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Algebraic equations and inequalities play an important role in various mathematical 
topics including algebra, trigonometry, linear programming and calculus (e.g., Hardy, 
Littlewood & Pólya, 1934/1997). Accordingly, various documents, such as the U.S. 
NCTM Standards, specify that all students in Grades 9-12 should learn to represent 
situations that involve equations and inequalities, and that they should understand the 
meaning of equivalent forms of expressions, equations and inequalities and solve 
them fluently (NCTM, 1989; 2000). To implement these recommendations it is 
crucial to analyze students' ways of thinking about equations and inequalities when 
designing instruction and in teaching.
Indeed, in the last decade there has been growing interest in the learning and teaching 
of algebraic equations and inequalities. Discussions regarding related issues have 
been conducted, for instance, in PME 22 Discussion Group meetings (1998) and 
continued during PME 23 Project Group sessions (1999). There was a consensus 
among 1999 PG participants that the meetings of the group should be temporarily 
postponed, while calling on researchers to invest more efforts in various facets of 
algebraic reasoning related to the solution of equations and inequalities.  Among the 
benefits of the 1998-1999 discussions were the selection of key research questions 
and the initiation of collaborative research teams that since then have been working in 
this area. The Research Forum at PME 28 provides an opportunity for presenting 
some fruits of the research that has been conducted since then, for discussing 
theoretical frameworks for data analysis, and for examining the different educational 
implications that were suggested and tried. Indeed, in their presentations, all the 
invited speakers of this RF make due reference to previous related PME publications 
(e.g., Boero, Bazzini,  & Garuti, 2001; Duval, 2000; Garuti, Bazzini, & Boero, 2001; 
Linchevski & Sfard, 1991; Nunez, 2000; Radford, 2002; Tsamir, & Bazzini, 2001). 
The theme of PME28, Inclusion and Diversity, is well reflected in this research 
forum. Diversity may be found in the different lines of research, different theories to 
account for the findings and the educational implications that have been put forward 
by the researchers. For example, among the theoretical frameworks mentioned here to 
analyze students’ solutions are the Vygotskian model and Nunez’s grounding 
metaphors, in Boero and Bazzini – [BB], Duval’s theory on semiotic registers and 
Frege’s theory of denotation, in Sackur – [S], and Fischbein’s model, in Tsamir, 
Tirosh and Tiano – [TTT]. Kieran [K] offers three categories for analyzing algebraic 
activities: generational, transformational, and global meta-level.  
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The presentations address a variety of difficulties occurring in students’ solutions of 
equations and inequalities, and suggest different reasons for these difficulties. When 
analyzing students’ performances, [BB] and [TTT] mention students’ tendencies to 
make irrelevant connections between equations and inequalities as a problematic 
phenomenon. It should be noted, however, that [K] presents connections made 
between equations and inequalities as an important step in solving algebraic problems 
by means of non-algebraic methods. [BB] mention traditional, algorithmic teaching 
approaches as a main reason for students’ errors, Dreyfus and Hoch [DH] mention 
the need to enhance the internal structure of equations that students hold, while [S] 
carefully analyzes difficulties with reference to the various solving methods and 
indicates that even the functional approach and the use of graphic calculators do not 
automatically lead to errorless solutions.
However, beyond their differences, the presentations share common goals. One such 
goal is to investigate ways to promote performance on algebraic equations and 
inequalities by seeking means for analyzing students’ reactions to various 
representations of equations and inequalities in different contexts, while considering 
the way this topic was taught. Thus, this forum will also shed light on the more 
general issues concerning the interplay between theory, research and instruction. 
The two reactors intend to react on all the papers and make concluding statements, 
but their review is made from different perspectives. 
Further discussion will address a number of key questions, like: 

�� What are students’ conceptions of equations / inequalities? What is typical 
correct and incorrect reasoning? What are common errors? 

�� What are possible sources of students’ incorrect solutions? 
�� What theoretical frameworks could be used for analyzing students’ reasoning 

about algebraic equations / inequalities? 
�� What is the role of the teacher, the context, different modes of representation, 

and technology in promoting students’ understanding? 
�� What are promising ways to teach the topics of equations / inequalities? What 

curricular innovations can we suggest? 
�� Is there a global theory that may encompass the local theory of equations and 

inequalities?

The discussion of such issues could give further support to research and teaching. 
During the sessions at the conference, each of the presenters is allotted only ten 
minutes to present the central points of his / her ideas, and each of the reactors is 
invited to react on all presentations during a fifteen minutes presentation. Most of the 
two sessions are dedicated to the participants’ work in small groups, and to whole RF 
discussions.
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INEQUALITIES IN MATHEMATICS EDUCATION:
THE NEED FOR COMPLEMENTARY PERSPECTIVES 

Paolo Boero, Università di Genova (I), Luciana Bazzini, Università di Torino (I) 

1. Introduction
This contribution deals with inequalities: an important subject from the mathematical 
point of view; a difficult subject for students; a subject scarcely considered till now 
by researchers in mathematics education. Our working hypothesis is that different
tools belonging to different disciplines (cognitive sciences, didactics of mathematics, 
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epistemology of mathematics) related to mathematics education are needed to 
interpret difficulties met by students and plan and analyse teaching experiments 
intended to cast new light on this subject. Data coming from some teaching 
experiments conceived in this perspective and other experimental investigations will 
be used to support our working hypothesis. In particular, we will present the 
guidelines and some results of a research program conceived according to the above 
perspective and concerning the approach to inequalities in 8th - grade. We will show 
how a functional approach to inequalities (i. e. an approach based on the comparison 
of functions and suggested by the didactical, epistemological and cognitive analyses
of the subject), when suitably managed by the teacher, can reveal (from the research 
point of view) and allow to exploit (from the curriculum design point of view) a 
students' potential which goes far beyond the mathematics content involved 
(inequalities). We will use the Vygotskian perspective and the “didactical contract” 
construct to frame the teacher’s role in the classroom and analyse the teacher-students 
relationships. Amongst the cognitive tools, in particular we will use the “grounding
metaphor” construct (Nunez, 2000) to analyse some aspects of the students’ 
behaviour and open the problem of how to enhance students’ use of those metaphors 
in this mathematical domain.  
2. Inequalities: a challenge for teaching.
In most countries, inequalities are taught in secondary school as a subordinate subject 
(in relationship with equations), dealt with in a purely algorithmic manner that avoids, 
in particular, the difficulties inherent in the concept of function. This approach 
implies a "trivialisation" of the subject, resulting in a sequence of routine procedures, 
which are not easy for students to understand, interpret and control. As a consequence 
of this approach, students are unable to manage inequalities which do not fit the 
learned schemas. For instance, according to different independent studies (Boero et 
al, 2000; Malara, 2000), at the entrance of the university mathematics courses in Italy 
most students fail in solving easy inequalities like x2-1/x>0. In general, graphic 
heuristics are not exploited and algebraic transformations are performed without 
taking care of the constraints deriving from the fact that the > sign does not behave 
like the = sign (Tsamir et al., 1998). Similar phenomena were described in some 
studies concerning the French situation (Assude, 2000; Sackur and Maurel, 2000). 
We may ask ourselves what are the reasons of this situation. In a didactical-
anthropological perspective (Chevallard, 1987), one reason could be the fact that 
equations (and inequalities) are considered (in most of European countries, including 
Italy) as a typical content of school Algebra; this subject matter is distinguished from 
Analytic Geometry and does not include functions. This might explain why 
inequalities (and equations) are not dealt with in those countries from a functional 
point of view. But even in countries where functions (and Analytic Geometry) belong 
to school Algebra (see NCTM Standards, 1989 and 2000) the procedural, algebraic 
approach prevails in many curricula and even in innovative proposals (Dobbs and 
Peterson, 1991). So the didactical-anthropological analysis must be refined and 
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integrated with an epistemological analysis: we must consider the big distance 
between the subject as a school subject, and the mathematicians’ professional 
approach to the subject. Indeed the functional aspect of inequalities plays a crucial 
role when mathematicians solve equations with approximation methods, deal with the 
concept of limit or treat applied mathematical problems involving asymptotic 
stability. We can make the hypothesis that an alternative approach to inequalities 
based on the concept of function could provide an opportunity to promote the learning 
process of the difficult concepts involved and the development of the inherent skills 
(see Harel and Dubinsky, 1992 for a survey). It could also ensure an high level of 
control of the solution processes of equations and inequalities (Sackur and Maurel, 
2000; Yerushalmy and Gilead,1997). 
3. The teaching experiments 
Keeping the previous analysis into account we have planned two teaching 
experiments at the VIII-grade level with rather limited aims: investigating the 
feasibility of an early functional approach to inequalities; and revealing students' 
potential and difficulties in dealing with this subject as a special case of comparison 
of functions. According to a Vygotskian perspective, we choose to guide our VIII-
grade students in a cooperative, gradual enrichment of tools and skills inherent in the 
functional treatment of inequalities. Then we have analysed how (in relatively 
complex tasks) they had been able to use their knowledge and increase their 
experience in an autonomous way. 
As concerns the content, the concepts of function and variable have been approached 
through activities involving tables, graphs and formulas. According to existing 
cognitive and epistemological analyses, at the beginning the function was presented 
as a machine transforming x-values into y-values (machine view in Slavit, 1997), then 
classroom activities focused on the variation of y as depending on the variation of x 
(covariance view). By this way a dynamic idea of function gradually prevailed on the 
static consideration of a set of corresponding pairs (correspondence view). As a 
consequence, a peculiar aspect of the concept of variable was put into evidence (a 
variable as a "running variable", i.e. a movement on a set of numbers represented on a 
straight line) (Ursini and Trigueros, 1997). Finally, the approach to inequalities was 
realised by comparing functions. 
The specific didactical contract demanded to compare functions as global, dynamic 
entities. Students knew that they had to compare functions by making hypotheses 
based on the analysis of their formulas. The point-by-point construction of graphs was 
discouraged. As a consequence, the ordinary table of x, y values was sometimes 
exploited as a tool to analyse how y changed when x changed (column-vertical 
analysis) and not as a tool to read the line-horizontal point-by-point correspondence 
between x-values and y-values. The algebraic and the graphical settings were strictly 
related (formulas were read in terms of shapes in the (x,y) plane, while graphs evoked 
formulas). The teachers promoted classroom discussions about "what do we loose and 
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what do we earn" when a function is represented through formulas or graphs or tables 
or common language. Also different ways of describing given functions have been 
enhanced (see Duval, 1995: coordination of different linguistic registers). They 
became personal tools exploited and to compare functions. Even the metaphors used 
by students to describe the role of different pieces of the same formula have been 
encouraged and discussed.
4. Some remarks and questions. 
First of all, some remarks on the role of metaphors are worth noticing. Since the 
beginning of the eighties metaphors have been reconsidered as crucial components of 
thinking. Nunez (2000) describes conceptual metaphors as follows: “Conceptual 
metaphors are in fact fundamental cognitive mechanisms (technically, they are 
inference-preserving cross-domain mappings) which project the inferential structure 
of a source domain onto a target domain, allowing the use of effortless species-
specific body-based inference to structure abstract inference". Considering 
conceptual metaphors, Lakoff and Nunez (2000) (see also Nunez, 2000) make a 
distinction  between grounding metaphors (i. e. conceptual metaphors which "ground
our understanding of mathematical ideas in terms of everyday experience") and other 
kinds of conceptual metaphors (Redefinitional metaphors, Linking metaphors).
Concerning grounding metaphors, our research study aims to show how different 
kinds of grounding metaphors can intervene (as crucial tools of thinking) in novices' 
approach to  inequalities and to discuss possible refinements of the idea of a 
grounding metaphor, deriving from the analysis of students' behaviour and related to 
the cultural variety of everyday life source domains. Finally we aim to investigate 
how grounding metaphors can become a legitimate tool of thinking for students. 
In particular, it would be interesting to discuss the following questions:
I) what theories and what tools do offer the best opportunities to interpret students' 
behaviors when they deal with inequalities? 
II) can the study of teaching and learning inequalities be reduced to the study of 
teaching and learning functions? 
Some research findings have been already presented in Boero & al., (2001); and 
Garuti & al, (2001). Further results related to on-going research will be discussed. 
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THE EQUATION / INEQUALITY CONNECTION IN 
CONSTRUCTING MEANING FOR INEQUALITY SITUATIONS 

Carolyn Kieran, Université du Québec à Montréal, (CA). 

Recent algebra learning research has included a focus on students’ understanding of 
and approaches to inequalities. For example, Bazzini & Tsamir (2001) have 
researched 16- and 17-year-old students’ ways of thinking when solving various types 
of algebraic inequalities. Bazzini, Boero, and Garuti (2001) have studied the 
feasibility of a functional approach in the teaching of inequalities to eighth grade 
students. Tsamir, Almog, and Tirosh (1998) have observed high school math majors’ 
methods for solving equations and inequalities and have noted that the most common 
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were algebraic manipulations, drawing an graph, and using the number line. This 
body of research has advanced the field with respect to our knowledge of students’ 
conceptions of inequalities in several ways. It has pointed out, for example, the 
positive role that graphical representations can play in helping students to better 
conceptualize the symbolic form of inequalities, as well as the pitfalls involved in 
attempting to apply to the solving of inequalities some of the transformational 
techniques used with equations. Despite its foray into graphical representations, this 
same body of research has been quite narrow in emphasis with its almost exclusive 
focus on the manipulative/symbolic aspects of inequalities. 
Theoretical Framework 
By means of a model recently developed and presented at the ICME-8 conference in 
Sevilla (Kieran, 1996), algebra can be viewed according to three main categories of 
activity: generational, transformational, and global meta-level. For the case of 
inequalities, meaning for the symbolic form is often derived via the global meta-level 
activity of contextualized problem solving, which activity tends to then be harnessed 
to generate the symbolic form of inequalities. However, these two types of activity 
seem absent from the current research on inequalities. Because the students involved 
in those studies are often older secondary level students, we presume that they have 
already constructed meaning for the symbolic form of inequalities; nevertheless, the 
research remains relatively silent on this issue.
Data Source 
The goal of this contribution to the PME Research Forum is to present a brief 
analysis of a classroom sequence that aimed at introducing inequalities. The data are 
drawn from the TIMSS-R 1999 video study of 8th grade mathematics teaching in 
algebra classes around the world (Hiebert et al., 2003). The lesson, which was the 
first of a set of seven such lessons, involved a Japanese class where the teacher used a 
specific problem situation to create meaning for mathematical inequalities and for 
their algebraic form (www.intel.com/education/math). In this analysis, both the global 
meta-level activity of problem solving and the accompanying activity of generating 
an inequality are interwoven as we witness the teacher orchestrating both his overall 
aims for the lesson and particular students’ approaches to the solving of the problem 
situation, which was as follows: 
It has been one month since Ichiro’s mother entered the hospital. He has decided to 
give a prayer with his small brother at a local temple every morning so that she will 
soon be well. There are 18 ten-yen coins in Ichiro’s wallet and just 22 five-yen coins 
in the younger brother’s wallet. They decided to place one coin from each of them in 
the offertory box each morning and continue the payer until either wallet becomes 
empty. One day after prayer, they looked into their wallets and found the younger 
brother’s amount was bigger than Ichiro’s. How many days since they started prayer? 
(translated version) 
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Brief Analysis of Student Work 
After the teacher spent a few minutes clarifying the problem situation to the class, 
students began to work individually on the problem. The teacher circulated, taking 
note of the various solution methods being worked and encouraging students to try 
more than one method. After some time had passed, the teacher asked certain students 
to present their solutions at the blackboard in the following order (see figure below): 

The above methods that were used to solve the “inequality” problem situation show 
that the majority of the students who were invited to the board approached this 
problem as an equality situation, which enabled them--by means of a slight adaptation 
of the solution to the equality--to provide the solution for the inequality. They used 
the following language to express this idea:  
Student three: “Well, in the beginning, Ichiro had 180 yen, and the smaller brother 
had 110 yen. And since there is a difference of 70 yen, and since the difference 
between them becomes smaller by five yen each day, so it’s 70 divided by 10 minus 
5. And since by the fourteenth day it becomes exactly the same amount of money, so 
since on the day after that there will be a difference, so 14 plus one is 15 and it’s the 
fifteenth day.” 
Student four: “On the fourteenth day they become the same amount of money. And 
the next day since Ichiro puts in 10 yen and the smaller brother puts in 5 yen …. the 
amount of money put in is bigger for Ichiro. So the next day Ichiro’s amount of 
money left is less so it becomes the fifteenth day.”  
The student work (Student five) that involved the symbolic form of an inequality 
right from the start served as a tool for the teacher to introduce to the rest of the class 
both the inequality symbol and an expression containing this symbol: 
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S: (wrote on the blackboard: 180 – 10x < 110 – 5x). The one labeled x is that one day 
after they finished their prayers. On that day since the smaller brother’s amount of 
money was bigger than his brother … and the person who had 110 yen is the amount 
of money the smaller brother had in the beginning. 
T: So these kinds of expressions … the fact is these are the ones we’re going to use 
from now on. Equations that use symbols like this … umm, we’ll call them 
inequalities. … So today I think we would like to find the value for x that holds true 
for this mathematical expression while actually putting in numbers.  
 The teacher then asked students to complete a table (see figure above). When 
the table displayed on the blackboard was filled in, the teacher noted: “x holds true 
for 15, 16, 17, and 18; these are the ‘<’. The first value of x [13] was a ‘>’; the second 
one [14] was equal -- ‘the standard’”. The teacher then asked about the 19th day, to 
which one student responded that Ichiro’s wallet was then empty and that the 
situation was finished. 
Concluding Remarks 
In this classroom segment, we have witnessed the close relationship between 
inequality and equality concepts in eighth grade students.  In using a problem-solving 
context involving a situation of inequality, an algebraic activity that we have 
characterized as being at the global meta-level, the teacher aimed to help students 
acquire some meaning for the form of algebraic inequalities. The problem provided a 
backdrop for generating an expression containing an inequality symbol. The solution 
to this inequality, having already been found by the students by means of non-
algebraic methods, was regenerated by substituting values, from the vicinity of the 
solution, into the two algebraic expressions that formed the algebraic inequality. In 
this way, the relationship between the solution to the linear equality (180-10x=110-
5x) and those of its two related inequalities (180-10x>110-5x and 180-10x<110-5x) 
could be drawn out – implicitly appealing to a number-line interpretation of these 
solutions. It is also noted that, among the students’ attempted solving approaches to 
the given problem, no one used a Cartesian graphical representation. 
It has been argued from the research carried out with older students (e.g., Tsamir, 
Almog, & Tirosh, 1998) that there are clear pitfalls involved in attempting to apply to 
the solving of inequalities some of the transformational techniques used with 
equations. Yet, if the Japanese students’ thinking about inequalities is at all 
representative of other students of this age range, then the interweaving of inequalities 
and equalities would seem to be rather deeply rooted. The didactical challenge is to 
find ways to help students beware of the traps of the equality/inequality connection in 
their transformational work with symbols, while they still enjoy its benefits in 
algebraic activity of the generative and global meta-level types. 
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Some Questions
• The global meta-level activity of contextualized problem solving has 
successfully been used to provide meaning for inequalities and for their symbolic 
form. This leads to the question of whether, in a similar way, certain aspects of such 
contextualized activity can be found to be effective in helping students make sense of 
some of the exceptional transformation rules used in solving inequalities. 
• The properties underlying valid equation-solving transformations are not the 
same as those underlying valid inequality-solving transformations. For example, 
multiplying both sides by the same number, which produces equivalent equations, can 
lead to pitfalls for inequalities. As the differences between the two domains are 
critical, the following question arises: What is the nature of instructional support that 
can generate in students the kinds of mental representations that will enable them to 
think about these critical differences when engaging in symbol manipulation activity 
involving inequalities? 
• In which ways, if any, and for which age-ranges of students, can symbol-
manipulation technology be harnessed so as to provide viable approaches for 
developing students’ algebraic theorizing with respect to inequalities and their 
manipulation?
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PROBLEMS RELATED TO THE USE OF
GRAPHS IN SOLVING INEQUALITIES 

Catherine Sackur, GECO, Nice (France) 

I. Introduction 
Graphs of functions are used increasingly to solve algebraic inequalities. This 
phenomenon is most probably in relation with the increasing use of graphic 
calculators in schools.
Most teachers seem to see the use of graphs as something that should help students in 
their solving of inequalities. In relation to some observations in our classrooms 
(students aged 15 and 17), we came to consider that this is not always the case and 
that there is a need to study some of the problems that arise when one changes a 
problem in algebra into a problem on graphs. 
Solving an inequality graphically means, at first look, comparing the position of two 
curves. Starting from an algebraic inequality, it supposes that the student does the 
following work: 

Inequality� create the two functions� emergence of the graphs through the 
emergence of y� compare the y� come back to x.

We will first address Duval’s theory on semiotic registers to point out some of the 
difficulties that can arise. Then, as dealing with graphs means dealing with functions 
we will question some differences between denotation in algebra and denotation in 
calculus as they appeared in some recent, and still ongoing, work by Maurel & 
Sackur.
II. Some Observations
We will first give a quick look to some results coming from the classroom. We asked 
our students to solve the inequality 3/x>2+x. As we expected, all the students who 
used an algebraic method to solve it made the expected error. They multiplied by x 
whatever the sign of x could be, thus giving an incorrect answer: x � ]-3;1[. Quite a 
few students used a graphical solution, drawing the graphs of the two functions: 
y=3/x and y= x+2. Then we found two types of errors: the first one came from 
reading the solution of the inequality, the second one from the writing of the solution 
for x even if the reading on the graph was correct. Older students (age 17) 
encountered the same type of difficulties on working with graphs. Our purpose is to 
give some interpretation of these errors and to show that the use of graphs for solving 
inequalities should be carefully prepared. 
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III. Duval’s theory of semiotic registers 
III. 1. The concepts 
Mathematics is working with representations of objects. The large variety of 
semiotics representations for the same mathematical object is stressed as a factor of 
difficulties for students in learning and understanding mathematics. 

A. The registers 
Duval considers that there are four different types of semiotic registers in 
mathematics (Duval, 2000). We will not give any exhaustive description of the 
registers, those that we will be interested in for this presentation will be described in 
part III. 2. The most interesting point for us is that two representations in two 
different registers of the same mathematical object do not have the same content, the 
same meaning (Frege 1985). Change of register makes explicit different aspects and 
different properties of the same object. 
Duval emphasises the fact that comprehension in mathematics assumes the co-
ordination of at least two registers. 

B. The two types of transformation of semiotics registers 
�� Treatment inside one register corresponds to all transformations that can be made 

on a representation of one type. For instance all algebraic operations on an 
expression.

�� Conversion between two registers is more interesting for us. Conversion is the 
origin of many difficulties as it is generally not reversible and can be very easy 
(Duval says congruent) in one direction and difficult (non-congruent) in the other. 

III. 2. Application to our Problem 
If we come back to the table in the introduction, we can identify 4 registers involved 
in the solving of an inequality graphically. 

I II III IV 
Algebraic Fonctional Graphical 

bi-dimentional 
Graphical 

mono-dimentional
3/x>x+2 f(x)=3/x

g(x)=2+x
y=3/x
y=2+x

x�[…]

An algebraic resolution of the inequality consists of “treatment” inside register I.  
For simplicity, we will consider that students shift directly from register I to register 
III, and we will now study the two “conversions” I�III and III�IV.
To explore the congruence between two registers we have to look at the different 
ways students act in both of them. 
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Conversion I�III:
1. First of all students must identify two different graphs in place of one inequality. 
The emergence of y and its role is a source of difficulty for students (Bazzini & al., 
2001).
2. Then the type of transformations that the students have to make in register I have 
no correspondence in register III. In register I, one writes a sequence of algebraic 
expressions. The different graphs corresponding to these different expressions do no 
appear in register III. Another aspect of this conversion is the fact that the 
transformations in algebra are done for “all” x, whether on a graph one can only 
visualise the graph for limited values of x. 
3. Graphically one has to focus on the y for different values of x, which means 
looking at the intersection of the curves with straight lines whose equations are x=a. 
The process of solving depends on the position of the curves, on the number of points 
where they intersect each other. For simplicity sake we will just observe four 
different situations as shown in Fig. 1. In the simplest case, “f(x)>0”, the conversion 
is congruent, as this can be translated as “the curve Cf is above the x-axis”. 
Difficulties arise when the slope of the function is steep such as y=1/x when x is 
close to 0 or y=1000x. The problem is no longer “Cf being above Cg”, but Cf 
belonging to one or other of the parts of plane limited by Cg”. One can see, easily, 
that there is then a difference between solving equations and solving inequalities. 
4. Concerning the inequality 3/x>x+2, the situation is interesting in the following 
way: algebraically, one has to distinguish between x>0 and x<0. To this separation 
corresponds the fact that one of the graph (y=3/x) has no intersection with the straight 
line x=0. Thus the algebraic activity has its correspondence in the graphical register 
and vice versa. See Fig. 2. 
Our conclusion is that, most probably, the conversion is not congruent. 
Conversion III�IV: The situation here seems simpler. There is a one to one 
correspondence between the points on the graph of function f where f is greater than 
g and the abscises of these points. We can then say that the conversion between those 
two registers is congruent. 
The question is to interpret the difficulties that the students encounter to come back to 
the solution of the inequality with x. As we will see, the situation is different from the 
one we can observe with an equation and enforces the link between inequalities and 
functions.
III. The Theory of Denotation 
The theory of denotation in algebra is well known (Frege, 1985) and has been used in 
many situations to interpret the difficulties of the students. We have been lately 
interested in understanding what could be the concept of denotation in calculus and 
functional analysis (Maurel & al. 2001). The results we mention here are a very first 
attempt in this direction. 
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III. 1. Denotation in Calculus 
We studied several situations: primitives, error terms in Taylor formulas. We came to 
the conclusion that a symbol like ( )� f x dx  doesn’t correspond to one function (one 
mathematical object) as it does in algebra but to a class of functions. Ignoring this can 
lead to some difficulties such as the demonstration that 1=0. Legrand (Legrand, 1993) 
has emphasised the fact that very often in calculus one has to abandon some 
information in order to obtain the result. We think that the difficulties of the students 
in shifting from the graph to the solution in x could come from this aspect. 
III. 2. The Case of the Inequality 
Very shortly, we can say that, here also, there is not a one to one correspondence 
between the graph and the set of solutions in x. Different graphs can lead to the same 
set of solutions as is shown in Fig 3. There is not one point for one x but an infinite 
number of points. The situation looks very similar to the situation of the primitives. 
One has to abandon information, the precise graph of the functions, to focus only on 
the abscises of these points.
IV. Conclusion 
Concerning inequalities, the use of graphs induces new difficulties for students, some 
of them being specific of functions. It should not be taken for granted that when 
“solving graphically” students learn the same mathematics as when “solving 
algebraically”. Our interest is not so much “how to have students learn to solve 
inequalities?” but “what do they learn in mathematics when they solve algebraically 
or graphically?”.  
Another important question is the apparent similarity between the solving of 
equations and the solving of inequalities. This issue appears to be a crucial one. 
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Figures (these belongs to the preceeding paper) 
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EQUATIONS – A STRUCTURAL APPROACH 

Tommy Dreyfus  and Maureen Hoch , Tel Aviv University (Israel) 

Structure
Reading papers on teaching and learning algebra (and other topics in mathematics, 
including calculus) one frequently meets the term structure. Some examples of papers 
in which structure plays a substantial role are Sfard & Linchevski (1994), Dreyfus & 
Eisenberg (1996), Linchevski & Livneh (1999), Zorn (2002). Structure appears to be 
a convenient term to describe something many of us may have some vague feeling 
for but cannot grasp in words. In fact, in few papers is there an attempt at defining, or 
even circumscribing what the authors mean by structure. 
According to Sfard & Linchevski algebra is a hierarchical structure. In algebra what 
may be considered to be an operation at one level can be acted on as an abstract 
object at a higher level. Dreyfus & Eisenberg variously describe structure as the 
result of construction; as involving symmetry; as being composed of definitions, 
theorems and proofs; as being a method of classification; as relationships. Zorn states 
that “Understanding basic mathematics profoundly means proficiency at detecting, 
recognizing and exploiting structure, and at drawing useful connections among 
different structures”. While giving no definition of structure he hints that it may be 
connected to pattern. Linchevski & Livneh discuss students’ difficulties with 
mathematical structures in the number system and in the “algebraic system” but 
nowhere do they define what these structures are. They also use the term algebraic 
structure without explanation, and refer to surface structure, hidden structure and 
structural properties. 
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Defining or circumscribing what we mean by structure is not an easy undertaking. 
Many mathematicians, especially algebraists, tend to give the definition of some 
category that includes algebraic objects such as groups, rings, fields, ideals etc. But 
this is not helpful for us if we want to deal with high school algebra and with learning 
it. What does structure mean if we talk about high school algebra, and more 
specifically about equations with all their technical aspects? 
In this contribution, we will remain guilty of the same sin of talking about structure 
without saying what we mean by it. Further issues of definition of structure and of 
examining the meaning of the definition in practice are discussed in Hoch & Dreyfus 
(2004). Here we will concentrate on why one might want to look at structure. 
There are two quite different areas where structure is important for equations, 
recognizing an equation and dealing with its internal structure. 

Recognizing an Equation 
One would expect that one of the mathematical objects most easily recognized by 
students is an equation. (In order to avoid the need to distinguish between equation 
and identity, we include here identities under the general category of equations – 
more specifically, an equation with the entire substitution set as solution.) We have 
asked some Israeli high school students who learn mathematics at above average 
level to say what they think an equation is. Responses included:  
1. An exercise where the aim is to find x. 
2. An exercise that has a solution, that is, an exercise before you’ve solved it, and in 

the end you can do something to it and get to the solution. You need to find the 
variable.

3. x-s on one side, numbers on the other, an equal sign between them; need to find x. 
4. A statement including two sides, an equal sign, and one or more x-s. 
5. Two sides connected by an equal sign and certain rules for solving. 
We see responses 1 and 2 as being purely procedural, referring to what has to be 
carried out. The others refer to external form. This might qualify as structure and be 
useful from the formal language point of view but it remains surface structure. 
Response 3 also mentions procedure, whereas response 4 focuses on external form 
only. Response 5 comes closest to indicating that there may be some underlying 
structure by mentioning “certain rules”. The responses do not refer to what we might 
call the deep structure of equation, the mathematical properties of the object 
”equation“. If these responses are typical, our data indicate that structure is not 
something that is in the realm of awareness of high school students.
The Internal Structure of Equations 
Equations also have internal structure – at a finer level than the one needed to say 
whether something is an equation or not. Recognizing and using this internal 
structure may make solving the equation easier and increase success. Internal 
structure may be the actual or potential structure of the equation. By actual structure 
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we mean the equation as it is given. For example the actual structure of the equation 
1

x � 2
� 3x � 4

 could be described as a rational equation describing the intersection of a 
rational function with a linear function. The potential refers to what can be reached 
by transforming the equation. In the case of this example, the potential structure is 
quadratic, specifically the quadratic equation 3x 2 � 2x � 9 � 0  whose structure is 
rather different from the original one. There might be an intermediate case where 
minor operations such as adding or removing brackets lead to a different structure. 

The above equation could be written 
1

x � 2
� 3 x � 2� � � 10.

Wenger (1987) provides a classic example of where recognizing actual structure is 
helpful in solving the equation. When solving the equation v u � 1� 2v 1� u  for v, 
recognizing the linear structure yields a relatively easy solution process. Many 
students, of course, focus on the square root sign which is a signal for them to square 
both sides of the equation. Another classic example is this parametric equation in 

x:

x � a� � x � b� �
c � a� � c � b� � �

x � b� � x � c� �
a � b� � a � c� � �

x � a� � x � c� �
b � a� � b � c� � � 1

. It appears in Movshovitz-Hadar & 
Webb (1998). Here “brute force” leads to a solution only at the hands of a very 
determined and very adept solver while examination of the structure provides a much 
more efficient solution. Examining a structure that is just below the surface, the 
structure of the individual terms that make up the equation, reveals that x=a is a 
solution, and then that x=b and x=c are also solutions. The internal deep structure – 
the properties of a quadratic equation – provides the information for the final 
solution, that this equation is true for all values of x.
A typical equation from high school algebra is (x2 - 4x)2 - x2 + 4x = 6. It can be 
solved by recognising that a simple substitution transforms it into a quadratic 
equation. Thus a minor operation reveals structure and gives a handle on solving the 

equation. Another example is 
1 15
4 1 4 1

� �� � � � �� �� �� �
x xx

x x . An examination of the 

structure reveals that this is a linear equation masquerading as a rational equation. For 
many students however the presence of an algebraic fraction is a signal to multiply by 
a common denominator leading to a long and error prone solution (see Hoch & 
Dreyfus, 2004). Here recognizing a hidden structure and transforming the equation 
(by subtracting the same term from both sides), so as to show this hidden structure, is 
used to solve the equation. We see that recognizing and using structure is likely to 
increase success in algebra substantially.
In Conclusion 
Our experience is that Israeli students have little difficulty in actually recognizing 
equations but extreme difficulty in talking about this recognition. They rarely relate 
to equations in any way apart from the procedural. They usually do not recognize the 
internal structure of equations. If they do recognize structure they rarely use it (see 
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for example Hoch, 2003) and in fact they have difficulty solving all but the most 
standard equations. Also, teachers do not seem to be aware of what recognizing and 
using structure could do for the student. The emphasis in the algebra classroom is on 
mechanical methods for solving equations. For example, the method of substitution is 
taught in tenth grade, but usually on a very technical level, and is soon forgotten (see 
Hoch & Dreyfus, 2004). 
We suggest that the forum address the issue of ways of presenting algebra that will 
focus students’ attention on structure. 
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“NEW ERRORS” AND “OLD ERRORS”:  
THE CASE OF QUADRATIC INEQUALITIES 

Pessia Tsamir, Dina Tirosh, Sarit Tiano, Tel-Aviv University (Israel) 
A prominent line of research in mathematics education is the study of errors. The 
early research on mathematics learning viewed students’ errors as flaws that interfere 
with learning and need to be avoided (e.g., Greeno, Collins & Resnick, 1996). From 
an instructional perspective, students' errors were traditionally perceived either as 
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signals of the inefficiency of a particular sequence of instruction or as a powerful tool 
to diagnose learning difficulties and to direct the related remediation (e.g., Ashlock, 
1990; Fischbein, 1987). Borasi (1987) argued that errors could and should be used as 
springboards for problem solving and for motivating inquiry about the nature of 
mathematics, and Avital (1980) claimed that the best way to address common 
mistakes is to intentionally introduce them and to encourage a mathematical 
exploration of the related definitions and theorems.  
But what is actually happening in the classrooms with respect to errors? Do teachers 
intentionally introduce common errors and if so: How? When? To whom? How do 
teachers address errors made by students? What are the factors that influence their 
reactions? In this paper we discuss our initial attempts to explore teachers’ 
declarations and practices regarding the role of errors in their classrooms. We 
describe here the case of Rami, a very experienced mathematics teacher who has a 
reputation of an excellent teacher. We shall focus here on a variety of ways in which 
Rami addressed errors when teaching quadratic inequalities. We shall first briefly 
describe what is known from the literature on students’ common errors when solving 
quadratic inequalities and to their possible sources. 
Literature on Quadratic Inequalities: Errors, Sources and Instruction 
In the last decade there is a growing interest in students’ performances when solving 
various types of algebraic inequalities in general and quadratic inequalities in 
particular (e.g., Linchevski & Sfard, 1991; Tsamir & Bazzini, 2001). Several common
errors were identified, including the tendencies to: (1) multiply / divide both sides of 
an inequality by a factor that is not necessarily positive, (2) deal with products in the 
following manner: a�b>0 � a>0 and b>0; a�b<0 � a<0 and b<0; (3) make 
inappropriate decisions regarding logical connectives, and (4) reject {x| x = a}, “R” 
and “�” as solutions.  Several publications mentioned possible sources for these 
errors, mainly relating to possible overgeneralizations from equations to inequalities 
(e.g., Tsamir, Tirosh & Almog, 1998), and to the grasp of transformable inequalities 
as being equivalent (Linchevski & Sfard, 1991). Some of these errors are intuitive 
(Fischbein, 1987), and are, thus, likely to evolve in every class. Consequently, we 
decided to explore how various teachers address errors in their classrooms. Here we 
focus on a class that dealt with quadratic inequalities.
The Study 
Setting and Methodology
At the time the study was carried out, Rami was the head mathematics teacher in a 
secondary school. He was a very energetic and highly motivated teacher who 
invested much effort in his instruction and in establishing open, friendly relationship 
with his students and colleagues. For the purpose of our study, one of the researchers 
(ST) observed and videotaped Rami’s three lessons on quadratic inequalities in an 
average, 13th grade class (learning for a certificate of electronic technicians).  The 
videotapes were transcribed and all the “error-episodes” were defined (an error 
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episode consists of an error made in class and the subsequent, related event). Several 
reflective interviews were then conducted with Rami. In these interviews he was first 
asked to list students’ common errors when solving quadratic inequalities. Then, he 
was presented with the transcriptions of several “error-episodes” that occurred during 
his instruction. He was asked to identify the error, to specify its possible sources, to 
explain the way he addressed it in class, to comment on it and to relate to other, 
suggested ways of handling this error. Later on, Rami was presented with a list of 
quadratic inequalities that are known to elicit specific errors. He was asked to list the 
errors that students are likely to make in each case. Finally, Rami was presented with 
the typical errors that students commonly make when solving the same quadratic 
inequalities and asked: “How would you react, in class, to such errors”. The 
interviews lasted about 90 minutes. They were audio-taped and transcribed.
Due to space limitations, we shall focus here only on one main observation regarding 
Rami’s didactical ways of addressing errors in his lessons on quadratic inequalities.
New Errors and Old Errors: A Critical Dichotomy
Our analysis of the “error episodes” revealed that Rami addressed the errors that 
occurred in his class in two distinguished, clusters of reactions: The economic cluster
and the elaborated cluster. In the economic cluster we included his following, typical 
reactions: 1) ignore the error and go on teaching, 2) state the correct solution, and 3) 
when having a mix of erroneous and correct suggestions, address only the correct 
ones. The following, three reactions are representative of the elaborated cluster : 1) 
ask the student to repeat his erroneous solution  and to explain his reasoning to the 
entire class  2) try to find out if other students in the class hold the same opinions, and 
3) try to lead the student (e.g., by counter examples) to realize that she erred.  
All in all, it was noticeable that the economic and the elaborated cluster were 
distinguished in terms of the time allotted for and the effort invested in discussing the 
errors. An economic reaction is a short, local reaction that highlights only the correct 
solution, with no reference to the incorrect solutions. An elaborated reaction unlike 
the economic ones, is more time consuming and didactically more demanding. Here, 
Rami explicitly addressed the incorrect ideas, asking the student for further 
explanations and trying to trace the source of the error.
A question that naturally arose is: What directed Rami’s didactical conduct? Under 
what circumstances was he acting in an economic manner? In what occasions did he 
prefer the elaborated reaction? Rami’s behaviors could be attributed to various 
factors, some of which are student oriented (e.g., capabilities, gender) while others 
are timing oriented (in what part of the lesson the error occurred). Our analysis ruled 
out the “student” option, since Rami reacted to the same student in different ways on 
different occasions. At first it seemed that the timing was a major factor that guided 
Rami’s reactions: Economic reactions were more frequent at the beginning of the first 
lesson while elaborated reactions were more evident by the end of this lesson. But 
this split was not apparent in the other two lessons. A detailed examination of the 
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mathematical content of the episodes that were included in each of the two clusters 
led us to conclude that the episodes in the economic cluster addressed errors that 
were embedded in mathematical topics that were studied prior to the lessons on 
quadratic inequalities (e.g., quadratic equation, parabolas). Elaborated reactions were 
provided by Rami to issues that were part of the topic at hand (e.g., logical 
connectives). This observation was confirmed by Rami during the subsequent, 
reflective interview. Indeed, when Rami was asked to relate to various error episodes 
that occurred during his lessons, he clearly stated that the nature of the error, in terms 
of being “new” or “”old” is a main factor that influenced his reaction to the error.
Summing Up and Looking Ahead 
Our results indicate a phenomenon that at first glance seems obvious, i.e., allotting 
more time and didactical energies to errors in the new topic, and less time and efforts 
to those that relate to mathematical topics that were studied previously. This 
observation raises many issues for further explorations, three of which are: (1) Is this 
conduct a general characteristic of Rami's instruction or is it typical only to his 
teaching of quadratic inequalities? (2) Is the "new errors"/"old errors"' split typical 
only to Rami or to other expert teachers / novice teachers? (3) What are the pros and 
cons of this approach? We shall deal with these issues in our presentation.
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REFLECTIONS ON RESEARCH AND TEACHING OF 
EQUATIONS AND INEQUALITIES 

David Tall, Mathematics Education Research Centre, University of Warwick, (UK)
In reacting to this forum on ‘Algebraic Equalities and Inequalities’, I take a problem-
solving approach, first, asking ‘what is the problem?’ then looking at the five 
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presentations to see what can be synthesized from their various positions 
(acknowledging that they are here limited to very short summaries). 
The ‘problem’, as initially formulated, focuses on the algebraic manipulation of 
equations and inequalities. Tsamir et al [TTT] focus mainly to this aspect by 
considering how a teacher might cope with errors that arise from the inappropriate 
use of earlier experiences in equations that produce errors with inequalities. This 
focus is broadened in the list of ‘Key Questions’, to encourage the consideration of 
different theoretical frameworks—and the use of technology—to see how research 
can improve teaching and learning. The other papers take the key questions in 
different directions. Boero & Bazzini [BB] and Sackur [S] consider broader issues, 
with a particular focus on the switch from algebraic to visual representations where 
an inequality f (x) � g(x) is visualised by seeing where the graph of f is above the 
graph of g. Underlying both approaches are relationships between different 
representations (or semiotic registers, as described in the subtle theory of Duval). 
Kieran [K] presents a different overall framework (‘generational’, ‘transform-ational’ 
and ‘global meta-level’) that may be described as a ‘vertical’ theory of development 
rather than a ‘horizontal’ theory of relationships between represent-ations. Finally, 
Dreyfus & Hoch [DH] broaden the context to the increasingly sophisticated structure 
of equations, from a procedure to undo an arithmetic calculation, to solving equations 
with xs on both sides, to more subtle cases of equations containing substructures and 
equations solved using specified rules.) 
This brings me back to ‘the problem’. What is it that this forum is really attempting to 
address? There seems to be an implicit understanding that we need to help students to 
understand and operate with equations and inequalities. But for what purpose? If the 
purpose is to solve a given equation or inequality, then a graphical picture may be 
appropriate. For instance, to ‘see’ what happens to the inequality x2 � x � c as c
varies, a powerful visual representation is given by the quadratic f (x) � x2  and a 
straight line g(x) � x � c that moves up and down as c changes. However, if the 
problem is to enable the student to become fluent in meaningful manipulation of 
symbolism, then the activities with the graph may involve no symbolic manipulation 
whatever (particularly if the graph is drawn by computer). [S] considers the strengths 
and weaknesses of moving between different registers. These focus on different 
aspects, highlighting some, neglecting others. If an aspect is absent, then its variation 
does not figure in the link between representations. An example is the evaluation of a 
function by carrying out a procedure: 2(x+1) and 2x+2 are different procedures in the 
symbolic register but are represented by precisely the same graph. 
The focus of [BB] on graphs of functions as global dynamic entities uses the idea of 
‘grounding metaphors’ of Lakoff & Nunez in a way that ‘could also ensure a high 
level of the control of the solution process’. But what solution process? The visual 
enactive activity can give a powerful embodied sense of global relationships between 
functions as entities, but how does it relate to the meaningful manipulation of 
symbols? It emphasizes the strength of grounded metaphors but not the ‘incidental 
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properties’ of Lakoff’s theory, which may be usefully employed in a particular 
context but have the potential to be the sources of errors in new contexts. 
It is my belief that the phenomenon of ‘cognitive obstacles’ arises precisely because 
the individual’s subconscious links to incidental properties in earlier experiences are 
no longer appropriate in a new context. Rather than use the high sounding language 
of ‘metaphor’ for the recall of earlier experiences, I use the prosaic term ‘met-before’. 
I hypothesise that it is precisely the met-befores in solving linear equations that 
causes problems in inequalities researched by [TTT]. Students taught to manipulate 
symbols in equations, will build personal constructions that work in their (possibly 
procedural) solutions of linear equations but operate as sub-conscious met-befores 
that cause misconceptions when applied to inequalities. 
In a given context there are often several different approaches possible. [K] reveals a 
spectrum of responses to a problem that may be formulated as an inequality, 
including a physical representation, the use of tables, equations and inequalities. 
[DH] presents a compatible spectrum, with different emphases, numerical procedures 
to ‘undo’ equations, more subtle manipulation of expressions as mental entities, and 
seeing sub-structures of equations as mental entities in themselves. Some of these 
approaches may be more amenable to future development than others; in particular, 
theories of cognitive compression from process to manipulable mental entities (which 
are entirely absent from all the presentations) address the possibility that the 
construction of mentally manipulable entities is likely to be more productive for long-
term development. 
Later developments in the use of inequalities include the formal notion of limit, 
where the epsilon-delta method will certainly benefit from meaningful grounding of 
inequalities, but will also need to focus on the manipulation of symbols and the 
development of formal proof. Inequalities at a formal level involve axioms for order 
in a field F, for example, by specifying a subset P of F that has simple properties (if 
a � P , then one and only one of these holds: a � P , �a � P  or a � 0; if a, b � P
then a � b, ab � P .) In this case a � b is defined to be true when a � b � P. This use 
of ‘rules’ is not a meaningless procedural activity but a meaningful formal approach 
that has the potential of giving new meanings. For instance, a structure theorem may 
be proved to show that every ordered field ‘contains’ the rational numbers and may 
also contain ‘infinitesimals’ that are elements in F which are smaller than any rational 
number. In this way intuitive concepts at one stage (infinitesimals as ‘arbitrarily 
small’ variable quantities) can be given a formal mathematical meaning. 
An organization such as PME needs to aim not only for local solutions to problems, 
but also for global views of long-term development. The papers in this forum present 
essential ingredients to contribute such a wider scheme. 
When the ‘problem’ of equations and inequalities is seen in this way, a wider picture 
emerges. There are unspoken belief systems that get in the way of our deliberations. 
For instance, while several of the papers give examples of different individuals using 
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different methods to solve the same problem, no one attempts to say whether one 
solution is potentially better or worse for long-term development. Differences are 
apparent in the success and failure in all the examples given. Do we need to look at 
different solutions for different kinds of needs? Rich embodiments have strengths that 
may be appropriate in some contexts (perhaps to solve an inequality in a specific 
problem) and misleading in others (where concepts of constructed that, if unresolved, 
become met-befores causing obstacles in later learning). Do all students follow 
through the same kind of Piagetian development or, does their journey through 
mathematics find them using methods that are more or less suited to long-term 
development that gives different kinds of possibilities for future development? 
In addition to the horizontal framework of registers and the vertical framework of 
[K], I offer a third that relates to the algebraic spectrum of [DH]. A study of long-
term development of symbolism in arithmetic and algebra (Tall et al., 2001) led to a 
categorization of algebra (Thomas & Tall, 2001) in three levels, which we termed 
‘evaluation algebra’, ‘manipulation algebra’ and ‘axiomatic algebra’. The first 
encompasses the idea of an expression, say 3+2x being used simply for evaluation, 
say in a spreadsheet or in a graph-drawing program. The second encompasses the 
idea of an expression as a thinkable entity to be manipulated. The third concentrates 
on the properties of the manipulation and leads to an axiomatic approach to algebra in 
terms of groups, rings, fields, ordered fields, vector spaces, etc. In what ways do the 
papers presented in this forum address problems both at a local level and also in 
producing a helpful global theory? Much of the discussion could involve evaluation 
algebra, [TTT] considers manipulation and [DH] looks from manipulation to 
axiomatic. Do we need one kind of algebra for some students and other kinds for 
others? Richard Skemp once said to me, ‘there is nothing as practical as a good 
theory’. In our forum it would be practical to look for a global theory encompassing 
the local theory of equations and inequalities. 
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SYNTAX AND MEANING 
Luis Radford, Université Laurentienne, Ontario, (CA).

A forum is certainly a multi-voiced dialogue, an example of what Bakhtin used to call 
heteroglossia, or the encounter of multiple perspectives in cultural interaction.  With 
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their own intonation and from their own perspective, the papers of the research forum 
engage in dialogue with each other about pedagogical, psychological and 
epistemological questions concerning two key concepts of school algebra, namely, 
equations and inequalities.  They offer us valuable reflections on the search for new 
contexts to introduce students to inequalities (e.g. functional covariance) and a 
critical understanding of the limits and possibilities of these contexts. They also 
provide us with fine enquiries about urgent learning problems along the lines of key 
theoretical constructs that have played a central role since the 1980s in mathematics 
education (such as structure and the cognitive status of students’ errors). 
The papers tackle a general problématique against the background of the present 
context of discussions about cognition.  In the past few years, there have indeed been 
important changes in conceptions of cognition in general, as witnessed by e.g., a 
recent interest in phenomenology, semiotics, and embodiment. We have become 
aware of the decisive role of artefacts in the genesis and development of 
mathematical thinking and we have become sensitive to theoretical claims from 
sociology and anthropology that emphasize the intrinsic social dimension of the 
mind.  With their own intonation and from their own perspective, the papers of the 
research forum have engaged each other in a dialogue on the problem of algebraic 
thinking as set by the general stage of our current understanding of cognition.  Since 
one of the key common themes of the papers is that of syntax and meaning, let me 
delve into it and comment on what the papers intimate in this respect. 
1. Meaning 
In the introduction to their paper, Boero and Bazzini find fault with the classical 
approach to inequalities and claim that the “purely algorithmic manner” that reduces 
the solving of inequalities to “routine procedures” limits students’ understanding.  
This complaint is not new.  In the seminal book edited by Wagner and Kieran (1989) 
the same reasons led Lesley Booth to object to the considerable attention paid to the 
syntactic aspects of algebra in the classroom. There is nevertheless a subtle but 
important difference in how solutions are envisaged one the one hand, by Booth and 
the structural perspective, and by Boero and Bazzini, on the other. 
Booth claimed that difficulties in learning syntax were the result of a poor 
understanding of the mathematical structures underpinning algebraic representations:  
“our ability to manipulate algebraic symbols successfully requires that we first 
understand the structural properties of mathematical operations and relations”, she 
argued, and added that “[t]hese structural properties constitute the semantic aspects of 
algebra.” (Booth, 1989, pp. 57-58).  I do not think that Boero and Bazzini disagree 
with the important role played by structural properties in the constitution of the 
semantics of algebra.  Nevertheless, they seem to disagree with the idea that, 
ontogenetically speaking, the understanding of structural properties comes first as 
well as with the claim that these structural properties alone constitute the semantics of 
algebra.  Indeed, in their approach (see also Garuti et al., 2001), the study of the 
production of meaning is located in an activity that transcends mathematical 
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structures. Their analysis traces elements of students’ linguistic activity and body 
language in an attempt to detect metaphors, gestures and bodily actions that can 
prove crucial in students’ understanding and use of algebraic symbolism.  In their 
analysis of the way in which students make sense of a quadratic inequality, they 
emphasize the students’ allusion to artefacts and to their understanding of symbols in 
terms of cultural linguistic embodied categories such as “going up” and “going 
down”.  As I see it, the covariational functional context that they propose is 
conceived of as a means for students to produce meaning and understand signs. 
The idea that the production of meaning goes beyond mathematical structures and the 
claim that meaning is produced in the crossroad of diverse semiotic (mathematical 
and non-mathematical) systems is certainly one of the cornerstones of non-structural 
approaches to mathematical thinking. And yet, many difficult problems remain.  
Algebraic symbolism is undoubtedly a powerful tool. Even if some calculators and 
computer software are able to perform symbolic manipulations, algebraic symbolism 
is not likely to be abandoned in schools –at least not in the short term.  Kieran’s 
reflections on what happens to meaning when students translate a word-problem into 
symbolism, Sackur’s interest in understanding the outcome of meaning in conversion 
between, and treatments within, registers and Dreyfus and Hoch’s concerns about 
students recognizing the underpinning structures in equations thus appear to be more 
than justified.  Certainly, one of the crucial problems in the development of algebraic 
thinking is to move from an understanding of signs having been endowed with a 
contextual and embodied meaning, to an understanding of signs that can be subjected 
to formal transformations.  The meaning that results from noticing that a graph “goes 
up” or “goes down” supposes an origo, that is, an observer’s viewpoint.  This origo
(Radford 2002a) is the reference point of students’ spatial-temporal mathematical 
experience, the spatial-temporal point from where an embodied meaning is bestowed 
on signs.  Algebraic transformations, such as those mentioned by Dreyfus and Hoch, 
require the evanescence of the origo.  Does this amount to saying that symbolic 
manipulations of signs are performed in the absence of meaning?  To comment on 
this question, let us now turn to the idea of syntax. 
2. Syntax 
One of the tenets of structuralism is the clear-cut distinction between syntax and 
semantics.  From a structural perspective, the real nature of things is seen not in the 
world of appearances, but in their true meanings –something governed by the 
intangible but objective laws that Freud placed in the unconscious, and that structural 
anthropology, psychology and linguistics, after Saussure and Lévi-Strauss, 
thematized as “deep structures”. Syntax was conceived of as lying on “surface 
structures”, it was merely dead matter, the shadows of deep, structurally governed, 
mental activity.  It is understandable that, in this context, in 1989 Kaput argued that 
instead of teaching syntax (which would produce “student alienation”) we should be 
teaching semantics (Kaput, 1989, p. 168).  Nevertheless, as I have already stated, we 
have become more sensitive to the claim that every experience, even the more 



1–164  PME28 – 2004

abstract one found in mathematics, is always accompanied of some particular sensory 
experience, or –as Kant put it in the Critique of Pure Reason– that every cognition 
always involves a concept and a sensation. 
How, then, within this context, can we address e.g. Dreyfus and Hoch’s legitimate 
concerns?  Recognizing equivalent equations is one of the fundamental steps in 
learning algebra.  The formal transformation of symbols in fact requires an awareness 
of a new mode of signification –a mode of signification that is proper to symbolic 
thinking (Radford, 2002b) and whose emergence only became possible in the 
Renaissance. As Bochner (1966) noted, despite the originality and reputation of 
Greek mathematics, symbolization did not advance beyond a first stage of iconic 
idealization where calculations on signs of signs were not accomplished.  It is not 
surprising then that the problem of explaining the formal manipulation of symbols 
puzzled logicians and mathematicians such as Frege, Russell, and Husserl.  While for 
Russell (1976, p. 218) formal manipulations of signs are empty descriptions of 
reality, for Frege and Husserl formal manipulations do not amount to manipulations 
devoid of meaning.  In fact, for Frege, equivalent algebraic expressions correspond to 
a single mathematical object seen from different perspectives: they have the same 
referent but they have a different Sinn (meaning).  Adopting an intentional, 
phenomenological stance, Husserl contended that manipulations of signs require a 
shift in attention: the focus should become the signs themselves, but not as signs per
se. Husserl insisted that the abstract manipulation of signs is supported by new 
meanings arising from rules resembling the “rules of a game” (Husserl 1961, p. 79). 
These remarks do not solve the crucial problem raised by Dreyfus and Hoch, also 
present in the other papers of this forum.  It would certainly be of little help to tell 
students that a seemingly rational equation is, after transformations, equivalent to a 
linear equation because they are both designations of the same mathematical object.   
Perhaps Husserl’s insight intimates that the change in the way we attend the object of 
attention (e.g. the modeled situation or the equation itself) leading to an awareness of 
the “rules of the game” rests on a process of perceptual semioisis, or a dialectical 
movement between perceived sign-forms, interpretation, and action. Hence, it may be 
worthwhile to consider the ontogenesis of new modes of signification required by 
algebraic symbolism as a back and forth movement between interpreting the 
symbolic expression in its diagrammatic form (Peirce) and the (mathematically 
structured) hypothetical generation of new diagram-equations. 
It might be very well the case that the greatest difficulty in dealing with equations and 
inequalities resides in: (1) the understanding of the apophantic nature of equations 
and inequalities and (2) the apodeictic nature of their transformations. 
Number (1) refers to the fact that, in contrast to a symbolic expression like x+1, an 
equation or an inequality makes an apophansis or predicative judgment (in Husserl’s 
sense; Husserl, 1973): it asserts e.g. that P(x) = 0. Number (2) refers to the necessary 
truth-preserving transformations of equations and inequalities –if, for a certain x, it is 
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true that P(x) = 0, then Q(x) = 0, etc., something that Vieta expressed by saying that 
algebra is an analytic art.  What I want to suggest is that the predicative judgments 

0)( �xP  or 0)( �xP , etc. that rest at the core of solving an equation or an inequality 
should not be confined to the written register containing an alphanumeric string of 
signs.  We need an ampler concept of predication (and of mathematical text) less 
committed to the written tradition in which Vieta was writing not many years after 
the invention of printing.  We also need a better concept of predication capable of 
integrating into itself the plurality of semiotic systems that students and teachers use, 
such as speech, gestures, graphs, bodily action, etc., as shown clearly in the Grade 8 
lesson mentioned by Kieran.  Predicative judgments would be made up of a complex 
string of gestures, written signs, segments of speech and artefact-mediated body 
actions.  Their transformations would not be confined to the realm of logic and 
formal symbol manipulation, for the passage from one step to the next in a semiotic 
process is not something predetermined in advance by the logic of deduction alone: 
what seems to be a formal manipulation is in fact continually open to interpretation.
There is, in the end, no opposition between syntax and meaning.  Every sign has a 
meaning.  Otherwise, it cannot be a sign.  Conversely, every meaning is an abstract 
entity –“a general” (Otte, 2003)– which finds instantiation in signs only. 
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SOME FINAL COMMENTS 

One main aim of this research forum is to have a rich discussion and enable the 
participants to address the issues presented in the five presentations. For this purpose 
we decided to have the following structure of meetings: In Session One: each of the 
presenters will briefly [10 minutes] present their studies together with  educational 
implications, and conclude his / her presentation by posing a number of questions for 
further discussion. Then, all the participants will be asked to discuss these questions, 
raise additional questions, dilemmas, doubts and comments that will be addressed by 
the presenters, reactors and all the others during the second meeting. In Session Two:
each of the reactors will present his analysis of the approaches presented in sessions 
one [15 minutes], referring both to the presentations and to participants’ remarks 
made during the first sessions. There will be ample time for the audience to add their 
own thoughts and analyses to those of the reactors.

Another aim of this RF is to discuss issues of inclusion and diversity. This will be 
done by refining the questions posed by the participants so as to meet the needs, 
abilities and beliefs of different students, teachers, and classes. For example, when 
discussing students’ erroneous solutions to inequalities, we will address the following 
questions: What are the difficulties of low achievers vs. high achievers? Boys vs. 
girls? Those who studied the topic in different ways (e.g., graphical vs. algebraic 
approaches)? When discussing the teaching of equations and inequalities, we may for 
instance address the following questions: How do different teachers make their 
related didactical decisions? What is the impact of different teaching approaches on 
different students?

Finally, this RF aims to create a wide international network to investigate the 
teaching and learning of algebraic equations and inequalities by deepening existent 
collaborations and encouraging researchers from additional countries to enter this 
endeavor. A selection of contributions discussed during the Research Forum could 
also yield specific publications on the theme.


