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In a connected Finsler space F n = (M,F) any point q ∈ M has a distance %F (p, q)
from another point p ∈ M . Thus a Finsler space (MF) determines a distance
space (M, %F ) : F 7→ %F . By a theorem of Busemann and Mayer, from this %F one
can reconstruct the Finsler metric F , and thus the Finsler space (M,F) : %F 7→ F .
But not every distance space (M, %) does induce a Finsler space (M,F), and even
if it does: % 7→ F , it is not sure that the %F induced by the F obtained equals the

initial % : % 7→ F 7→ %F ?
= %.

We investigate the relations between Finsler and distance spaces. We look for
answers to questions as: When and how does a distance space induce a Finsler
space, and what are the characteristics of these distance spaces? When does the
process % 7→ F 7→ %F lead to the original % (when is % a %F )? Longer proofs are
omitted.

1. Introduction: Finsler spaces, distance spaces

1. A Finsler space Fn = (M,F) is an n-dimensional manifold M equipped
with a Finsler metric (structure function, fundamental function)
F : TM → R+ = [0,∞), (p, y) 7→ F(p, y), p ∈ M , y ∈ TpM , satisfying the
requirements:

(F i) regularity: F ∈ C0 on TM , and F ∈ C∞ on the slit tangent bundle
TM \ 0 = {(p, y) | y 6= 0}

(F ii) positive homogeneity (of degree 1): F(p, λy) = λF(p, y), λ ∈ R+

(F iii) strong convexity: ∂2F2

∂yi∂yj (p, y)vivj > 0, i, j = 1, . . . , n for all non-
null vectors v ∈ TpM .

In place of (F ii) a more restrictive requirement is the
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(F iv) absolute homogeneity (of degree 1): F(p, λy) = |λ|F(p, y), λ ∈ R.

The Finsler norm of y ∈ TpM is defined by ‖y‖F := F(p, y), and the Finsler
arc length of a piecewise differentiable (this will always be supposed) curve
c : [a, b] → M , t 7→ c(t) is given by the integral

s =
∫ b

a

F(c, ċ)dt =
∫ b

a

〈ċ, ċ〉gF
(ċ)

dt,

where the 2-form gF
(Y ) is defined by

gF
(Y )(U, V ) = 〈U, V 〉gF

(Y )
:=

1
2

∂2F2

∂s∂t
(Y + sU + tV ), Y, U, V ∈ TpM.

Its local components at p ≡ x and y are

(
gF
(Y ) |p,y

)
ij
≡ gF

ij(x, y) =
1
2

∂2F2

∂yi∂yj
(x, y).

Thus in a Finsler space

(a) s =
∫ b

a

(
gF

ij(x, ẋ)ẋiẋj
)1/2

dt,

while the arc length of c(t) ≈ x(t) in a Riemann space V n = (M, g) is

(b) s =
∫ b

a

〈ċ, ċ〉g dt =
∫ b

a

(
gij(x)xiẋj

)1/2
dt.

(a) and (b) are very similar, only in the Riemann case (b) the integrand
is the square root of a quadratic form in ẋ, while in the Finsler case (a)
the expression under the square root need not be quadratic in ẋ. Since
both Finsler and Riemann geometries are built on the arc length of curves,
on the base of the strong similarity of (a) and (b) we can say that Finsler
geometry is just Riemannian geometry without the quadratic restriction.
This witty remark is due to S. S. Chern [6]. Indeed the two geometries have
many basic similarities.

The requirement of F ∈ C∞ in (F i) is quite natural in a differential
geometry.

(F ii–iv) have simple and important geometric meaning. (F ii) is equiv-
alent to the invariance of the arc length against orientation – preserving
reparametrizations of the curve. Also in consequence of (F ii) the graph of
z = F(p0, y) in Rn+1 = (Tp0M)(y) × R(z) is a cone centered at p0. The
orthogonal projection in Rn+1 on Tp0M of the intersection of the cone z =
F(p0, y) and the hyperplane z = 1 is I(p0) := {y ∈ Tp0M | F(p0, y) = 1}.
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This is the indicatrix of Fn at p0. I(p) plays a role similar to that of the
unit sphere of the Euclidean space En.

(F iii) is equivalent to the triangle inequality in TpM with respect to the
Finsler norm:

(F iii′) F(p, y1) +F(p, y2) > F(p, y1 + y2), ∀ y1, y2 ∈ TpM, y2 6= λy1.

Tp0M endowed with the Finsler norm ‖y‖F = F(p0, y) is a Minkowski
space Mn = (Tp0M,F(p0, y)). So a Finsler space makes any of its tangent
space TpM into a Minkowski space. In the case of a Riemannian space
V n the indicatrices I are ellipsoids, and the induced Minkowski space are
Euclidean spaces.

F ∈ C0 at y = 0 is a consequence of (F ii) and F ∈ C∞ on TM\0. However,
in view of (F ii, iii) more cannot be a achieved. Indeed, if we had F ∈ C1

at y = 0, then z = F(p0, y) (which is a cone in (Tp0M)(y)× R(z) = Rn+1

in consequence of (F i, ii)) would be a hyperplane through the origin of
Rn+1. Since z ≥ 0 (because of F : TM → R+) this hyperplane would be
Tp0M . Then z = F(p0, y) ≡ 0, which is not compatible with (F iii).

Replacing the positive homogeneity (F ii) by the absolute homogeneity
(F iv) yields important special spaces. At the early stage of Finsler geom-
etry, (F iv) was usually supposed. (F iv) is equivalent to the invariance of
the Finsler arc length s against any reparametrization of the curves includ-
ing the change of orientation. It is also equivalent to F(p, y) = F (p,−y),
∀p, y. In this case Mn = (Tp0M,F(p0, y)) is a Banach space.

2. A distance space (M, %) is a set M and a distance function % : M ×M→D

associating to any ordered pair p, q an element %(p, q) of the “distance set”
D. In most cases, as in our case too, D consists of the non-negative reals
or a subset of them. If % has still the properties: a) %(p, q) = 0 ⇐⇒ p = q

(positive definiteness), b) %(p, q) = %(q, p) (symmetry), and c)
%(p, q)+%(q, r) ≥ %(p, r) (triangle inequality), then (M, %) is called a metric
space ([1] Section 8). If c) may fail, then % and also (M, %) are semi-metric.
They are genuine semi-metric if c) really fails. If a) and c) are satisfied,
but b) may fail, then % and (M, %) are called quasi-metric [9] (or genuire
quasi-metric if b) really fails).

Distance spaces were introduced by K. Menger, and developed by L. Blu-
menthal, H. Busemann, M. Fréchet and others. Distance spaces were used
in investigations of geometric problems without differentiability conditions
[2]. They often appear also in recent topological studies, e.g. in investiga-
tions on the metrizability of topological spaces, etc. ([7], [8], [9], [11]).
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2. Induced distance functions: F 7→ %F

Let Γ(p,q), p, q ∈ M be the collection of all equally oriented cures c(t),
a ≤ t ≤ b of a connected manifold M emanating from p and terminating
at q. Then a Finsler space Fn = (M,F) determines by

(1) %F (p, q) = inf
∫

Γ(p,q)

F(c, ċ)dt, c(a) = p, c(b) = q

a distance function %F . (1) is a correspondence

F(x, y) 7→ %F (p, q),

which orders a distance space to a Finsler space:

Fn = (M,F) 7→ (M,%F ).

We want to collect some properties of this %F (cf. [4] Chap. 6, eps. sec. 6.4).
Clearly

(R i) %F (p, q) ≥ 0 and %F (p, q) = 0 ⇐⇒ p = q

(the positive definiteness of %F ). Nevertheless, without the absolute homo-
geneity (F iv), %F (p, q) may differ from %F (q, p). To the symmetry:

(R ii) %F (p.q) = %F (q, p)

the absolute homogeneity (F iv) is necessary and sufficient.

Furthermore %F satisfies the triangle inequality

(R iii) %F (p, q) + %F (q, r) ≥ %F (p, r), p, q, r ∈ M.

By (1) there exist curves c1(t), 0 ≤ t ≤ 1 from p to q, and c2(t), 1 ≤ t ≤ 2
from q to r, such that

İ1 =
∫ 1

0

F(c1, ċ1)dt = %F (p, q)+ ε and İ2 =
∫ 2

1

F(c2, ċ2)dt = %F (q, r)+ ε

for arbitrary small 0 < ε. Then the arc length İ3 of c3(t) = c1∪c2, 0 ≤ t ≤ 2
is

İ3 =
∫ 2

0

F(c3, ċ3)dt = %F (p, q) + %F (q, r) + 2 ε.

Since c3 ∈ Γ(p,r), we obtain

%F (p, r) = inf
∫

Γ(p,r)

F(c, ċ)dt ≤ İ3.
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Thus %F (p, r) ≤ %F (p, q)+ %F (q, r)+ 2ε, ∀ ε > 0. This yields (R iii). (R iii)
does not need the absolute homogeneity of F .

The triangle inequality (R iii) does not need (F iii). Suppose that F does
not satisfy (F iii) or (F iii’). (Then (M,F) is not a Finsler space in our
sense.) This happens if the indicatrices F(p0, y) = 1, p0 ∈ M are star-
shaped, smooth, but non-convex. Arc lengths s of curves and distance
functions %F can be formed even in this case, and our considerations de-
scribed in the previous paragraph also remain alive. Thus (R iii) too is
valid. It means also that neither of these distance functions can be genuine
semi-metric. – Nevertheless we can present differential geometric examples
for proper semi-metric spaces, if % is given in another way. Let us consider
a Minkowski space Mn = (Rn,F) in an adapted coordinate system (x)
with a symmetric, star-shaped, smooth and non-convex indicatrix I, and
define a distance function %(x1, x2) by the Minkowski norm of the vector
−−−→x1, x2:

%(x1, x2) := ‖−−→x1x2‖M .

Then (R ii) is satisfied because of the symmetry of I, but the triangle
inequality (R iii) is not, since I is non-convex.

So (M,%F ) is a metric space provided F is absolutely homogeneous, and it is
a genuine quasi-metric space if F is only positively homogeneous. Further
on (M,%) is supposed to be quasi-metric. Metric (M,%) are included as
special case.

Using in Fn a geodesic polar coordinate system (r, ϕ) in a neighbourhood
U ⊂M around p0, we find that %F (p0, q)= r. This shows that %F (p0, q)∈C0

at q = p0, %F (p0, q) /∈ C1 at q = p0, and %F (p0, q) ∈ C∞ on the punctured
U \ 0 (r 6= 0).

Let q(t), 0 ≤ t ≤ a be a geodesic of Fn with q(0) = p0 and lim
t→0

q̇(t) = y0 6= 0.
Then

(2′) lim
t→0

[
d

dt
%F (p0, q(t)

]
= lim

t→0

[
d

dt

∫ t

0

F (q(τ), q̇(τ))dτ

]
= F(p0, y0) > 0.

d
dt%

F (p0, q(t)) = d
dt

∣∣
q(t),q̇(t)

%F (p0, q) is the directional derivative of %F at
q(t) in the direction q̇(t). Since directional derivatives depend on the point
and the direction only, q(t) in (2’) can be replaced by any other c(t), 0 ≤ t

emanating from p0 = c(0), and having at p0 the (one sided) tangent y0.
Then

(2) lim
t→0

[
d

dt
%F (p0, c(t))

]
= F(p0, y0), y0 = lim

t→0

dc

db
.
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(2) is basically the content of the Busemann-Mayer theorem ([5] p. 186, in
a more comfortable form in [4] p. 153, or [10] p. 72).

Thus we obtain:

(R iv) (a) %F (p0, q) ∈ C0 at q = p0

(b) %F (p, q) ∈ C∞ in an open domain around, but without p0.
(c) There exists lim

t→0

d
dt

∣∣
c(t),ċ(t)

%F (p0, q) for any (c(t), 0 ≤ t ≤ a

emanating from p0 = c(0). The value of this limit is F(p0, y0),
y0 = lim

t→0

dc
dt , which is positive if y0 6= 0, of class C∞ at

p0, y0 6= 0, and of class C0 if y0 = 0.

It follows from the properties of the directional derivatives that

(R v) lim
t→0

d

dt

∣∣∣
c̄(t), ˙̄c(t)

%F (p0, q) = λ lim
t→0

d

dt

∣∣∣
c(t),ċ(t)

%F (p0, q), λ ∈ R+

if c̄(0) = c(0) and ˙̄c(t) = λċ(0). (R v) is a consequence of (R iv).

Let c1(t), c2(t), c3(t), 0 ≤ t be curves emanating from p0 with non-null
and non-parallel tangents ċ1(0) = y1, ċ2(0) = y2, ċ3(0) = y1 + y2. By (2),
(F iii) and (R iv, c) we obtain

(R vi)
lim
t→0

d

dt

∣∣∣
c1(t),ċ1(t)

%F (p0, q) + lim
to→0

d

dt

∣∣∣
c2(t),ċ2(t)

%F (p0, q) >

> lim
t→0

d

dt

∣∣∣
c3(t),ċ3(t)

%F (p0, q).

This is somewhat stronger than the local triangle axiom (see [13] p. 56)

(R iv–vi) hold also for %F (q, p0).

We can summarize these statements in

Proposition 2.1 The distance function %F derived from an Fn by (1)
possesses the properties (R i, iii–vi). (R ii) is added iff F is absolutely
homogeneous.

3. Induced Finsler spaces: % 7→ F
Further on we suppose that % in place of %F satisfies (R i, iii-vi).

We want to define a correspondence

(3) %(p0, q) 7→ F̄(p0, y), ∀ p0 ∈ M ; (M, %) 7→ (M, F̄)
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with the natural requirement that in case of % = %F the Finsler metric F̄
corresponding to % = %F by (3) is just that F from which %F originates
by (1):

(
F (1)7−→

)
%F (3)7−→ F̄ = F .

We know that between %F and F the relation (2) subsists. Hence (3) must
have the form

(4) F̄(p, y) := lim
t→0

[
d

dt
%(p, c(t))

]
, y = lim

t→0

dc

dt
,

where c(t), 0 ≤ t ≤ a, c(0) = p is a curve emanating from p. (4) is
meaningful, since the limit exists by our assumption (R iv,c).

F̄ defined by (4) is a Finsler metric. By (R iv,c) F̄(p, y) is non negative, it
is of class C∞ if ċ(0) = y 6= 0, and of class C0 if ċ(0) = y = 0. Thus F̄(p, y)
of (4) satisfies (F i). By (R v) it satisfies (F ii). Finally by (2) and (R vi)
it satisfies also (F iii). Thus we obtain

Proposition 3.1 If %(p, q) satisfies (R i, iii–vi), then F̄(p, y) defined by
(4) is a Finsler metric. If also (R ii) is satisfied, then F̄ is absolutely
homogeneous.

Without any of the conditions (R i, iii–vi) on % F̄(p, y) defined by (4) may
not be a Finsler metric.

By (1) and (4) F (1)7−→ %F (4)7−→ F (1)7−→ %F . This means that (1) and (4) are
map and inverse map. Thus they induce between {F} and {%F } (over a
given M) a 1 : 1 relation. Nevertheless (4) orders to every % (which satisfies

(R i, iii–vi) an F , and thus %
(4)7−→ F (1)7−→ %F . We show that in this sequence

%F 6= % may occur. This fact is expressed by the

Theorem 3.1 {%F } is a proper part of {%}, where % satisfies (R i, iii–vi).

This can be proved by giving an example, where % induces by (4) a Finsler
metric F(p, y), yet the %F obtained from this F by (1) differs from the
initial % : %F 6= %.

First we give a 1-dimensional example. Let M = R1 = R be the Euclidean
line E1, and (x) the canonical coordinates on it. Let %(0, x), x ∈ [0,∞)
be a strictly increasing C∞ function with strictly decreasing first derivative
with %(0, 0) = 0, and satisfying

(5) lim
x→0+

d

dx
%(0, x) = 1
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(e.g. %(0, x) = ln(x + 1)). We define % for x̄ < 0 by

(6) %(0, x̄) = %(0, |x̄|),
and for x0 6= 0 by

(7) %(x0, x) = %(0, x− x0).

The functions %(x0, x) for different x0 are parallel translates of each other.
One can prove that they satisfy (R i–vi). In consequence of (R i–iii) (M, %)
is a metric space. According to Proposition 3.1 this % generates by (4) a
Finsler space F 1 = (R1,F), ((F iii) with the sign of equality). By (4), (6)
and (7) F(x0, a) = F(x0,−a). Thus F is absolutely homogeneous. By (4)
and (7) F(x, a) is independent of x. Therefore F 1 is a Minkowski space
with symmetric indicatrix, and because of n = 1 it is Euclidean space E1.
hence %F (x1, x2) = |x1 − x2|. Nevertheless, by the integral mean theorem

%(x1, x2) =
∫ x2

x1

%′(x1, z)dz = |x1 − x2|%′(x1, z
∗), z∗ ∈ (x1, x2).

By (5), (7) and the strict decrease of %′(x1, z) on z > x1 we obtain

lim
z→x+

1

%′(x1, z) = 1 > %′(x1, z
∗).

Thus

%(x1, x2) < |x1 − x2| = %F (x1, x
2), i.e. %

(4)7−→ F (1)7−→ %F 6= %.

The example discussed can be extended to M=Rn(x). Let us define
z=%(0, x) over each ray xi = rit, 0 ≤ t, Σ(ri)2 = 1, emanating from
the origin 0, as in the previous paragraph. Then z = %(0, x) is a surfaces of
revolution Θ around the z axis in Rn+1(x, z). We define %(x0, x), x0 6= 0 by
(7). We can prove again that the initial distance % differs from %F derived

from the Fn obtained from % by (4): %
(4)7−→ F (1)7−→ %F 6= %. The line of

reasoning is similar to the previous case, but the proofs are somewhat more
involved.

Similar examples can be constructed on manifolds M different from Rn,
provided that M admits a locally Minkowski structure. This is possible iff
M admits an open cover M =

⋃
α

Uα by local carts, and on each Uα there

exists a coordinate system (xα), such that the transitions (xα) ←→ (xβ)
on Uα ∩Uβ are linear ([12] Section 2). The torus has this property, but the
sphere does not ([3] p. 250; [4] p. 14).
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4. Conditions for % = %F

Further on we suppose that in Fn = (M,F) any pair of points p, q ∈ M is
connected by a (short) geodesic g(t), a ≤ t ≤ b, g(a) = p, g(b) = q whose
arc length is %F (p, q). This is certainly true if Fn is geodesically complete.
(In this case the infimum in (1) is a minimum.)

Starting with an arbitrary % (which satisfies (R i, iii–vi)), it may happen
that

%
(4)7−→ F (1)7−→ %F 6= %

(i.e. %F may differ from %), as it was shown by the example of the previous
section. We look for conditions assuring

%
(4)7−→ F (1)7−→ %F = %.

First we show the parallelity of certain vector fields. Let g(t), t ∈ [0, T ] be
a short geodesic of Fn = (M,F) from p0 to q. Such a geodesic exists, for
Fn is complete. Then for any t1, 0 < t1 < t < T

%F (p0, g(t)) = %F (p0, g1) + %F (g1, g(t)), g1 = g(t1).

From this

(8)
[

d

dt
%F (p0, g(t)

]

|t1
= lim

t→t+1

[
d

dt
%F (g1, g(t))

]
.

Consider the distance surface of Fn attached to p0

ΘF
p0

: z = %F (p0, q) ⊂ U(q)×R1(z),

where U(q) ⊂ M is a coordinate neighbourhood of p0. p0 is the vertex
(cape) of ΘF

p0
. The curve ξ0(t) := (g(t), %F (p0, g(t)) ⊂ U ×R+ lies on ΘF

p0
,

and ξ1(t) := (g(t), %F (g1, g(t)) ⊂ ΘF
g1

. By (8) their tangents: ξ̇0(t1) and
lim

t→t+1

ξ̇1(t) =: ξ̇+
1 (t1) are parallel:

Proposition 4.1 ξ̇0(t1)‖ξ̇+
1 (t1), ∀ t1 ∈ (0, T ).

Consider the projection π : U ×R+ → U , (p, z) 7→ p. Then

dπξ̇0(t1) = dπξ̇+
1 (t1) = ġ(t1),

and ξ̇0(t1) and ξ̇+
1 (t1) are the lifts of ġ(t1) to Tξ0(t1)Θ

F
p0

resp. lim
t→t+1

Tξ1(t)Θ
F
g1

.

In a distance space with (R i, iii–vi) the notion of geodesic can be replaced
to a certain extent by that of “parallelity curve”. Let us consider a curve
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p(t), t ∈ [0, T ]. Along this there exist distance surfaces θ%
p(t) : z = %(p(t), q)

and curves ζ0(t), ζ1(t) on them over p(t) similarly to ξ0(t) and ξ1(t). If
ζ0(t) ∈ C1, and

ζ̇0(t1)‖ζ̇+
1 (t1), ∀ t1 ∈ (0, T ),

then p(t) is called a parallelity curve.

Theorem 4.1 For any curve c(t), t ∈ [0, T ] of a distance space (M, %) and
for the Finsler metric F determined by % according to (4) we obtain

(a) %(c(0), c(T )) ≤ ∫ T

0
F(c, ċ)dt

(b) if c(t) is a parallelity curve, then

(9) %(c(τ), c(t)) =
∫ t

τ

F(c, ċ)du, 0 ≤ τ < t < T

(c) if along c(t) (9) holds for ∀τ, t , 0 ≤ τ < t < T , then c(t) is a
parallelity curve.

Proofs of Theorems 4.1, 4.2 and 4.3 are omitted.

Corollary 4.1 In a Finsler space parallelity curves and short geodesics
coincide.

As we have shown, a distance space (M,%) with (R i, iii-vi) determines an
Fn = (M,F), and this Fn determines a %F :

(10) %
(4)7−→ F (1)7−→ %F .

Theorem 4.2 In (10) %F = % iff any short geodesic of Fn (determined
by %) is a parallelity curve of (M, %).

In other words: the distances in (M, %) coincide with the distances of a
Finsler space iff the short geodesics of the Finsler space are parallelity
curves of the distance space.

In Theorem 4.2 we required the parallelity property on curves determined
by Fn, and not by the distance space (M, %). No we replace the parallelity
property (the condition of Theorem 4.2) by another, which is expressed
directly in terms of the (M, %).

Let us consider two points a, b of a distance space (M, %), and a sphere
S%

a(t) := {q | %(a, q) = t} around a with radius t ≤ r = %(a, b). Then there
exists another sphere S%

b (τ) := {q | %(q, b) = τ} such that the two spheres
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osculate each other from outside at a point σ(t) ∈ S%
a(t) and S%

b (τ). If σ(t),
t ∈ [0, r] is a C1 curve, then it will be called osculation curve, and we obtain

Theorem 4.3 For a distance space (M, %) (where % satisfies (R i, iii–vi))
and for a %F determined by a Finsler space by (1) we obtain % = %F iff any
osculation curve is a parallelity curve in (M, %).

Because of the triangle inequality (R iii) r ≤ t + τ for any osculation curve
σ(t; a, b). If r = t + τ , ∀ 0 < t < r, then σ(t; a, b) is called straight ([3]) or
a Hilbert curve ([5] p. 170). In a Finsler space osculation curves are short
geodesics.

References

1. L. M. Blumenthal, Theory and Application of Distance Geometry, Claren-
don Press, Oxford, 1953.
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