

Proceedings of the Ninth Prague Topological Symposium Contributed papers from the symposium held in Prague, Czech Republic, August 19–25, 2001

pp. 91–92

TRANSFINITE SEQUENCES OF CONTINUOUS AND BAIRE 1 FUNCTIONS ON SEPARABLE METRIC SPACES

MÁRTON ELEKES

ABSTRACT. We investigate the existence of well-ordered sequences of Baire 1 functions on separable metric spaces.

Any set \mathcal{F} of real valued functions defined on an arbitrary set X is partially ordered by the pointwise order, that is $f \leq g$ iff $f(x) \leq g(x)$ for all $x \in X$. In other words put f < g iff $f(x) \leq g(x)$ for all $x \in X$ and $f(x) \neq g(x)$ for at least one $x \in X$. Our aim will be to investigate the possible length of the increasing or decreasing well-ordered sequences of functions in \mathcal{F} with respect to this order.

A classical theorem of Kuratowski asserts, that if \mathcal{F} is the set of continuous or Baire 1 functions defined on a Polish space X, then there exists a monotone sequence of length ξ in \mathcal{F} iff $\xi < \omega_1$ (see [2, §24. III.2']). Moreover, P. Komjáth proved in [1] that the corresponding question concerning Baire α functions for $2 \le \alpha < \omega_1$ is independent of ZFC.

In the present paper we investigate what happens if we drop the condition of completeness and replace the Polish space X by a separable metric space.

Our main results are the following. Let d(X) denote the density of a space X.

Theorem. Let (X, ϱ) be a metric space. Then there exists a well-ordered sequence of length ξ of continuous real-valued functions defined on X iff $\xi < d(X)^+$.

Corollary. A metric space is separable iff every well-ordered sequence of continuous functions defined on it is countable.

Theorem. There exists a separable metric space on which there exists a well-ordered sequence of length ω_1 of Baire 1 functions.

Theorem. The following statement: 'There exists a separable metric space on which there exists a well-ordered sequence of length ω_2 of Baire 1 functions' is independent of $ZFC + \neg CH$.

 $^{2000\} Mathematics\ Subject\ Classification.\ 26A21.$

Key words and phrases. Baire 1 function, well-ordered sequence, metric spaces.

Remark. During and after the conference Kenneth Kunen answered one of my questions, and also improved some of the results and proofs. These results will appear in a forthcoming joint paper.

References

- 1. Péter Komjáth, Ordered families of Baire-2-functions, Real Anal. Exchange 15 (1989/90), no. 2, 442–444. MR 91d:26007
- 2. K. Kuratowski, Topology. Vol. I, Academic Press, New York, 1966. MR 36#840

Department of Analysis, Eötvös Loránd University, Budapest, Pázmány Péter sétány 1/c, 1117, Hungary

 $E ext{-}mail\ address: emarci@cs.elte.hu}$