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ABSTRACT. It is well-known that all geodesics in a Riemannian symmetric space
of rank one are congruent each other under the action of isometry group. In this
paper we are interested in circles in a quaternionic projective space QP™. Recently
we have known that each circle in QP™ is congruent to a circle in CP™ which is a
totally geodesic submanifold of QP™. This fact leads us to the study about circles
in CP™.

1. INTRODUCTION

A smooth curve v : R — M parametrized by its arclength s in a complete Rie-
mannian manifold M is called a circle of curvature k(= 0), if there exists a field of
unit vectors Y; along the curve satisfying the following equations: V;y = kY and
VY, = —k7, where k is a non-negative constant and V; denotes the covariant dif-
ferentiation along y with respect to the Riemannian connection V of M. A circle of
null curvature is nothing but a geodesic. For given a point z € M, orthonormal pair
of vectors u,v € T, M and for given each positive constant x, we have a unique circle
v = 7(s) of curvature x satisfying the initial condition that y(0) = z, ¥(0) = u and
(V49)(0) = kv. It is known that in a complete Riemannian manifold every circle can
be defined for —oo < s < 0o (cf. [N]).

In general, a circle in a Riemannian manifold is not closed. Here, a curve y = v(s)
is said to be closed if there exists a positive so with (s + so) = y(s) for every s. For
a circle vy, the definition of closedness of v can be rewritten as follows: A circle y is
said to be closed if there exists a positive sq with

7(s0) = 7(0), ¥(s0) =74(0) and (Vs9)(s0) = (V457)(0).
Of course, any circles of positive curvature in Euclidean n-space R™ are closed. And
also any circles in Euclidean n-sphere S™(c) are closed. But in a real hyperbolic space
n-space H"(c), there exist many open circles. In fact, a circle of curvature & is closed
if and only if k > +/]c| (see [C]).
In this paper we make mention of length of circles. For a closed curve -, we call

the minimum positive constant sq with the condition (s + sq) = 7(s) for every s its
253
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length, and denote by Length(v). For an open circle, a circle which is not closed, we
put its length as Length(y) = oc. In order to get rid of the influence of the action
of the full isometry group, we shall consider the moduli space of circles under the
action of isometries. We say that two circles 7, and 7, are congruent each other if
there exist an isometry ¢ and a constant s; with y2(s) = ¢ o y1(s + s1) for each s.
The moduli space Cir(M) of circles is the quotient space of the set of all circles in
M under this congruence relation. The length spectrum of circles in M is the map
£: Cir(M) - RU {oo} defined by £(]y]) = Length(v). Sometimes we also call the
image LSpec(M) = £(Cir(M)) NR in the real line the lenth spectrum of circles on
M.

In a real space form M™(c)(= S™(c), R" or H"(c)) of constant sectional curvature c,
circles are well-understood. In these spaces, two circles are congruent each other if and
only if they have the same curvature. If the curvature of a circle is x, then its length

is \/% in S"(c), 2 in R" and \/'f,%c when k > 4/|c| in H"(c). Therefore length

spectrum of these spaces are LSpec(S™(c)) = (O, %], LSpec(R™) = LSpec(H"(c)) =

(0,00). So we treat an n-dimensional complex projective space CP™(c) of constant
holomorphic sectional curvature ¢ and a quaternionic projective space QP™(c) of
constant quaternionic sectional curvature c as model spaces. We are particularly
interested in the following problem:

Problem In a complex projective space CP™(c) (resp. a quaternionic projective
space QP"(c)), for each positive ¢ does there exist a unique closed circle v whose
length is £ up to an isometry of CP"(c) (resp. QP"(c))?

In order to give an answer to this problem, we shall study the length spectrum of
circles in CP™(c) in detail (see section 4).

2. CONGRUENCE THEOREM FOR CIRCLES

In order to state the congruence theorem for circles in a complex projective space,
we introduce an important invariant for circles in a K&hler manifold. Let (M, J) be
a Kéhler manifold with complex structure J. For a circle v = y(s) in M satisfying
the equations V% = kY, and V;Y, = —k7, we call 7 = (¥, JY;) its complez torsion.
The complex torsion 7 is constant along ~. Indeed,

Vi1, JYs) = (Vi, JY) + (7, V5 Y5)
=k (Y, JYs) — k- (1, J9) = 0.

Clearly it satisfies |7| £ 1. We denote by M, (c) an n-dimensional complete simply
connected complex space form of constant holomorphic sectional curvature c. It is
well-known that any isometry ¢ of a non-flat complex space form M, (c)(= CP™(c)
or CH"(c)) is holomorphic or anti-holomorphic. The congruence theorem for circles
in M,(c), ¢# 0 is stated as follows (see Theorem 5.1 in [MO]):
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Proposition 2.1. Two circles in a non-flat complex space form M, (c) are congruent if
and only if they have the same curvatures and the same absolute values of complex
torsions.

For a circle 7 in a quaternionic Kahler manifold (M, {I, J, K}) with quaternionic
Kahler structure {1, J, K}, the corresponding invariant structure torsion 7 is defined
by

T = /{3, 1Y) + (4, JY;)2 + (¥, KY;)2.

On a quaternionic projective space and on a quaternionic hyperbolic space, this in-
variant can be interpreted in terms of the sectional curvature Riem(¥, Y") of the plane
spanned by 4 and Y: Riem(¥,Y) = £(1 4 372), where c is the quaternionic sectional
curvature of the base manifold.

Proposition 2.2. Two circles in a quaternionic projective space or in a quaternionic
hyperbolic space are congruent if and only if they have the same curvatures and the
same structure torsions.

Since a quaternionic projective (resp. hyperbolic) space contains a complex pro-
jective (resp. hyperbolic) space as a totally geodesic submanifold, we are enough to
study circles in a complex space form (c.f. [A1]). For a circle 7y in a Cayley plane and
in a Cayley hyperbolic plane we can define its invariant by Riem(7,Y) and obtain
congruence theorem of the same type (see [MT]). In the following, we only study on
a complex projective space CP"(c). But all the results similarly hold for a quater-
nionic projective space QP™(c) of constant quaternionic sectional curvature ¢ and for
a Cayley plane of maximal sectional curvature c.

3. When is a circle closed in CP"(¢)?
We first suppose that a complex projective space CP" is furnished with the standard
metric of constant holomorphic sectional curvature 4. First of all we are devoted to

the study about circles of curvature %

Our main tool is the following parallel isometric imbedding A of S* x S"1/¢ into
CP™(4). Here the identification ¢ is defined by

d((€” ay,. .. a,)) = (=€, —ay,... . —ay),
where Ya? = 1. The isometric imbedding b : S' x S"~'/¢ — CP"(4) is defined by
L(e~20/3 4 2g,¢7/%)
V2 (o=20/3 _ g gi0/3)

3 )
h(eie; ai, ... ,CLn) = ﬂ-( %ZGQGZH/?’

),

2 0 pi0/3
Jglane

where 7 : S?**1(1) — CP™(4) is the Hopf fibration.



256 S. MAEDA AND T. ADACHI

We recall that the map A is injective and that for each geodesic v on M = S! x
S™"=1/¢ the curve h o~y is a circle of % in CP™(4) (for details, see [N]). Hence,
investigating all geodesics on M, we obtain the following theorem which gives us
information about all circles of curvature % in CP".

Theorem 2.3. For any unit vector X = au+v € T,(S' x S" 1/¢) = T, S' ®T,, 5" *
at a point x, we denote by vx the geodesic along X on S* x S"~!/¢. Then the circle
h o yx on CP™(4) satisfies the following properties:

The curvature of h o yx is 75
The complex torsion of h o yx is 40 — 3a for -1 S o < 1.

2 . .
1-a js rational.

The circle h o vy is closed if and only if either o = 0 or 4/

When a = 0, the length of the closed circle is %gw.
When o # 0 and

defined by

A

13’ 2’ is rational, we denote by % the irreducible fraction

. Then the length ¢ of a closed circle h o vx is as follows;
2v2

3|a‘7r and mw In

6. When pg is even, £ is the least common multiple of 2

particular, when o = +1, then £ = 2‘@

7 and V2

7. When pq is odd, /¢ is the least common multlple of X2 3|a| \/ﬁﬁ'

Next, we prepare the following in order to consider circles of arbitrary positive
curvature. Let N be the outward unit normal on S***1(1)(C R***? = C*"*!). We
here mix the complex structures of C**' and CP"(4). We shall study circles in
CP™(4) by making use of the Hopf fibration 7 : §?"*(1) — CP"(4). For the sake
of simplicity we identify a vector field X on CP"(4) with its horizontal lift X* on
S?+1(1). Then the relation between the Riemannian connection V of CP"(4) and

the Riemannian connection V of $2"1(1) is as follows:
VxY = VxV + (X, JY)JN

for any vector fields X and Y on CP"(4), where (, ) is the natural metric of C**!.
By using this relation we can see that for each circle v of positive curvature any
horizontal lift 4 of v in S?***1(1) is a helix in S***1(1).

Proposition 2.4. Let v denote a circle with curvature x(> 0) and complex torsion 7
in CP"(4) satisfying that V;¥ = kY, and V;Y; = —k7. Then a horizontal lift 5 of y
in $?"*1(1) is a helix of order 2,3 or 5 corresponding to 7 = 0,7 = +1 or 7 # 0, #1,
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respectively. Moreover, it satisfies the following differential equations:

([ Vii= s,
V.Y, = —k¥ +7JN,
{Vs(JN)=  —1v, +V1-127,,
ViZ, = —V1—=72JN + kW,
| VW, = —KZs,

where Z, = ———(J§ + 7Y}), W, = 15 (JY, — 7).

Note that a curve v = y(s) in CP"(4) is closed if and only if there exists a positive
constant s, such that a horizontal lift ¥ = J(s) of v in S?**1(1) satisfies (s + s,) =
¢s75(s) with some 6, € [0, 27) for every s. Then by studying a horizontal lift 7 of a
circle v in CP™(4) we establish the following.

Theorem 2.5. Let v be a circle of curvature (> 0) and of complex torsion 7 in a

complex projective space CP™(4). Then the following hold:

1. When 7 = 0, a circle 7y is a simple closed curve with length %

2
2

2. When 7 = 41, a circle 7 is a simple closed curve with length T
3. When 7 # 0, £1, we denote by a,b and d (a < b < d) the nonzero solutions for

N — (K + 1A+ kT =0.

Then we find the following:

4. If one of (hence all of) the three ratios ¢,  and ¢ is rational, then + is a simple

closed curve. Its length is the least common multiple of b2_—7ra and (f—fa.

5. If each of the three ratios ¢, g and g is irrational, then 7 is a simple open curve.

Let v be a circle of curvature k£ in a Riemannian manifold (M, g). When we
change the metric ¢ homothetically to m? - g for some positive constant m, the curve
o(s) = (L) is a circle of curvature £ in (M, m?-g). Under the operation g — m?- g,
the length of a closed curve changes to m-times of the original length. Hence, by
virtue of Theorem 3.3 we can conclude the following which is the main result in this
section.

Theorem 2.6. Let - be a circle with curvature (> 0) and with complex torsion 7
in a complex projective space CP"(c) of constant holomorphic sectional curvature c.
Then the following hold:

1. When 7 = 0, a circle v is a simple closed curve with length —-22

. . . . 4n22+c'
2. When 7 = £1, a circle 7y is a simple closed curve with length T

3. When 7 # 0, £1, we denote by a,b and d (a < b < d) the nonzero solutions for
e — (4K + )X + 2y/ckT = 0.
Then we find the following:
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4. If one of (hence all of) the three ratios 7 and 2 is rational 7y is a simple closed
curve. Its length is the least common multlple of (b ) and

da,)

5. If each of the three ratios 7, E and 4 o Is irrational, v is a simple open curve.

Remarks. A circle v = 7(s) with complex torsion 7 is a plane curve in CP"(c¢) (that
is, v is locally contained on some real 2-dimensional totally geodesic submanifold of
CP"(c)) if and only if 7 =0 or 7 = £1.
1. When 7 = 0, the circle 7 lies on RP?(£) which is a totally real totally geodesic
submanifold of CP"(c).
2. When 7 =1 or — 1, the circle 7 lies on CP!(c) which is a holomorphic totally
geodesic submanifold of CP™(c).

Circles of complex torsion +1 are called holomorphic circles, and circles of null
complex torsion are called totally real circles.

3. LENGTH SPECTRUM OF CIRCLES IN CP"(c)

In this section, we study the length spectrum of circles in CP"(c). For a spectrum
A € LSpec(M) the cardinality mjs(\) of the set £71(\) is called the multiplicity of
the length spectrum £ at A. When my,(\) = 1, we say that A is simple. For example,
every length spectrum of circles in a real space form is simple. When the multiplicity
of £ is greater than one at some point A, this means that we can find circles which
are not congruent each other but have the same length A.

Rewriting Theorem 3.1, we find the following which is our main tool in this section.

Ve

<~ and complex torsion 7 =

Proposition 3.1. In CP"(c) a circle v of curvature

3 — 403 (0 < || < 3) is closed if and only if # is rational. In this case if we

denote 4/ 3a2 =t by relatively prime positive integers p and ¢, then its length is

3/ 2(3p? + ¢?), if pq is even,
3\/57r 2(3p? +¢?),  if pq is odd.

Length(y) = {

We denote by [v, .| the congruency class of circles of curvature x and complex
torsion 7(2 0) in CP™(c). The moduli space of circles have a natural stratification
by their curvatures. We denote by Cir, (M) the moduli space of circles of curvature
k in M and by £, the restriction of £ on this space.

For a positive constant x we define a canonical transformation

@y : Cirg(CP™ (c)\{[rw1l} = Ciryae a(CP™ () \{[Vyzeanl}
by
(I)n([%,f]) = [7@/4,3\/§cm(4n2+c)—3/2]-
The following lemma guarantees that the structure of the length spectrum £, of
circles of curvature x essentially does not depend on k.
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Lemma 3.2. The canonical transformation ®, satisfies

3c
2(4K2% + ¢)

g([%s,r]) = S((Dn([%ﬁﬁ]))

for every 7 (0 S 7 < 1).

We denote by LSpec,(M) = £(Cirg(M)) N R the length spectrum of circles of
curvature x in M. This lemma yields that

27 A7
LSpec,(CP"(c)) = {\//# +c VARZ + C}

latively prime

A 32 Zpapdqarere. y.p

U 7;\{@ integers which satisfy
(462 +¢) pq is even and p > a,q > 0

ot /73])2 e p and q are relatively prime

integers which satisfy
2
3(4K% + c) pq is odd and p > «.q > 0

where o, (2 1) denotes the number with

3v/3ck 9a?2 — 1

@2 P2~ (3a2 +1)372°

Note that the constant o, satisfies

2. monotone decreasmg when 0 <
3. lim,_,0 a, = lim,_,, ), = 00.

,{<\F zf

and monotone increasing when x

Lemma 4.2 also guarantees that

LSpec(CP" () = (0, %) vl {Ip,q

p > q,p and q are relatively
prime positive integers ’

where

( \/2q (3p+q), \/9p —q?%), if pqis even,
g — . .
(3—\/5\/2(] 3p+q,3\[\/9p —¢?), if pqgis odd.

We denote by Cir™ (M) the moduli space of circles with complex torsion 7 in a Kéhler
manifold M by £7 the restriction of £ onto this space. From these expressions on
length spectrum of circles we establish the following main result.

Theorem 3.3. For a complex projective space CP™(c) (n 2 2) of constant holomorphic
sectional curvature ¢, the length spectrum of circles has the following properties.
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. Both the sets

LSpec,(CP"(c)) = £(Cir,(CP"(¢))) NR

and
LSpec” (CP™(c)) = £(Cir" (CP™(¢))) NR
are unbounded discrete subsets of R for each (> 0) and 0 < 7 < 1.

. The length spectrum LSpec(CP"(c)) of circles coincides with the real positive

line (0, 00).
. For k > 0 the bottom of LSpec,(CP™(c)) is %, which is the length of the holo-
morphic circle of curvature k. The second lowest spectrum of LSpec,(CP"(c))
4m

is W/t which is the length of the totally real circle of curvature k. They are
simple for £,.

4. The multiplicity of £ is finite at each point A € R.
5. A(€ R) is simple for £ if and only if A € ( L VA } :

Ve 3y ™

6. The multiplicity of £, (k > 0) is not uniformly bounded;

limsup #(£;"(\)) = oc.

A—00

The growth order of the multiplicity with respect to A is not so rapid. It satisfies
limy 00 A7%#(£51(N)) = 0 for arbitrary positive 4.

The statements (2) and (5) in our theorem give the complete answer to the problem
in the introduction.

Remark It follows from Proposition 4.1 that a circle of curvature

r

¥7° and complex

torsion 7 in CP"(¢) is closed if and only if

T =1(p,q) = ¢(9° — ¢*)(3p* + ¢*) 7/,

for some relatively prime positive integers p and ¢ with p > ¢q. We find that the length
spectrum £, is not simple at the following points for examples.
4

1. Let v, be a circle of curvature ‘/4—2_0 and complex torsion 7 = 7(27,7) = 5526\32@
and 2 be a circle of curvature ‘/4—27 and complex torsion 7 = 7(25,19) = 5;92\5/%.
These two closed circles have the same curvature and the same length 4—§if10187r.

But they are not congruent.
V2c

. Let ; be a circle of the same curvature ¥ and complex torsion 7; = 7(p;, ¢;), @ =

1,2,3. Here we set (p1,q1) = (129,71), (p2,q2) = (131,59) and (ps,q3) =
(135,17). Note that 3p? + ¢? = 54964 for 7 = 1,2,3. Then these three cir-
cles have the same curvature and the same length. But these three circles are
not congruent each other.
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Finally we investigate the asymptotic behaviour of the number of congruency classes
of closed circles of curvature k. Let ny(); k) denotes the number of congruency classes
of closed circles of curvature x in M with length not greater than \.

Theorem 3.4. For a complex projective space CP™(c) (n 2 2) of constant holomorphic
sectional curvature c, we have for Kk > 0

. 2
lim ’I'L(Cpn(c)(/\, l€) _ 3\/3(4/6 +C) tan_l ( 1 > 7
V3ay,

A—00 A2 84
where ay (2 1) denotes the number with

3v/3ck 904,2C —1

(4k2+¢)3/2 (302 +1)3/2

In particular,

i PCPe /(A5 v2¢/4)  3v/3¢
im .
Aroo A2 3273
Sketch of the proof. For a positive integer d, we put n,(\) and kq(\;d) the
cardinalities of the sets
p and ¢ are relatively prime integers with
{(p’Q)EZXZ‘ I+ <XNandp>ag>0
and
Ko(Xd) = {(p,q) € dZ x dZ |3p* + ¢* < N\, p > ag > 0},

respectively. Here dZ denotes the set {dj | j € Z}. Since the correspondence (p, q) —
(dp,dq) of K,(A/d;1) to K4(A;d) is bijective, we find the following relation between
no(A) and kq(A; 1) by using the Mébius function y;

N = udka(Xd) = Y p(dka(N/d;1),
d>1 1<d<[7/2]
where [0] denotes the integer part of a real number 6. Put
1 1
o ()
23 \V3a

which is the area of the set {(z,y) € R? | 3z% + y* £ A%,z = ay = 0}. One can easily
find positive constants C1, Cy with |ko(A; 1) — C’)\2| < Cl)\ + C5. Thus we obtain
[

d _C _6C

m = = = —,
Ao A2 (2

where ( denotes the Riemann zeta function.
We now put n2(A) and ng(A) the cardinalities of the sets

p and ¢ are relatively prime integers which satisfy
{(p,q)EZxZ‘ pgisodd, 3p> +¢* < X2 and p > ag >0
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{ (pq) €Z X Z ‘p and ¢ are relatively prime integers which satlsfy} ’

pq is even, ap? + B¢? < X2 and p > ag > 0

respectively. By similar argument we obtain

and

) n‘;(/\) _ C p(d) 2C
)\h_g)lo A2 4 Z d2 27
1<d< o0,

d is odd

lim
A—00 )\2 A—00

e o (\ 4
na(A) = lim (na/\ﬁg()\) - na)/\32( )> - _g
m

Since we have

VA4k?2 VA4K2
nepn (o) (A K) = 24+ ng, veR te c)\ + ng VARt C/\
" 237 " 437

4im : :
for A > Ta We obtain the conclusion. o

Remark. The constant ¢(k) = limy_,oo A *ncpr () (A; k) satisfies

. . 9c
'1€1_1>r(1) ¢(k) =0 and nlg(r)lo c(k) = 6"

We finally pose some problems on length spectrum of circles.

Problems.

1.

(o]

Are there non-simple spectrum for £7 (0 < 7 < 1)?

2. Whether is the multiplicity of £ (0 < 7 < 1) uniformly bounded or not?
3.
4. Study the asymptotic behaviour of the number of congruency classes of closed

Give an explicit formula of the first spectrum for £7 (0 < 7 < 1).

circles of complex torsion 7(# 0, 1) with respect to length.
Find nice properties for the multiplicity mcpn()(A) of the full length spectrum
£. For a complex hyperbolic space, it is monotone increasing left continuous

function with polynomial growth and its jumping step is not uniformly bounded
(see [A2]).

. Study the behaviour of ¢(x). What is the maximum value of this function ¢(x)?
. Study the geometric meaning of the constant lim,_, ¢(k).
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