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Abstract. We consider real Lie algebras with only zero and two-dimensional
coadjoint orbits and having a nontrivial center. We show that, apart from the
already known cases (studied for example by Dufour and Weinstein), such Lie
algebras are degenerate in both the smooth and analytic category.

1. Introduction

A Poisson structure {, } on a manifold M is a Lie algebra structure on C*° (M) satisfying the
Leibniz identity:

{fg,h} = flg,h} +{f,h}g,  Vf,g,h € C*(M).

Alternatively it can be given by a contravariant skew-symmetric 2-tensor P such that [P, P] =
0, where [,] stands for the Schouten bracket. In local coordinates the Poisson tensor P can

be written in the form:
z {zi, 37]}
1<i<j<n axj

Using Weinstein’s splitting theorem ([7]), the local study of P can be reduced to zero rank
points, which translates into the following local expression for P:

- 3> >

1<i<j<n k=1 J

1 This is an original research article and no version has been submitted for publication elsewhere.
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The numbers Cikj are the structure constants of a Lie algebra and they sometimes determine
the possibility of bringing P to a (local) linear form:

1<i<j<n k=1

through a smooth or analytic change of coordinates. P is then said to be linearizable. In this
context a Lie algebra is said to be (smoothly or analytically) nondegenerate if every Poisson
tensor associated with it in the above way, is (smoothly or analytically) linearizable. For
example, semisimple Lie algebras are analytically nondegenerate (see [7] and [2]).

In this result we consider real Lie algebras of dimension at least four, whose connected
and 1-connected Lie group has only zero and two-dimensional coadjoint orbits (such Lie
algebras will be called nice and an exhaustive list of them can be found in [1]). We restrict
to the case where the Lie algebra has a nontrivial center although the result is valid without
this assumption (see [3]). We conclude that, apart from the already known cases (those to
which the results of Weinstein in [7] and of Dufour in [5] apply), all these Lie algebras are
degenerate in both the smooth and analytic category. Our proof is constructive, i.e., we
associate a nonlinearisable Poisson structure to every Lie algebra g being studied. This is
done by perturbing the Lie-Poisson tensor in g* with second order terms in such a way that
higher dimensional symplectic leaves appear around the singular point. This technique was
used by A. Weinstein in [8] to prove that noncompact semisimple Lie algebras of real rank
at least two are smoothly degenerate.

Notation. We follow the notation in [1] for the nice Lie algebras. These are, up to a direct
sum with a central ideal:

1. type (i) — s0(3) or sl(2,R);
2. type (ii) — RT 45 a, where a is an abelian ideal and the action of 7" on a is by an
endomorphism E of a;

3. type (iii) — RT + b, where b is the three-dimensional Heisenberg algebra spanned by
X,Y, Z with [X,Y] = Z and either:

[T,X]=Y, [T,Y]=-X, [T,Z] =0
" [T, X]=X, [T,Y]=-Y, [T, Z] =0;

4. type (iv) — g is six-dimensional with basis X;,Y;, 1 < ¢ < 3 and the nonvanishing
brackets are:
[X17X2] = YE-'” [X27X3] = }/1: [X37X1] = }/2’

5. type (v) — g is five-dimensional with basis X;, 1 < i < 3,Y;, 1 < j < 2 and the
multiplicative law reads:

[X17X2] = X3a [X17X3] = Yi? [X27X3] =Y.
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The Lie-Poisson tensors in the dual of any of these Lie algebras will be denoted by Lie-Poisson
tensor of type (1)—(v).

The main result is the following:

Theorem 1. Let g be a nice Lie algebra (with dimg > 4) with a nontrivial center. Then g
is smoothly and analytically degenerate except if g = s0(3) ® R or g = sl(2,R) ® R.

Remark 1. The condition on the center of g means that Lie algebras of type (ii) will not be
under consideration. Nevertheless, Theorem 1 holds without this assumption. The proof in
that case envolves the use of Jordan normal form for the endomorphism E of a (see [3] for
more details).

Remark 2. The result is no longer valid if we restrict to the Poisson-Lie group case: Poisson-
Lie groups associated with nice Lie algebras are linearizable (Mohammed Sbai, personal
communication).

The proof of this theorem can be found in Section 4.

2. Raising the rank of Poisson structures

Definition 1. A Lie algebra is said to be nice if the coadjoint orbits of its connected and
1-connected Lie group have dimension zero or two.

Definition 2. Let P be a Poisson tensor on a manifold M. Then P 1is said to be nice if
its symplectic leaves have dimension zero or two and not nice at a singular point if it has
symplectic leaves of dimension at least four, in some set whose closure contains the singular
point.

We start with a nice Lie algebra (g, [,]), or equivalently with a nice Lie-Poisson tensor P on
V = g*. We want to perturb P with second order terms so that symplectic leaves of higher
dimension appear in any neighbourhood of the origin. Let (z1,...,z,) (with n > 4) be linear
coordinates on V and P be a linear Poisson tensor on V. Then the expression of P in the

basis:
0,0
8371' ij 1<i<j<n

is linear. Let Q be an alternating contravariant 2-tensor whose expression in the above basis
is quadratic. Then P’ = P + @ is said to be a quadratic perturbation of P. Such P’ will be
a Poisson tensor if and only if:

[P+Q,P+Q]=0,
where [,] stands for the Schouten bracket. Equivalently:
[P,Q=0 and [Q,Q]=0. (1)

The last equation means that () itself is a Poisson tensor. Our goal is then to find a quadratic
Poisson tensor @ such that [P,Q] = 0 and P + @) is not nice at the origin.
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3. Nice tensors admitting Casimir functions

Let be a nice Lie algebra with a nontrivial center. This means that the Lie-Poisson tensor P
on its dual space admits a linear coordinate function as a Casimir function. This is the case
of the tensors of type (iii)—(v). Assume that z,, is such a Casimir function for P. We will
consider quadratic perturbations P + () of P by taking () to be of the form x, L, with L a
Lie-Poisson tensor.

Lemma 1. Let P and L be nice Lie-Poisson tensors on V and x, a Casimir function for
P. Then P + x,L is a Poisson tensor if and only if [P, L] = 0.

Proof. Using properties of the Schouten bracket we can write:
[P+ z,L, P+ z,L] =[P, P]+ 2[P,z,L] + [z, L, z,L].
Now [P, P] = 0 since P is a Poisson tensor and:
[ L, 2, L] = 22[L, L] — 22,,L*(dz,) A L.
Again [L, L] = 0 and the fact that L is nice implies that L*(dx,) A L = 0, so that:

[P+ z,L,P+z,L] = 2[P x,L]
= 22,[P, L) — 2P*(dx,) A L.
The conclusion follows using the fact that z, is a Casimir function for P. O

We consider now the problem of raising the rank of P.
Lemma 2. Let P and L be as in the previous lemma and suppose that:
1. [P,L] = 0;
2. there 1s a subset U of V', whose closure contains the origin, where the following condi-
tions hold:

(a) im(P*) Nim(LF) = {0};
(b) ker(P*) # ker(L¥).
Then the tensor P + x,L 1s not nice at the origin.

Proof. First we remark that, if L is any nontrivial Lie-Poisson tensor, then the set:
My(L) ={p € V : rank(L), = 0}

is an hyperplane of codimension at least one. Since both P and L are in these conditions, and
furthermore they are nice, then this implies that in any neighbourhood of the origin there is
a point p such that:

rank(P), =2 and rank(L), = 2.

Furthermore we can choose p such that z,(p) # 0. The hypothesis on the image of P and L
then implies that:
ker(P* + z,L*), = ker Pg N ker Lf).

Since both ker P} and ker L} have codimension two, then the hypothesis on the kernel of P*
and L* implies that ker(P* + z,,L*), has codimension four, which concludes the lemma. [

Our goal is now to find L such that conditions 1, 2a and 2b of Lemma 2 hold.
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3.1. Choice of L

We will choose L from the Lie-Poisson tensors of type (ii), as this will give us some freedom to
choose (by choosing the endomorphism E). We will use the notation L for the Lie-Poisson
tensor on the dual of the Lie algebra g, = RT +5 a.

We first write Ly in a coordinate free way. Let V' be the given vector space (base space
for the Poisson tensor P). Then a Lie algebra g of type (ii) on V* is determined by a € V,
z € V* (with z(a) # 0) and E a nonzero endomorphism of ker(«), in the following sense:

g = Rz + ker(w), (2)

where the action of z on ker(a) is by the endomorphism E. Our goal is to show that there
exist «, z and F such that the Lie-Poisson tensor L, satisfies conditions 1, 2a and 2b. Let
B ={X1,...,X,} be a basis for V and (zi,...,x,) be coordinates in that basis. We write
aas oy Xy + -+ -+ 0, X, and assume that a; # 0. Assuming furthermore that z(«a) = 1, the
expression of Ly in x-coordinates is given by:

LE(d.Il, d.Iz) = E(alxi — O!z'iL'l)

and
Q; Q;
LE(d.TZ, dl‘]) = —zE(Oll.Z']' - O[jl'l) - —JE(Oq.T,' - ai$1),
aq 251
where j > i > 1. Now let u and v be two generators for the image of P!. Condition 2a is
equivalent to saying that u and v form a free system together with the vector fields:

9
oz,

u':alaixl—i—---%—anai% and UI:E($1—a12)8i$1+“'+E($n—04n2)
(see Lemma 3 in Appendix for the details).

We now remark that for fixed o and z it is easy to find an endomorphism E such that
equation [P, L] = 0 holds. Conditions 2a and 2b merely restrict the field of those solutions.
We choose o = X and z = z; so that L,(dz;,dz;) will be zero for all j >4 > 1 and «’ and
v" will be given by:

0 0 0
=2 ' = Bzy)2— 4.+ E .
U e and v (x2) o, + 4 E(xy) oz,

Using these simplifications the problem of finding L is easily solved.

In Table 1 we present (up to an isomorphism of coordinates in the base space V') the
generators for the image and kernel of the nice Lie-Poisson tensors of types (ii)—(v). For the
tensor of type (ii) we are using the just described choice of @ and z and we denote by E;
the function F(z;). We have also assumed that Es # 0. This can always be achieved by
permuting the coordinates (zo,...,Z,), unless E = 0. From this table it is easy to see that,
taking L to be of type (ii), condition 2b holds automatically. The choice of E that forces
L, to satisfy conditions 1 and 2a can be found in Table 2. In that table we present the
functions E, ..., E, which determine the endomorphism FE, where in (iv) one of E,, E5 or
Es is nonzero and in (v) one of E4 or Ej5 is nonzero. This endomorphism, together with the
just described choice of o and z, determines the Lie algebra gz, and therefore the tensor L.
We can then conclude that:
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Type of Generators for
Tensor Image Kernel
(ii) o Bage+ -+ Engs | Eadw; — Eiduy,i=3,. ..
(lli) .Z‘Qaiwl - .%‘461562, x?’ai;cl — 9”48%3 d$4, $4d$1 + xgda?z + $3dl‘3
.’)Sgaiml — 154%, .TQaiwl — $4aiz3 de‘4, $4dﬂ?1 + $3dﬂ?2 + .’L‘2d.’L‘3
(iv) xﬁa%l — m%, :1:66%2 — x56%3 dxy, dzs, dzg,
$4d.7)1 + .7)5d$2 + $6d$3
(v) x43%1 + :Ug,aim, acg,a%l — 335% dxy, drs,
T5dx, — T4dxo + x3dT3

Table 1: Generators for the image and kernel of some nice Lie-Poisson tensors

Theorem 2. Let P be one of the tensors of type (iii), (iv) or (v) as denoted in [1].
there is a nice tensor Ly of type (ii) such that P + x, Ly is not nice at the origin.

Type of P

Endomorphism E determining L,

(iii)

Eg = Q9T2 + A3T3 + 424
E3 = b2$2 + b3.l‘3 + b4l‘4
Ey = (ag +b3)zs #0

(iv)

E2 :a2$2+"'+a6$6
E3 :b2x2+"'+b6$6
E4 = (CLQ + b3).’1)4

Es = cyx4 + 515 + o2
E6 = d4.’,E4 + d5.’l?5 + dﬁ.’,Es

(v)

EQ :a2m2+---+a5x5
E3 :bg$2+"'+b5.7)5
Ey = cazs + c5w5
E5 = (a2 + b3)CC5

Table 2: Tensor L of type (ii) to be associated with P

4. Proof of the main theorem

Then

As proved in Theorem 2, the Lie algebras of type (iii), (iv) and (v) are degenerate in both
the smooth and analytic category. In fact that theorem shows that it is possible to perturb
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the Lie-Poisson tensor on the dual of these Lie algebras with second order terms, in such a
way that the perturbed tensor is no longer nice.

Because abelian Lie algebras of dimension at least two are degenerate in any category,
then taking their direct sum with central ideals will always produce a degenerate Lie algebra.
This leaves us to classify:

$0(3) ® R and sl(2,R) & R.

The Lie algebra so(3) @ R is smoothly and analytically nondegenerate as a consequence of
the theorem in [5]. Using the same result one concludes that si(2,R) & R is analytically
nondegenerate. It is, however, degenerate in the smooth sense since the Lie algebra s{(2, R)
is smoothly degenerate (see [7]). This concludes the proof of Theorem 1. O

Appendix: Coordinate changes in the base space

Let ¢ : M — N be a diffeomorphism between manifolds M and N, and suppose that P
is a Poisson tensor on M. Then there exists a unique Poisson tensor Q on N making ¢
into a Poisson diffeomorphism. Such tensor @) is given by ¢, P, the pushforward of P by ¢.
Furthermore the image of Q* is just the pushforward by ¢ of the image of P*. In the case
we are interested in, ¢ is an automorphism of a vector space V. If ¢ is represented by the
matrix A and the tensor matrix for P is M, then the tensor matrix for @ is just N = AM AT,
Furthermore im(Q*) = A(im(P¥)).

Lemma 3. Let V be a real vector space and let Ly denote the Lie-Poisson tensor on the

dual of the Lie algebra:
gr = Rz +; ker(a).

Then there exist coordinates x = (x1,...,T,) inV such that:
Ly(dzy,dx;) = E(oqzj — ajzy), forj>1

and
L, (dz;, dxj) = &E(alxj — %) — &E(alxi — ;1) forj>i>1.
(65} 31

Furthermore the image of LﬂE s spanned by the vector fields:

and v = E(z; — ozlz)i + -+ E(z, — an2)

u=o17—+---+a, p)
1

Oz, 3T, 0z,

Proof. Let (z1,...,%,) be coordinates in V such that x;(a) # 0. Then the following is a
basis for ker(«):

{2,y yn} = {onzs — vy, ..., 002, — 1},
where «; stands for z;(«). We complete this basis with y; = 2121 + ... + 2,2, to get a basis
for gz. In y-coordinates L is represented by the matrix:

0 —E(y) -+ —E(y)

US
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The change of coordinates that takes us back to x coordinates is given by A the inverse
matrix of:

21 Z2 3 *** Zp
—as a; 0 -+ 0
—a3 0 a; --- 0
—a, 0 0 - ooy
This is just:
(0] —Z9 —Z3 e —2Zn
l—agza —Qa223 . —Q322n
a2 a1 1 a1 a1
—Q3zpz 170323 ., ZQ3Zp
A= a3 a1 a1 a1
—Qnp22 —Qn23 .. l-apzy
Qn a1 a1 a1
and a tedious but straight forward calculation will complete the proof of the lemma. O
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