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The star complement technique is a spectral tool recently developed for construct-
ing some bigger graphs from their smaller parts, called star complements. Here we
first identify among unicyclic graphs those graphs which can be star complements
for 1 as the second largest eigenvalue. Using the graphs obtained, we next search
for their maximal extensions, either by theoretical means, or by computer aided
search.

1. Introduction

We will consider only simple graphs, that is finite, undirected graphs
without loops or multiple edges. If G is such a graph with vertex set
VG = {1, 2, . . . , n}, the adjacency matrix of G is n× n matrix AG = (aij),
where aij = 1 if there is an edge between the vertices i and j, and 0 oth-
erwise. The eigenvalues of G, denoted by λ1 ≥ λ2 ≥ · · · ≥ λn, are just the
eigenvalues of AG. Note, the eigenvalues of G are real and do not depend
on vertex labelling. Additionally, for connected graphs λ1 > λ2 holds. The
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characteristic polynomial of G is the characteristic polynomial of its adja-
cency matrix, so PG(λ) = det(λI−AG). For more details on graph spectra,
see [4].

If µ is an eigenvalue of G of multiplicity k, then a star set for µ in G is a
set X of k vertices taken from G such that µ is not an eigenvalue of G−X.
The graph H = G − X is then called a star complement for µ in G (or a
µ-basic subgraph of G in [8]). (Star sets and star complements exist for any
eigenvalue and any graph; they need not be unique.) The H-neighborhoods
of vertices in X can be shown to be non-empty and distinct, provided that
µ 6∈ {−1, 0} (see [6], Chapter 7). If t = |VH |, then |X| ≤ (

t
2

)
(see [1]) and

this bound is best possible.

It can be proved that if Y is a proper subset of X then X − Y is a star set
for µ in G− Y , and therefore H is a star complement for µ in G− Y . If G

has star complement H for µ, and G is not a proper induced subgraph of
some other graph with star complement H for µ, then G is a maximal graph
with star complement H for µ, or it is an H-maximal graph for µ. By the
above remarks, there are only finitely many such maximal graphs, provided
µ 6∈ {−1, 0}. In general, there will be only several maximal graphs, possibly
of different orders, but sometimes there is a unique maximal graph (if so,
this graph is characterized by its star complement for µ).

We now mention some results from the literature in order to make the paper
more self–contained (they are taken from [5, 6, 7]).

The following result is known as the Reconstruction Theorem (see, for ex-
ample, [6], Theorems 7.4.1 and 7.4.4).

Theorem 1.1 Let G be a graph with adjacency matrix
(

AX BT

B C

)
,

where AX is the adjacency matrix of the subgraph induced by the vertex set
X. Then X is a star set for µ if and only if µ is not an eigenvalue of C

and µI −AX = BT (µI − C)−1B.

From the above, we see that if µ, C and B are fixed then AX is uniquely
determined. In other words, given the eigenvalue µ, a star complement
H for µ, and the H–neighborhoods of the vertices in the star set X, the
graph G is uniquely determined. In the light of these facts, we may next
ask to what extent G is determined only by H and µ. Having in mind the
observation above, it is sufficient to consider graphs G which are H-maximal
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for µ.

Following [2], we will now fix some further notation and terminology. Given
a graph H, a subset U of V (H) and a vertex u not in V (H), denote by H(U)
the graph obtained from H by joining u to all vertices of U . We will say
that u (U , H(U)) is a good vertex (resp. good set, good extension) for µ and
H, if µ is an eigenvalue of H(U) but is not an eigenvalue of H. By Theorem
1.1, a vertex u and a subset U are good if and only if bT

u (µI−C)−1bu = µ,
where bu is the characteristic vector of U (with respect to V (H)) and C is
the adjacency matrix of H. Assume now that U1 and U2 are not necessarily
good sets corresponding to vertices u1 and u2, respectively. Let H(U1, U2; 0)
and H(U1, U2; 1) be the graphs obtained by adding to H both vertices, u1

and u2, so that they are non-adjacent in the former graph, while adjacent
in the latter graph. We say that u1 and u2 are good partners and that U1

and U2 are compatible sets if µ is an eigenvalue of multiplicity two either in
H(U1, U2; 0) or in H(U1, U2; 1). (Note, if µ 6∈ {−1, 0}, any good set is non-
empty, any two of them if corresponding to compatible sets are distinct;
see [6], cf. Proposition 7.6.2.) By Theorem 1.1, two vertices u1 and u2

are good partners (or two sets U1 and U2 are compatible) if and only if
bT

u1
(µI − C)−1bu2 ∈ {−1, 0}, where bu1 and bu2 are defined as above. In

addition, it follows (again by Theorem 1.1) that any vertex set X in which
all vertices are good, both individually and in pairs, gives rise to a good
extension, say G, in which X can be viewed as a star set for µ, while H as
the corresponding star complement.

The above considerations shows us how we can introduce a technique, also
called a star complement technique, for finding (or constructing) graphs
with certain spectral properties. In this context the graphs we are inter-
ested in should have some prescribed eigenvalue usually of a very large
multiplicity. If G is a graph in which µ is an eigenvalue of multiplicity
k > 1, then G is a good (k-vertex) extension of some of its star comple-
ments, say H (in particular, G is H-maximal for µ). The star complement
technique consists of the following: In order to find H-maximal graphs for
µ ( 6= −1, 0), we form an extendability graph whose vertices are good vertices
for µ and H, and add an edge between two good vertices whenever they are
good partners. Now it is easy to see that the search for maximal extensions
is reduced to the search for maximal cliques in the extendability graph (see,
for example, [5, 7]). Of course, among H-maximal graphs some of them
can be mutually isomorphic.

Connected graphs with λ2 ≤ 1 were not too much studied in the literature.
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Some known results are related to bipartite graphs and (generalized) line
graphs (see [9] for details). The star complement technique in this context
is, for the first time, used in [11]. In that paper it was taken that star
complements are trees or complete graphs. Here we focus our attention on
unicyclic graphs (i.e. connected graph having the same order and size) in
the role of star complements for µ = 1 as the second largest eigenvalue.

2. Main results

In what follows let H (in the role of star complement for µ = 1 as the second
largest eigenvalue) be a unicyclic graph. If not told otherwise, C stands
for the unique cycle of H. Note also that λ2(H) < 1 - by the Interlacing
Theorem (see [4], p. 19). In addition, we also have that λ2(G) = 1, where
G is an arbitrary good extension of H for µ = 1.

Lemma 2.1 Under the above assumptions on H, the length of C is at most
five.

Proof. For a cycle Cn with n ≥ 6 we have λ2(Cn) ≥ 1. Therefore, such
a cycle cannot be a star complement for λ2 = 1. In addition, by the
Interlacing Theorem, any unicyclic graph containing cycle Cn with n ≥ 6,
cannot be a star complement for λ2 = 1, and the proof follows.

Lemma 2.2 Under the above assumptions on H, any vertex of H is at
distance at most one from C.

Proof. Observe first that Pn with n ≥ 5 (by the same arguments as above)
cannot be a star complement for λ2 = 1. Therefore, as already noticed in
[11], Lemma 3.1, the diameter of H is at most three. If some vertex of
H is at distance two (or more) from C then the diameter is greater than
three unless H consists of a triangle having a path of length two attached
at some vertex of the triangle (and possibly some hanging edges attached
at the same vertex). But in the latter situation 1 is the second largest
eigenvalue of the resulting graph(s), and the proof follows.

The following theorem gives a characterization of all unicyclic graphs which
can be star complements for λ2 = 1.

Theorem 2.1 A unicyclic graph H is a star complement for λ2 = 1 if and
only if it is one of the graphs depicted in Fig. 1.

Sketch proof. We first determine all unicyclic graphs with λ2 < 1. By
Lemmas 2.1 and 2.2, we have to consider only those graphs containing
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a cycle C (of length ≤ 5) and possibly some hanging edges attached at
the vertices of C. By direct calculations, we find that only the graphs
H1,H3, H4,H8 and H9 are maximal under the above constraints. In ad-
dition, H10 is not maximal for a fixed n ≥ 4, but satisfies all imposed
constraints. This can be verified for any n by making use of the Interlacing
Theorem after removing a vertex labeled by 1; this gives that λ2(H10) ≤ 1.
On the other hand λ2(H10) 6= 1 since PH10(1) = −4 for any n ≥ 1, as
can be easily shown by making use of the Heilbronner formula (see [4] p.
59). We next have that, except for the graphs of Fig. 1 and two additional
graphs, one being C4 (the subgraph of H2) and the other C3 (the subgraph
of H5), there are no more graphs of interest. In what remains we have to
see which of these graphs afford good extensions for µ = 1. Firstly, for
every graph of Fig. 1 except H10 we can find (by direct computations) at
least one good set; this can be done by calculations for H10 (in addition,
all good sets are given in the next theorem). Secondly, it is easy to check
(say by a brute force computation) that the remaining three graphs do not
contain any good set. This completes the proof.
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Figure 1. Unicyclic star complements for µ = 1

We now proceed to identify all good sets U for µ = 1 in all graphs H1−H10

of Fig. 1. For this aim we will use either a brute force computations, or
calculations based on the Schwenk formula (see [4] p. 78) which can be
stated as follows: For a given (simple) graph G, let C(v) denote the set of
all cycles containing a vertex v of G. Then
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PG(λ) = λPG−v(λ)−
∑
w∼v

PG−v−w(λ)− 2
∑

C∈C(v)

PG−V (C)(λ), (1)

where w ∼ v denotes that w is a vertex adjacent to v, while G − V (C) is
the graph obtained from G by removing all vertices belonging to the cycle
C (note also that PH(λ) = 1 if H is an empty graph).

Theorem 2.2 For any graph Hi (i = 1, 2, . . . , 10) of Fig. 1 its good sets
are as given in the following list:

H1 : U1 = {1}, U2 = {2}, U3 = {3}, U4 = {4}, U5 = {5}, U6 = {1, 2, 3},
U7 = {1, 2, 5}, U8 = {1, 4, 5}, U9 = {2, 3, 4}, U10 = {3, 4, 5};

H2 : U1 = {3}, U2 = {2, 5}, U3 = {4, 5}, U4 = {2, 3, 4};
H3 : U1 = {1}, U2 = {2}, U3 = {3}, U4 = {4}, U5 = {1, 6}, U6 = {2, 5},

U7 = {3, 5}, U8 = {4, 6}, U9 = {1, 3, 4}, U10 = {2, 3, 4},
U11 = {3, 5, 6}, U12 = {4, 5, 6}, U13 = {1, 2, 3, 6}, U14 = {1, 2, 4, 5};

H4 : U1 = {1}, U2 = {2}, U3 = {4}, U4 = {2, 5}, U5 = {2, 6},
U6 = {3, 5}, U7 = {3, 6}, U8 = {4, 5}, U9 = {4, 6}, U10 = {1, 2, 3},
U11 = {1, 3, 4}, U12 = {3, 5, 6}, U13 = {1, 2, 4, 5, 6};

H5 : U1 = {3, 4}, U2 = {3, 5}, U3 = {1, 4, 5}, U4 = {2, 4, 5};
H6 : U1 = {1, 5}, U2 = {1, 6}, U3 = {2, 4}, U4 = {2, 6}, U5 = {3, 4},

U6 = {3, 5}, U7 = {1, 4, 5, 6}, U8 = {2, 4, 5, 6}, U9 = {3, 4, 5, 6};
H7 : U1 = {2}, U2 = {3, 4}, U3 = {3, 5}, U4 = {1, 4, 6}, U5 = {1, 5, 6},

U6 = {2, 4, 5}, U7 = {3, 4, 6}, U8 = {3, 5, 6}, U9 = {1, 2, 3, 6},
U10 = {2, 4, 5, 6};

H8 : U1 = {1}, U2 = {2}, U3 = {3}, U4 = {1, 6}, U5 = {1, 7},
U6 = {2, 4}, U7 = {2, 5}, U8 = {3, 4}, U9 = {3, 5}, U10 = {1, 6, 7},
U11 = {2, 4, 7}, U12 = {2, 5, 7}, U13 = {3, 4, 6}, U14 = {3, 5, 6},
U15 = {1, 2, 3, 6}, U16 = {1, 2, 3, 7}, U17 = {1, 4, 6, 7},
U18 = {1, 5, 6, 7}, U19 = {2, 4, 5, 7}, U20 = {3, 4, 5, 6},
U21 = {1, 2, 3, 4, 5}, U22 = {2, 4, 5, 6, 7}, U23 = {3, 4, 5, 6, 7};

H9 : U1 = {1}, U2 = {3}, U3 = {1, 7}, U4 = {2, 4}, U5 = {2, 5},
U6 = {2, 6}, U7 = {3, 4}, U8 = {3, 5}, U9 = {3, 6},
U10 = {1, 2, 3}, U11 = {1, 4, 7}, U12 = {1, 5, 7}, U13 = {1, 6, 7},
U14 = {2, 4, 5}, U15 = {2, 4, 6}, U16 = {2, 5, 6}, U17 = {3, 4, 5, 7},
U18 = {3, 4, 6, 7}, U19 = {3, 5, 6, 7}, U20 = {2, 4, 5, 6, 7},
U21 = {3, 4, 5, 6, 7}, U22 = {1, 2, 3, 4, 5, 6};
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H10 : {j}, {1, j} (4 ≤ j ≤ n), {2} ∪ T, {3} ∪ T if n = 7, {1, 2} ∪ T,

{1, 3} ∪ T if n = 11, T is any set (possibly empty) of terminal
vertices, {2, 3} ∪ Tn−5, Tn−5 is any set of n− 5 (n ≥ 5) terminal
vertices, {1, 2, 3} ∪ Tn−7, Tn−7 is any set of n− 7 (n ≥ 7)
terminal vertices.

Sketch proof. For i = 1, 2, . . . , 9 we can use an exhaustive search either
by the computer, or by hand (based on Theorem 1.1; note, now the cor-
responding condition reads: bT

u (µI − C(i))−1bu = 1, where C(i) is the
adjacency matrix of Hi). In the case of H10, we will demonstrate how we
can get good sets by using only the Schwenk formula.

Consider first that U is the set of (any) k terminal vertices in H10. Apply
then (1) with G = H10(U) and v = u. Then we get

PH10(U)(1) = PH10(1)−
∑

w∈U

PH10−w(1)− 2
∑

C∈C(u)

PH10(U)−C(1).

Since PH10(1) = −4, PH10−w(1) = −4 (w ∈ U), and PH10(U)−C(1) = 0,

C ∈ C(u), we have PH10(U)(1) = −4 + 4k, and therefore PH10(U)(1) = 0 if
and only if k = 1. So, if U as a good set contains only terminal vertices of
H10, it is of the form {j} (4 ≤ j ≤ n).

Consider next U contains at least one vertex from the triangle induced
by the set {1, 2, 3} and some terminal vertices determined by the set T ,
where T is possibly empty. Then, if we take that {1}, {2}, {3}, {1, 2},
{1, 3}, {2, 3} and {1, 2, 3} are the vertices taken from the triangle we get
that PH10(U)(1) is equal to −4 + 4k, −7 + n, −7 + n, −11 + n, −11 + n,
−5 − k + n and −7 − k + n, respectively. Since PH10(U)(1) = 0, all good
sets are just those as required. This completes the proof.

We will now determine all H-maximal graphs (for 1) for some of the star
complements H given in Theorem 2.1. As it is mentioned in Section 1,
finding maximal graphs is equivalent to finding maximal cliques in the
extendability graph. As already noted, a necessary and sufficient condition
for u1 and u2 to be good partners follows from Theorem 1.1 (recall, if bu1

and bu2 are the characteristic vectors of U1 and U2, respectively then u1

and u2 are good partners if and only if bu1
T (µI−C)−1bu2 is equal either 0

or −1). (Here, u1 and u2 are non–adjacent in the former case, and adjacent
in the later case.) This easy criterion for checking if two good vertices are
good partners will be used in sequel.

We first demonstrate this technique if H is equal to H5 and H6.



482

Theorem 2.3 If H is equal to H5 (or H6) then there exists a unique H-
maximal graph for 1.

Proof. By Theorem 2.2, we have exactly four good sets in H5. In this
situation it is easy to check that each two of them are compatible. So there
is a unique maximal graph which now arises. Similarly, we have exactly
nine good sets in H6. Again, we can check that each two of them are
compatible. So there is a unique maximal graph which now arises. This
completes the proof.

Remark 2.1 We now give some data for two H-maximal graphs (for 1)
obtained in the previous theorem. The first graph is strongly regular (of
degree 4) on 9 vertices. Its spectruma is [−24, 14, 4]. The second graph is
strongly regular (of degree 6) on 15 vertices. Its spectrum is [−35, 19, 6].

In order to find all maximal graphs for a given star complement and an
eigenvalue µ, one of the authors (Z.S.) has created an SCL (star comple-
ment library) – i.e. a collection of programs related to star complement
technique. This library includes the programs for identifying good sets, for
checking their compatibility, for finding maximal cliques and for identifying
isomorphism classes. Some results obtained by making use of SCL facilities
are given in the next theorem.

Theorem 2.4 If H is one of the following graphs H1 −H4 and H7 −H9,
then H-maximal graphs for 1, and some data about them (including the
number of vertices and edges, spectrum, good sets (as denoted in Theorem
2.2)) are summarized below.

H1:
G1 : 7, 12, [−2,−1.65,−12, 12, 3.65]; U7, U8.

G2 : 8, 11, [−22,−12, 13, 3]; U1, U3, U6.

G3 : 10, 15, [−24, 15, 3]; U1, U2, U3, U4, U5.

H2:
G4 : 6, 8, [−2.29,−1,−0.60, 0, 1, 2.90]; U4.

G5 : 8, 12, [−3,−13, 13, 3]; U1, U2, U3.

H3:
G6 : 10, 20, [−3,−2,−1.37,−12, 14, 4.37]; U8, U10, U11, U13.

G7 : 12, 24, [−3.27,−23,−1, 16, 4.27]; U4, U5, U6, U7, U12, U14.

G8 : 16, 40, [−35, 110, 5]; U1, U2, U3, U4, U5, U6, U7, U8, U11, U12.

aIn an exponential notation, an exponent stands for the multiplicity of the eigenvalue.
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H4:
G9 : 10, 16, [−2.70,−2,−13, 14, 3.70]; U6, U7, U10, U11.

G10 : 12, 24, [−3.27,−23,−1, 16, 4.27]; U4, U5, U8, U9, U12, U13.

G11 : 16, 40, [−35, 110, 5]; U1, U2, U3, U4, U5, U6, U7, U8, U9, U12.

H7:
G13 : 10, 21, [−3,−2.46,−13, 14, 4.46]; U7, U8, U9, U10.

G14 : 15, 45, [−35, 19, 6]; U1, U2, U3, U4, U5, U6, U7, U8, U10.

H8:
G15 : 14, 37, [−4,−2.77,−22,−12, 17, 5.77]; U10, U11, U12, U13, U14,

U15, U16.

G16 : 18, 57, [−4.66,−34,−1, 111, 6.66]; U4, U5, U6, U7, U8, U9, U17,

U18, U19, U20, U21.

G17 : 27, 135, [−56, 120, 10]; U1, U2, U3, U4, U5, U6, U7, U8, U9, U10,

U11, U12, U13, U14, U17, U18, U19, U20, U22, U23.

H9:
G18 : 18, 57, [−4.66,−34,−1, 111, 6.66]; U7, U8, U9, U11, U12, U13,

U14, U15, U16, U21, U22.

G19 : 27, 135, [−56, 120, 10]; U1, U2, U3, U4, U5, U6, U7, U8, U9, U11,

U12, U13, U14, U15, U16, U17, U18, U19, U20, U21.

Remark 2.2 Graphs G3, G8, G11, G14, G17 and G19 (with exactly three
distinct eigenvalues) are all strongly regular graphs. In addition, G3 is
the Petersen graph; G8 and G11 are equal to the Clebsch graph; G17 and
G19 are equal to one of the Smith graphs (see [3]). We also note that the
following pairs of graphs G7 and G10, G8 and G11, G16 and G18 and, G17

and G19 are isomorphic – so, they contain two different star complements,
which are both unicyclic graphs.

Remark 2.3 According to [1] Theorem 3.1 (see also [7], p. 119) the fol-
lowing condition n ≤ 1

2 t(t + 1) − 1 holds for any connected regular graph
of order n, where t is the order of a star complement for an eigenvalue
µ 6∈ {−1, 0}. It is a remarkable fact that the Smith graph from the above
remark (i.e. the graph G17, or G19) attains this bound.

Maximal graphs for H equal to H10 will be considered in our forthcoming
research.
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11. Z. Stanić, On graphs whose second largest eigenvalue equals 1 – the star
complement technique, Linear Algebra Appl., 420 (2007), 700–710.


