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QUATERNIONIC CONTACT STRUCTURES

OLIVIER BIQUARD

This article is a survey on the notion of quaternionic contact structures, which I
defined in [2]. Roughly speaking, quaternionic contact structures are quaternionic
analogues of integrable CR structures.

DEFINITION AND FIRST EXAMPLES

Let X be a manifold and V' a distribution in X, so at each point z € X we have a
subspace V,, of T, X. One can define a nilpotent Lie algebra structure on V& (7, X/V,)
by

[CL, b] _ {’/TTxX/Vﬁ [CL, b] if a, b E VI,
0 otherwise,

where on the RHS we have the bracket of vector fields.

The Heisenberg algebra is defined as the vector space C™ @ R with a Lie bracket
[C™,C™] C R given by

m m m
[Z ziei, ) yiei:| =Im > Ziy;.
1 1 1

The same formula gives also the Lie bracket of the quaternionic Heisenberg algebra
H™ @ ImH.

A contact structure on X?™*! is a codimension 1 distribution V such that at each
point z the nilpotent Lie algebra V,@&T, X /V, is isomorphic to the Heisenberg algebra.
Similarly, a quaternionic contact structure on X*™*3 is concerned with a codimension
3 distribution V' such that at each point x the nilpotent Lie algebra V, & T, X/V; is
isomorphic to the quaternionic Heisenberg algebra.

There is an equivalent, more concrete, description of such distributions: there exists

a 1-form n = (11, 2, n3) with values in R?, such that V = kern and the three 2-forms
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(dn;|v) are the fundamental 2-forms of a quaternionic structure on V: this means
that there exists a metric v on V such that

(1) dnilv = v(Li+, ),

and the I; are complex structures on V satisfying the commutation relations of the
quaternions I I,I; = —1. The 1-form 7 is given only up to the action of SOz on R3
and to a conformal factor, thus we get a C'Sp,,Spi-structure on V.

Definition 1. A quaternionic contact structure on X™3 is the data of a codimen-
ston 8 distribution V, equipped with a CSp,,Spi-structure, such that the CSp,,Sp:-
structure and the contact form with values in R® satisfy the compatibility relation

()-

Let us point an important difference between contact structures and quaternionic
contact structures: a quaternionic contact structure always define a (conformal) met-
ric on the distribution, but a contact structure defines only a symplectic structure,
and one needs to choose some compatible complex structure on the distribution (that
is, a CR structure) in order to get a metric. That is why I consider quaternionic
contact structures as a quaternionic analogue of CR structures.

The sphere S¥™~! ¢ R*™ has a canonical quaternionic contact structure, defined as
follows: the flat manifold R*™ is hyperkihler with three complex structures I, I, I3
satisfying I, I,I3 = —1; then on S*™~! the contact form n with values in R? is

N = Iidr:

where 7 is the radius in R*™; the associated metric vy is the restriction to V = kern
of the standard metric.

More generally, any 3-Sasakian manifold has a canonical quaternionic contact struc-
ture; as we shall see later, this is a very special case, since 3-Sasakian manifolds are
rigid [3], but quaternionic contact structures come in infinite dimensional families.

CONFORMAL INFINITIES OF EINSTEIN METRICS

Submanifolds of complex manifolds are integrable CR manifolds. The example of
Sim=1 ¢ R*" could suggest the same for quaternionic contact structures, but this
is actually not true. A better interpretation of this example is to see S**~! as the
boundary at infinity of the quaternionic hyperbolic space HH™. If we pick up a point
* in HH™, we may identify HH™ — {+} = R’ x $*""!, and the hyperbolic metric
can be written as

g = dr? + sinh®(2r)# + sinh?(47)n?,
where 7 is the extension of 7 to the whole T'S*™ ! by 0 on the fibers of the map
53 y S4m—1

|

HPm—l
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At infinity, we recover v as

v = lm e glpyxs,;
note that this limit is infinite, except on V = kern; so from this point of view, we
should consider v as a Carnot-Carathéodory metric, that is a metric which is infinite
outside some distribution whose brackets generate the whole tangent space. Also,

the change of base point * induces a conformal change on the limit, so that only the
conformal class [] of v is defined: we call it the conformal infinity of g.

The first motivation for studying quaternionic contact structures is the following
result on Einstein deformations of HH™.

Theorem 2. If a quaternionic contact structure (V,v) on S*™=! is close enough to
the standard one, then it is the conformal infinity of a complete Finstein metric g.

More precisely, g has conformal infinity [y] means that, near infinity, one has

g~ d’f’2 _1_621",7_}_647"772'

Also, this theorem is a generalization of a theorem of Graham-Lee [7] on Einstein
deformations of real hyperbolic space; for other rank one symmetric spaces, see [2]
and the survey [1].

TWISTOR CONSTRUCTION FOR QUATERNIONIC CONTACT STRUCTURES

Recall that the twistor space of HP™ is CP?"*! with projection given in homo-
geneous coordinates by

(211 Zomyo] — [0+ J22 0 -+ 1 Zomgr + JZomeo]-
One may realize HH™ inside HP™ as
HH™ ={[g1: " gmy1l, |Q1|2 +oot |Qm\2 < \qm+1|2}

and its twistor space T(HH™) is a domain in CP?™*!:
THH™) = {[z1 -+ 2 zomy], |21 + -+ [22m|* < |22m41[* + [22m42[*}-
Remark that the twistorial fibration restricts on the boundary to give

OT(HH™) C Cpm+l

|

gim-t C HP™

So we see that the sphere S*™~! has some kind of twistor space which is a real
hypersurface in CP?™*!. This generalizes to quaternionic contact structures in the
following way.
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Theorem 3. If X*™! has a quaternionic contact structure, with 4m — 1 > 7, then
there is a twistor space T*™ 1 with a projection

CP! — > T

};

such that
(i) T has an integrable CR structure, and the fibers of m are holomorphic;
(11) T has a holomorphic contact structure, orthogonal to the fibers;
(15i) T has a real structure compatible with the other structures.

One should precise what a holomorphic contact structure is for an integrable CR
manifold M*™+1: consider the bundle T"M = TcM/T%' M, which can be identified
with 7% M @ CR for some choice of a Reeb vector field R. When M is the boundary
of a complex manifold, 7'M is the restriction of the holomorphic tangent bundle to
the boundary. In general, it has a canonical holomorphic structure defined by

XeT""M, oce€TM, Oxo=|[X,0l;

this is well defined because of the integrability condition [T%!, T%!] ¢ T%!. Now a
holomorphic contact structure is a codimension 1 holomorphic distribution of 7'M,
given locally by a complex 1-form 7° such that dn° is (complex) symplectic on the
distribution.

This theorem generalizes a twistorial construction of LeBrun [11] for conformal
3-dimensional metrics. It is probable that, as in dimension 3, the converse of the
theorem holds, that is a fibration by CP'’s satisfying the three conditions of the the-
orem is a twistor space of a quaternionic contact structure, but I have not completely
checked this statement.

Let us now give an idea of the proof of theorem 3. In the construction of the twistor
space of a conformal 3-dimensional metric, or in Salamon’s construction [13] of the
twistor space of a quaternionic-Kéahler manifold, one uses the Levi-Civita connection
to define a horizontal subspace for the fibration, and then the complex structure. In
the case of a quaternionic contact structure, there is a priori no canonical connection;
fortunately, the following theorem provides a connection, which is analogous to the
Tanaka-Webster connection [15] in CR geometry.

Theorem 4. If X*™~! (for 4m — 1 > 7) has a quaternionic contact structure V,
with a choice of metric v on V in the conformal class, then there exrists a unique
connection V on X and a unique supplementary subspace W of V in T X, such that

(i) V preserves the decomposition V& W and the metric;

(it) for A,B €V, one has TY p = —[A, Blw;

(iii) V preserves the Spy,—1Spy-structure on V;

(iv) for R € W, the endomorphism - — (Tg.)v of V lies in the orthogonal of

5p1 @ 5pm;
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(v) the connection on W is induced by the natural identification of W with the
subspace sp, of the endomorphisms of V.

This theorem shows us that quaternionic contact structures, in dimension greater
than 7, have some kind of integrability hidden in the definition, which enables to
construct a natural connection preserving the Sp,,_1Spi-structure. This is why they
are the quaternionic analogue of integrable CR structures. But in dimension 7 (see
also below), some integrability condition probably remains to understand.

Given the connection of theorem 4, one can construct the CR structure on the
twistor space in the usual way, but then integrability is a difficult task, because
the connection has nonzero torsion, so one has to prove some complicated algebraic
identities on torsion, in order to get theorem 3.

Now, we outline some steps for the proof of theorem 4. In particular, we want to
explain what does not work in dimension 7. The main issue is to understand the
derivation V4 on V for A € V; this part of the connection and the supplementary
subspace W are characterized by properties (i), (ii) and (iii): given some W, the
properties (i) and (ii) define a unique connection on V' along V; property (iii) can
be expressed saying that the fundamental 4-form Q = 37°(dn;|y)? is parallel; the
method consists in decomposing V{2 in irreducible components under the action of
SPm_15p1 (see the book [14]): some components vanish because €2, from its definition,

is somehow closed, and the remaining obstructions correspond exactly to fixing a
choice of W.

The proof does not work for dimension 7 because V is then 4-dimensional and
condition (iii) becomes empty; instead of a condition on the connection, one rather
needs some kind of selfduality condition on the curvature, but I have not done that.

One interesting point is that the supplementary subspace W can be described
explicitly: choose 1-forms (11,72, 73), then W is generated by vector fields Ry, Ry, R3
such that

(1) n:(R;) = 6ij,  (ir;dmi)|v = 0.

The space generated by such R, Ry, R3 a priori depends on the action of SO3 on the
1-forms; actually, it is fixed, and one has the stronger identity

(ir;dn; + ig;dmi)|v = 0;
this property together with () is invariant under SOj.

More generally, our quaternionic contact structures, after a choice of conformal fac-
tor, fit in the theory of Carnot-Carathéodory metrics with strong bracket generating
hypothesis (see [8]), and this could lead to a slightly different proof of theorem 4: the
supplementary subspace defined by (1) enables to define a metric on the whole tangent
space; this metric becomes canonical after averaging over SOj3, and the orthogonal of
V' furnishes the canonical supplementary subspace W it remains to verify that the
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connection satisfying (i) and (ii) also satisfies the integrability (iii). This approach
could be interesting in order to understand the case of dimension 7.

CONSTRUCTION OF QUATERNIONIC—KAHLER METRICS

Theorem 5. If X*™ 1 (for 4m — 1 > 7) has a real analytic quaternionic contact

structure, then it is the conformal infinity of a unique quaternionic-Kdhler metric
defined in a neighborhood of X .

Here are some comments on this theorem:

1. This theorem is the natural generalization to higher dimension of LeBrun’s theo-
rem [10] on filling of 3-dimensional real analytic conformal manifolds by selfdual
Einstein metrics.

2. The theorem remains true in dimension 7, under the additional assumption of the
existence of the twistor space of X. More generally, quaternionic contact struc-
tures in dimension 7 could be related to “symplectic quaternionic structures”
in dimension 8, that is SpySpi-structures such that the fundamental 4-form is
closed.

3. LeBrun [9] has constructed an infinite dimensional family of complete quater-
nionic-Kahler deformations of HH™; as we shall see below, these metrics have
conformal infinities which are quaternionic contact structures, so the uniqueness
statement implies that they coincide with the metric constructed by the theorem.
Also, they provide an infinite dimensional family of examples of quaternionic
contact structures.

4. Under the assumption of theorem 2, the quaternionic-Kéahler metric usually does
not coincide with the Einstein metric; instead, the quaternionic-Kahler metric
gives a high order approximation of the Einstein metric at infinity. Obviously, an
interesting problem is to understand which quaternionic contact structures can
be filled by complete quaternionic-Kéahler metrics (this problem is also unsolved
for conformal metrics in dimension 3).

The basic construction in the proof of this theorem is the following. One has the

twistor fibration
CP! — 5 T

)l;

with the connection V; at least locally, one may complexify X as X© and extend the
fibration T as a holomorphic fibration U on X©,

CP! — U

|7

XC
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The complex dimension of U if 4m; the connection V extends to a connection on U
and the CR structure on 7T induces a complex endomorphism J with J2 = —1 on a
(4m — 1)-dimensional distribution. Now one considers the distribution F' which is a
subspace of the horizontal distribution Hor" of V:

F = T})’l N HorV.

One can see that F' is actually a (2m — 1)-dimensional holomorphic integrable distri-
bution, so there is a (2m+ 1)-dimensional space of leaves N, which will be the twistor
space of the manifold M that we want to construct.

In dimension 3, remark that U is the bundle of null directions in 7X€ and the
leaves of the foliation are null geodesics, so one recovers LeBrun’s construction.

The space U has two projections

U 214 N

d
XC

for v € X€, C, = q(p~'(z)) is a holomorphic line in N, with normal bundle O(1) ®
C?™_ so the space M© of deformations of these lines is 4m-dimensional, when X€ is
only a (4m—1)-dimensional submanifold; also, NV has a holomorphic contact structure,
and C, is transverse to the contact distribution except for z € X©; this kind of
situation is analyzed in a general context in the following proposition, from which the
theorem follows.

Proposition 6. Suppose that N is a (2m + 1)-dimensional complex manifold, with
(i) a holomorphic contact structure;
(i3) a family MC of holomorphic lines (Cy,)men with normal bundle O(1) ® C?™,
such that C,, is transverse to the contact distribution except on a hypersurface S€;
(11i) a real structure, compatible with the other structures;
then N 1s the tunstor space of a quaternionic-Kahler metric on M — S, with conformal
infinity a quaternionic contact structure on S; the twistor space of this quaternionic
contact structure is N|g.

EXPLICIT EXAMPLES

From theorem 5 and the quotient construction for quaternionic-Kahler metrics
[4, 6], one may deduce that there is a quotient construction for groups acting on
quaternionic contact structures. Actually, some known quotients of the quaternionic
hyperbolic space by Hitchin and Galicki have a counterpart on their conformal infini-
ties, as I shall now explain.
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The isometry group of HH? is Spy; there is an action of R on HH? by

eZZ‘

cosh(¢x) sinh(lx) € Sp1 x SO11 C Spa
sinh(¢x) cosh(lx)

and the quotient is Pedersen’s selfdual Einstein metric [12] on the 4-ball, with con-
formal infinity the Berger sphere. This means that the quotient of S7 by this action
is the 3-sphere with the Berger metric. Note that the action on S” preserves the
quaternionic contact structure, not the metric.

This example can be generalized to quotients of HH™ by subgroups of Spy, 1, see
[5]; at infinity, this gives quotients of S*™! by subgroups of Sp, 1, some of which
could probably be made explicit.
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