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ABSTRACT. This is a survey of some of the work done in 1993-99 on resolution of
singularities in the context of hyperkédhler geometry. We define a singular hypercom-
plex variety and its desingularization; similar methods are applied to desingularising
coherent sheaves. We relate the singularities of reflexive sheaves over hyperkéhler
manifolds to quaternionic-Kéhler geometry. Finally, we study holomorphic sym-
plectic orbifolds and their resolutions.
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1. INTRODUCTION

This introduction is a quick summary of the works presented in this paper. The
reader who is not sufficiently acquainted with the hyperkahler geometry is advised to
start with Section 2.

Hyperkahler manifold is a Riemannian manifold M with three complex structures
I, J,K,IoJ=—-Jol = K, such that M is Kéahler with respect to I, J and K.
Clearly, the operators I, J, K define a quaternion action on the tangent space to M.
Hyperkahler manifolds are quaternionic analogues of the usual Kahler manifolds.

The hyperkahler manifold is, by definition, smooth. However, there were attempts
to introduce singularities in hyperkéhler geometry, starting from [De], [S] (Deligne and
Simpson; see Definition 3.13). More recently, D.Kaledin (unpublished Ph.D. thesis)
and A.Dancer — A.Swann ([DS]) studied singular varieties, appearing as a result of
hyperkéhler reduction. Unfortunately, as Kaledin noticed, the hyperkahler reduction
does not result in the Deligne-Simpson’s type singular hyperkahler varieties.

There is an obvious source of examples of singular hyperkahler varieties. Let M be
a hyperkahler manifold, I, J, K the standard complex structures on M, and X C M
a closed subset. The subset X is called trianalytic if X is complex analytic with
respect to I, J and K. As [V-h], Remark 4.4 implies, trianalytic subsets are singular
hyperkahler, in the sense of Deligne and Simpson.

A group of unitarian quaternions is naturally isomorphic to SU(2). This defines an
SU(2)-action on the tangent space to a hyperkdhler manifold M. If M is compact,
this action defines a natural action of SU(2) on the cohomology of M.

Another source of examples of singular hyperkahler varieties is given by the the-
ory of hyperholomorphic bundles. A hyperholomorphic bundle over a compact hy-
perkdhler manifold is a stable holomorphic bundle with first and second Chern classes
SU(2)-invariant. In [V1], it was shown that the moduli space of hyperholomorphic
bundles is singular hyperkahler.

The definition of Deligne and Simpson was studied in [V-d], [V-d2] and [V-h]. Tt
was found that the singularities of the singular hyperkahler varieties are remarkably
simple. A canonical desingularization was constructed (Theorem 5.1); the desingu-
larization is a smooth hyperkahler manifold.

This means that hyperkéihler varieties (in the sense of Deligne and Simpson) are
“almost” non-singular. Indeed, the canonical desingularization is provided by nor-
malization.

It is possible that there is a more relaxed notion of a hyperkahler variety, which
allows for more varied singularities. We study the singular structures in hyperkahler
geometry, hoping to come across such a notion.
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There is a notion of hyperholomorphic connection on a vector bundle B over a
hyperkéhler manifold M (Definition 4.3). It is a “hyperkéhler analogue” of the usual
(1,1) connections on holomorphic bundles. When M is compact, such connection
exists if and only if B is a direct sum of stable bundles with first and second Chern
classes SU(2)-invariant. In such a case, the hyperholomorphic connection is unique.

A similar result exists for stable sheaves (Theorem 6.11). If F' is a reflexive stable
coherent sheaf over a hyperkahler manifold, and the first and second Chern classes of
F are SU(2)-invariant, then F' admits a unique hyperholomorphic connection with
admissible type of singularities (Definition 6.5). The study of such sheaves (called
hyperholomorphic sheaves, Definition 6.9) is done by the same methods as the
study of hyperkihler varieties. A version of desingularization theorem holds in this
situation as well (Theorem 6.12).

It is easy to see that hyperkahler manifolds admit a holomorphic symplectic form
(Subsection 2.1). Conversely, a compact holomorphic symplectic Kdhler manifold
admits a natural hyperkéihler structure (this follows from Calabi conjecture, proven
by S.-T. Yau (Theorem 2.8). Therefore, to study compact holomorphic symplectic
Kahler manifold we need to learn about holomorphic symplectic geometry.

What is “a singular holomorphic symplectic variety”? This is not clear. However,
the most natural generalization of holomorphic symplectic manifold is a holomorphic
symplectic orbifold, that is, a variety which is locally isomorphic to a quotient of a
holomorphic symplectic manifold by a finite group action.

Let M be a holomorphic symplectic manifold, and G a finite group acting on
M preserving the symplectic structure. It is natural to consider the quotient M/G
as a holomorphic symplectic orbifold. Suppose we have a resolution of singularities
M — M/G with M a smooth holomorphically symplectic manifold. Such a situation
arises, for instance, when M = 5™ is a product of n copies of a holomorphic symplectic
surface S, G = S,, the symmetric group and M a Hilbert scheme of S. Another
instance when such a sutuation arises is described in [KV2]. Suppose that T is
a so-called “generalized Hilbert scheme” of a torus T, and X C T a complex
subvariety which survives a generic deformation of T (that is, for any deformation
of T!™, there exists a flat deformation of X C T'"l). From a definition of Tl (see e.g.
[Bea)) it follows that 7" is equipped by a generically finite map 7 : T — T+, It
was proven in [KV2] that in the above assumptions, 7(X) is a quotient of a torus by
a Coxeter group action on it, and that 7 : X — 7(X) is a holomorphic symplectic
resolution of 7(X).

It is not clear how the holomorphically symplectic resolutions are related to the
hyperkahler geometry. For instance, it is not clear, even in the most simple cases,
whether a Hilbert scheme of a non-compact hyperkahler surface is hyperkahler. Still,
the desingularizations of hyperkahler orbififolds is one of the most common ways of
obtaining hyperkihler manifolds.
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The work [KV2] goes some way explaining why the ubiquitous Coxeter groups
appear in the study of subvarieties of generalized Kummer varieties. Given a holo-
morphic symplectic manifold M and a finite group G acting on M by symplectomor-
phisms, let M be a holomorphic symplectic resolution of M/G. Then, G is generated
by symplectic reflections, that is, by automorphisms with fixed set of codimension
2 (see Section 7 for detail).

2. HYPERKAHLER MANIFOLDS

2.1. Hyperkahler manifolds. This subsection contains a compression of the ba-
sic and best known results and definitions from hyperkahler geometry, found, for
instance, in [Bes| or in [Bea].

Definition 2.1: Let M be a smooth manifold, equipped with an action of quater-
nion algebra in M. Then M is called an almost hypercomplex manifold.

Let M be an almost hypercomplex manifold and I, J # +1I quaternions satisfying
I? = J? = —1. Clearly, I, J define almost complex structures on M.

Proposition 2.2: [K1] In the above situation, assume that the almost complex
structures I and J are integrable. Let K € H be a quaternion satisfying K? = —1.
Then K defines an integrable complex structure on M.

Definition 2.3: Let M be a smooth manifold, and I, J, K almost complex struc-
tures satisfying o J = —J oI = K. Assume that I and J are integrable. Then M
is called a hypercomplex manifold.

Remark 2.4: A posteriori, we obtain that every quaternion satisfying K? = —1
defines an integrable complex structure on a hypercomplex manifold (Proposition
2.2).

Definition 2.5: ([Bes]) A hyperkédhler manifold is a hypercomplex manifold equip-
ped with a Riemannian metric (-, -), such that I, J, K are Kéhler complex structures
with respect to (-, ).

The notion of a hyperkédhler manifold was introduced by E. Calabi ([C]).
Clearly, a hyperkahler manifold has a natural action of the quaternion algebra H

in its real tangent bundle TM. Therefore its complex dimension is even. For each
quaternion L € H, L? = —1, the corresponding automorphism of 7'M is an almost
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complex structure. It is easy to check that this almost complex structure is integrable
([Bes]).

Definition 2.6: Let M be a hyperkéhler (or hypercomplex) manifold, and L a
quaternion satisfying L? = —1. The corresponding complex structure on M is called
an induced complex structure. The M, considered as a complex manifold, is
denoted by (M, L).

Definition 2.7: Let M be a complex manifold and © a closed holomorphic 2-form
over M such that ©" = © A © A ..., is a nowhere degenerate section of a canonical
class of M (2n = dimc(M)). Then M is called holomorphically symplectic.

Let M be a hyperkihler manifold; denote the Riemannian form on M by (-,-). Let
the form w; := (I(-),-) be the usual K&hler form which is closed and parallel (with
respect to the Levi-Civitta connection). Analogously defined forms w; and wg are
also closed and parallel.

A simple linear algebraic consideration ([Bes|) shows that the form © := w; +
V/—1wg is of type (2,0) and, being closed, this form is also holomorphic. Also, the
form © is nowhere degenerate, as another linear algebraic argument shows. It is
called the canonical holomorphic symplectic form of a manifold M. Thus, for
each hyperkahler manifold M, and an induced complex structure L, the underlying
complex manifold (M, L) is holomorphically symplectic. The converse assertion is
also true:

Theorem 2.8: ([Bea], [Bes]) Let M be a compact holomorphically symplectic
Kéhler manifold with the holomorphic symplectic form ©, a Kihler class [w] €
HY' (M) and a complex structure I. Let n = dim¢ M. Assume that [, w" =
J,;(Re©)™. Then there is a unique hyperkahler structure (I, J, K, (-, -)) over M such
that the cohomology class of the symplectic form w; = (-, I*) is equal to [w] and the
canonical symplectic form wjy + v/—1 wg is equal to ©.

Theorem 2.8 follows from the conjecture of Calabi, proven by Yau ([Y]). =

Let M be a hyperkihler manifold. We identify the group SU(2) with the group of
unitary quaternions. This gives a canonical action of SU(2) on the tangent bundle,
and all its tensor powers. In particular, we obtain a natural action of SU(2) on the
bundle of differential forms.

Lemma 2.9: The action of SU(2) on differential forms commutes with the Lapla-
cian.
Proof: This is Proposition 1.1 of [V2]. =
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Thus, for compact M, we may speak of the natural action of SU(2) in cohomology.
The following lemma is clear from the properties of the Hodge decomposition.

Lemma 2.10: Let w be a differential form over a hyperkdhler manifold M. The
form w is SU(2)-invariant if and only if it is of Hodge type (p,p) with respect to all
induced complex structures on M.

Proof: This is [V1], Proposition 1.2. u

2.2. Trianalytic subvarieties in hyperkahler manifolds. In this subsection, we
give a definition and basic properties of trianalytic subvarieties of hyperkahler mani-

folds. We follow [V2].
Let M be a compact hyperkdahler manifold, dimg M = 2m.

Definition 2.11: Let N C M be a closed subset of M. Then N is called triana-
lytic if N is a complex analytic subset of (M, L) for any induced complex structure
L.

Let I be an induced complex structure on M, and N C (M, I) be a closed analytic
subvariety of (M, I), dim¢N = n. Consider the homology class represented by N. Let
[N] € H*™=2"( M) denote the Poincare dual cohomology class, so called fundamental
class of N. Recall that the hyperkédhler structure induces the action of the group
SU(2) on the space H*™2"(M).

Theorem 2.12: Assume that [N] € H*™ ?"(M) is invariant with respect to the
action of SU(2) on H*™~?*(M). Then N is trianalytic.
Proof: This is Theorem 4.1 of [V2]. u

The following assertion is the key to the proof of Theorem 2.12 (see [V2] for details).

Proposition 2.13: (Wirtinger’s inequality) Let M be a compact hyperkahler man-
ifold, I an induced complex structure and X C (M, ) a closed complex subvariety
for complex dimension k. Let J be an induced complex structure, J # +1I, and wy,
wy the associated Kéahler forms. Consider the numbers

deg,X:z/w}“, dngX::/wfﬁ
X b

Then deg; X > |deg; X|, and the inequality is strict unless X is trianalytic.
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Remark 2.14: Trianalytic subvarieties have an action of quaternion algebra in the

tangent bundle. In particular, the real dimension of such subvarieties is divisible by
4.

Definition 2.15: Let M be a complex manifold admitting a hyperkahler structure
‘H. We say that M is of general type or generic with respect to H if all elements
of the group

& a7 (M) N H”(M,Z) C H*(M)

are SU(2)-invariant.
The following result is an elementary application of representation theory.

Proposition 2.16: Let M be a compact manifold, 4 a hyperkiahler structure on
M and S be the set of induced complex structures over M. Denote by Sy C S the
set of L € S such that (M, L) is generic with respect to H. Then Sy is dense in S.
Moreover, the complement S\Sy is countable.

Proof: This is Proposition 2.2 from [V2] u

Theorem 2.12 has the following immediate corollary:

Corollary 2.17: Let M be a compact holomorphically symplectic manifold. As-
sume that M is of general type with respect to a hyperkahler structure H. Let S C M
be closed complex analytic subvariety. Then S is trianalytic with respect to .

2.3. Twistor spaces. Let M be a hyperkahler manifold. Consider the product
manifold X = M x S?. Embed the sphere S? C H into the quaternion algebra H
as the subset of all quaternions J with J> = —1. For every point z = m x J €
X = M x S? the tangent space T, X is canonically decomposed T, X = T,, M & T;S5?.
Identify S? = CP! and let I; : T;5% — T;5? be the complex structure operator. Let
I, : T,,M — T,,M be the complex structure on M induced by J € S? C H.

The operator I, = I,,®1; : T, X — T,X satisfies I, oI, = —1. It depends smoothly
on the point x, hence defines an almost complex structure on X. This almost complex
structure is known to be integrable (see [Sal]).

Definition 2.18: The complex manifold (X, I,) is called the twistor space for
the hyperkdhler manifold M, denoted by Tw(AM). This manifold is equipped with
a real analytic projection o0 : Tw(M)— M and a complex analytic projection
m: Tw(M) — CP'.
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The twistor space Tw(M) is not, generally speaking, a Kéhler manifold. For M
compact, it is easy to show that Tw(M) does not admit a Kahler metric.

3. HYPERCOMPLEX VARIETIES

This section is based on [V-h], Section 4 and 8. In this section, we shall state all
results for hypercomplex varieties, instead of hyperkahler ones. However, everything

we say can be stated (and proven) for hyperkéhler varieties (this approach was chosen
in [V-d] and [V-d2]).

3.1. Real analytic varieties and complex structures. In this subsection, we
follow [GMT] and [V-h], Section 2.

Let I be an ideal sheaf in the ring of real analytic functions in an open ball B in
R™. The set of common zeroes of I is equipped with a structure of ringed space, with
O(B)/I as the structure sheaf. We denote this ringed space by Spec(O(B)/I).

Definition 3.1: By a weak real analytic space we understand a ringed space
which is locally isomorphic to Spec(O(B)/I), for some ideal I C O(B). A real
analytic space is a weak real analytic space for which the structure sheaf is coherent
(i. e., locally finitely generated and presentable).

For every real analytic variety X, there is a natural sheaf morphism of evaluation,
O(X) =5 C(X), where C(X) is the sheaf of real analytic functions on X.

Definition 3.2: A real analytic variety is a weak real analytic space for which
the natural sheaf morphism O(X) — C(X) is injective.

Let (X,0(X)) be a real analytic space and N(X) C O(X) be the kernel of the
natural sheaf morphism O(X) — C(X). Clearly, the ringed space (X, O(X)/N(X))
is a real analytic variety. This variety is called a reduction of X, denoted X,. The
structure sheaf of X, is not necessarily coherent, for examples see [GMT], II1.2.15.

For an ideal I C O(B) we define the module of real analytic differentials on O(B)/I
by

QN O(B)/I) = Ql(O(B))/(I QY (O(B)) + dI),

where B is an open ball in R*, and Q'(O(B)) & R" ® O(B) is the module of real
analytic differentials on B. Patching this construction, we define the sheaf of real
analytic differentials on any real analytic space. Likewise, one defines sheaves of
analytic differentials for complex varieties and in other similar situations.
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Let X be a complex analytic variety. The real analytic space underlying X
(denoted by Xg) is the following object. By definition, Xg is a ringed space with
the same topology as X, but with a different structure sheaf, denoted by Ox,. Let
1: U — B™ be a closed complex analytic embedding of an open subset U C X to an
open ball B® C C*, and I be an ideal defining i(U). Then

OXR|U = OBﬁ/RG(I)

is a quotient sheaf of the sheaf of real analytic functions on B" by the ideal Re(I)
generated by the real parts of the functions f € I.

Note that the real analytic space underlying X needs not be reduced, though it
has no nilpotents in the structure sheaf.

Consider the sheaf Ox of holomorphic functions on X as a subsheaf of the sheaf
C(X,C) of continuous C-valued functions on X. The sheaf C'(X,C) has a natural
automorphism f — f, where f is complex conjugation. By definition, the section f
of C(X,C) is called antiholomorphic if f is holomorphic. Let Ox be the sheaf of
holomorphic functions, and Ox be the sheaf of antiholomorphic functions on X. Let

Ox ®c Ox — Ox, ® C be the natural multiplication map.

Claim 3.3: Let X be a complex variety, Xg the underlying real analytic space.
Then the natural sheaf homomorphism 7 : Ox @c Ox — Ox, ® C is injective. For

each point € X, ¢ induces an isomorphism on z-completions of Ox ®¢ Ox and
Ox, ® C.
Proof: Clear from the definition. =

In the assumptions of Claim 3.3, let
0 (Oxy), 21(Ox & Ox), 2'(Ox, ®C)

be the sheaves of real analytic differentials associated with the corresponding sheaves
of rings. There is a natural sheaf map

(31) QI(OXR)(@C:QI(OXR@(C) —>Q1(OX ®@6x),

correspoding to the monomorphism
OX ®(c 6}( — OXR X C.

Claim 3.4: Tensoring both sides of (3.1) by Ox, ® C produces an isomorphism

QI(OX ®C6X) ® OXR®(C> :Ql(OXR®(C).
Ox®cOx
Proof: Clear. =
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According to the general results about differentials (see, for example, [H], Chapter
11, Ex. 8.3), the sheaf Q'(Ox ®c Ox) admits a canonical decomposition:

Q'(Ox ®@c Ox) = 2 (Ox) ®c Ox & Ox ®c 2'(Ox).

Let I be an endomorphism of Q' (Ox ®c Ox) which acts as a multiplication by v/—1
on

Q' (Ox) ®@c Ox C Q' (Ox ®c Ox)
and as a multiplication by —y/—1 on

OX Rc Ql(@x) C QI(OX Rc 6}()

Let I be the corresponding Oy, ® C-linear endomorphism of
QI(OXR) RC = QI(OX K¢ 6X) B ox0cOx <0XR ® (C) .

A quick check shows that I is real, that is, comes from the Ox,-linear endomorphism
of Q' (Ox,). Denote this Ox,-linear endomorphism by

I: QY Ox,) — Q(Ox,),

I? = —1. The endomorphism I is called the complex structure operator on the
underlying real analytic space. In the case when X is smooth, I coinsides with
the usual complex structure operator on the cotangent bundle.

Definition 3.5: Let M be a weak real analytic space, and
I: QI(OM) —)QI(OM)

be an endomorphism satisfying I2 = —1. Then I is called an almost complex
structure on M.

3.2. Almost complex structures on real analytic varieties and integrability.
In this Subsection, we follow [V-h], Section 2.

From the definition (see [V-h|, Lemma 2.6), it follows that a real analytic variety
underlying a given complex variety is equipped with a natural almost complex struc-
ture. The corresponding operator is called the complex structure operator in
the underlying real analytic variety.

The following theorem is quite easy to prove.
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Theorem 3.6: Let X, Y be complex analytic varieties, and
fR : XR — Y]R

be a morphism of underlying real analytic varieties which commutes with the complex
structure. Then there exist a morphism f : X — Y of complex analytic varieties,
such that fg is its underlying morphism.

Proof: This is [V-h], Theorem 2.10. =

From Theorem 3.6, it follows that the complex structure on X is uniquely deter-
mined by the complex structure on the underlying real analytic variety.

Definition 3.7: Let M be a real analytic variety, and
I: QI(OM) —)QI(OM)

be an endomorphism satisfying 1> = —1. Then I is called an almost complex
structure on M. If there exist a structure € of complex variety on M such that
I appears as the complex structure operator associated with €, we say that [ is
integrable. Theorem 3.6 implies that this complex structure is unique if it exists.

3.3. Hypercomplex varieties: the definition. Definition 3.8: Let M be a real
analytic variety equipped with almost complex structures I, J and K, such that
IToJ=—-Jol =K. Then M is called an almost hypercomplex variety.

An almost hypercomplex variety is equipped with an action of quaternion algebra
in its differential sheaf. Each quaternion L € H, L? = —1 defines an almost com-
plex structure on M. Such an almost complex structure is called induced by the
hypercomplex structure.

Definition 3.9: Let M be an almost hypercomplex variety. We say that M is
hypercomplex if there exist a pair of induced complex structures Iy, I, € H, I} #
+1,, such that I; and I, are integrable.

Caution: Not everything which looks hypercomplex satisfies the conditions of
Definition 3.9. Take a quotient M /G of a hypercomplex manifold by an action of a
finite group G, acting compatible with the hypercomplex structure. Then M/G is
not hypercomplex, unless G acts freely.

Claim 3.10: Let M be a hypercomplex manifold. Then M is a hypercomplex
variety in the sense of Definition 3.9.

Proof: Let I, J be induced complex structures. We need to identify (M, I)g and
(M, J)g in a natural way. These varieties are canonically identified as C'*-manifolds;
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we need only to show that this identification is real analytic. This is [V3], Proposition
6.5. m
11
Remark 3.11: Trianalytic subvarieties of hyperkahler manifolds are obviously hy-
percomplex. Define trianalytic subvarieties of hypercomplex varieties as subvarieties
which are complex analytic with respect to all induced complex structures. Clearly,
trianalytic subvarieties of hypercomplex varieties are equipped with a natural hyper-
complex structure. Another example of a hypercomplex variety is given in Corollary
4.11. For additional examples, see [V3].

3.4. Hypercomplex varieties and twistor spaces. For a hypercomplex variety, it
is clear how to define the twistor space, which is a complex variety (see [V-h], Section
7 for details). This definition coinsides with the usual one for the hypercomplex
manifolds in the smooth case.

Following [HKLR], Deligne and Simpson defined hypercomplex varieties in terms
of their twistor spaces. This is done as follows.

Let M be a hypercomplex variety and Tw its twistor space. Consider the unique
anticomplex involution ¢y : CP! — CP! with no fixed points. This involution
is obtained by central symmetry with center in 0 if we identify CP! with a unit
sphere in R®. Let 1 : Tw — Tw be an involution of the twistor space mapping
(s,m) € S? x M = Tw to (19(s), m). Clearly, ¢ is anticomplex.

Definition 3.12: Let s : CP! — Tw be a section of the natural holomorphic
projection 7 : Tw — CP!, som = Id|CP1 . Then s is called the twistor line. The
space Sec of twistor lines is finite-dimensional and equipped with a natural complex
structure, as follows from deformation theory ([Do]).

Let Sec' be the space of all lines s € Sec which are fixed by «. The space Sec*
is equipped with a structure of a real analytic space. We have a natural map 7 :
Mg — Sec" associating to m € M the line s : CP! — Tw, s(z) = (z,m) €
S? x M = Tw. Such twistor lines are called horizontal twistor lines. Denote the
set, of horizontal twistor lines by Hor C Sec.

The linear algebra of quaternions implies that the normal bundle of a horizontal
twistor line s = CP! is a direct sum of several copies of O(1). A section of O(1) is
uniquely determined by its values in two distinct points. Therefore, (at least if M is
smooth), through every two generic points in a neighbourhood of s passes a unique
deformation of s (if this statement needs a justification, see [V-h], (7.2)).
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This motivates the following definition, proposed by Delidne and Simpson ([De],

[S])-

Definition 3.13: (Hypercomplex spaces) Let Tw be a complex analytic space, 7 :
Tw — CP! aholomorphic map, and ¢+ : Tw — Tw an anticomplex automorphism,
such that tom = mouy. Let Sec be the space of sections of 7 equipped with a structure
of a complex analytic space, and Sec’ be the real analytic space of sections s of m
satisfying souy = tos. Let Hor be a connected component of Sec’. Then (Tw, 7, ¢, Hor)
is called a hypercomplex space if

(i): For each point z € Tw", there exists a unique line s € Hor" passing through
x, where Tw", Hor" is a reduction of Tw, Hor.

(ii): Let s € Hor, and U C Tw be a neighbourhood of s such that an irreducible
decomposition of U coinsides with the irreducible decomposition of Tw in a
neighbourhood of s C Tw". Let

X =r')x7'(J)nU x U,

where I, J distinct points of CP. Let p;; : U—X C m *(I) x 7 1(J)
be the evaluation map, s — (s(I),s(J)). Then there exist a closed subspace
X C X, obtained as a union of some of irreductible components of X, and an

open neighbourhood V' C Sec of s € Sec, such that p;; is an open embedding of
V to X.

For varieties, this definition is equivalent to Definition 3.9 ([V-h], Theorem 8.1).

4. HYPERHOLOMORPHIC BUNDLES

4.1. Hyperholomorphic bundles: the definition. This subsection contains sev-
eral versions of a definition of hyperholomorphic connection in a complex vector bun-
dle over a hyperkahler manifold. We follow [V1].

Let B be a holomorphic vector bundle over a complex manifold M, V a connection
in B and © € A?® End(B) be its curvature. This connection is called compatible
with a holomorphic structure if Vx({) = 0 for any holomorphic section ¢ and
any antiholomorphic tangent vector field X € T%!(M). If there exists a holomorphic
structure compatible with the given Hermitian connection then this connection is
called integrable.

One can define a Hodge decomposition in the space of differential forms with
coefficients in any complex bundle, in particular, End(B).

Theorem 4.1: Let V be a Hermitian connection in a complex vector bundle B
over a complex manifold. Then V is integrable if and only if © € Ab (M, End(B)),
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where AL (M, End(B)) denotes the forms of Hodge type (1,1). Also, the holomorphic
structure compatible with V is unique.
Proof: This is Proposition 4.17 of [Ko|, Chapter L. u

This result has the following more general version:

Proposition 4.2: Let V be an arbitrary (not necessarily Hermitian) connection
in a complex vector bundle B. Then V is integrable if and only its (0, 1)-part has
square zero.

This proposition is a version of Newlander-Nirenberg theorem. For vector bundles,
it was proven by Atiyah and Bott.

Definition 4.3: Let B be a Hermitian vector bundle with a connection V over a
hyperkahler manifold M. Then V is called hyperholomorphic if V is integrable
with respect to each of the complex structures induced by the hyperkahler structure.

As follows from Theorem 4.1, V is hyperholomorphic if and only if its curvature
© is of Hodge type (1,1) with respect to any of complex structures induced by a
hyperkahler structure.

As follows from Lemma 2.10, V is hyperholomorphic if and only if © is a SU(2)-
invariant differential form.

Example 4.4: (Examples of hyperholomorphic bundles)

(i): Let M be a hyperkidhler manifold, and TM be its tangent bundle equip-
ped with the Levi-Civita connection V. Consider a complex structure on 7'M
induced from the quaternion action. Then V is a Hermitian connection which is
integrable with respect to each induced complex structure, and hence, is Yang—

Mills.

(ii): For B a hyperholomorphic bundle, all its tensor powers are also hyperholo-
morphic.

(iii): Thus, the bundles of differential forms on a hyperkdhler manifold are also
hyperholomorphic.

4.2. Stable bundles and Yang—Mills connections. This subsection is a com-
pendium of the most basic results and definitions from the Yang—Mills theory over
Ké&hler manifolds, concluding in the fundamental theorem of Uhlenbeck—Yau [UY].

Definition 4.5: Let F' be a coherent sheaf over an n-dimensional compact Kahler
manifold M. We define deg(F) as
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1
rank(F')

The number slope(F') depends only on a cohomology class of ¢;(F).

Let F' be a coherent sheaf on M and F' C F its proper subsheaf. Then F” is called
destabilizing subsheaf if slope(F") > slope(F)

A coherent sheaf F is called stable ! if it has no destabilizing subsheaves. A
coherent sheaf F' is called semistable if for all destabilizing subsheaves F' C F, we
have slope(F") = slope(F).

and slope(F) as

slope(F) = - deg(F).

Later on, we usually consider the bundles B with deg(B) = 0.

Let M be a Kahler manifold with a Kahler form w. For differential forms with
coefficients in any vector bundle there is a Hodge operator L : n — w A 1. There is
also a fiberwise-adjoint Hodge operator A (see [GH]).

Definition 4.6: Let B be a holomorphic bundle over a Kahler manifold M with
a holomorphic Hermitian connection V and a curvature © € Ab! @ End(B). The

Hermitian metric on B and the connection V defined by this metric are called Yang-
Mills if

A(©) = constant - Id |B )

where A is a Hodge operator and Id |B is the identity endomorphism which is a section
of End(B).

Further on, we consider only these Yang—Mills connections for which this constant
is zero.

A holomorphic bundle is called indecomposable if it cannot be decomposed onto
a direct sum of two or more holomorphic bundles.

The following fundamental theorem provides examples of Yang--Mills
bundles.

Theorem 4.7: (Uhlenbeck-Yau) Let B be an indecomposable holomorphic bundle
over a compact Kahler manifold. Then B admits a Hermitian Yang-Mills connection
if and only if it is stable, and this connection is unique.

Tn the sense of Mumford-Takemoto
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Proof: [UY]. =

4.3. Hyperholomorphic connections and Yang-Mills theory. In this subsec-
tion, we apply Yang-Mills theory to hyperholomorphic connections. We follow [V1].

Proposition 4.8: Let M be a hyperkdhler manifold, L an induced complex struc-
ture and B be a complex vector bundle over (M, L). Then every hyperholomorphic
connection V in B is Yang-Mills and satisfies A(©) = 0 where © is a curvature of V.

Proof: We use the definition of a hyperholomorphic connection as one with SU(2)-
invariant curvature. Then Proposition 4.8 follows from the

Lemma 4.9: Let © € A*(M) be a SU(2)-invariant differential 2-form on M. Then
A7 (©) = 0 for each induced complex structure L.2
Proof: This is Lemma 2.1 of [V1]. =

Let M be a compact hyperkahler manifold, I an induced complex structure. For
any stable holomorphic bundle on (M, I) there exists a unique Hermitian Yang-Mills
connection which, for some bundles, turns out to be hyperholomorphic. It is possible
to tell when this happens.

Theorem 4.10: Let B be a stable holomorphic bundle over (M, I), where M is a
hyperkédhler manifold and [ is an induced complex structure over M. Then B admits
a compatible hyperholomorphic connection if and only if the first two Chern classes
c1(B) and c¢y(B) are SU(2)-invariant.?

Proof: This is Theorem 2.5 of [V1]. u

From Theorem 4.10 it follows that hyperholomorphic bundles can be described
in two ways: either as holomorphic objects over (M, I), or as certain types of con-
nections. The first definition implies that there exists a complex structure on the
moduli of hypercolomorphic connections. The second implies that if we replace [
by another induced complex structure, the C'°-structure of the moduli of hyperholo-
morphic connections remains the same. In other words, the real analytic variety
underlying underlying the moduli of hyperholomorphic connections admits a set of
complex structures parametrized by CP!. Using Kodaira relations, it is easy to check
that these complex structures satisfy quaternionic relations. We obtain the following

Corollary 4.11: ([V-h], Subsection 10.2) The moduli space of hyperholomorphic
bundles is singular hyperkahler.

2By A1 we understand the Hodge operator A associated with the Kihler complex structure L.
3We use Lemma 2.9 to speak of action of SU(2) in cohomology of M.
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5. HYPERCOMPLEX VARIETIES: THE DESINGULARIZATION

The Desingularization Theorem is stated as follows.

Theorem 5.1: (Desingularization theorem) Let M be a hypercomplex variety [
an integrable induced complex structure. Let

(M, 1) = (M, 1)

be the normalization of (M, I). Then (M, I) is smooth and has a natural hypercom-
plex structure H, such that the associated map n: (M,I) — (M, I) agrees with H.

Moreover, the hypercomplex manifold M = (M, I) is independent from the choice of
induced complex structure 7.

Proof: This is [V-h], Theorem 6.2 u

In this Section, we give a sketch of a proof of Theorem 5.1. This sketch assumes
some background in commutative algebra. Some readers might prefer to read [V-h],
where we don’t skip these details.

The idea of the proof is following. First of all, we prove Theorem 5.1 under an
addition assumption, called LHS (locally homogeneous singularities). Then, we prove
that LHS always holds for hypercomplex varieties. LHS is the following beast.

Definition 5.2: (local rings with LHS) Let A be a local ring. Denote by m its
maximal ideal. Let Ay be the corresponding associated graded ring for the m-adic

~

filtration. Let A, Z; be the m-adic completion of A, A,. Let (A)yy, (Z;)gr be
the associated graded rings, which are naturally isomorphic to A,. We say that
A has locally homogeneous singularities (LHS) if there exists an isomorphism

A

p: A —>Zg\, which induces the standard isomorphism i : (A4), — (Zg\,)g, on
associated graded rings.

Definition 5.3: (SLHS) Let X be a complex or real analytic space. Then X is
called a space with locally homogeneous singularities (SLHS) if for each z € X,
the local ring O, X has locally homogeneous singularities.

To say that a ring is graded is the same as to say that it is equipped with an action
of C*. Therefore, a local ring is LHS if and only if its completion is equipped with
an action p of C*, and p acts on its tangent space by dilatations. This is why we use
the word the word “homogeneous”.

The following proposition was the main result of [V-d].
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Proposition 5.4: Let M be a hypercomplex variety, and I an induced complex
structure. Assume that the complex variety (M, I) has locally homogeneous singu-
larities (LHS). Then the normalization of (M, I) is smooth.

Proof: Let O, be the adic completion of the localization of the structure sheaf
O,y in x € M. The normalization is compatible with the adic completions ([M],
Chapter 9, Proposition 24.E). Therefore to prove that the normalization of (M, I) is
smooth we need only to show that the normalization of O, is regular. Since (M, I)
is LHS, the ring O, is isomorphic to the completion of the coordinate ring O(Z,)
of the Zariski tangent cone Z, of (M,I). Therefore, it suffices to show that the
normalization of Z, is smooth. On the other hand, by [V-h], Theorem 4.5, the Zariski
tangent cone Z, of (M, I) is hypercomplex (this is easy to see from the differential-
geometric definition of the Zariski tangent cone). Moreover, the natural embedding
of the Zariski tangent cone to the Zariski tangent space T, M is compatible with the
hypercomplex structure (the space T, M is quaternionic, which follows immediately
from the definition of a hypercomplex structure). The manifold 73, M is hyperkéhler.
It is well known (see, for instance, [V3]) that trianalytic subvarieties of hyperkéhler
manifolds are completely geodesic. Since the manifold 7, M is flat, a completely
geodesic subvariety must be a union of planes. But the normalization of a union of

planes is smooth. This finishes the proof of Proposition 5.4; for more details, please
read [V-h| and [V-d2|. =

To finish the sketch of the proof of Theorem 5.1, it remains to prove the following
proposition, which is the main result of [V-d2].

Proposition 5.5: Let M be a hypercomplex variety. Then M is a space with
locally homogeneous singularities (SLHS).

Proof: Let I be an induced complex structure, x € M a point and O, the adic
completion of the localization O, (M, I) of the structure ring of (M, I). To produce
a grading on O, we need to construct an action p of C* on O,, such that p acts by
dilatations on the tangent space T, (M, I). This is done geometrically as follows.

Let z € M be apoint, 7 : Tw — CP! a twistor space of M, and s, : CP'! — Tw
the line corresponding to the set (i, z) where 4 runs through CP! (such lines are called
horizontal twistor lines, see Definition 3.12). As we have mentioned before, for
“generic” pair of points («, ) sufficiently close to s, there exists a unique twistor line
s passing through o and 3. To be more precise, let I, I' € CP! be distinct induced
complex structures. Then s, has a neighbourhood U such that for all o € 7=*(I)NU,
B € m Y(I'") N U, there exists a unique twistor line s, : CP' — Tw passing
through «, 8. Fix a point I"” € CP' which is distinct from I and I'. Let § = (I",z) €
(CP', M) = Tw be the corresponding point of s,. For each o € 77'(I) N U there
exists a unique twistor line s, 5 passing through a and 6. Evaluating this map at I’
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we obtain a point 8 in 7~ }(I') N U. Consider this as an operation producing 3 from
a. Clearly, this way we obtain an isomorphism

Op (M, I') — Oy (M, I)

where O, (M, I'), Oy (M, I) is an adic completion of a localization of a ring of regular
functions on (M, I'), (M,I). This isomorphism depends from the parameter I"”.
Varying I”, we obtain different isomorphisms between O, (M, I") and O, (M, I). A
composition of two such isomorphisms is an automorphism of @I(M ,I). A simple
linear-algebraic argument shows that this automorphism acts as a dilatation on the
tangent space T, M (Lemma 5.13, [V-h]). This proves Proposition 5.5. =

6. HYPERHOLOMORPHIC SHEAVES AND THEIR SINGULARITIES

6.1. Stable sheaves and Yang-Mills connections. In [BS], S. Bando and Y.-T.
Siu developed the machinery allowing one to apply the methods of Yang-Mills theory
to torsion-free coherent sheaves. In the course of this paper, we apply their work to
generalise the results of [V1]. In this Subsection, we give a short exposition of their
results.

Definition 6.1: Let X be a complex manifold, and F' a coherent sheaf on X.
Consider the sheaf F* := Home, (F,Ox). There is a natural functorial map pp :
F — F**. The sheaf F** is called a reflexive hull, or reflexization of F. The
sheaf F'is called reflexive if the map pr : F'— F** is an isomorphism.

Remark 6.2: For all coherent sheaves F', the map pp+ : F* — F** is an iso-
morphism ([OSS], Ch. II, the proof of Lemma 1.1.12). Therefore, a reflexive hull of
a sheaf is always reflexive.

Claim 6.3: Let X be a Kahler manifold, and F' a torsion-free coherent sheaf over
X. Then F (semi)stable if and only if F** is (semi)stable.
Proof: This is [OSS], Ch. II, Lemma 1.2.4. u

Definition 6.4: Let X be a Kahler manifold, and F' a coherent sheaf over X. The
sheaf F' is called polystable if F' is a direct sum of stable sheaves.

The admissible Hermitian metrics, introduced by Bando and Siu in [BS], play the
role of the ordinary Hermitian metrics for vector bundles.

Let X be a Kahler manifold. In Hodge theory, one considers the operator A :
AP4(X) — AP~ 1471(X) acting on differential forms on X, which is adjoint to the
multiplication by the Kahler form. This operator is defined on differential forms with
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coefficient in every bundle. Considering a curvature © of a bundle B as a 2-form with
coefficients in End(B), we define the expression A©® which is a section of End(B).

Definition 6.5: Let X be a Kahler manifold, and F' a reflexive coherent sheaf over
X. Let U C X be the set of all points at which F' is locally trivial. By definition, the
restriction F' ‘U of F' to U is a bundle. An admissible metric on F' is a Hermitian
metric h on the bundle F|U which satisfies the following assumptions

(i): the curvature © of (F,h) is square integrable, and
(ii): the corresponding section A® € End(F |U) is uniformly bounded.

Definition 6.6: Let X be a Kahler manifold, F' a reflexive coherent sheaf over X,
and h an admissible metric on F'. Consider the corresponding Hermitian connection
VonF ‘U . The metric h and the connection V are called Yang-Mills if its curvature
satisfies

A© € End(F|,) =c-1d

where ¢ is a constant and Id the unit section Id € End(F |U ).
Further in this paper, we shall only consider Yang-Mills connections with A© = 0.

Remark 6.7: By Gauss-Bonnet formule, the constant c is equal to deg(F'), where
deg(F') is the degree of F' (Definition 4.5).

One of the main results of [BS] is the following analogue of Uhlenbeck—Yau theorem
(Theorem 4.7).

Theorem 6.8: Let M be a compact Kahler manifold, and F' a coherent sheaf
without torsion. Then F' admits an admissible Yang-Mills metric is and only if F
is polystable. Moreover, if F' is stable, then this metric is unique, up to a constant
multiplier.

Proof: In [BS], Theorem 6.8 is proved for Kéahler M ([BS], Theorem 3). w

6.2. Stable sheaves over hyperkdhler manifolds. Let M be a compact hy-
perkahler manifold, I an induced complex structure, F' a torsion-free coherent sheaf
over (M, I) and F** its reflexization. Recall that the cohomology of M are equipped
with a natural SU(2)-action (Lemma 2.9). The motivation for the following definition
is Theorem 4.10 and Theorem 6.8.

Definition 6.9: Assume that the first two Chern classes of the sheaves F', F** are
SU(2)-invariant. Then F is called stable hyperholomorphic if F is stable, and
semistable hyperholomorphic if ' can be obtained as a successive extension of
stable hyperholomorphic sheaves.
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Consider the natural SU(2)-action in the bundle A*(M, B) of the differential i-forms
with coefficients in a vector bundle B. Let A%, (M, B) C A'(M, B) be the bundle of
SU(2)-invariant i-forms.

Definition 6.10: Let X C (M, ) be a complex subvariety of codimension at least
2, such that F‘M\X M\X and V the
associated connection. Then V is called hyperholomorphic if its curvature

Oy = VZe A? (M, End (F‘M\X»

is a bundle, h be an admissible metric on F'

is SU(2)-invariant, i. e. belongs to A2, (M, End (F‘M\X))

Theorem 6.11: Let M be a compact hyperkiahler manifold, I an induced complex
structure and F' a reflexive sheaf on (M,I). Then F admits a hyperholomorphic
connection if and only if F' is polystable hyperholomorphic in the sense of Definition
6.9. Moreover, such a connection is unique.

Proof: This is [V-c], Theorem 3.19. =

The proof of Theorem 6.11 is based on an elementary linear algebra argument (see
Lemma 2.10).

6.3. Desingularization of hyperholomorphic sheaves. Hyperholomorphic shea-
ves (at least ones with isolated singularities) can be desingularized in the same fashion
as the hyperkahler varieties; in fact, almost the same argument applies to both cases.

Theorem 6.12: Let M be a hyperkahler manifold, not necessarily compact, I an
induced complex structure, and F a reflexive coherent sheaf over (M, I) equipped
with a hyperholomorphic connection (Definition 6.10). Assume that F' has isolated
singularities. Let M = M be a blow-up of (M, I) in the singular set of F', and o*F
the pullback of F. Then o*F is a locally trivial sheaf, that is, a holomorphic vector
bundle.

Proof: This is [V-c|], Theorem 6.1. =

The idea of the proof is the following. We apply to F' the methods used in the proof
of Desingularization Theorem (Theorem 5.1). The main ingredient in the proof of
Desingularization Theorem is the existence of a natural C*-action on the completion
O, (M, I) of the local ring O, (M, I), for all z € M. This C*-action identifies O, (M, I)
with a completion of a graded ring. Here we show that a sheaf I’ is C*-equivariant.
Therefore, a germ of F' at x has a grading, which is compatible with the natural
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C*-action on @x(M ,I). Singularities of such reflexive sheaves can be resolved by a
single blow-up.

6.4. Quaternionic-Kihler geometry. In this Subsection, we follow [V-c] (Section
7). We give here a number of preliminary constructions, which are used later on
to describe the singularities of hyperholomorphic sheaves. These constructions are
mostly due to A.Swann and T. Nitta ([Sw|, [N1], [N2]).

Definition 6.13: ([Sal|, [Bes]) Let M be a Riemannian manifold. Consider a
bundle of algebras End(7T'M), where TM is the tangent bundle to M. Assume that
End(7T' M) contains a 4-dimensional bundle of subalgebras W C End(7'M), with fibers
isomorphic to a quaternion algebra H. Assume, moreover, that W is closed under the
transposition map L : End(7TM) — End(7'M) and is preserved by the Levi-Civita
connection. Then M is called quaternionic-Kahler.

Example 6.14: Consider the quaternionic projective space
HP" = (H"\0)/H".

It is easy to see that HP"™ is a quaternionic-K&ahler manifold. For more examples of
quaternionic-Kahler manifolds, see [Bes].

A quaternionic-Kéhler manifold is Einstein ([Bes|), i. e. its Ricci tensor is pro-
portional to the metric: Ric(M) = c- g, with ¢ € R. When ¢ = 0, the manifold M
is hyperkéhler, and its restricted holonomy group is Sp(n); otherwise, the restricted
holonomy is Sp(n) - Sp(1). The number ¢ is called the scalar curvature of M.
Further on, we shall use the term quaternionic-Kdahler manifold for manifolds with
non-zero scalar curvature.

The quaternionic projective space HP" has positive scalar curvature.

Let M be a quaternionic-Kéhler manifold, and W C End(T'M) the corresponding
4-dimensional bundle. For x € M, consider the set R, C W‘m, consisting of all
I e W|$ satisfying I? = —1. Consider R, as a Riemannian submanifold of the total
space of W|w Clearly, R, is isomorphic to a 2-dimensional sphere. Let R = U, R,
be the corresponding spherical fibration over M, and Tw(M) its total space. The
manifold Tw(M) is equipped with an almost complex structure, which is defined in
the same way as the almost complex structure for the twistor space of a hyperkéhler
manifold. This almost complex structure is known to be integrable (see [Sal]).

A role of SU(2)-invariant 2-forms is played by so-called By-forms.

Definition 6.15: Let SO(T'M) C End(T'M) be a group bundle of all orthogonal
automorphisms of TM, and Gy := W N SO(T'M). Clearly, the fibers of G are
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isomorphic to SU(2). Consider the action of Gj; on the bundle of 2-forms A?(M).
Let A2 (M) C A%(M) be the bundle of G s-invariants. The bundle A2 (M) is called
the bundle of B,-forms. In a similar fashion we define By-forms with coefficients

in a bundle.

Definition 6.16: In the above assumptions, let (B, V) be a bundle with connection
over M. The bundle B is called a Bs-bundle, and V is called a By-connection, if
its curvature is a By-form.

The By-bundles were introduced and studied by T. Nitta in a serie of papers ([N1],
[N2] etc.)

Consider the natural projection ¢ : Tw(M) — M. The following observation is
clear (Claim 6.17 (ii) is, in fact, an immediate consequence of Claim 6.17 (i), which
is proven by linear algebra).

Claim 6.17: ([V-c], Claim 7.13)

(i): Let w be a 2-form on M. The pullback o*w is of type (1,1) on Tw(M) if and
only if w is a By-form on M.

(ii): Let B be a complex vector bundle on M equipped with a connection V, not
necessarily Hermitian. The pullback ¢*B of B to Tw(M) is equipped with a
pullback connection ¢*V. Then, V is a Bs-connection if and only if 6*V has
curvature of Hodge type (1,1).

Definition 6.18: Let Tw(M) be the twistor space of a quaternioni-K&hler manifold
M. A By-bundle F on M gives a holomorphic bundle F’ on Tw(M). We say that F’
is a twistor transform, or direct twistor transform of F'.

The By-bundle F' can be recovered from F' ([V-c|, Corollary 7.15). This procedure
is called the inverse twistor transform.

In [Sw]|, A.Swann discovered a construction which relies a hyperkéhler manifold
with a special H*-action to every quaternionic-Kéhler manifold of positive scalar
curvature. This is done as followis.

Let H* be the group of non-zero quaternions. Consider an embedding SU(2) — H*.
Clearly, every quaternion h € H* can be uniquely represented as h = |h|- g5, where
gn € SU(2) C H*. This gives a natural decomposition H* = SU(2) x R*?. Recall
that SU(2) acts naturally on the set of induced complex structures on a hyperkéhler
manifold.
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Definition 6.19: Let M be a hyperkidhler manifold equipped with a free smooth
action p of the group H* = SU(2) x R>?. The action p is called special if the following
conditions hold.

(i): The subgroup SU(2) C H* acts on M by isometries.

(ii): For A € R>?, the corresponding action p(\) : M — M is compatible with
the hyperholomorphic structure (which is a fancy way of saying that p(A) is
holomorphic with respect to any of induced complex structures).

(iii): Consider the smooth H*-action p, : H* x End(7T'M) — End(7'M) induced
on End(TM) by p. For any z € M and any induced complex structure I, the
restriction [ ‘m can be considered as a point in the total space of End(7TM).
Then, for all induced complex structures I, all g € SU(2) C H*, and all z € M,

the map p.(g) maps I‘m to g(I) pe(9)(@)

Speaking informally, this can be stated as “H*-action interchanges the induced
complex structures”.
(iv): Consider the automorphism of S*T*M induced by p(\), where A € R>°.
Then p(A\) maps the Riemannian metric tensor s € S?T*M to A\%s.

Example 6.20: Consider the flat hyperkdhler manifold My = H"\0. There is a
natural action of H* on H"\0. This gives a special action of H* on Mj;.

The case of a flat manifold My = H"\0 is the only case where we apply the results
of this section. However, the general statements are just as difficult to prove, and
much easier to comprehend.

Definition 6.21: Let M be a hyperkahler manifold with a special action p of
H*. Assume that p(—1) acts non-trivially on M. Then M/p(£1) is also a hy-
perkdhler manifold with a special action of H*. We say that the manifolds (M, p)
and (M/p(£1), p) are hyperkdhler manifolds with special action of H* which
are special equivalent. Denote by H, the category of hyperkahler manifolds with
a special action of H* defined up to special equivalence.

A. Swann ([Sw]) developed an equivalence between the category of quaternionic--
Kahler manifolds of positive scalar curvature and the category Hp.

Let @ be a quaternionic-K&hler manifold. The restricted holonomy group of @) is

Sp(n) - Sp(1), that is, (Sp(n) x Sp(1))/{£1}. Consider the principal bundle G with
the fiber Sp(1)/{+£1}, corresponding to the subgroup

Sp(1)/{=£1} C (Sp(n) x Sp(1))/{=1}.
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of the holonomy. There is a natural Sp(1)/{£1}-action on the space
H*/{£1}. Let
UQ) =G Xspayyqz1y H' /{=1}.

Clearly, U(Q) is fibered over @), with fibers which are isomorphic to
H* /{+1}. We are going to show that the manifold U(Q) is equipped with a natural
hypercomplex structure.

There is a natural smooth decomposition U (Q) = G x R>® which comes from the
isomorphism H* 2 Sp(1) x R>°.

Consider the standard 4-dimensional bundle W on Q). Let x € () be a point. The

fiber W‘q is isomorphic to H, in a non-canonical way. The choices of isomorphism

W‘q &~ H are called quaternion frames in ¢. The set of quaternion frames gives a

fibration over @), with a fiber Aut(H) = Sp(1)/{%1}. Clearly, this fibration coincides
with the principal bundle G constructed above. Since U(Q) = G x R>Y, a choice of

ueUQ) ‘q determines an isomorphism W‘q = H

Let (g,u) be the point of U(Q), with ¢ € Q, u € Z/I(Q)‘q. The natural connection

in U(Q) gives a decomposition
Tuwt(@ =T.(UQ)], ) e 10

The space U(Q) , = /{£1} is equipped with a natural hypercomplex structure.

This gives a quaternion action on T, (U (Q) ‘q) The choice of u € U(Q)|, determines

a quaternion action on T(), as we have seen above. We obtain that the total space
of U(Q) is an almost hypercomplex manifold.

Proposition 6.22: (A. Swann) Let () be a quaternionic-Kéhler manifold. Consider
the manifold U(Q) constructed as above, and equipped with a quaternion algebra
action in its tangent space. Then U(Q) is a hypercomplex manifold.

Proof: This is [V-c|, Proposition 7.22. u

Consider the action of H* on U(M) defined in the proof of Proposition 6.22. This
action satisfies the conditions (ii) and (iii) of Definition 6.19. The conditions (i) and
(iv) of Definition 6.19 are easy to check (see [Sw] for details). This gives a functor
from the category C of quaternionic-Kahler manifolds of positive scalar curvature to
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the category H,, of Definition 6.21. This is an equivalence of categories, constructed
by A.Swann ([Sw]).

The inverse functor from Hy, to C' is constructed by taking a quotient of M by the
action of H*. Using the technique of quaternionic-Kéahler reduction anf hyperkéhler
potentials ([Sw]), one can equip the quotient M/H* with a natural quaternionic-
Kahler structure. We call this equivalence Swann’s formalism for quaternionic-
Kahler manifolds.

6.5. Swann’s formalism for vector bundles. Here we use the correspondence
constructed by A.Swann to construct a correspondence between Bs-bundles on a
quaternionic-Kahler manifold and H*-invariant hyperholomorphic bundles on the cor-
responding H*-invariant hyperkdhler manifold. We follow [V-c|, Section 8.

For the duration of this Subsection, we fix a hyperkahler manifold M, equipped
with a special H*-action p, and the corresponding quaternionic-Kahler manifold ) =
M /H*. Denote the standard quotient map by ¢ : M — Q.

Lemma 6.23: Let w be a 2-form over (), and ¢*w its pullback to M. Then the
following conditions are equivalent
(i): w is a By-form
(ii): ¢*w is of Hodge type (1,1) with respect to some induced complex structure
Ion M
(iii): p*w is SU(2)-invariant.

Proof: The proof is elementary linear algebra ([V-c|, Lemma 8.1). m
The following proposition is an immediate corollary of Lemma 6.23

Proposition 6.24: ([V-c|, Proposition 8.2) Let (B, V) be a Hermitian vector bun-
dle with connection over @, and (¢*B, ¢*V) its pullback to M. Then the following
conditions are equivalent

(i): (B, V) is a By-bundle

(ii): The curvature of (p*B,¢*V) is of Hodge type (1,1) with respect to some

induced complex structure I on M
(iii): The bundle (¢*B, ¢*V) is hypercomplex.
Proof: Follows from Lemma 6.23 applied to w = V2. »

Let N be a hyperkdhler manifold o : Tw(/N) — N its twistor space and B a
hyperholomorphic bundle. It is easy to check that the lift 0* B is a holomorphic bundle
on Tw(N). The holomorphic structure ¢* B defines the connection on B in a unique
way. This is called direct and inverse twistor transform for hyperholomorphic
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bundles ([KV1]). A holomorphic bundle on Tw(N) is called compatible with the
twistor transform if it is obtained from some hyperholomorphic bundle on NN.

Proposition 6.24 has the following fundamental corollary

Theorem 6.25: In the above assumptions, let Cp, be the category of of By-bundles
on @, and Cry - the category of C*-equivariant holomorphic bundles on Tw(M)
which are compatible with the twistor transform. Consider the functor

(U*@*)O,l . CB2 — CTW,(C* ,

(B,V) — (0*¢*B, (c*¢*V)%!), constructed above. Then (c*¢*)%! establishes an
equivalence of categories.

Proof: This is [V-c|, Theorem 8.5. m

Now, let z € R be an isolated singularity of a reflexive hyperholomorphic sheaf F
over a hyperkihler manifold R. Consider the twistor space Tw(/N) and the horizontal
twistor line s, : CP! — Tw(N) corresponding to z. Let I be an ideal sheaf of
sz. Denote the associated graded sheaf by O(Tw(N)),. Then Spec(O(Tw(N)),r)
is isomorphic to the twistor space of 7T, M. Taking an associate graded sheaf of
F, we obtain a sheaf F,, over Spec(O(Tw(N)),) = Tw(T,M). We proved the
Desingularization Theorem by establishing the natural C*-action on the fibers (N, I)
of the twistor projection 7 : Tw(N) — CP!. As we have shown, the sheaf F is
C*-equivariant with respect to this C*-action. Therefore, the associated graded sheaf
F,, has the same singularities as F.

This reasoning leads to the following theorem.

Theorem 6.26: ([V-c|, Theorem 8.15) Let N be a hyperkédhler manifold, I an
induced complex structure and F' a reflexive sheaf on (V, I) admitting a hyperholo-
morphic connection. Assume that F' has an isolated singularity in x € N, and is
locally trivial outside of . Let 7 : N — (NN, I) be the blow-up of (N, I) in z. Con-

sider the holomorphic vector bundle 7*F on M (Theorem 6.12). Let C C (N, I) be
the blow-up divisor, C' = CPT, M. Clearly, the manifold C' is canonically isomorphic
to the twistor space of the quaternionic-Kéhler manifold HP (7, N). Then 7*F is the
twistor transform of a By-bundle on HP (7, N).

T.Nitta ([N2]) has shown that a bundle, obtained by twistor transform, is Yang-
Mills (hence, direct sum of stable bundles of the same degree). This leads to the
following corollary.
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Corollary 6.27: In the assumptions of Theorem 6.26, consider the natural con-
nection V on the bundle 7T*F|C obtained from the twistor transform. Then V is
Yang-Mills, with respect to the Fubini-Study metric on C' = PT,N, the degree
deg c; (7r*F |C) vanishes, and the holomorphic vector bundle 7* F' ‘C is a direct sum of
stable bundles of the same degree.

7. CREPANT RESOLUTIONS AND HOLOMORPHIC SYMPLECTIC GEOMETRY

Let V be a complex symplectic vector space, and G a finite group acting on V
by linear transformations preserving symplectic structure. The variety X = V/G
is usually singular. In this section, we are working with the resolutions of these
singularities.

The crepant resolutions of X are resolutions 7 : X —» X such that the canonical
class of X is obtained as a pullback of a canonical class of X.

Further on, we shall assume that 7 : X — X = V/G is a crepant resolution. In
such a case, the manifold X is also holomorphically symplectic, which is quite easy
to see ([V-r|, Theorem 2.5).

Here is an example of such situation.

Example 7.1: The Hilbert scheme of n points on C? provides a crepant resolution
of the quotient (C?)"/S,, of (C*)" by the natural action of the symmetric group S,
(this is well known; see e. g. [N]).

A reason to study the symplectic desingularization comes from the hyperkéhler
geometry. Consider a compact complex torus 7', dim¢ 7" = 2, and its n-th Hilbert
scheme of points 71", Let Alb : T!" — T be the Albanese map. A generalized
Kummer variety K[ U is defined as

Kl ol ginol.= A1p-1(0).

The variety K™ is smooth and holomorphically symplectic ([Bea]). By Calabi-Yau
theorem ([Y], [Bea]), the variety K™ is equipped with a set of hyperkiihler structures,
parametrized by the Kahler cone.

In [KV2] (Section 4), it was shown that all trianalytic subvarieties of generalized
Kummer varieties (at least, for generic hyperkdhler structures) are isomorphic to
symplectic desingularizations of a quotient of a compact torus by an action of a Cox-
eter group. This establishes a very interesting relation between the Dynkin diagrams
and hyperkahler geometry, and motivates the study of symplectic desingularization
of quotient singularities.
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In [V-r], this argument was carried a step further, to obtain information about the
structure of finite groups G C Sp(V) such that V/G admits a symplectic desingular-
ization. This is done as follows. Let g € End(V') be a symplectomorphism of finite
order. We say that g is a symplectic reflection if

codimy ({x eV | glz) = x}) =9,

that is, the dimension of the fixed set of g is maximal possible for non-trivial g. This
definition parallels that of complex reflections — a complex reflection is an endomor-
phism of finite order with fixed point set of codimension 1. The main result of [V-r]
is the following theorem.

Theorem 7.2: ([V-r], Theorem 3.2) Let V' be a symplectic vector space over C, and
G C Sp(V) a finite group of symplecic transformations. Assume that V/G admits a
symplectic resolution. Then G is generated by symplectic reflections.

The proof of Theorem 7.2 is modeled on the proof of well-known theorem about
groups generated by complex reflections (that is, endomorphisms which fix a subspace
of codimension 1).

Proposition 7.3: ([Bou], Ch. V, §5 Theorem 4) Let V' be a complex vector space,
and G C GL(V) a finite group acting on V. Assume that X := V/G is smooth.
Then G is generated by complex reflections. Conversely, if G generated by complex
reflections, the quotient V/G is smooth.

Another important ingredient is the following theorem, which is based on elemen-
tary arguments from linear algebra.

Definition 7.4: Let 7 : X — X be a resolution of singularities. The map 7 is
called semismall if X admits a stratification & with open strata U;, such that

1
Vz e U; | dimn '(z) < 5 codim U;
Theorem 7.5: Let 7: X — X be a crepant resolution of a quotient singularity

X =V/G, G € Sp(V). Then 7 is semismall.

Proof: This statement easily follows from Proposition 4.16 and Proposition 4.5 of
[V4] (see also [K1], Proposition 4.4). =
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