
Automated Deduction Techniques for the
Management of Personalized Documents

Extended Abstract

Peter Baumgartner and Antje Blohm

Institut für Informatik
Universität Koblenz–Landau

D-56075 Koblenz
Germany

{peter,antje}@uni-koblenz.de

Abstract. This work is about a “real-world” application of automated
deduction. The application is the management of documents (such as
mathematical textbooks) that are decomposed (“sliced”) into small units.
A particular application task is to assemble a new document from such
units in a selective way, based on the user’s current interest.

It is argued that this task can be naturally expressed through logic,
and that automated deduction technology can be exploited for solving
it. More precisely, we rely on full first-order clausal logic (beyond Horn
logic) with some default negation principle, and we propose a model
computation theorem prover as a suitable deduction mechanism. On the
theoretical side, we start with the hyper tableau calculus and modify it
to suit the selected logic. On the practical side, only little modifications
of an existing implementation were necessary.

Beyond solving the task at hand as such, it is hoped to contribute with
this work to the quest for arguments in favor of automated deduction
techniques in the “real world”, in particular why they are possibly the
best choice.

1 Introduction

This paper is about a “real-world” application of automated deduction. The
application is the management of documents (such as mathematical textbooks)
that are separated (“sliced”) into small units. A particular application task is to
assemble a new document from such units in a selective way, based on the user’s
interest.

The paper concentrates on describing the task to be solved and our attempt
to formalize it with logic. Due to space reasons, and since it is not in the center
of interest of this workshop, a technical exposition of the calculus is omitted
here.

1.1 Tool and Project Context

Before describing how such a task can be formalized with logic and be solved
with automated deduction techniques, it is helpful to briefly describe the tool
context this work is embedded in.

This context is the Slicing Books Technology (SBT) tool for the management
of personalized documents. With SBT, a document, say, a mathematics text
book, is separated once as a preparatory step into a number of small units, such
as definitions, theorems, proofs, and so on. The purpose of the sliced book then
is to enable authors, teachers and students to produce personalized teaching or
learning materials based on a selective assembly of units.

SBT is applied in the “real world”: SBT was applied to a mathematics text
book, which is explored commercially by the Springer Verlag, and SBT is the
technical basis of the TRIAL-SOLUTION project1. The TRIAL-SOLUTION
project aims to develop a technology for the generation of personalized teaching
materials – notably in the field of mathematics – from existing documents (cf.
www.trial-solution.de for more details).

Current work on SBT within the TRIAL-SOLUTION context is concerned
with techniques to extend the capabilities by handling knowledge coming from
the various sources. These sources include (i) different sliced books, (ii) a knowl-
edge base of meta data on content (e.g. by keywords), didactic features, and in-
teroperability interfacing, (iii) the user profile, including e.g. information about
units known to him, and (iv) thesauri that help to categorize and connect knowl-
edge across different books.

All these sources are to be taken into account when generating a personalized
document. So far, no language was available to us to formulate in a “nice” way
(convenient, friendly to change and adapt to new needs, efficient, . . .) the com-
putation of the personalized documents. Our approach was heavily motivated to
come to a solution here.

1.2 Formalizing the Application Domain

In our approach, the document to be generated is computed by a model gener-
ating theorem prover. The computation is triggered by marking some unit U as
a “selected unit”. The background theory is essentially a specification of units
to be included into the generated document. Such a specification is from now on
called a query , and the task to generate the document from the query and the
selected unit is referred to as solving the query . Here is a sample query:

(i) For each keyword K attached to the selected unit U , include in the generated
document some unit D that is categorized as a definition of K; in case there
is more than such unit, prefer one from book A to one from book B.

(ii) Include all the units that have at least one keyword in common with the
keywords of U and that are of explanatory type (examples, figures, etc).

1 TRIAL-SOLUTION is funded by the EU as part of its Information Society Tech-
nologies Programme (IST) within the EU’s Fifth RTD Framework Programme.

(iii) Include all the units that are required by U .
(iv) Include U .

In our experiments we use sliced versions of two mathematics text books.
Here are two sample units, one from each book:

Ident: analysis/0/1/2/1
Text: \item Mengentheoretische

Grundbegriffe ...

Book: Wolter/Dahn
Type: Merksatz

Refers: 0/1/0/2, 0/1/0/3, ...

Requires:
Keys: set, set intersection,

set equality, ...

Ident: gellrich/1/1/1/1/0
Text: \definition{

\textbf{Definition}:

Eine \textbf{Menge} ...

Book: Gellrich/Gellrich
Type: Definition

Refers:
Requires:

Keys: set

The Ident field contains a unique name of the unit in the form of a Unix file sys-
tem subpath, matching the hierarchically organization of the units according to
the books sectioning structure. The Text field contains the unit’s text. The Book
field contains the name of the book’s authors. The Type field denotes the class
the unit belongs to. The Refers and Requires fields contain dependencies from
other units. The Keys field contains a set of keywords describing the contents of
the unit.

Now suppose that the unit with Ident analysis/0/1/2/1 is selected, and
that the query from above is to be solved. The algorithm to actually compute a
solution to the query conceptually proceeds by initially “marking” the selected
unit, and then propagating marks according to meta-information like the refers-
relation. This marking process is controlled by various parameters, e.g. a given
bound on the maximum length of following the refers-relation, or the user model.
Finally, from the thus marked units some units are filtered by e.g. given pref-
erences or a given selection of desired types of units. The units surviving the
filtering process constitute the solution.

First-Order Specifications. Some aspects in a logical formalization of the just
outlined marker propagation scheme are straightforward, like the representation
of a units meta-information and the representation of the selected unit identi-
fier as a fact (as in selected_unit(analysis/0/1/2/1)). Beyond such facts,
there are rules, which describe the marker propagation process. As a convenient
language to formalize facts and rules we chose first-order Horn clause logic with
default negation (also called normal logic programs, cf. [Llo87]).

In order to motivate the choice of this language, we display some sample
facts and rules, which are taken from the user-model. Before doing so, some
comments about the chosen concrete syntax might be appropriate. Basically, we
are adopting Prolog-syntax: A rule is of the form H :- B1, . . . ,Bn. (n ≥ 1),
and a fact is of the form H.. A rule can be thought of to stand for a formula
∀x1 · · ·xm (H ← B1 ∧ . . .∧Bn), where x1, . . . , xn are all the variables occurring

in H ← B1 ∧ . . . ∧ Bn (facts are treated similarly). In Prolog-syntax, variables
start with an upper-case letter or the symbol “_”. Some function symbols, like
“/”, are written in infix-notation and may be declared to be e.g. left-associative.

/*

* Facts: actual user knowledge:

*/

%% User says that he knows analysis/1/1, except analysis/1/1/2 :

known unit(analysis/1/1/). (1)

unknown unit(analysis/1/1/2/). (2)

/*

* Lower layer: extend the known_topic and the known_unit relation:

*/

%% If a Topic is known, so are its subtopics:

known topic(SubTopic) :- (3)

known topic(Topic),

subSuperConcept(SubTopic, Topic).

%% If a Unit is known, so are the refered units:

known unit(ReferredBook/ReferredUnit) :- (4)

known unit(Book/Unit),

references(Book/Unit, ReferredBook/ReferredUnit).

/*

* Upper layer: combine known_topic and known_unit relations:

*/

unknown(Book/Unit, Keyword) :- unknown unit(Book/Unit). (5)

unknown(Book/Unit, Keyword) :- unknown topic(Keyword). (6)

unknown(Book/Unit, Keyword) :- not known unit(Book/Unit), (7)

not known topic(Keyword).

Fig. 1. Some facts and a program fragment from the “user model”.

Figure 1 depicts some facts and a program fragment from the “user model”.
The first fact (1) means that the user knows of the analysis book the section
1/1. The variable _ there represents all subsections. Similarly, fact (2) expresses
that the whole subsection 1/1/2 is unknown.

As a design decision we fixed that unknown_unit-facts should override the
information supplied by known_unit-facts. This is captured by the rule (5) in
the “upper layer”. Generally, the rules in the “upper layer” are used to derive

new facts of the form unknown(Book/Unit, Keyword). These facts denote that
Book/Unit - Keyword combinations are unknown, and they are explored by other
parts of the program not shown here.

Beyond the known_unit/unknown_unit facts, there are known topic/un-
known topic-facts (not depicted), which, together with rule (6), operate on
keyphrases rather than unit specification, but otherwise work similarly.

The rules (3) and (4) define an extension of the base facts according to what
is stated in the comments.

Finally, the rule (7) represents a default reasoning scheme. It expresses that
by default a combination Book/Unit - Keyword is unknown, its Book/Unit or
its Keyword is known.

Below in Section 2.3 this example is used to explain the working of our
calculus. Some more comments can be made already here: due to the /-function
symbol the Herbrand-base, and thus the set of ground instances of the program is
infinite. Certainly it is sufficient to take the set of ground instances of these facts
up to a certain depth imposed by the books. However, having thus exponentially
many facts this option is not really a viable one.

Some systems, like SATCHMO [MB88], do not rely on a preprocessing step
that grounds the logic program. Instead, the program is required to satisfy the
range restriction property, which means that every variable occurring in the head
of a rule occurs also in the body of the rule. In essence, range restriction has the
effect of grounding the rules during inference time in SATCHMO. Observe that
the program above is not range-restricted due to facts (1) and (2) and rules (5)
and (6). However, we feel that the formulation taken is a rather natural one. In
conclusion, range restriction should not be enforced.

2 Automated Deduction

2.1 Nonmonotonic and Classical Logics

On a higher, research methodological level the work presented here is intended
as a bridging-the-gap attempt: for many years, research in logic-based knowledge
representation and logic programming has been emphasizing theoretical issues,
and one of the best-studied questions concerns the semantics of default nega-
tion2. The problems turned out to be extraordinarily difficult, which warrant
their study in detail. Fortunately, much is known today about different seman-
tics for knowledge representation logics and logic programming. There is a good
chance that a logic suitable for a particular application has been developed and
studied in greatest detail.

Concerning research in first-order classical reasoning , the situation has been
different. Not only theoretical issues, but also the design of theorem provers has
traditionally received considerable attention. Much is known about efficient im-
plementation techniques, and highly sophisticated implementations are around
2 Like, for instance, Prolog’s Negation by finite failure operator.

(e.g. SETHEO [GLMS94], SPASS [WAB+99]). Annual, international competi-
tions are held to crown the “best” prover.

In essence, in this work we take as starting point a calculus originally devel-
oped for first-order classical reasoning – hyper tableaux [BFN96] – and modify
it to compute models for a certain class of logic programs.

2.2 Logic Programming Semantics

We are using a sufficiently powerful logic, such that the queries can be stated in a
comfortable way. In particular, including a default negation principle turned out
to facilitate the formalization (cf. Section 1.2 above). As a restriction, we insist
on stratified (normal) logic programs, which turns out not to be a problem3.

We employ a model-theoretic semantics that is widely used in logic program-
ming as the intended meaning of our programs4; solving the query means to
compute such a model for the given program.

One point worth emphasizing is that we are thus not working in a classical
theorem-proving setting (which is about proving consequences), and we are not
employing classical first-order semantics; solving the query is, to our intuition,
more naturally expressed as a model-generation task.

Fortunately, model computation for stratified programs is much easier than
for non-stratified programs, both conceptually and in a complexity-theoretic
sense. In particular, the two major semantics coincide, which are the stable
model semantics [GL88] and the well-founded model semantics [VGRS91]. For
propositional stratified normal programs, a polynomial time decision procedure
for the model existence problem exists, which does not exist for the stable model
semantics for non-stratified normal programs. Being confronted with large sets
of data (stemming from tens of thousands of units) was the main motivation to
strive for a tractable semantics.

2.3 The Calculus

One of the big challenges in both classical logic and nonmonotonic logics is to
design calculi and efficient procedures to compute models for first-order speci-
fications. Some attempts have been made for classical first-order logic, thereby
specializing on decidable cases of first-order logic and/or clever attempts to dis-
cover loops in derivations of standard calculi (see e.g. [FL96,Pel99,Bau00,Sto99]).

In the fields of knowledge representation and in logic programming it is
common practice to identify a clause set with the set of all possible ground
3 A program is stratified if the call graph of the program does not have a cycle

through a negative body literal. A simple example for a non-stratified program is
{h : − b, b : − not h}, because h is defined recursively in terms of its own negation.

4 To a ground program M is associated its minimal model I such that whenever
I |= H then there is a clause H : − B1, . . . , not Bm+1, . . . , not Bn in M such that
I |= B1 ∧ · · · ∧Bm ∧ ¬Bm+1 ∧ · · · ∧ ¬Bn. A non-ground program stands for the set
of ground instances according to the underlying signature.

instances, both as a reference point to define the semantics and as input for
inference mechanisms. It is assumed that these sets are finite, so that essentially
propositional logic results. Of course, the “grounding” approach is feasible only
in restricted cases, when reasoning can be guaranteedly restricted to a finite
subset of the possibly infinite set of ground instances. Even the best systems
following this approach, like the S-models system [NS96], quite often arrive at
their limits when confronted with real data. Notable exceptions, i.e. reasoning
mechanisms that directly operate on the first-order logic level, are described in
[Bor96,ELS97,GMN+96,DS97].

In our application we are confronted with data sets coming from tens of
thousands of units. Due to this mass, grounding of the programs before the
computation starts seems not to be a viable option. Therefore, our calculus
directly computes (representations of) models, starting from the given program,
and without grounding it beforehand. In order to make this work for the case of
programs with default negation, a novel technique for the representation of and
reasoning with non-ground representations of interpretations is developed.

The calculus used here is obtained by combining features of two calculi readily
developed – hyper tableaux [BFN96] and FDPLL [Bau00] – and some further
adaptions for default negation reasoning. These two calculi were developed for
classical first-order reasoning, and the new calculus can be seen to bring in “a
little monotonicity” to hyper tableaux.

Let us briefly describe the main idea of the new hyper tableau calculus.
The hyper tableau calculi are tableau calculi in the tradition of SATCHMO
[MB88]. In essence, interpretations as candidates for models of the given clause
set are generated one after another, and the search stops as soon as a model
is found, or each candidate is provably not a model (refutation). Expressed
a little more sloppily, new facts are derived from given facts, until a fixpoint
is reached or a contradiction comes up. A distinguishing feature of the hyper
tableau calculi [BFN96,Bau98] to SATCHMO and related procedures is the rep-
resentation of interpretations at the first-order logic level. For instance, by tak-
ing in Figure 1 the fact (2) and instantiating the rule (5) appropriately, the new
fact unknown(analysis/1/1/2/ , Keyword) is derived. Intentionally, this fact
means that in the analysis book, all keywords attached to section 1/1/2/ and
its subsections are unknown. Clearly, the representation on the first-order logic
level is much more compact and efficient than the explicit representation that
would consist of all respective ground instances.

The hyper tableau calculi developed so far do not allow for default negation.
In the present work we therefore extend the calculus correspondingly. At the
heart is a modified representation of interpretations. The central idea is to re-
place atoms – which stand for the set of all their ground instances – by pairs
A− {E1, . . . , En}, where A is an atom as before, and E is a set of atoms (“Ex-
ceptions”) that describes which ground instances of A are excluded from being
true by virtue of A. For instance, from the fact (1) and the rule (7) from Figure 1
the calculus derives

unknown(Book/Unit, Keyword)− {unknown(analysis/1/1/ , Keyword)}

Intuitively, this means that in all books, all units are unknown, except Section
1/1 of the analysis book (which is declared to be known by the fact (1)).

We believe that the reasoning under a default negation principle based on a
first-order logic representation is an interesting and rather underdeveloped topic
in the logic programming literature. A detailed description of the calculus is
beyond the scope of this paper and will be submitted elsewhere.

2.4 Other Approaches

In the previous sections, disjunctive logic programming was advocated as an
appropriate formalism to model the task at hand. Undoubtedly, there are other
candidate formalisms that seem well-suited, too. In the following we comment
on these.

Prolog. Although the syntax chosen in our approach is the Prolog-syntax, our
calculus works very different to the Prolog inference engine. Our calculus is a
model generation approach, i.e. it works bottom-up, by deriving new facts from
given facts. In contrast, Prolog works in a top-down manner, by reducing a given
goal using the rules to the given facts.

Viewed from the technical side, one could use the Prolog findall built-in
mechanism to simulate model computation. In order to make this work, some
precautions would have to be taken, though. In particular, explicit loop checks
would have to be programmed in order to let findall terminate. Because oth-
erwise, for instance, alone the presence of a rule expressing transitivity causes
findall not to terminate. On the other side, a built in loop check mechanism is
a distinguishing and often mentioned advantage of virtually all bottom-up model
generation procedures over Prolog.

Another disadvantage of Prolog is that the order of writing down the literals
in rule bodies usually is significant as soon as negated literals are present. This
is completely irrelevant in our approach.

In sum, we believe our approach relieves the programmer from issues to be
considered in Prolog programming, thus makes programming easier .

SQL. It seems natural to view our application as a database application. Indeed,
the meta data of the books considered in the TRIAL-SOLUTION project are
stored in Postgres database. Therefore, one might consider using a database
query language like SQL as an alternative to our logic oriented approach.

While this could certainly be done, we question the feasibility of using SQL.
First, SQL does not allow for the definition of arbitrary recursive definitions.
There is support for the special case of computing transitive closures of relations
in newer versions of SQL. However, we felt in our programming that a more
general device is needed. Second, in our approach it is very easy to incrementally
compose a whole program by just throwing in some new rules and/or facts.
We experienced that this feature is particularly useful in the early stages of
program development, where quite some experiments are necessary to arrive
at programs producing satisfactory results. This advantage would be lost when
using a procedurally oriented language like SQL.

Description Logics. Description logics (DL) are a formalism for the represen-
tation of hierarchically structured knowledge about individuals and classes of
individuals. Nowadays, numerous descendants of the original ALC formalism
and calculus [SSS91, e.g.] with greatly enhanced expressive power exist, and effi-
cient respective systems to reason about DL specifications have been developed
[HST00].

From the sample query in Section 1.2 it can be observed that a good deal
of the information represented there would be accessible to a DL formalization.
The concrete units would form the so-called assertional part (A-Box), and gen-
eral “is-a” or “has-a” knowledge would form the terminological part (T-Box).
The T-Box would contain, for instance, the knowledge that a unit with type
“example” is-a “explanatory unit”, and also that a unit with type “figure” is-a
“explanatory unit”. Also, transitive relations like “requires” should be accessible
to DL formalisms containing transitive roles.

In Section 1.2 it is argued that non-monotonic reasoning is suitable to model
e.g. the user model. At the current state of our work, however, it is not yet clear to
us if and how this would be accomplished using a DL formalism. Certainly, much
more work has to be spent here. Presumably, one would arrive at a combined DL
and disjunctive logic programming approach. This is left here as future work.

3 Putting Theory into Practice

A big concern of ours is the use of automated deduction in a “real world” appli-
cation. This implies some aspects which are normally ignored by the developers
of deduction systems. One aspect concerns technical issues, such as the need to
enable the deduction system to cope with tens of thousands of facts (in typical
theorem proving this does not come up). Another aspect concerns the problem
that our intended users do not have the background knowledge to ask the “right”
questions in a logic-oriented language.

3.1 User interface – or: How to Hide Logic from the User?

One important question in this context is the design of the interface between
the automated deduction system and the user, i.e. the reader of the document.
The user cannot be expected to be acquainted with logic programming or any
other formal language (typically, this is what students should learn by reading
the sliced books).

We provide two different strategies: predefined scenarios and piecewise combi-
nation of queries. A predefined scenario is a formalized description of units with
respect to the situation of the reader. The fixing of the scenarios was incited
by daily teaching problems. There are about 30 scenarios of the kind “Some-
one wants to know, which prerequisites are necessary to understand a topic.”.
The user only has to specify which topic he/she is interested in. The decision
which types of units are relevant, whether referred and required units are also

integrated, and how the user’s previous knowledge is taken into account are de-
termined by the chosen scenario. A scenario can also be seen as a kind of macro
for queries of the second strategy.

Since the predefined scenarios only provide a small subset of all possible
queries we also offer the user a way to explicitly state in which kind of units
he/she is interested. He/she describes the units in which he/she is interested in by
selecting the attributes of her/his interest. The formalized query is automatically
generated from the selected attributes.

3.2 No Deduction without Facts

In order to infer new knowledge some raw facts to start with are needed. In our
application we deal with three different kind of data (i.e. facts): user data, data
describing the relations between keywords, and data related to the units of a
book.

Our user model holds data about the user’s previous knowledge. The user
has to specify which units and/or topics he/she knows and the prerequisite
units/topics will be inferred. The preferences for certain books are also hold in
the user model. The data hold in the model enable us to provide books adjusted
to the user’s needs.

In a thesauri, relations between keywords are represented. They normally
contain the ’related-to’- and the ’is-subconcept-of’-relations . If the user asks
for units concerning a certain topic (i.e. concept), it is possible to infer the
subconcepts and/or the related concepts and to present him/her also the units
dealing with the inferred concepts. With this approach we enable the user to get
documents which cover the whole spectrum without stressing him/her with the
knowledge about the relation of concepts.

The central part concerning the facts is the meta data (i.e. data about data)
assigned to the units. Besides the type of the unit (definition, theorem, example
etc.), the dependencies from other units are stored in the meta data part. Also the
assignment of keywords to a unit are kept here. Without the relation between
meta data and units it wouldn’t only be impossible to present any sensible
combination of the units, we would also lose the possibility to infer the user’s
previous knowledge.

4 Status of This Work and Perspectives

This work is not yet finished. Open ends concern in the first place some design
decisions and practical experience with real data used by real students on a large
scale.

Concerning design decisions, for instance, it is not quite clear what semantics
suits our application best. It is clear that a supportedness principle (Section 2.2)
is needed, but there is some room left for further strengthenings. Further exper-
iments (i.e. the formulation of queries) will guide us here.

The calculus and its implementation are developed far enough, so that mean-
ingful experiments are possible. The implementation is carried out in Eclipse
Prolog. For faster access to base relations, i.e. the currently computed model
candidate, the discrimination tree indexing package from the ACID term in-
dexing library [Gra94] is coupled. Without indexing, even our moderately sized
experiments seem not to be doable. With indexing, the response time for the
sample query in Section 1.2 with a database stemming from about 100 units
takes less than a second. Similar queries, applied to a repository of three books
(yielding about 40000 facts) typically take less than 5 seconds to solve.

The question arises, if the techniques developed within this enterprise can be
used in some other context. We plan to do so within one of the projects carried
out in our group, the In2Math project. This project aims, roughly, to combine
documents like sliced books with interactive systems like computer algebra sys-
tems and theorem provers. The projects targets at seriously using the resulting
systems in undergraduate logic and mathematics courses. We are convinced that
the techniques developed here can be used in the In2Math project. Beyond the
obvious purpose to help students assemble personalized books, it is maybe pos-
sible to teach students participating in a logic course the logic programming
techniques described here.

References

[Bau98] Peter Baumgartner. Hyper Tableaux — The Next Generation. In Harry
de Swaart, editor, Automated Reasoning with Analytic Tableaux and Related
Methods, volume 1397 of Lecture Notes in Artificial Intelligence, pages 60–
76. Springer, 1998.

[Bau00] Peter Baumgartner. FDPLL – A First-Order Davis-Putnam-Logeman-
Loveland Procedure. In David McAllester, editor, CADE-17 – The 17th
International Conference on Automated Deduction, volume 1831 of Lecture
Notes in Artificial Intelligence, pages 200–219. Springer, 2000.

[BFN96] Peter Baumgartner, Ulrich Furbach, and Ilkka Niemelä. Hyper Tableaux.
In Proc. JELIA 96, number 1126 in Lecture Notes in Artificial Intelligence.
European Workshop on Logic in AI, Springer, 1996.

[Bor96] Sven-Erik Bornscheuer. Rational models of normal logic programs. In
Steffen Hölldobler Günther Görz, editor, KI-96: Advances in Artificial In-
telligence, volume 1137 of Lecture Notes in Artificial Intelligence, pages 1–4.
Springer Verlag, Berlin, Heidelberg, New-York, 1996.

[DS97] Jürgen Dix and Frieder Stolzenburg. Computation of non-ground disjunc-
tive well-founded semantics with constraint logic programming. In Jürgen
Dix, Lúıs Moniz Pereira, and Teodor C. Przymusinski, editors, Selected
Papers of the Workshop on Non-Monotonic Extensions of Logic Program-
ming in Conjunction with Joint International Conference and Symposium
on Logic Programming 1996, pages 202–226, Bad Honnef, 1997. Springer,
Berlin, Heidelberg, New York. LNAI 1216.

[ELS97] Thomas Eiter, James Lu, and V. S. Subrahmanian. Computing Non-Ground
Representations of Stable Models. In Jürgen Dix, Ulrich Furbach, and Anil
Nerode, editors, Proceedings of the 4th International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR-97), number 1265 in
Lecture Notes in Computer Science, pages 198–217. Springer-Verlag, 1997.

[FL96] Christian Fermüller and Alexander Leitsch. Hyperresolution and automated
model building. Journal of Logic and Computation, 6(2):173–230, 1996.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In Robert Kowalski and Kenneth Bowen, editors, Pro-
ceedings of the 5th International Conference on Logic Programming, Seattle,
pages 1070–1080, 1988.

[GLMS94] Christoph Goller, Reinhold Letz, Klaus Mayr, and Johann Schumann.
Setheo v3.2: Recent developments — system abstract —. In Alan Bundy, ed-
itor, Automated Deduction — CADE 12, LNAI 814, pages 778–782, Nancy,
France, June 1994. Springer-Verlag.

[GMN+96] Georg Gottlob, Sherry Marcus, Anil Nerode, Gernot Salzer, and V. S.
Subrahmanian. A non-ground realization of the stable and well-founded
semantics. Theoretical Computer Science, 166(1-2):221–262, 1996.

[Gra94] P. Graf. ACID User Manual - version 1.0. Technical Report MPI-I-94-
DRAFT, Max-Planck-Institut, Saarbrücken, Germany, June 1994.

[HST00] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very expressive
description logics. Logic Journal of the IGPL, 8(3):239–263, 2000.

[Llo87] J. Lloyd. Foundations of Logic Programming. Symbolic Computation.
Springer, second, extended edition, 1987.

[MB88] Rainer Manthey and François Bry. SATCHMO: a theorem prover imple-
mented in Prolog. In Ewing Lusk and Ross Overbeek, editors, Proceedings of
the 9 th Conference on Automated Deduction, Argonne, Illinois, May 1988,
volume 310 of Lecture Notes in Computer Science, pages 415–434. Springer,
1988.

[NS96] Ilkka Niemelä and Patrik Simons. Efficient implementation of the well-
founded and stable model semantics. In Proceedings of the Joint Interna-
tional Conference and Symposium on Logic Programming, Bonn, Germany,
1996. The MITPress.

[Pel99] N. Peltier. Pruning the search space and extracting more models in
tableaux. Logic Journal of the IGPL, 7(2):217–251, 1999.

[SSS91] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descrip-
tions with complements. Artificial Intelligence, 48(1):1–26, 1991.

[SSW00] K. Sagonas, T. Swift, and D. S. Warren. An abstract machine for comput-
ing the well-founded semantics. Journal of Logic Programming, 2000. To
Appear.

[Sto99] Frieder Stolzenburg. Loop-detection in hyper-tableaux by powerful model
generation. Journal of Universal Computer Science, 1999. To appear in
Special Issue on Integration of Deduction Systems. Guest editors: Reiner
Hähnle, Wolfram Menzel, Wolfgang Reif, Peter H. Schmitt. Springer, Berlin,
Heidelberg, New York.

[VGRS91] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded
semantics for general logic programs. Journal of the ACM, 38:620–650,
1991.

[WAB+99] Christoph Weidenbach, Bijan Afshordel, Uwe Brahm, Christian Cohrs,
Thorsten Engel, Enno Keen, Christian Theobalt, and Dalibor Topić. System
description: Spass version 1.0.0. In Harald Ganzinger, editor, CADE-16 –
The 16th International Conference on Automated Deduction, volume 1632 of
Lecture Notes in Artificial Intelligence, pages 378–382, Trento, Italy, 1999.
Springer.

