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The purpose of this report is to investigate the range of student responses 
in three domains - hypothesizing, organizing data, and algebraic 
generalization of patterns during their work on a spreadsheet-based 
activity. In a wider context, we attempted to investigate students' utilization 
schemes of spreadsheets in their learning of introductory algebra. Twenty 
students' responses to an investigative assignment were analyzed.  The 
findings indicate a wide range of student responses.  In each of the three 
domains analyzed, most student responses fell into several clearly definable 
categories.  However, an attempt to establish a hierarchy of performance 
levels led to less clear results.

Background 
Researchers and educators suggest using various models of learning environments, 
that widen and enrich the scope of learning processes for students having differing 
mathematical abilities.  Technological tools were recognized as a particularly 
effective means to achieve this purpose (see for example, Balacheff & Kaput, 1996). 
The Compu-Math learning project created a technologically based learning 
environment, which systematically covers the entire mathematics syllabus for grades 
7-9.  As described by Hershkowitz and her colleagues (2002), this project is based on 
the following principles: 
o Investigation of open problem situations; 
o Work in small heterogeneous groups, where the problem is investigated and 

discussed;
o Consolidation of the mathematical concepts and processes, that arose in group 

work, in a whole-class discussion; 
o Investigations that utilize computerized tools to facilitate operations within and 

between various mathematical representations, to reduce the load of formal 
algorithmic work, to enable the construction of mathematical concepts and 
processes, to provide feedback to hypotheses and solution strategies, and to 
resolve a real need to explain important processes and products; 

o Interactions between students in a group or in the class as a whole, between 
students and computerized tools, and between students and the teacher; 

o Reflective actions on the learning process; 
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This report investigates the range of student responses in three domains: (1) 
hypothesizing, (2) organizing data, and (3) algebraic generalization of patterns during 
students' work in a spreadsheet based activity.  The findings address the broader issue 
of detecting the learning processes underlying introductory algebra students' 
instrumental genesis (Mariotti, 2002).  Here we attempted to describe and discuss the 
processes involving students' perception and utilization of spreadsheets as a 
technological artifact. 
Our choice of domains was guided by their importance in the process of learning 
mathematics in general, and in the context of spreadsheet-based learning of 
introductory algebra in particular, and also by their potential to characterize and 
possibly indicate levels of mathematical learning.  The importance of each of the 
three investigated domains was considered by others on various occasions: 
- Chazan and Houde (1989) and Howe and his colleagues (2000) indicate that 

students’ hypothesizing has the potential to be a source of authentic mathematical 
activity, a catalyst for meta-cognitive action, and a motivator for learning. 

- Student performance at the stage of collection and organization of data was 
investigated in particular in the domain of data analysis (Ben Zvi & Garfield, in 
press) and spreadsheet-based mathematical activities. 

- Algebraic generalization of patterns is considered central for the learning of algebra 
on the one hand, and as a source of student cognitive difficulties on the other hand 
(Kieran, 1992). 

Methodology
One of the authors (M. T.) was the teacher-researcher of a Grade 7 introductory 
algebra class consisting of 24 students.  For this particular group, all five weekly 
lessons were conducted in a computer laboratory; students had access to a computer, 
and occasionally used Excel spreadsheets as tools for mathematical work and 
documentation.  In Grades 5 and 6, the students were also occasionally engaged in 
exploratory mathematical activities that employed Excel spreadsheets.  During 
selected lessons, the teacher conducted both video and audio recordings.  The video 
recordings included the class work of one pair of students and discussions involving 
the entire class.  The audiotapes recorded the discussions of 3-4 additional pairs of 
students.  In addition, all the students were required to save their computer work on 
the net.  The data analyzed in this report is based on the data collected during one 90-
minute lesson.  The data include transcriptions of the video recording of one pair, the 
audio recordings of four pairs, and 12 spreadsheet files of all students.  Twenty 
students attended this lesson, and worked in 6 pairs, one group of three, and 5 
individuals.  The lesson analyzed here was based on an activity called Growing
Rectangles, and was conducted at an early stage of the course – three weeks after the 
beginning of the school year. 
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The activity of Growing Rectangles
The situation associated with the problem (Figure 1) presents the process of growth 
of three rectangles; students are requested to relate to the first ten years of this 
process.

Rectangle A Rectangle B Rectangle C

    .     .     . 

                      . . . 

. . .

At the end of the first year, 
its width is one unit, and it 
grows by an additional 
unit each year. 

The length of this 
rectangle is always longer 
than its width by three units. 

At the end of the first year, 
its width is one unit, and it 
grows by an additional 
unit each year. 

The length of this 
rectangle is constantly 10 
units.

At the end of the first year, 
its width is one unit, and it 
grows by an additional 
unit each year. 

The length of this 
rectangle is always twice 
the length of its width. 

At what stages of the first ten years does the area of one rectangle overtake another’s area? 

      Figure 1.  Problem situation of the Growing Rectangles.
At the initial stage, the students are required to predict (hypothesize), without 
performing any calculations or formal mathematical operations, which rectangle will 
overtake another's area, and at what stage. 
Next, the students are required to organize their data regarding the growing rectangles 
in a spreadsheet table, record the formulas used to construct their table, and compare 
(first numerically and then graphically) their findings and their predictions. 
Student responses 
Next, we will attempt to present and analyze some categories of student responses to 
this activity.  As previously mentioned, we will restrict our analysis here to three 
domains: hypothesizing, organizing data, and algebraic generalization of patterns. 
Hypothesizing (predicting results).  In this domain, we observed three categories of 
responses.
oLocal considerations. Most students sampled one or more points on the time 

sequence and drew conclusions according to their findings in these selected points.  
For example, two pairs chose to look at the fifth year (probably because of its being 
the midpoint of the given period of ten years) and realized that at this point, the 
areas of Rectangles B and C are equal.  This led them to conclude that these 
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rectangles become equal in area every five years.  They rejected this hypothesis at a 
later stage. 

oConsiderations of rate.  A few students considered the rectangles’ rate of growth.  
One pair reasoned as follows:  Rectangle B has a fixed length, and as a result, it 
cannot “win”.  Between Rectangles A and C, Rectangle C is the “winner”, since at 
each step “it grows by itself”. 

oEliminating the common variable.  One pair noticed that one side of each rectangle 
is the same at each stage and grows similarly.  As a result, they ignored the 
contribution of this side to the area, and considered only the growth process of the 
other side.  The comparison of the three corresponding sequences of lengths 
(Rectangle A - 4, 5, 6, …;  Rectangle B - 10, 10, 10, …;  Rectangle C – 2, 4, 6, …) 
led them to conclude that Rectangle C will have the largest area at the end of the process. 

Ben Zvi and Arcavi (2001) found that student analyses that are based exclusively on 
local considerations lead to poorer results, as compared to an argumentation that is 
based on global, or combined global and local considerations.  Thus, we considered 
the first category of hypothesizing to be at a lower level, in comparison to the other 
two.  We could not develop an argument with regard to the comparison of the other 
two categories.  They are both global and based on general features of a variation 
process.  One should note, however, the elegant simplicity of the third strategy. 
Organization of data.  In this activity, the students were required to use Excel in 
order to collect, organize, and analyze their data.  However, they were not instructed 
how to organize their data.  Figure 2 presents the four categories of tables observed in 
the students' work files and their corresponding frequencies. 
oSeparate tables.  Students in this category constructed three tables - one table for 

each rectangle (Figure 2a).  Each table contained four columns to describe the year 
(from 1 to 10), the rectangle’s two linear dimensions, and its corresponding area. 

oExtended table (Figure 2b).  The tables of this category contained ten columns (i.e. 
variables): the year, six columns for the linear dimensions of each rectangle, and 
three columns for the area measures.  The columns were in order either by 
rectangle (i.e. an annexation of the three separate tables previously described) or by 
variable (i.e. first, grouping together the linear dimensions of all rectangles and then, 
their area measures). 

oReduced table (Figure 2c).  These students allotted only one column for the width 
measures, since they are identical for all three rectangles.  Thus, the number of 
columns in these tables was reduced to eight. 

oMinimal table (Figure 2d).  These students noticed that the width measures are 
identical to the year number and omitted the width measures altogether.  Moreover, 
they omitted the length measures as well, and included their corresponding 
expressions directly into the area formulas of each rectangle.  Thus, the number of 
columns in this case was further reduced to four. 
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Rect. A Width Length Area Rect. B Width Length Area Rect. C Width Length Area
1 1 4 4 1 1 10 10 1 1 2 2
2 2 5 10 2 2 10 20 2 2 4 8
3 3 6 18 3 3 10 30 3 3 6 18
4 4 7 28 4 4 10 40 4 4 8 32
5 5 8 40 5 5 10 50 5 5 10 50
6 6 9 54 6 6 10 60 6 6 12 72
7 7 10 70 7 7 10 70 7 7 14 98
8 8 11 88 8 8 10 80 8 8 16 128
9 9 12 108 9 9 10 90 9 9 18 162
10 10 13 130 10 10 10 100 10 10 20 200

Year
Width 
Rect. A

Length 
Rect. A

Area
Rect. A

Width 
Rect. B

Length 
Rect. B

Area
Rect. B

Width 
Rect. C

Length 
Rect. C

Area
Rect. C

1 1 4 4 1 10 10 1 2 2
2 2 5 10 2 10 20 2 4 8
3 3 6 18 3 10 30 3 6 18
4 4 7 28 4 10 40 4 8 32
5 5 8 40 5 10 50 5 10 50
6 6 9 54 6 10 60 6 12 72
7 7 10 70 7 10 70 7 14 98
8 8 11 88 8 10 80 8 16 128
9 9 12 108 9 10 90 9 18 162
10 10 13 130 10 10 100 10 20 200

Year Width 
Length 
Rect. A

Area 
Rect. A

Length 
Rect. B

Area 
Rect. B

Length 
Rect. C

Area 
Rect. C

1 1 4 4 10 10 2 2
2 2 5 10 10 20 4 8
3 3 6 18 10 30 6 18
4 4 7 28 10 40 8 32
5 5 8 40 10 50 10 50
6 6 9 54 10 60 12 72
7 7 10 70 10 70 14 98
8 8 11 88 10 80 16 128
9 9 12 108 10 90 18 162
10 10 13 130 10 100 20 200

Year
Area 

Rect. A
Area 

Rect. B
Area 

Rect. C
1 4 10 2
2 10 20 8
3 18 30 18
4 28 40 32
5 40 50 50
6 54 60 72
7 70 70 98
8 88 80 128
9 108 90 162
10 130 100 200

(a) Separate tables (2 files) 

(b) Extended table (4 files) 

(c) Reduced table 
     (2 files) 

(d) Minimal table (4 files) 

Figure 2. Categories (and frequencies) of tables observed in student Excel work files.
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First, a distinction can be made between the construction of separate tables and the 
other categories.  Students who employed the first strategy did not consider the 
common features of the three rectangles and the task at hand.  A numerical or 
graphical comparison of several processes of variation requires either a common 
table or a common graph.  An analysis of the other three table categories led us to 
conclude that an increasing level of conciseness is related to higher level of 
reasoning.  As indicated by the findings presented in the next section, the 
construction of a compact table is related to the abilities to detect patterns and to 
express symbolically the relationships involved in this particular problem situation. 

Algebraic generalization of patterns.  Hershkowitz and her colleagues (2002) 
indicate that the use of spreadsheets to investigate processes of variation enables 
students to use spontaneously algebraic expressions. Spreadsheet users employ 
formulas (expressed in spreadsheet syntax) as a natural means to construct extensive 
numerical tables and then, possibly to plot graphs.  In our case, after three weeks of 
learning algebra, all students, with one exception, were able to write and then copy 
(“drag”) spreadsheet formulas, to obtain the necessary numerical data.  We 
investigated whether the formulas used by the students in this case have the potential 
to indicate levels of student ability to generalize algebraically.  After examining 
students’ work in this activity, we formulated the following categories: 
oOne student exclusively used numbers and showed no attempt to generalize, but 

was still able to construct a graph based on his numerical data. 
oRecursive formulas express a relationship between two consecutive numbers in a 

sequence.  Figure 3(b) presents an example of using recursive expressions for 
obtaining the dimensions of a rectangle. 

oExplicit formulas use the sequence place index as an independent variable.  In our 
case, 3 students (in 3 files) used the year number as an independent variable in their 
expressions (see Figure 3(a)). 

A B C D
1 Year Width Length Area 
2 1 =A2 =A2+3 =A2*(A2+3) 

(a) Explicit formulas. 

A B C D
1 Year Width Length Area 
2 1 4 1 =A2*B2 
3 =A2+1 =B2+1 =C2+1 =A3*B3 

(b) Mixed recursive and 
multivariate 
formulas. 

A B C D
1 Year Width Length Area 
2 1 =A2 =A2+3 =B2*C2 

(c) Mixed explicit and 
multivariate formulas. 

         Figure 3.  Algebraic generalizations. 
oMultivariate formulas use more than one variable to express a generality.  In our 

case, in 8 (out of 12) files the area of the rectangles was expressed by using the 
letters corresponding to the length, width or year columns (e.g., = B2*C2).  The 
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variables used in a multivariate formula were originally obtained by a recursive 
method or by an explicit formula (see Figures 3(b) and (c)). 

Recursive formulas can be considered to be the result of a local view of a pattern.  In 
standard algebra, recursive formulas are less effective as a tool for finding a required 
number in a sequence, or for analyzing and justifying sequence properties.  In a 
spreadsheet environment, these disadvantages are less valid and hence less obvious 
to students (or researchers).  The spreadsheets’ dragging ability allows us to obtain a 
very large quantity of numbers by using any kind of formula – including a recursive 
or a multivariate one.  Moreover, the same action of dragging enables students to 
understand the global aspects of a recursive formula.  Recursive formulas have a 
didactical advantage as well.  For example, they are easier to understand and 
produce, and sometimes their use is the only way that some complex (for example, 
exponential) functions can be introduced at an early stage. 
Multivariate formulas are also frequently considered an obstacle to students’ 
performance in algebra.  Lee (1996) states that one of the main difficulties in 
algebraic modeling is not the construction of a general expression, but the finding of 
a model that proves to be effective in the solution process.  Once again, the difficulty 
of producing an ineffective model is bypassed by the spreadsheets’ ability to accept 
and handle a considerably wider range of generalizations than with a paper-and-
pencil environment.  In a spreadsheet environment, students frequently replace a 
quantity previously expressed as an algebraic expression by a new variable.  Jensen 
and Wagner (1981) consider students’ ability to view expressions as entities a 
characteristic of algebraic expert thinking.  The contribution of this strategy to 
advance this skill needs further inquiry. 
Summary
Our analysis of student responses in this spreadsheet activity revealed a wide range 
of student responses.  Because of the variety of student responses detected in our 
findings, we concluded that a spreadsheet-based learning environment enables 
students to follow different paths of instrumental genesis, according to their algebraic 
reasoning and their perception of the employed artifact. 
In addition, we attempted to create categories of responses with regard to students’ 
ability to hypothesize, to organize data and to generalize.  In each of these three 
domains, most student responses could be categorized in several distinctive groups.  
However, an attempt to distinguish levels of performance among these categories led 
us to less clear results.  In our case, the process of hypothesizing did not require the 
employed technological tool.  As a result, we established levels of performance by an 
analysis of student mathematical reasoning. 
The activity presented here required students to organize large quantities of 
numerical data.  Spreadsheets are particularly well-suited to facilitate the 
construction of tables.  Our findings indicate that this feature enables students of all 
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levels to organize their data.  Moreover, we distinguished various levels of 
performance in this domain, based on students’ level of mathematical understanding of the task. 
With regard to students’ algebraic generalizations, we found that the spreadsheets’ 
powerful mathematical capabilities enable students to obtain the required results by 
employing strategies that are considered ineffective in a paper-and–pencil 
environment.  As a result, we could not establish a hierarchy of generalization skills 
that would be valid for both environments.  We also recommend that the effect of 
work with spreadsheets on students’ ability to generalize algebraically in both 
environments be investigated. 
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