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ABSTRACT. A smooth hyper Kihler quotient of a quaternionic vector space HY
by a subtorus of TV is called a toric hyperKiler manifold. We determine the ring
structure of the integral equivariant cohomology of a toric hyperKailer manifold.

1. INTRODUCTION

The topology of symplectic quotients has been studied intensively for recent two
decades, using Morse theory and equivariant cohomology theory [Ki][JK]. However,
the topology of hyperKahler quotients has not been studied well. In this note we
study the topology of smooth hyperKéhler quotients of a quaternionic vector space
HY by subtori of 7%, which we call toric hyperKahler manifolds. Originally Bielawski
and Dancer introduced and studied toric hyperKéhler manifolds in [BD], being influ-
enced by [D], [A] and [Gu]. Especially they computed their Betti numbers. In [Ko| we
determined the ring structure of the integral cohomology of toric hyperKahler mani-
folds. In this note we show that the method in [Ko] is enough to compute the integral
equivariant cohomology rings. Since the topology of toric hyperKahler manifolds de-
pends only on the subtori of TV, we describe the ring structures of thier equivariant
cohomology in terms of the subtori (Teorem 2.4). We also describe them in terms of
the arrangement of hyperplanes which were associated to toric hyperKéhler manifolds
(Theorem 2.6).

In section 2 we review some basic properties of toric hyperKahler manifolds and
state our main results. In section 3 we prove them.
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2. MAIN RESULTS

First let us recall the hyperKihler structure on a quaternionic vector space HY.
Let {1, 1,15, I3} be the standard basis of H. We define three complex structures on
HY by the multiplication of I, I, I3 from the left respectively. We fix the iden-
tification 7: HY — CV¥ x C¥ by i(§) = (z,w), where £ = (&,...,&y) € HY,
z=(z1,...,2n),w = (wy,...,wy) € CY and §; = zj + w;lp for j =1,..., N,

The real torus TV = {a = (ay,...,ayn) € CV||o;| = 1} acts on HY by

(z,w)a = (za, wa™).

This action preserves the hyperKahler structure. Let Expyn: t¥ — TV be the ex-
ponential map and {Xi,..., Xy} C V¥ be the basis satisfying Expy~ (Zfil a; X;) =
(e2mVTar  e2mVoTan) ¢ TN We define {us,...,uy} C (t¥)* to be the dual basis
of {X1,..., Xy} Ct". Then the hyperKahler moment map

prn = (N 1, BN 2, PN 3) HY - (t")* @ R?,
is given by
N

prn 1 (2, w) = WZ(M‘Z — |wil*)u;

i=1
N

(v o+ V—=1pry 3)(2,w) = =21V -1 Z Z; Wil
i=1

Let K be a subtorus of TV with the Lie algebra & C tV. Then we have the
torus 7" = TV /K and its Lie algebra ¢t = ¢V /k. We also have the following exact
sequences.

0 — k& — VN 5 m — 0

0 «— kK <& (V) & (1) «— 0
We remark that some 7(X;) may be zero and some ¢*u; may be zero. Since the
torus K acts on HY preserving its hyperKéhler structure, we obtain the hyperKéhler
moment map

pr = (0 ®id) o ppn: HY — k* @ R3.

Now we define a toric hyperKahler manifold.
Definition If v € k* ® R3 is a regular value of the hyperKéhler moment map px and
if the action of K on ,u;(l(y) is free, we call the hyperKahler quotient

X(v) = pg' (v)/K

a toric hyperKahler manifold. [
In fact X (v) is a 4n dimensional hyperKéahler manifold. The torus 7™ = TV /K acts
on X (v), preserving its hyperKéahler structure.
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In [Ko| we discussed when the hyperKahler quotient becomes a toric hyperKéhler
manifold as follows.

Lemma 2.1. Fiz an element v = (v1,vs,v3) € k* @ R3. Then the following (1) and
(2) are equivalent.

(1) v € k* ® R? is a regqular value of the hyperKihler moment map jig .

(2) For any J C {1,...,N}, whose number #.J is less than dimk = N —n, vy, 1,
and v3 are not simultaneously contained in the subspace of k* which is spanned by
{uslj € I},

Lemma 2.2. Let v € k* @ R? be a regular value of the hyperKdihler moment map
tx. Then the following (1) and (2) are equivalent.

(1) The action of K on ug'(v) is free.

(2) For any J C {1,...,N} such that {t*u;|j € J} forms a basis of k*

ty =kz + Z ZX; as aZ-module.
jede
These lemmas lead the following property of a toric hyperKahler manifold, which
was originally proved by [BD].

Proposition 2.3. Let X (v) be a toric hyperKdihler manifold. Then its diffeomor-
phism type is independent of the choice of v.

Next we construct line bundles L; on a toric hyperKéhler manifold X (v) for i =
1,...,N. Let x;: TV — S' be a character defined by x;(a) = ;. Define the action
of TV on ug'(v) x C by

((z,w),v)a = ((za, wa™), vx;()).

This action induces a T"-equivariant line bundle L; = (ux'(v) x C)/K on X (v).

Let ET™ — BT™ be a universal T"-bundle. Then we define the homotopy quotient
of a T"-space M by Mpn = (ET™ x M)/T". The equivariant cohomology H}..(M;Z)
is by definition H*(Mpn;Z). The T"-equivariant line bundle L; on X (v) induces
a line bundle £; on X (v)r=. The equivariant first Chern class of L; is defined by
c1(L;) € Hin(X(v); Z).

Now we can state main result of this paper, which determines the ring structure of
the integral equivariant cohomology of X (v).

Theorem 2.4. Let X (v) be a toric hyperKdhler manifold and
U: Zluy,...,uy] = H (X (v); Z)

be a ring homomorphism, which is defined by V(u;) = ¢1(L;). Then the following
holds.

(1) The map V is a surjective ring homomorphism.

(2) Let I be the ideal generated by all [, . ui for SN a:X; € k\{0}. ThenI =
ker 0.
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Example Let 7: t° — t3 be a map such that

1. {7 (X1),7(Xs),m(X3)} forms a basis of 3

2. ’7T(X4) = —7T(X1) - 7T(X2)

3. m(X;5) = —7m(Xy) — 7(X3).
Then we have a toric hyperKéhler manifold X (v) for v € k* ® R? satisfying the
condition mentioned above. Since k is spanned by

{Xi1+Xo+ X4, Xi + X3+ X5},
there are 4 types of elements in & as follows:

X1+ Xo + Xy, X1 + Xg + X5, Xo — X3+ Xy — X,
5
ZaiXiWhere a; #0fori=1,...,5.
i=1
Therefore Theorem 2.4 implies
;3(X(V)’ Z) = Z[u17 SRR U5]/I,

where the ideal I is generated by {ujusuy, uiusus, usuzugus}. O

It is worth mentioning the results in [Ko] here. Let p: X(v)r» — BT™ be the
natural projection. If we fix x € BT™, then we can identify the fiber F, = p~'(z)
with X (v) and the ristriction of £; to Fj is isomorphic to L;. If we denote the
embedding of F into X (v)r=» by i: Fy — X ()=, then we have the map

O =7"oVU: Zuy,...,un| > H(X(v); Z).

Then we proved the following theorem in [Ko], which determines the structure of the
integral cohomology ring of X (v).

Theorem 2.5. The map ® is a surjective ring homomorphism. Moreover ker ® is
generated by ker U and 7 ((t*)*) N ON | Zu,.

Next we give another description of the ideal I in Theorem 2.4. We assume that
X (v) is a toric hyperKéhler manifold with v = (11,0, 0) € k* @ R3. We fix an element
h € (tV)* such that t*h = v;. Since every toric hyperKéhler manifold X (') can be
deformed to X (v) with v = (v1,0,0) € k* ® R3, this assumption does not lose any
generality.

We associate an arragement of hyperplanes Fj,...,Fy in (t")* to a toric hy-
perKihler manifold X (v) with v = (v,0,0) € k* @ R? by

Fi={pe({")(m"p+h,X;) =0} fori=1,...,N.

We note that F; = () in ths case 7(X;) = 0, because v = (v1,0,0) is a regular value
of px. We also note that the above arrangement of hyperplanes is determond by
v = (v1,0,0) up to parallel translation.

Then we have the following theorem.
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Theorem 2.6. Let X (v) be a toric hyperKdhler manifold with v = (v1,0,0). Let
I C Zuy,...,uy| be the ideal in Theorem 2.4 and I' C Z[uy,...,uy| be the ideal
generated by all [[,cqu; for 0#£S8 c{l,...,N} such that ﬂjeS F; = 0. Then we
have I =1I'.

Since this theorem is essentially proved in [Ko|, we omit it.

3. PROOF OF THEOREM 2.4

In this section we prove Theorem 2.4. We prove it by induction on N.

First we prove the theorem for N = 1. In this case we have k = {0} or k = ¢'.

Soppose k = {0}. In this case X (v) is H with S'-action. So we have H%, (X (v); Z) &
H,i (point; Z), which is generated by W(u;). Therefore W is surjective and ker ¥ =
{0}. On the other hand, since k¥ = {0}, we have I = {0}. So in this case Theorem
2.4 is true.

Suppose k = t'. Tt is easy to see that the hyperKihler quotient X (v) is a point
without torus action. So we have ker ¥ = (u;). On the other hand, since X; € k, we
have I = (u;). So in this case Theorem 2.4 is true. Thus we proved Theorem 2.4 for
N =1.

From now on we assume that Theorem 2.4 is true up to N — 1. So we prove the
theorem for N.

We begin with a few remarks.

Suppose that t*uy = 0, that is, k¥ C t¥~1 = "V 'RX;. In this case the action
of K preserves the product structure HY~! x H, where H = {(zx,wy)}. Moreover
K acts on H trivially. Therefore the hyperKahler quotient X (v) of HY by K is a
product of the hyperKéhler quotient X(1)(vY)) of H¥~! by K and H itself. Here
we note that X (v) is a T"-space, X(;)(¥™V) is a T* ! = TN "!/K-space and H is a
Sl-space, where S! is the group with the Lie algebra Rm(Xy). Let I; be the ideal and
Wy Zlug, ..., un—1] = Hin_i(Xa)(¥V); Z) be the map in Theorem 2.4 for X(;)(v™).
Since X (v)7= is homotopy equivalent to X(1)(¥") -1 x Hg1, Hi (H; Z) = Z]uy] and
U, is surjective, we see that W is surjective and ker W is generated by ker ;. On the
other hand, since k C t"~!, we see that I is generated by I;. By the assumption of
the induction we have ker ¥ = [. That is, Theorem 2.4 is true in this case.

Suppose that 7(Xy) = 0, that is, Xy € k. In this case the Lie algebra k is
decomposed into the direct sum k& = ky @ RXy, where ky = kN ZZZ\SI RX,. Let
K, be the corresponding Lie group to ks. Then the hyperKéhler quotient X (v)
of HY by K is just the hyperKihler quotient X(5)(¥®) of HV-! by K,. Here
we note that both X (v) and X (v?) are T"-spaces. Let I, be the ideal and
Uy Zlui, ..., un—1] = H*(X2)(¥?);Z) be the map in Theorem 2.4 for X (v?).
Since X (v)rn = X (¥@)r and ¥, is surjective, we see that W is surjective and
ker ¥ is generated by ker U5 and uy. On the other hand, since £ = ky & RXy, we
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see that the ideal I is generated by I, and uy. By the assumption of the induction
we have ker W = I. That is, Theorem 2.4 is true in this case.

JFrom now on we assume that we have a fixed toric hyperKéhler manifold X (v) with
m(X;) # 0,¢*u; # 0 for any i = 1,..., N. We may also assume that v = (v,0,0) €
k* @ R3. We fix h € (t")* such that :*» = v;. Then we have an arrangement of
hyperplanes Fi, ..., Fy in (t")*.

To proceed the induction argument, we will recover the equivariant cohomology
ring of X (v) from the equivariant cohomology rings of X(1)(v™") and X()(v?),
whose associated arrangements of hyperplanes are Fy N Fy,...,Fy_1 N Fy in Fy
and Fy,...,Fy_q in (t")* respectively. In [BD] Bielawski and Dancer computed the
Betti numbers of X (v) from the information of X1y (v(")) and X (v?) by Mayer-
Vietoris argument. Since we study the ring structure of the equivariant cohomology,
we need futher argument as we explain below.

We begin with constructing X(;)(v()). Let p: t¥ — ¢¥ 1 be the projection such
that p(X;) = X; fori =1,...,N —1 and p(Xx) = 0. Since 7(Xy) # 0, we have an
isomorphism p|: k — ki, where k1 = p(k). Then we have the following diagrams.

0 — E— N I om0
Pl 4 pl P

L1 ™1

0 — bk — tV-1 2 ¢l — 0

* *

0 +— od— (V) &= (M) «— 0
(ple)* T ) P ) T
0 «— ko« (VU &L @m )t «— 0

Since (p|x)*: kt — k* is an isomorphism, there exists 1" € k% uniquely such that

(p\k)*(up)) = 1. Let K; be the torus corresponding to k1. Then the action of K; on
N—1 . .-
H gives the hyperKahler moment map

s HY ' = k" @ R3.

We set vt = (yf1 ,0,0). In [Ko] we showed the following.
Claim 1 ( ) Xy(v) = pgt W) /Ky is a toric hyperKdihler manifold with T™ -
action.

(2) X1)(vW) is a hyperKihler submanifold of X (v), which is preserved by T"-action.
(3) We can identify (t")* with Fx C (t")* naturally. Moreover under this identifica-
tion the associated arrangement of hyperplanes for X(l)(u(l)) s FiNFy,...,Fn_1NFy
m FN-
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Next we construct X (v®). Let tV=' = "V 'RX; and j: t"~' — " be the
inclusion. If we set ky = k NtV !, then we have the following diagrams.

0 — ky =25 N1
Iles 4 Jd4 N\™
0 — E = N om0
0 kp <2 N1y
(lry)* 1 VARG
0 +— o4 @Yy & (1) «— 0

We remark that 7y is surjective, because (*uy # 0, that is, ko ;Ct k. Let K5 be the
torus corresponding to ky. Then the action of Ky on HY ! gives the hyperKihler
moment map

pr,: HY ™' — k @ R3.

We set 12 = (jlk,)* 1 € k3 and v?) = (1/9, 0,0). In [Ko|] we showed the following.

Claim 2 (1) X(v®) = pgt (v?)/K; is a toric hyperKdihler manifold with T"-

action.

(2) The associated arrangement of hyperplanes for X(Q)(V(Z)) is Fi,...,Fy 1 in (t")*.
Let I;, I be the ideal in Theorem 2.4 and

Uyt Zlug, .. un—1] = Hpuo (X (0V); Z)
‘112: Z[Ul, e ,UN_l] — Hr;n(X(Q) (V(Q)), Z)

be the map in Theorem 2.4 for X(l)(y(l)) and X(z)(l/(2)) respectively. Then by the
assumption of the induction V; is surjective and ker U; = I;. Moreover X (V)= is
homotopy equivalent to X(;)(¥™")r=-1 x BS', where S' is the group with the Lie
algebra Rm(Xy). Therefore we have

Uy : Zug, .. un] = Hio (X (0W); Z2) 2 Hioy(X0)(vD); Z) @ Hia(point; Z)

and U, is surjective and ker Ty is generated by ker ¥y = [.
The following claim shows how we can recover the equivariant cohomology ring of
X (v) from the equivariant cohomology rings of X(1)(vV) and X (v?).
Claim 3 (1) HZE* (X (v);Z) = 0 for each k € Z.
(2) There exists the following short exact sequence for each k € Z.

0 — HE (X0 (W), 2) = HZE(X(v);Z) 5 HZ (X (WP);Z) — 0

(3) 6(‘111(f(’u,1, SRR uN)) = \Il(f(ula R uN)U’N) fOT f € Z[ula s ,U'N]‘
(4) r(¥(g(u1,-..,un)) = Yo(g(u1,...,un—-1,0)) for g € Zu,...,un].
Proof We have fixed h € (tV)* and v; = (*h. In Claim 1 and Claim 2 we only
assumed that v = (v,0,0) € k* ® R? is a regular value of pux. Now we can choose
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h and vy = (*h such that all vertices (), F; for S C {1,..., N} with #S = n are
contained in {p € (t")*|{m*p + h, Xn) > 0}. We set
U() = {p € (tn)*‘<7l'*p+ h,XN> = 0} = FN
Ur={pe (") |(n"p+h, Xn) > 0}
Upy={pe (") (m"p+ h,Xn) >0}
Vi = wrh (U (), (7)) for i = 0,1,2
Vi = ppa (U, 0,0) fori=0,1,2,
where uz»: X(v) — (t")* ® R3? is a hyperKahler moment map for the action of T™"
on X (v).
Now we consider the cohomology exact sequence for (X (v), V).
— Hp (X (v), V53 Z) — Hpu (X (v); Z) — Hpw (Vo Z) — Hit (X (0), Vo3 Z) —
In [BD] it was shown that V5 is T™-equivariant homotopy equivalent to Xy v®).
Therefore we have
Hiw (Vo Z) 2 Hyn (X () (v®); Z).
By the same argument we also showed in [Ko] that (V7,V3) is a T™-equivariant

deformation retract of (X (v),V,). Moreover the neighbourhood W of V4 in Vi can
be identified with the neighborhood of V4 in E = Ly|y, by the T"-equivariant map
1: W — E, which is defined by

i([z1, w1,y 2N -1, WN_1, 2N, 0]) = [(21, w1, . . .,zN,l,wN,l,0,0),ZN62”‘/__1¢(Z””)],

where [...] denotes equivalence class. If [z, w] € Vi, then z;w; =0fori=1,...,N—1
and wy = 0. Moreover Vj is defined by the equation zy = 0 in Vi. So we have

Hpw(X (v), Vo Z) & Hp(Vi, Vo Z) 2 Hp (B, E\ V3 Z).
Vb 1s not smooth, but it is a T"—equNivariant deformation retract of X (1)(1/(1)). More-
over E = Ly|y, is the ristriction of E = LN|X(1)(,,(1)). Therefore we have
H(E,E\ Vi Z) = Hy (B, E\ Xy (vV); Z) = HL2(X oy (vV); 2),
where the second isomorphism is Thom isomorphism. Thus we have
Hpw(X (v), Vo Z) & Hp (X (00); Z).
Moreover by the assumption of the induction we have
H2E (X 0y (V) Z) 2 HPE (X () (vP); Z) 2 0.

Therefore we proved the claim. [
Now we prove the first part of Theorem 2.4.
Claim 4 ¥ s surjective.
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Proof Fix any a € H?: (X (v); Z). Since U, is surjective, there exists
f € Z]uy, ..., uy_1] such that
r(a) = Yo f(ur,. .., un—1)) = r(¥(f(u1,...,un-1)))
Since a — U(f(u1,...,un—1)) € kerr, there exists b € Hre?(X(1)(v™); Z) such that
e(d) =a—V(f(ug,...,un_1)).
Since U, is surjective, there exists g € Z[uy, ..., uy] such that

b=V (g(u,...,ux)).

Thus we have

a=Y(f(ur,...,un 1))+ e(b)

= \Il(f(ul, ceay uN—l)) + e(lIll(g(ul, e ,’U,N)))
=U(f(uy,...,un 1)+ g(ug,...,uny)uy). O
Finally we show the second part of Theorem 2.4.
Claim 5 I = ker V.
Proof First we show I C ker ¥. To do this, we show that all generators of I belong
to ker W. Take () # S C {1,..., N} such that ;s F; = 0. According to Theorem
2.6, it is sufficient to show [[, g u; € ker 0.
Suppose N € S. Since (\;cq\ vy (F5 N Fn) = jes £ = 0, according to Claim 1
and Theorem 2.6, we have

H Uj € I; = ker ¥, Cker\il.
JES\{N}
Therefore, according to Claim 3, we have
U([[w)=e@( ] w)=o0
jes JES\{N}

Thus we proved [];.gu; € ker ¥ in the case N € S. Here we used the assumption
7(Xn) # 0. However we have assumed 7(X;) # 0 for any i. So we use the same
argument in the case ¢ € S. Thus we proved I C ker V.

Next we show ker W C I. For f(u1,...,uy) € ker ¥ we have to show f € I. First
we rewrite

flug, - un) = gi(u, - unv—1) + g2(us, - un)un.
Since
0= T(‘Il(f(ula R UN))) = \1]2(91(@[,1’ R U’Nfl))a

we have that gi(uy,...,un_1) € kerWy = I,. Since Iy C I C ker ¥, we have
g2(u1, ..., un)uy € ker U. We have to show go(u1, ..., un)uy € I.
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Since
0= ‘I’(92(U1; e ,UN)UN) = 6(‘1’1(92(’“1; Sy UN)))
and e is injective, we have gs(uy,...,un) € ker E!l = [ Z[uy]. According to Claim
1 and Theorem 2.6, we have [juy C I. So we have gs(u1,...,un)uy € I. Thus we

proved ker W C I. So we finish the proof of Claim 5. [
Thus we finish the proof of Theorem 2.4.
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