, 1, 1)). Without
loss of generality, let µ1(µ1 − λ) = a2 > 0, µ2(µ2 − λ) = −b2 < 0. The
fact that all the entries of the matrix P (X)ΛP (X)t = a2P1(X)P1(X)t −
b2P2(X)P2(X)t are divisible by ‖X‖2 implies that all the components of
at least one of the aP1(X) ± bP2(X) are also divisible by ‖X‖2. Let say
aP1(X)−bP2(X) = (a2+b2)1/2‖X‖2JX, for some linear operator J . Then,
from (7) we have 0 = 〈aP1(X) − bP2(X), X〉 = (a2 + b2)1/2‖X‖2〈JX, X〉,
so J is skew-symmetric, and (a2 + b2)‖X‖6 = ‖aP1(X) − bP2(X)‖2 =
(a2 + b2)‖X‖4‖JX‖2, so J is orthogonal (since P1(X) ⊥ P2(X), as they
are eigenvectors of RX corresponding to different eigenvalues). Moreover,
although JX is not an eigenvector of RX , an algebraic curvature tensor
R̃ defined by R̃XY = RXY − C〈JX, Y 〉JX is Osserman, for any real C.
Indeed, for any unit vector X, the projections of JX to the eigenspaces
Eµ1(X) and Eµ2(X) have the same length (and JX is orthogonal to all
the other eigenspaces of RX). In fact, for a unit vector X, the eigenvalues
of R̃X are the same as those of RX , except that instead of the eigenval-
ues µ1, µ2, R̃X has two eigenvalues, which are the roots of the equation
x2−x(µ1+µ2−C)+µ1µ2(1−C/(µ1+µ2−λ)) = 0 (note that µ1+µ2−λ 6= 0,
as µ1(µ1−λ) and µ2(µ2−λ) have opposite signs). If we take C = µ1+µ2−λ,
these roots are 0 and λ, so the Osserman algebraic curvature tensor R̃ has
the eigenvalue structure (10, 5), with the corresponding eigenvalues 0 and λ.
Such a R̃ has a Clifford structure Cliff(5). Then R has a Clifford structure
Cliff(6) by assertion 1 of Lemma 3.2.
Let now s = 3. Again, without loss of generality, we can assume that
µ1(µ1 − λ) = a2

1 > 0, µ2(µ2 − λ) = a2
2 > 0, µ3(µ3 − λ) = −b2 < 0.

Every entry of the 16× 16 matrix

(a1P1(X))(a1P1(X))t + (a2P2(X))(a2P2(X))t − (bP3(X))(bP3(X))t

is divisible by ‖X‖2. Let K be the ring R[x1, . . . , x16]/
(
x2

1 + . . . + x2
16

)
,

with π : R[x1, . . . , x16] → K the natural projection. Denote by pi = π(Pi)
the corresponding elements of the free module K16, and by piα their com-
ponents (α = 1, . . . , 16, i = 1, 2, 3). Then for any 1 ≤ α 6= β ≤ 16 we
have

a2
1p

2
1α + a2

2p
2
2α = b2p2

3α, a2
1p1αp1β + a2

2p2αp2β = b2p3αp3β , (9)

and so a2
1a

2
2(p1αp2β − p2αp1β)2 = 0. As a1, a2 6= 0 and K is an integral

domain, this implies that p1αp2β − p2αp1β = 0.
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Then the 16 × 2 matrix over K with entries piα has the rank at most one
(every 2× 2 minor vanishes). As K is a UFD (Nagata Theorem 3.1), there
exist ui, vα ∈ K such that piα = uivα, for all i = 1, 2, α = 1, . . . , 16.
If all the vα’s vanish, or if at least one of the ui’s is zero (say u1 = 0), then
p1 = 0, so P1(X) is divisible by ‖X‖2. Hence there exists a linear operator
J such that P1(X) = ‖X‖2JX and the claim follows from assertion 2 of
Lemma 3.2.

We assume therefore, that both u1, u2 and at least one of the vα’s is nonzero.

Substituting piα = uivα, i = 1, 2, to the equations (9) we find that
(a2

1u
2
1 + a2

2u
2
2)vαvβ = b2p3αp3β for all α, β = 1, . . . , 16. As K is a UFD,

this implies that a2
1u

2
1 + a2

2u
2
2 is a square: there exists u3 ∈ K such that

a2
1u

2
1 + a2

2u
2
2 = (bu3)2. Then u2

3vαvβ = p3αp3β for all α, β = 1, . . . , 16 and
so p3α = ±u3vα, with the same choice of the sign for all 1 ≤ α ≤ 16.
Replacing u3 by −u3, if necessary, we can assume that p3 = u3vα. Again,
we can assume that u3 6= 0, as otherwise P3(X) is divisible by ‖X‖2 and
the assertion 2 of Lemma 3.2 applies.

If u3 is not a unit in K, then gcdK(p3,1, . . . , p3,16) 6= 1. Also, the eigenvalue
µ3 of the Jacobi operator is simple, so P3(X) satisfies (7). The claim is
then follows from the Lemma below (its proof is given at the end of the
subsection) and assertion 2 of Lemma 3.2.

Lemma 3.5 Let P (X) be a 16-dimensional vector whose components
Pα(X) (α = 1, . . . , 16) are homogeneous cubic polynomials satisfying (7)
such that for all X, P (X) is an eigenvector of RX . Let pα = π(Pα(X)),
where π : R[x1, . . . , x16] → K = R[x1, . . . , x16]/

(
x2

1 + . . . + x2
16

)
is the

natural projection. If gcdK(p1, . . . , p16) 6= 1, then pα = 0, that is,
P (X) = ‖X‖2JX for an orthogonal skew-symmetric operator J .

Assume now that u3 is a unit in K. Then, as piα = uivα, for all
i = 1, 2, 3, α = 1, . . . , 16, we have p1 = (u1u

−1
3 )p3, p2 = (u2u

−1
3 )p3. Lift-

ing up to R[x1, . . . , x16] we obtain P1(X) = f1(X)P3(X) + ‖X‖2Q1(X),
P2(X) = f2(X)P3(X) + ‖X‖2Q2(X) for some polynomials fi(X) ∈
π−1(uiu

−1
3 ) and some 16-dimensional polynomial vectors Q1(X), Q2(X).

As all the nonzero components of P1, P2 and P3 are homogeneous cubic
polynomials, we can take f1, f2 to be constants (which are nonzero, since
π(fi) = uiu

−1
3 6= 0).

Take c1 = −f2(f2
1 + f2

2 )−1/2, c2 = f1(f2
1 + f2

2 )−1/2. Then c2
1 + c2

2 = 1, and
c1P1+c2P2 is divisible by ‖X‖2, so c1P1(X)+c2P2(X) = ‖X‖2JX, with J a
skew-symmetric orthogonal operator. Then an algebraic curvature tensor R̃
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with R̃XY = RXY−C〈JX, Y 〉JX is Osserman, for any C. For a unit vector
X, the eigenvalues of R̃X are the same as those of RX , except that instead
of the eigenvalues µ1, µ2, R̃X has two eigenvalues, which are the roots of
the equation (µ1−x)(µ2−x)−C(µ1c

2
2 +µ2c

2
1−x) = 0. The coefficient of C

must be nonzero for at least one of two values of x : x = 0 or x = λ. Then,
for the corresponding C, R̃ is the Osserman algebraic curvature tensor with
the eigenvalue structure (10, . . .) (or (9, 4, . . .), respectively). In the both
cases, R̃ has a Clifford structure, which implies (assertion 1 of Lemma 3.2)
that R has a Clifford structure (which must be Cliff(6)).

We now give a proof of Lemma 3.5.

Proof. Let f = gcdK(p1, . . . , p16) 6= 1. Lifting up to R[x1, . . . , x16] we
get P (X) = F (X)Q(X) + ‖X‖2C(X) for some polynomial vectors Q and
C and a polynomial F ∈ π−1(f). As the nonzero components of P are
homogeneous cubic polynomials, we can take C to be a linear operator, F

to be a homogeneous polynomial of degree r = 1, 2, 3 coprime with ‖X‖2,
and all the nonzero components of Q to be homogeneous, of degree 3 − r.
It is sufficient to prove that all the components of Q are divisible by ‖X‖2.
If r = 3, the equation 〈P (X), X〉 = 0 from (7) can only be satisfied, when
Q = 0 (as F and ‖X‖2 are coprime).

Assume that r = 2, so that Q is a linear operator. From the second
equation of (7) it follows that ‖QX‖2 is divisible by ‖X‖2, so that Q

is a constant, say c0, times an orthogonal operator. From the third
equation of (7) we get P (P (X)) = −‖X‖8X, so all the components of
F (F (X)QX)Q(F (X)QX) = F (X)3F (QX)Q2X are divisible by ‖X‖2. As
F (X) is coprime with ‖X‖2, this is only possible when F (QX) is divisible
by ‖X‖2. But if c0 6= 0, the operator Q is invertible and so F (QX) is
coprime with ‖QX‖2 = c−2

0 ‖X‖2. Hence c0 = 0, that is, Q = 0.

Let r = 1, so that F (X) is a nonzero linear form, and all the nonzero
components of Q are quadratic forms. Then from the first equation of
(7), F (X)〈Q(X), X〉 = −‖X‖2〈CX,X〉, so F (X) divides the quadratic
form 〈CX,X〉 : 〈CX, X〉 = F (X)〈a, X〉, with some vector a ∈
R16. Define a linear operator C̃ and a vector of quadratic forms Q̃ by
C̃X = CX −F (X)a, Q̃(X) = Q(X) + ‖X‖2a, respectively. Then P is still
given by F (X)Q̃(X)+ ‖X‖2C̃X, but now with a skew-symmetric C̃. From
the second equation of (7) it follows that F (X) divides the quadratic form
‖X‖2−‖C̃X‖2, which is only possible (for a skew-symmetric C̃) when C̃ is
orthogonal. From the third equation of (7) we get P (P (X)) = −‖X‖8X,
which simplifies to F (P (X))Q̃(P (X)) = −‖X‖6F (X)C̃Q̃(X). On the ker-
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nel of F , we have P (X) = ‖X‖2C̃X, so (F (C̃X)Q̃(C̃X))|KerF = 0. As
C̃ is an orthogonal operator, F (C̃X) cannot be identically zero on KerF ,
so Q̃(C̃X)|KerF = 0. It follows that F (X) divides Q̃(C̃X), hence F (C̃X)
divides Q̃(X), as C̃ is orthogonal and skew-symmetric, which reduces this
case to the case r = 2.

3.2. Eigenvalue structure (9, 3, 3)

We follow the plan of proof of Proposition 1 of [7]. Let λ1 6= λ2 be two
nonzero eigenvalues of the Jacobi operator, each of multiplicity 3. In a
Euclidean space R6, choose an orthonormal basis e1, . . . e6 and define an
operator Λ : R6 → R6 by Λ es = µses, s = 1, . . . , 6. The matrix of Λ is
then diag{λ1, λ1, λ1, λ2, λ2, λ2, }.
The key ingredient of the proof is the following Lemma similar to Proposi-
tion 3 of [7]:

Lemma 3.6 Let R be an Osserman algebraic curvature tensor in R16 whose
Jacobi operator has three different eigenvalues, 0, λ1, λ2, with the multiplic-
ities 9, 3, 3, respectively.

There exists a linear map M : R16 → Hom(R6,R16), X → MX such that

RX = MX Λ M t
X . (10)

The map X → MX is determined uniquely up to a precomposition
X → MXN with an element N from the group OΛ = {N : NΛ N t = Λ}.
Assuming Lemma 3.6, the claim (the existence of a Clifford structure for
R) follows from the Lemma below (Proposition 4 of [7]):

Lemma 3.7 Let R be an Osserman algebraic curvature tensor in Rn, with
the Jacobi operator having the form (10). Assume that n > (ν+1)2

4 , where
ν is the sum of multiplicities of all the nonzero eigenvalues of the Jacobi
operator. Then R has a Cliff(ν)-structure.

In our case, n = 16, ν = 6, so the condition of Lemma 3.7 is satisfied.
Before proving Lemma 3.6 we need some preparations.

First of all, we will use the Rakic̀ duality principle [10], for the eigenvalue
0, in a slightly modified form: for any two vectors X, Y ∈ R16,

Y ∈ KerRX iff X ∈ KerRY . (11)

One immediate consequence of (11) is the following fact: if {Xα} and {Yβ}
are two sets of vectors with the same span, then ∩αKerRXα = ∩βKerRYβ

,
so that ∩αKerRXα depends only on the Spanα(Xα).
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For every nonzero X ∈ R16, dimKerRX = 10 and dim ImRX = 6. One
can expect that for a generic pairs of vectors, the intersection of the images
of the corresponding Jacobi operators is zero, and the set of such pairs is
large enough. This is formalized in Lemma 3.8 below.
Denote V2 the Stiefel manifold of pairs of orthonormal vectors in R16, and
V3 the Stiefel manifold of triples of orthonormal vectors in R16. Define Ṽ3

to be the set of triples (X,Y, Z) of unit vectors in R16 such that Y ⊥ Z,
and X /∈ Span(Y, Z). Ṽ3 is an open manifold (with the topology induced
from S15 × V2) and is a fibration over V2 with a fiber homeomorphic to
S15 \ S1.
Let S2 ⊂ V2 be the set of pairs of orthonormal vectors (Y,Z) with the
property ImRY ∩ ImRZ = 0. By assertion 1 of Lemma 2 of [7], the subset
S2 is open and dense in V2.

Lemma 3.8 There exists an open and dense subset S3 ⊂ V3 such that for
every triple (X, Y, Z) ∈ S3, the following conditions are satisfied:

(a) for any φ, dim(ImRX ∩ ImRcos φY +sin φZ) ≤ 1;
(b) ImRY ∩ ImRZ = ImRX ∩ ImRY = ImRX ∩ ImRZ = 0, that is,

(X,Y ), (Y,Z), (Z, X) ∈ S2;
(c) KerRX ∩KerRY ∩KerRZ = 0.

Proof. First we prove the following fact: there exists an open and dense
subset S̃3 ⊂ Ṽ3 such that for any triple (X, Y, Z) ∈ S̃3, condition (a) of the
Lemma is satisfied.
Let (Y, Z) be an arbitrary pair of vectors from the set S2, and let C =
{Y (φ) = cosφY + sin φZ, φ ∈ [0, 2π)} be the unit circle passing through Y

and Z. The sphere bundle S1C with a fiber over a point Y (φ) ∈ C being
a unit 9-dimensional sphere in the space KerRY (φ) is a ten-dimensional
compact submanifold of TS15. Let S2C be a sphere bundle over S1C, with
the fiber over a point (Y (φ), U) ∈ S1C being the 9-dimensional unit sphere
in the space KerRU . The space S2C is a compact analytic manifold of
dimension 19 (as KerRX depends analytically on X, for X nonzero).
Define the projection π : S2C → S15 by π(((Y (φ), U), X)) = X. Then
π−1(X) = ∪φ{((Y (φ), U), X) ∈ S2C : U ∈ KerRX ∩ KerRY (φ)}, for any
X ∈ S15, by the duality principle.
Since for every φ, KerRX ∩ KerRY (φ) is a linear space of dimension at
least 4, the map π is surjective and π1 ◦ π−1(X) ⊃ C, where π1 : S2C → C

sends ((Y (φ), U), X) to Y (φ).
The set AY Z of the regular values of π is open and dense in S15. Moreover,
for each regular value X ∈ AY Z we must have rk dπ((Y (φ),U),X) = 15, so
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dim(KerRX ∩ KerRY (φ)) ≤ 5, for every φ. It follows that AY Z ∩ C = ∅
and that dim(ImRX +ImRY (φ)) ≥ 11, which is equivalent to condition (a),
dim(ImRX ∩ ImRY (φ)) ≤ 1, as both spaces are six-dimensional.
Now let S̃3 ⊂ Ṽ3 be the set of triples (X, Y, Z) such that (Y, Z) ∈ S2,
X ∈ AY Z . As Ṽ3 fibers over V2, S2 is open and dense in V2, and AY Z is
open and dense in the fiber of Ṽ3 for every (Y, Z) ∈ S2, the subset S̃3 is
open and dense in Ṽ3.
Using the set S̃3, we will now construct an open and dense subset of V3,
every element of which satisfies condition (a).
The manifold Ṽ3 is a fibre bundle over the Stiefel manifold V3, with the
projection p defined via the Gramm-Schmidt orthogonalization. Namely,
p(X, Y, Z) = (X,Y ′, Z ′), where Y ′ = (Y − 〈X,Y 〉X)(1 − 〈X, Y 〉2)−1/2,

Z ′ = (Z − 〈Y ′, Z〉Y ′ − 〈X,Z〉X)(1 − 〈Y ′, Z〉2 − 〈X,Z〉2)−1/2 (this is well
defined, as rk {X,Y, Z} = 3.
The set S̃3 projects under p onto an open and dense subset B1 ⊂ V3.
For every triple (X,Y ′, Z ′) ∈ B1, condition (a) is still satisfied, since
Span(X, cos φY ′ + sin φZ ′) = Span(X, cos ψY + sin ψZ) for some ψ, hence
KerRX ∩ KerRcos φY ′+sin φZ′ = KerRX ∩ KerRcos ψY +sin ψZ , which im-
plies that ImRX + ImRcos φY ′+sin φZ′ = ImRX + ImRcos ψY +sin ψZ , and so
dim(ImRX ∩ ImRcos φY ′+sin φZ′) = dim(ImRX ∩ ImRcos ψY +sin ψZ).
Next, there is an open and dense subset B2 ⊂ V3, for each element of
which condition (b) is satisfied. To see that, consider three projections,
p1, p2, p3 : V3 → V2 defined by p1(X, Y, Z) = (X,Y ), p2(X,Y, Z) = (Y, Z),
p3(X, Y, Z) = (Z,X). The set S2 is open and dense in V2, hence each of the
p−1

i (S2) is open and dense in V3, therefore a set B2 = p−1
1 (S2) ∩ p−1

2 (S2) ∩
p−1
3 (S2) is also open and dense in V3.

Finally, there exists an open and dense subset B3 ⊂ V3, for each element
of which condition (c) is satisfied. This follows from the dimension count.
Indeed, dimV3 = 42. If condition (c) is violated, then there exists a unit
vector U ∈ R16 such that U ∈ KerRX ∩ KerRY ∩ KerRZ . By the duality
principle, X,Y, Z ∈ KerRU . Consider a Stiefel fiber bundle F over S15

whose fiber over U ∈ S15 is the set of triples (X, Y, Z) of orthonormal
vectors from KerRU . Then F is a compact manifold of dimension 39, hence
the image of its projection to V3 defined by (U, (X, Y, Z)) → (X, Y, Z) is
closed and nowhere dense. For all the triples in the complement B3 of that
image, condition (c) is satisfied.
It now follows that for every triple (X, Y, Z) in an open and dense subset
S3 = B1 ∩B2 ∩B3 of V3, all three conditions (a), (b), (c) are satisfied.
Combining the results of Lemma 1 and Lemma 3 of [7] we get:
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Lemma 3.9 (1.) For every X ∈ R16 there exists a linear operator MX :
R6 → R16 such that RX = MXΛM t

X . The operator MX is uniquely defined,
up to a precomposition with an element N ∈ OΛ = {N : NΛ N t = Λ},
and can be chosen in such a way that M t

XMX = ‖X‖2idR6 . Moreover,
ImRX = ImMX .
(2.) For every pair of orthonormal vectors (X, Y ) ∈ S2, there exist linear
operators M1, M2 : R6 → R16 such that

RxX+yY = (M1x + M2y) Λ (M1x + M2y)t

for all x, y ∈ R. The operators M1,M2 are determined uniquely up to a
precomposition M1N, M2N with an element N ∈ OΛ.

We claim that a factorization of the Jacobi operator similar to that of
Lemma 3.9 exists for any triple from the open and dense set S3 ⊂ V3

constructed in Lemma 3.8:

Lemma 3.10 For any triple (X,Y, Z) ∈ S3, there exist operators
M1, M2,M3 : R6 → R16 such that for all x, y, z ∈ R,

RxX+yY +zZ = (M1x + M2y + M3z) Λ (M1x + M2y + M3z)t.

Proof. Choose a triple (X, Y, Z) is in S3. Denote Y (φ) := cos φY +sin φZ.
Then for any φ, dim(ImRX ∩ ImRY (φ)) ≤ 1 and ImRX ∩ ImRY (0) =
ImRX ∩ ImRY (π/2) = 0.

The fact that dim(ImRX ∩ ImRY (φ)) > 0 is equivalent to the follow-
ing: a linear operator Φ(φ) : R16 → R32 defined for every φ by
Φ(φ)U = (RY (φ)U,RXU) has rank less than 12. This condition can be ex-
pressed as a set of polynomial equations for sin φ, cosφ. Since rk Φ(0) = 12
(as ImRX ∩ ImRY (0) = 0), the condition ImRX ∩ ImRY (φ) = 0 holds for
all, but a finite number of φ ∈ [0, 2π).

It follows that (X, Y (φ)) ∈ S2 for all φ ∈ S, where S is a subset of
[0, 2π) with a finite complement containing 0 and π/2. For every φ ∈ S,
there exist linear operators M1(φ), M̃2(φ) : R6 → R16 such that for all
x, y ∈ R, RxX+yY (φ) = (M1(φ)x + M̃2(φ)y) Λ (M1(φ)x + M̃2(φ)y)t. By
Lemma 3.9 we can take M1(φ) to be the same for all φ ∈ S and to satisfy
M t

1M1 = idR6 . Then

RxX+y(cos φY +sin φZ) = (M1x + M̃2(φ)y) Λ (M1x + M̃2(φ)y)t, (12)

for all φ ∈ S, x, y ∈ R, with the operator M̃2(φ) : R6 → R16 be-
ing uniquely determined for every φ ∈ S. In particular, by uniqueness,
M̃2(φ + π) = −M̃2(φ), whenever φ and φ + π mod (2π) are in S.
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Let y1 = y cosφ, y2 = y sin φ. The equation (12) then takes the form

RxX+y1Y +y2Z = (M1x + M2(y1, y2)) Λ (M1x + M2(y1, y2))t, (13)

where M2(y cos φ, y sin φ) = yM2(φ) is well defined outside a finite union of
lines on the plane (y1, y2).
At this point, it would be more convenient to switch to the matrix lan-
guage. Choose an orthonormal basis {e1, . . . , e16} for R16 such that the
matrix of M1 is

(
I6
0

)
, where I6 is the 6 × 6 identity matrix (this is

always possible, as M t
1M1 = I6). Then ImRX = Span(e1, . . . , e6),

KerRX = Span(e7, . . . , e16). With respect to this basis, let

M2(y1, y2) =
(

F (y1, y2)
P (y1, y2)

)
,

where F (y1, y2) is a 6× 6 matrix, and P (y1, y2) is a 10× 6 matrix.
From the terms of (13) linear in x we get

(
F (y1, y2)Λ + ΛF (y1, y2)t ΛP (y1, y2)t

P (y1, y2)Λ 0

)
= 2y1RXY + 2y2RXZ

(where RXY : R16 → R16 is defined by 2RXY U = R(X, U)Y + R(Y, U)X).
As all the entries of the matrix on the right-hand side are linear in y1, y2

and detΛ 6= 0, we get that all the entries of both F (y1, y2)Λ + ΛF (y1, y2)t

and P (y1, y2) are linear in y1, y2. It follows that

P (y1, y2) = y1P1 + y2P2, F (y1, y2) = y1F1 + y2F2 + K(y1, y2)Λ−1,

where Pi and Fi are constant matrices, and K(y1, y2) is a skew-symmetric
6× 6 matrix
The terms of (13) not containing x give
(

F (y1, y2)ΛF (y1, y2)t F (y1, y2)ΛP (y1, y2)t

P (y1, y2)ΛF (y1, y2)t P (y1, y2)ΛP (y1, y2)t

)
= y2

1RY + 2y1y2RY Z + y2
2RZ ,

(14)
which implies that all the entries of the matrix on the left-hand side are
quadratic forms in y1, y2 (whenever they are defined). It follows that all
the entries of both

F (y1, y2)ΛF (y1, y2)t and K(y1, y2)(y1P1 + y2P2)t (15)

must be quadratic forms.
By the choice of the triple (X, Y, Z), the conditions (b) and (c) of Lemma 3.8
must be satisfied. In particular, the fact that ImRX ∩ ImRY = 0 means
(Lemma 3.9) that M2(1, 0) is defined and that ImRY = ImM2(1, 0), which
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implies rk P1 = 6. Similarly, the fact that (X,Z) ∈ S2 means that
M2(0, 1) is defined and rk P2 = 6. Condition (c) gives that no nonzero
vector from R16 is orthogonal to the column spaces of all three matrices
M2(1, 0),M2(0, 1) and M3 simultaneously, which gives

rk (P1 | P2) = 10. (16)

As all the entries of the matrix K(y1, y2)(y1P1 + y2P2)t =: Q(y1, y2) are
quadratic forms in y1, y2 and rk (y1P1 +y2P2) = 6 for generic pairs (y1, y2),
K(y1, y2) = Q(y1, y2)(y1P1 + y2P2)((y1P1 + y2P2)t(y1P1 + y2P2))−1, hence
the entries of K(y1, y2) are rational functions, which are the ratios of ho-
mogeneous polynomials in y1, y2 of homogeneity 1 (that is, with the nu-
merator of each nonzero entry is of degree one bigger then that of the
denominator). Let q(y1, y2) be the lowest common multiple of the denom-
inators of the nonzero entries of K(y1, y2) (after cancelation in every en-
try). The polynomial q is homogeneous and its zero locus is a subset of
{(y1, y2) : rk (y1P1 + y2P2) < 6}. In particular, both q(1, 0) and q(0, 1) are
nonzero, hence q and y1y2 are coprime.

Introduce a 6 × 6 skew-symmetric matrix K̂(y1, y2) := K(y1, y2) −
y1K(1, 0)− y2K(0, 1). As K̂(1, 0) = K̂(0, 1) = 0 all the numerators of the
entries of K̂(y1, y2) are divisible by y1y2. Define a 6 × 6 skew-symmetric
matrix G(y1, y2) by K̂(1, 0) = y1y2q

−1G. The entries of G are homogeneous
polynomials in y1, y2, with the degree of every nonzero entry one smaller
than the degree of q, and with the greatest common divisor of the entries
being coprime with q (otherwise we can cancel it out).

It follows now from (15) that for some matrices Q1(y1, y2), Q2(y1, y2) whose
nonzero entries are quadratic forms in y1, y2,

y1y2q(G(y1F̃1 + y2F̃2)t − (y1F̃1 + y2F̃2)G) + y2
1y2

2GΛ−1Gt = q2Q1 (17)

y1y2G(y1P1 + y2P2)t = qQ2, (18)

where F̃1 = F1 + K(1, 0), F̃2 = F2 + K(0, 1) are constant matrices. As q

and y1y2 are coprime, equation (17) implies that all the entries of GΛ−1Gt

are divisible by q2. As the degree of every nonzero entry of G is one smaller
than the degree of q, this is only possible when GΛ−1Gt = 0. Since
Λ−1 = diag{λ−1

1 , λ−1
1 , λ−1

1 , λ−1
2 , λ−1

2 , λ−1
2 }, this implies that G = 0, if

λ1λ2 > 0, or rk G ≤ 3, if λ1λ2 < 0. As G is skew-symmetric, we have
rk G ≤ 2. We want to show that the condition rk G(y1, y2) = 2 for at least
one point (y1, y2) leads to a contradiction, so that G must vanish.
Assume rk G(y1, y2) = 2 for at least one point (y1, y2) (and hence for an
open and dense set on the plane (y1, y2)). From (18), as q and y1y2 are



396

coprime, it follows that Q2 = y1y2C2, with a constant 6 × 10 matrix C2

whose rank is at most 2 (since rk G ≤ 2). Then

G(y1P1 + y2P2)t = qC2, (19)

which implies that a 10×10 matrix (y1P1 +y2P2)C2 is skew-symmetric and
has rank at most 2, for all y1, y2. If rk C2 < 2, then (y1P1+y2P2)C2 = 0 and
so G = 0 (since rk (y1P1+y2P2) = 6 for an open dense set of points (y1, y2)).
Assume rk C2 = 2. The vectors e7, . . . , e16 of the orthonormal basis ei are
arbitrary orthonormal vectors spanning the kernel of RX . We can specify
their choice in such a way that the matrix C2 has a form (a | b | 0), where
a ⊥ b are nonzero six-dimensional vector-columns, and 0 represents the
6×8 zero matrix. Then there exists a nonzero linear form l = l(y1, y2) such
that

(y1P1 + y2P2)a = (0,−l, 0, . . . , 0)t, (y1P1 + y2P2)b = (l, 0, 0, . . . , 0)t. (20)

For any c ∈ R6 orthogonal to a and b we have Ct
2c = 0, so by (19) Gc = 0. It

follows that the column space of the skew-symmetric matrix G is spanned
by a and b, which implies that G = f(abt − bat) for some polynomial
f = f(y1, y2). Substituting this to (19) and using (20) we get fl = q. As q

is coprime with the greatest common divisor of the entries of G, we obtain

G = abt − bat, q = l(y1, y2), a linear form. (21)

It follows from (21) and (19) that

F (y1, y2)ΛP (y1, y2)t = (y1F̃1 + y2F̃2 + y1y2l
−1GL−1)Λ(y1P1 + y2P2)t

= (y1F̃1 + y2F̃2)(y1P1 + y2P2)t + y1y2(a | b | 0). (22)

From (17), as GΛ−1Gt = 0, we have 〈Λ−1a, a〉 = 〈Λ−1a, b〉 = 〈Λ−1b, b〉 = 0,
and also G(y1F̃1 + y2F̃2)t − (y1F̃1 + y2F̃2)G = l(y1, y2)C1 for a constant
symmetric 6 × 6 matrix C1. In particular, if l(y01, y02) = 0, the matrix
G(y01F̃1 + y02F̃2)t is skew-symmetric, and it follows from (21) that for
some constant µ,

(y01F̃1 + y02F̃2)a = µa, (y01F̃1 + y02F̃2)b = µb. (23)

Now take y01, y02 such that y2
01 + y2

02 = 1 and l(y01, y02) = 0. Then
the 10 × 6 matrix P0 := P (y01, y02) = y01P1 + y02P2 has rank 4. In-
deed, by (20) its rank is not bigger than 4. On the other hand, by (16),
rk (P1 | P (y01, y02)) = rk (P1 | P2) = 10, so rk P (y01, y02) = 4. Moreover,
by (20), the column space of the 6× 10 matrix P t

0 (which is 4-dimensional)
is orthogonal to both a and b. As a, b ⊥ Λ−1a,Λ−1b, it follows that both
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Λ−1a and Λ−1b lie in the column space of P t
0 , hence a and b belong to the

column space of ΛP0. Then the subspace V ⊂ R10 of vectors v such that
P t

0v ∈ Span(a, b) has dimension 8.

Let U = (0, 0, 0, 0, 0, 0, u)t ∈ KerRX , where u ∈ R10. From (14) and (22)
we obtain

Ry1Y +y2ZU =
(

F (y1, y2)ΛP (y1, y2)t

P (y1, y2)ΛP (y1, y2)t

)
u

=
(

(y1F̃1 + y2F̃2)Λ(y1P1 + y2P2)t + y1y2(a | b | 0)
P (y1, y2)ΛP (y1, y2)t

)
u

Take (y1, y2) = (y01, y02) and u ∈ V. Then ΛP t
0u = l1(u)a + l2(u)b

for some linear functionals l1, l2 on V, as ΛP t
0(V) = Span(a, b). We

have: P0ΛP t
0u = 0, as P0a = P0b = 0 by (20), and by (23), (y01F̃1 +

y02F̃2)ΛP t
0 + y01y02(a | b | 0)u = µ(l1(u)a + l2(u)b) + y01y02(u1a + u2b) =

(µl1(u) + y01y02u1)a + (µl2(u) + y01y02u2)b, where u1 and u2 are the first
two components of u ∈ V ⊂ R10.

The common kernel U of the linear functionals u → µli(u) + y01y02ui, i =
1, 2 on V is at least six-dimensional. Then any vector U = (0, 0, 0, 0, 0, 0, u)t,
with u ∈ U belongs to both KerRX and KerRy01Y +y02Z , which contradicts
condition (a) of Lemma 3.8, as dimU ≥ 6.

It follows that G = 0, and so

M2(y1, y2) =
(

F (y1, y2)
P (y1, y2)

)
= y1

(
F̃1

P1

)
+ y2

(
F̃2

P2

)
,

with F̃1, F̃2, P1, P2 constant matrices. Substituting this to (13) completes
the proof of the Lemma.

With Lemma 3.10, the proof of Lemma 3.6 (and hence of the fact that
R has a Clifford structure Cliff(6)) is word-by-word the same as that in
section 4 of [7], after Lemma 4.

3.3. Two facts from Commutative Algebra

Let for X = (x1, . . . , x16), (‖X‖2) be the ideal of R[X] generated by ‖X‖2,
and K = R[X]/(‖X‖2), with π : R[X] → K the natural projection.

We need the following two facts (the first one is Nagata’s Theorem [4]).

Theorem 3.1 The ring K is a unique factorization domain (UFD ).
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Lemma 3.11 Let f1, . . . , fm be polynomials in R16 such that ‖X‖2 divides∑
i f2

i . If m ≤ 8, then ‖X‖2 divides each of fi.

Proof. In K, we have
∑

i f̂2
i = 0, where f̂i = π(fi). Assume that at

least one of the f̂i is nonzero, say f̂m 6= 0. Then in the field of fractions
K of the ring K, we get

∑m−1
i=1 (f̂if̂

−1
m )2 = −1, which means that s(K), the

level of the field K is at most m− 1 [11]. The field K is isomorphic to the
field L15 = R(x1, . . . , x15,

√−d15), where d15 =
∑15

j=1 x2
j (an isomorphism

from L15 to K is induced by the map (a + b
√−d15)/c → (a + bx16)/c, with

a, b, c ∈ R[x1, . . . , x15], c 6= 0). Then by Theorem 3.1.4 of [11], s(K) = 8, a
contradiction.
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